TI LT1013DIP

LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
D
D
D
D
D
1IN +
VCC –
2IN +
2IN –
8
2
7
3
6
4
5
1IN –
1OUT
VCC +
2OUT
FK PACKAGE
(TOP VIEW)
NC
1IN –
NC
1IN +
NC
description
The LT1013 is a dual precision operational
amplifier featuring low offset voltage temperature
coefficient, high gain, low supply current, and low
noise.
1
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN –
NC
NC
2IN+
NC
D
D PACKAGE
(TOP VIEW)
NC
1OUT
NC
VCC ±
NC
D
Single-Supply Operation:
Input Voltage Range Extends to Ground
Output Swings to Ground While Sinking
Current
Input Offset Voltage
150 µV Max at 25°C for LT1013A
Offset Voltage Temperature Coefficient
2.5 µV/°C Max for LT1013A
Input Offset Current
0.8 nA Max at 25°C for LT1013A
High Gain . . . 1.5 V/µV Min ( RL = 2 kΩ),
0.8 V/µV Min ( RL = 600 kΩ) for LT1013A
Low Supply Current . . . 0.5 mA Max at
TA = 25°C for LT1013A
Low Peak-to-Peak Noise Voltage
0.55 µV Typ
Low Current Noise . . . 0.07 pA/√HZ Typ
NC
V CC –
D
NC – No internal connection
JG OR P PACKAGE
(TOP VIEW)
The LT1013 can be operated from a single 5-V
power supply; the common-mode input voltage
range includes ground, and the output can also
swing to within a few millivolts of ground.
Crossover distortion is eliminated. The LT1013
can be operated with both dual ± 15 -V and single
5 -V supplies.
1OUT
1IN –
1IN +
VCC –
1
8
2
7
3
6
4
5
VCC +
2OUT
2IN –
2IN +
The LT1013C and LT1013AC, and LT1013D are characterized for operation from 0°C to 70°C. The LT1013I and
LT1013AI, and LT1013DI are characterized for operation from – 40°C to 105°C. The LT1013M and LT1013AM,
and LT1013DM are characterized for operation over the full military temperature range of – 55°C to 125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1996, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
AVAILABLE OPTIONS
TA
VIOmax
AT 25°C
0°C to 70°C
150 µ
µV
300 µV
800 µV
– 40°C to 105°C
– 55°C to 125°C
PACKAGED DEVICES
SMALL OUTLINE
(D)
CERAMIC DIP
(JG)
PLASTIC DIP
(P)
—
—
LT1013DD
—
—
—
—
—
—
LT1013ACP
LT1013CP
LT1013DP
LT1013Y
150 µ
µV
300 µV
800 µV
—
—
LT1013DID
—
—
—
—
—
—
LT1013AIP
LT1013IP
LT1013DIP
—
150 µ
µV
300 µV
800 µV
—
—
LT1013DMD
LT1013AMFK
LT1013MFK
—
—
LT1013MJG
LT1013DMJG
LT1013AMP
LT1013MP
LT1013DMP
—
The D package is available taped and reeled. Add the suffix R to the device type (e.g., LT1013DDR).
2
CHIP FORM
(Y)
CHIP CARRIER
(FK)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
schematic (each amplifier)
VCC +
9 kΩ
9 kΩ
1.6 kΩ
1.6 kΩ
100 Ω
1.6 kΩ
800 Ω
1 kΩ
Q36
Q5
Q6
Q13
Q16
Q14
Q15
Q32
Q35
Q30
J1
Q3
Q37
Q25
Q4
Q33
21 pF
400 Ω
Q41
Q26
2.4 kΩ
Q27
2.5 pF
14 kΩ
18 Ω
Q38
IN –
OUT
Q21
Q2
Q28
Q39
400 Ω
IN +
Q12
4 pF
Q18
Q22
Q31
Q40
Q29
Q10
Q11
Q19
Q7
10 pF
Q17
10 pF
Q23
Q20
75 pF
5 kΩ
5 kΩ
1.3 kΩ
VCC –
Component values are nominal.
Q24
2 kΩ
2 kΩ
42 kΩ
30 Ω
600 Ω
3
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
Q8
Q9
Q34
2 kΩ
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3.9 kΩ
Q1
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
LT1013Y chip information
This chip, when properly assembled, displays characteristics similar to the LT1013. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(1)
(8)
IN +
(7)
(3)
VCC+
(8)
+
–
IN –
(6)
(2)
2 IN +
(5)
(1)
1OUT
(2)
+
(6)
2IN –
(7)
2OUT
–
(4)
79
VCC –
CHIP THICKNESS: 15 TYPICAL
(5)
(3)
BONDING PADS: 4 × 4 MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
(4)
ALL DIMENSIONS ARE IN MILS.
