HIGH CURRENT MOLDED POWER INDUCTORS L815PW SERIES 1. PART NO. EXPRESSION : L815PW-1R0MF (a) (b) (c) (d)(e) (a) Series code (d) Tolerance code : M = ±20% (b) Type code (e) F : Lead Free (c) Inductance code : 1R0 = 1.0uH 2. CONFIGURATION & DIMENSIONS : A' C' A C D L E B' B SWORLD R33 H G PCB Pattern Unit:m/m A' A B' B C' C D E G H L 7.8 Max. 6.86±0.5 7.0 Max. 6.47±0.5 4.2 Max. 4.0 Max. 1.6±0.5 2.1±0.5 3.7 Ref. 3.5 Ref. 8.7 Ref. 3. SCHEMATIC : 4. MATERIALS : a b (a) Core (b) Wire (c) Terminal c 5. FEATURES : a) Shielded Construction b) Frequency up to 5MHz NOTE : Specifications subject to change without notice. Please check our website for latest information. 15.01.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 1 HIGH CURRENT MOLDED POWER INDUCTORS L815PW SERIES 6. GENERAL SPECIFICATION : a) Test Freq. : 100KHz/1.0VDC; Q : 100KHz/1.0VDC b) Ambient Temp. : 20°C c) Operating Temp. : -55°C to +125°C d) Storage Temp. : -55°C to +125°C e) Humidity Range : 50 ~ 60% RH f) Heat Rated Current (Irms) : Will cause the coil temp. rise approximately ǻT=40°C without core loss. g) Saturation Current (Isat) : Will cause L0 to drop approximately 20% typ. h) Part Temperature (Ambient+Temp. Rise) : Should not exceed 125°C under worst case operating conditions. 7. ELECTRICAL CHARACTERISTICS : Part No. Inductance L 0 ( µH ) ±20% @ 0 Adc Irms (A) Typ. Isat (A) Typ. DCR ( mȍ ) Max. Q Min. L815PW-R33MF 0.33 25 32 1.4 15 L815PW-R47MF 0.47 20 30 2.5 15 L815PW-R68MF 0.68 17 28 3.8 15 L815PW-1R0MF 1.0 15 20 5.8 15 L815PW-1R5MF 1.5 16 18 8.4 15 L815PW-2R2MF 2.2 12 14 15 15 L815PW-3R3MF 3.3 10 13 18 15 L815PW-4R7MF 4.7 7 9 21 15 L815PW-6R8MF 6.8 5.5 7 30 15 L815PW-100MF 10.0 4.5 5 60 15 NOTE : Specifications subject to change without notice. Please check our website for latest information. 15.01.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 2 HIGH CURRENT MOLDED POWER INDUCTORS L815PW SERIES 8. CHARACTERISTICS CURVES : L815PW-R33MF SMPI0604PW -R33 SL815PW-R47MF MPI0604PW-R47 100 100 0.6 90 90 0.5 70 0.3 60 50 0.2 40 30 0.1 INDUCTANCE (uH) 80 TEM P. RISE(oC) INDUCTANCE (uH) 0.4 20 80 70 0.4 60 50 0.3 40 0.2 30 20 0.1 10 10 0 0 0 0 7.2 14.4 21.6 28.8 TEM P. RISE(oC) 0.5 0 0 36 6 12 18 24 30 DC CURRENT(A) DC CURRENT(A) L815PW-1R0MF S MPI0604PW-1R0 100 90 90 0.4 50 40 30 IND UCT ANCE (uH ) 60 TEMP. RISE(oC) 70 80 1.2 80 0.6 0.2 70 60 0.9 50 40 0.6 30 0.3 20 20 10 10 0 0 0 7 14 21 0 0 28 4.8 9.6 14.4 19.2 24 DC CURRENT(A) DC CURRENT(A) L815PW-2R2MF SMPI0604PW -2R2 L815PW-1R5MF S MPI0604PW-1R5 2 3 100 100 90 90 1.5 70 60 1 50 40 30 0.5 20 INDUCTANCE (uH) 2.4 TEM P. RISE(oC) INDUCTANCE (uH) 80 80 70 1.8 60 50 1.2 40 30 0.6 20 10 0 0 0 3.6 7.2 10.8 DC CURRENT(A) 14.4 18 TEM P. RISE(oC) 0 T EM P. R ISE( o C) 0.8 INDUCTANCE (uH) 100 1.5 SMPI0604PW -R68 L815PW-R68MF 10 0 0 0 3.6 7.2 10.8 14.4 18 DC CURRENT(A) NOTE : Specifications subject to change without notice. Please check our website for latest information. 15.01.