96
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V
Supply voltage, VCC – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 22 V
Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 V
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC – – 5 V to VCC+
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Operating free-air temperature range, TA: LT1013C, LT1013AC, LT1013D . . . . . . . . . . . . . . – 0 °C to 70°C
LT1013I, LT1013AI, LT1013DI . . . . . . . . . . . . . . . – 40°C to 105°C
LT1013M, LT1013AM, LT1013DM . . . . . . . . . . – 55 °C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65 °C to 150°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC – .
2. Differential voltages are at IN+ with respect to IN –.
3. The output may be shorted to either supply.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input
offset voltage
TEST CONDITIONS
Input offset current
IIB
Input bias current
Maximum peak output voltage swing
04
0.4
25°C
0.5
25°C
0.2
Full range
25°C
A VD
Large-signal
L
i
l differential
diff
ti l voltage
lt
am
lification
amplification
– 15
– 15
to
13.5
Full range
g
– 15
to
13
VO = ± 10 V,
VO = ± 10 V
V,
RL = 600 Ω
RL = 2 kΩ
Common mode rejection ratio
Common-mode
VIC = – 15 V to 13.5 V
VIC = – 14.9 V to 13 V
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC /∆VIO)
VCC + = ± 2 V to ± 18 V
Channel separation
VO = ± 10 V,
RL = 2 kΩ
200
1.5
0.15
2
07
0.7
0.4
– 12
± 14
0.2
– 20
– 15
– 15.3
to
13.8
± 13
± 14
± 12.5
± 14
25°C
0.5
0.2
0.8
2.5
0.5
2
25°C
1.2
7
1.5
8
1.2
7
Full range
0.7
25°C
97
94
114
100
nA
V
± 12
1
nA
V
– 15
to
13
± 12.5
µV/°C
– 15.3
to
13.8
± 12
Full range
– 30
– 38
– 15
to
13.5
µV
µV/mo
1.5
2.8
– 25
– 15
to
13.5
5
0.5
0.8
1.5
– 30
800
1000
Full range
V/µV
0.7
117
97
98
114
dB
94
25°C
100
Full range
97
25°C
120
137
123
140
120
137
dB
70
300
100
400
70
300
MΩ
117
25°C
Common-mode input resistance
25°C
4
25°C
0.35
Full range
103
120
100
101
Differential input resistance
† Full range is 0°C to 70°C.
‡ All typical values are at TA = 25°C.
03
0.3
– 15
to
13
ric
Supply current per amplifier
25
2.5
– 15.3
to
13.8
rid
ICC
150
UNIT
5
0.55
0.7
117
dB
97
0.35
4
0.5
0.55
0.35
GΩ
0.55
0.6
mA
5
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
CMRR
± 12.5
LT1013DC
MAX
MIN TYP ‡
240
– 38
25°C
25°C
40
2.8
Full range
RL = 2 kΩ
300
400
Full range
Common mode input voltage range
Common-mode
VOM
60
Full range
LT1013AC
MAX
MIN TYP ‡
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
LT1013C
MAX
MIN TYP ‡
25°C
RS = 50 Ω
Long-term drift of input offset voltage
IIO
TA†
Input offset voltage
IIO
Input offset current
IIB
Input bias current
VICR
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Output low,
Supply current per amplifier
– 18
25°C
0
to
3.5
VO = 5 mV to 4 V,
V
RL = 500 Ω
MAX
60
250
Full range
g
0
to
3
MIN
TYP
250
350
2
0.2
– 15
1.3
0.3
– 35
– 0.3
to
3.8
– 18
2
– 50
– 90
0
to
3.5
0
to
3
950
6
– 55
0
to
3.5
MAX
1200
3.5
– 50
– 0.3
to
3.8
LT1013DC
TYP
– 90
0.3
to
3.8
25
15
25
15
25
25°C
5
10
5
10
5
10
13
220
µV
nA
nA
V
15
25°C
UNIT
0
to
3
25°C
Full range
Isink = 1 mA
No load
MIN
6
Full range
Output high,
g ,
RL = 600 Ω to GND
ICC
450
0.3
25°C
Output high,
Large-signal
g
g
differential
voltage amplification
90
Full range
Output low,,
RL = 600 Ω to GND
A VD
MAX
570
25°C
No load
LT1013AC
TYP
Full range
Common-mode input voltage
g
range
Maximum-peak
M
i
k output
t t voltage
lt
swing
LT1013C
MIN
25°C
RS = 50 Ω
Output low,
VOM
TA†
13
350
220
13
350
220
mV
350
25°C
4
4.4
4
4.4
4
4.4
25°C
3.4
4
3.4
4
3.4
4
V
Full range
3.2
1
V/µV
3.3
25°C
1
25°C
0.32
Full range
3.2
1
0.5
0.31
0.55
0.45
0.32
0.5
0.5
0.55
mA
† Full range is – 0°C to 70°C.