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 3 HIGH CURRENT MOLDED POWER INDUCTORS L815PW SERIES 8. CHARACTERISTICS CURVES : L815PW-4R7MF S MPI0604PW-4R7 S L815PW-3R3MF MPI0604PW-3R3 100 7 100 90 60 2.4 50 40 1.6 30 INDUCT ANCE (uH) 70 5.6 TEM P. RISE(oC) 20 0.8 80 70 4.2 60 50 2.8 40 30 1.4 20 10 0 10 0 0 2.6 5.2 7.8 10.4 0 13 0 0 DC CURRENT(A) 1.8 3.6 5.4 7.2 9 DC CURRENT(A) S MPI0604PW-100 L815PW-100MF SMPI0604PW -6R8 L815PW-6R8MF 10 15 100 100 90 90 12 70 6 60 50 4 40 30 2 20 INDUCTANCE (uH) 80 TEM P. RISE(oC) INDUCTANCE (uH) 8 80 70 9 60 50 6 40 30 3 20 10 10 0 0 0 2 4 6 8 TEM P. RISE(oC) INDUCTANCE (uH) 90 80 3.2 T EM P. RISE( o C) 4 0 0 0 1 DC CURRENT(A) 2 3 4 5 DC CURRENT(A) NOTE : Specifications subject to change without notice. Please check our website for latest information. 15.01.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 4 HIGH CURRENT MOLDED POWER INDUCTORS L815PW SERIES 9. CORE LOSS : 100KHz and 500KHz 40000 material gauss loss K W /3m3 K W /m 30000 20000 500KHZ 10000 100KHZ 0 0 200 400 600 800 1000 gauss gauss 100KHz 500KHz 100 - 266 200 - 1,234 300 351.7 2,932 400 665.9 5,195 500 1,039 8,336 600 1,471 12,025 700 1,923 15,715 800 2,537 20,444 900 3,148 25,429 1000 3,902 31,002 100KHz 4000 material gauss loss KKW /3m3 W /m 3000 2000 1000 0 200 400 600 800 1000 gau ss gauss 100KHz 300 351.7 400 665.9 500 1,039 600 1,471 700 1,923 800 2,537 900 3,148 1000 3,902 500KHz 40000 KW W /m K /m 3 3 30000 20000 10000 0 0 200 400 600 800 1000 g au ss gauss NOTE : Specifications subject to change without notice. Please check our website for latest information. 15.01.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 5 HIGH CURRENT MOLDED POWER INDUCTORS L815PW SERIES 10. RELIABILITY AND TEST CONDITION : ITEM PERFORMANCE TEST CONDITION Electrical Characteristics Test Inductance Refer to standard electrical characteristics list HP4284A, CH11025, CH3302, CH1320, CH1320S LCR meter. DCR CH16502, Agilent33420A Micro-Ohm Meter. Heat Rated Current (Irms) Irms(A) will cause the coil temperature rise approximately ǻT=40°C without core loss 1. Applied the allowed DC current 2. Temperature measured by digital surface thermometer Saturation Current (Isat) Isat(A) will cause Lo to drop approximately 20% typ. Mechanical Performance Test Solderability Test More than 90% of the terminal electrode should be covered with solder. Preheat : 150°C, 60sec. Solder : Sn99.95-Cu0.05 Solder Temperature : 230±5°C Flux for lead free : rosin Dip Time : 4±1sec. Preheating Dipping 230°C 150°C Solder Heat Resistance 1. Appearance : No significant abnormality 2. Inductance change : Within ±20% 60 seconds Natural cooling 4±1 seconds Preheat : 150°C, 60sec. Solder : Sn99.95-Cu0.05 Solder Temperature : 260±5°C Flux for lead free : rosin Dip Time : 10±0.5sec. Preheating Dipping 260°C 150°C 60 seconds Natural cooling 10±0.5 seconds Reliability Test High Temperature Life Test Temperature : 125±5°C Time : 500±12 hours Measure at room temperature after placing for 2 to 3 hrs. Low Temperature Life Test 1. Appearance : No damage Thermal Shock 2. Inductance : Within ±20% of initial value. No disconnection or short circuit. Temperature : -55±5°C Time : 500±12 hours Measure at room temperature after placing for 2 to 3 hrs. Conditions of 1 cycle. Step Temperature (°C) 1 -55±3 30±3 2 Room Temperature Within 3 Times (min.) 3 +125±3 30±3 4 Room Temperature Within 3 Total : 5 cycles Measure at room temperature after placing for 2 to 3 hrs. Humidity Resistance 1. Appearance : No damage 2. Inductance : Within ±20% of initial value. No disconnection or short circuit. Temperature : 40±5°C Humidity : 90% to 95% Applied Current : Rated Curent Time : 500±12 hours Measure at room temperature after placing for 2 to 3 hrs. NOTE : Specifications subject to change without notice. Please check our website for latest information. 15.01.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 6 HIGH CURRENT MOLDED POWER INDUCTORS L815PW SERIES 11. SOLDERIND AND MOUNTING : 11-1. Recommended PC Board Pattern 3.7 2.5 3.5 2.5 11-2. Soldering Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. Our terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools. 11-2.1 Solder Re-flow : Recommended temperature profiles for re-flow soldering in Figure 1. 11-2.2 Soldering Iron (Figure 2) : Products attachment with soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended. Note : a) Preheat circuit and products to 150°C. b) 280°C tip temperature (max) c) Never contact the ceramic with the iron tip d) 1.0mm tip diameter (max) e) Use a 20 watt soldering iron with tip diameter of 1.0mm f) Limit soldering time to 3 secs. Soldering 10s max. Natural cooling 250~260 230 180 150 60~120s 30~60s Preheating TEMPERATURE °C TEMPERATURE °C Preheating 350 Soldering Natural cooling 300 150 Over 1min. Gradual Cooling Within 3secs. Figure 1. Re-flow Soldering Figure 2. Iron Soldering NOTE : Specifications subject to change without notice. Please check our website for latest information. 15.01.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 7 HIGH CURRENT MOLDED POWER INDUCTORS L815PW SERIES 12. PACKAGING INFORMATION : 12-1. Reel Dimension COVER TAPE ØC B D 2.0±0.5 A EMBOSSED CARRIER Type A(mm) B(mm) C(mm) D(mm) 13" x 16mm 16.0±0.5 100±2.0 13.5±0.5 330 Ø1.5+0.1 2.0±0.1 t P 0.15 MIN Bo W F 4.0±0.1 1.75±0.1 12-2 Tape Dimension Ko Ao Series Ao(mm) Bo(mm) Ko(mm) P(mm) W(mm) F(mm) t(mm) L815PW 7.0±0.1 7.8±0.1 4.3±0.1 12.0±0.1 16.0±0.3 7.5±0.1 0.35±0.05 12-3. Packaging Quantity Size L815PW Chip / Reel 1000 Inner Box 2000 Carton 8000 NOTE : Specifications subject to change without notice. Please check our website for latest information. 15.01.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 8 HIGH CURRENT MOLDED POWER INDUCTORS L815PW SERIES 12-4. Tearing Off Force The force for tearing off cover tape is 15 to 60 grams in the arrow direction under the following conditions. F 165° to 180° Top cover tape Room Temp. (°C) Room Humidity (%) Room atm (hPa) Tearing Speed (mm/min) 5~35 45~85 860~1060 300 Base tape Application Notice 1. Storage Conditions : To maintain the solderabililty of terminal electrodes : a) Temperature and humidity conditions : Less than 30°C and 70% RH. b) Recommended products should be used within 6 months from the time of delivery. c) The packaging material should be kept where no chlorine or sulfur exists in the air. 2. Transportation : a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils. b) The use of tweezers or vacuum pick up is strongly recommended for individual components. c) Bulk handling should ensure that abrasion and mechanical shock are minimized. NOTE : Specifications subject to change without notice. Please check our website for latest information. 15.01.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 9