operating characteristics, VCC± =±15 V, VIC = 0, TA = 25°C
PARAMETER
TEST CONDITIONS
MIN
TYP
0.2
0.4
MAX
UNIT
SR
Slew rate
Vn
Equivalent input noise voltage
VN(PP)
In
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz
0.55
µV
Equivalent input noise current
f = 10 Hz
0.07
pA/√Hz
f = 10 Hz
24
f = 1 kHz
22
V/µs
nV/√Hz
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
PARAMETER
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
6
electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC– = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted)
electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input
offset voltage
TEST CONDITIONS
Input offset current
IIB
Input bias current
Maximum peak output voltage
g
swing
04
0.4
25°C
05
0.5
25°C
0.2
Full range
25°C
A VD
Large-signal
L
i
l differential
diff
ti l voltage
lt
amplification
am
lification
– 15
– 15
to
13.5
Full range
g
– 15
to
13
VO = ± 10 V,
VO = ± 10 V
V,
RL = 600 Ω
RL = 2 kΩ
Common-mode
rejection ratio
VIC = – 15 V to 13.5 V
VIC = – 14.9 V to 13 V
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC /∆VIO)
VCC ± = ± 2 V to ± 18 V
Channel separation
VO = ± 10 V,
RL = 2 kΩ
200
2
07
0.7
04
0.4
1.5
0.15
– 12
0.8
± 14
0.2
– 20
– 15
– 15.3
to
13.8
± 13
1.5
– 30
– 38
– 15
to
13.5
± 14
± 12.5
nA
nA
V
± 14
± 12
25°C
0.5
0.2
0.8
2.5
0.5
2
25°C
1.2
7
1.5
8
1.2
7
Full range
0.7
V
± 12
1
µV/°C
– 15.3
to
13.8
– 15
to
13
± 12.5
µV
µV/mo
2.8
– 25
– 15
to
13.5
5
05
0.5
1.5
– 30
800
1000
Full range
V/µV
0.7
25°C
97
Full range
94
25°C
100
Full range
97
25°C
120
137
123
140
120
137
dB
70
300
100
400
70
300
MΩ
114
117
117
97
103
25°C
25°C
4
25°C
0.35
120
100
0.7
dB
117
dB
97
5
0.55
114
94
101
Common-mode input resistance
Full range
100
97
Differential input resistance
† Full range is – 40°C to 105°C.
‡ All typical values are at TA = 25°C.
03
0.3
– 15
to
13
ric
Supply current per amplifier
25
2.5
– 15.3
to
13.8
rid
ICC
150
UNIT
0.35
4
0.5
0.55
0.35
GΩ
0.55
0.6
mA
7
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
CMRR
± 12.5
LT1013DI
MAX
MIN TYP‡
300
– 38
25°C
25°C
40
2.8
Full range
RL = 2 kΩ
300
550
Full range
Common mode input voltage range
Common-mode
VOM
60
Full range
MAX
LT1013AI
MAX
MIN TYP‡
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
LT1013I
MIN TYP‡
25°C
RS = 50 Ω
Long-term
g
drift of input offset
voltage
IIO
TA†
Input offset voltage
IIO
Input offset current
IIB
Input bias current
VICR
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Output low,
Supply current per amplifier
– 18
25°C
0
to
3.5
VO = 5 mV to 4 V
V,
RL = 500 Ω
MAX
60
250
Full range
g
0
to
3
MIN
TYP
250
350
2
0.2
– 15
1.3
0.3
– 35
– 0.3
to
3.8
– 18
2
– 50
– 90
0
to
3.5
0
to
3
950
6
– 55
0
to
3.5
MAX
1200
3.5
– 50
– 0.3
to
3.8
LT1013DI
TYP
– 90
0.3
to
3.8
25
15
25
15
25
25°C
5
10
5
10
5
10
13
220
µV
nA
nA
V
15
25°C
UNIT
0
to
3
25°C
Full range
Isink = 1 mA
No load
MIN
6
Full range
Output high,
g ,
RL = 600 Ω to GND
ICC
450
0.3
25°C
Output high,
Large-signal
g
g
differential
voltage amplification
90
Full range
Output low,,
RL = 600 Ω to GND
A VD
MAX
570
25°C
No load
LT1013AI
TYP
Full range
Common-mode input voltage
g
range
Maximum-peak
M
i
k output
t t voltage
lt
swing
LT1013I
MIN
25°C
RS = 50 Ω
Output low,
VOM
TA†
13
350
220
13
350
220
mV
350
25°C
4
4.4
4
4.4
4
4.4
25°C
3.4
4
3.4
4
3.4
4
V
Full range
3.2
1
V/µV
3.3
25°C
1
25°C
0.32
Full range
3.2
1
0.5
0.31
0.55
0.45
0.32
0.5
0.5
0.55
mA
† Full range is – 40°C to 105°C.
operating characteristics, VCC± = ±15 V, VIC = 0, TA = 25°C
PARAMETER
TEST CONDITIONS
MIN
TYP
0.2
0.4
MAX
UNIT
SR
Slew rate
Vn
Equivalent input noise voltage
VN(PP)
In
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz
0.55
µV
Equivalent input noise current
f = 10 Hz
0.07
pA/√Hz
f = 10 Hz
24
f = 1 kHz
22
V/µs
nV/√Hz
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
PARAMETER
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
8
electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC– = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted)
electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
LT1013M
MIN TYP‡
MAX
25°C
RS = 50 Ω
60
VIO
Input offset voltage
αVIO
Temperature coefficient of input offset
voltage
Full range
05
0.5
Long-term drift of input offset voltage
25°C
0.5
25°C
0.2
IIO
Input offset current
IIB
Input bias current
Full range
25°C
VOM
Maximum peak output voltage swing
A VD
Large-signal
L
i
l differential
diff
ti l voltage
lt
am
lification
amplification
– 15
RL = 2 kΩ
VO = ± 10 V,
VO = + 10 V
V,
RL = 600 Ω
RL = 2 kΩ
Common mode rejection ratio
Common-mode
VIC = – 15 V to 13.5 V
VIC = – 14.9 V to 13 V
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VCC /∆VIO)
VCC ± = ± 2 V to ± 18 V
Channel separation
VO = ± 10 V,
RL = 2 kΩ
Full range
g
– 14.9
to
13
25°C
± 12.5
Full range
± 11.5
1.5
0.15
05
0.5
0.4
– 12
± 14
0.2
– 20
– 15
– 15.3
to
13.8
± 13
– 15.3
to
13.8
± 14
± 12.5
± 12
± 14
0.5
2
0.8
2.5
0.5
2
1.2
7
1.5
8
1.2
7
Full range
0.25
97
94
0.5
117
100
V
V/µV
117
97
114
dB
94
25°C
100
Full range
97
25°C
120
137
123
140
120
137
dB
70
300
100
400
70
300
MΩ
25°C
Common-mode input resistance
25°C
4
25°C
0.35
∗ On products compliant to MIL-PRF-38535, Class B, this parameter is not production tested.
† Full range is – 55°C to 125°C.
‡ All typical values are at TA = 25°C.
120
100
100
Differential input resistance
Full range
103
nA
0.25
97
117
nA
V
± 11.5
25°C
25°C
µV/°C
– 14.9
to
13
25°C
Full range
– 30
– 45
– 15
to
13.5
µV
µV/mo
1.5
5
– 30
– 15
to
13.5
2.5
2
5∗
0.5
0.8
2.5
– 30
800
1000
2∗
– 14.9
to
13
ric
Supply current per amplifier
04
0.4
– 15.3
to
13.8
rid
ICC
200
UNIT
5
0.55
0.7
117
dB
97
0.35
4
0.5
0.6
0.35
GΩ
0.55
0.7
mA
9
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
CMRR
2.5
2
5∗
– 45
– 15
to
13.5
150
300
5
Full range
Common mode input voltage range
Common-mode
40
LT1013DM
MIN TYP‡
MAX
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
300
550
Full range
25°C
LT1013AM
MIN TYP‡
MAX
Input offset voltage
RS = 50 Ω
RS = 50 Ω,
IIO
Input offset current
IIB
Input bias current
VICR
VIC = 0.1 V
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Output low,
Output high,
Output high,
g ,
RL = 600 Ω to GND
A VD
ICC
Supply current per amplifier
VO = 5 mV to 4 V
V,
RL = 500 Ω
LT1013DM
TYP
MAX
MIN
TYP
MAX
90
450
60
250
250
950
1500
250
900
800
2000
125°C
200
750
120
450
560
1200
25°C
0.3
2
0.2
1.3
0.3
10
– 18
6
– 50
– 15
– 120
25°C
0
to
3.5
Full range
g
0
to
3
– 0.3
to
3.8
– 18
– 80
0
to
3.5
– 0.3
to
3.8
2
10
– 35
– 50
– 120
0
to
3.5
0
to
3
– 0.3
to
3.8
15
25
15
25
15
25
5
10
5
10
5
10
18
220
15
350
220
18
350
220
25°C
4
4.4
4
4.4
4
4.4
25°C
3.4
4
3.4
4
3.4
4
Full range
3.1
3.2
25°C
1
25°C
0.32
Full range
nA
nA
mV
350
V/µV
3.1
1
0.5
µV
V
25°C
25°C
UNIT
0
to
3
25°C
Full range
Isink = 1 mA
No load
MIN
400
25°C
No load
LT1013AM
MAX
25 °C
Full range
Output low,,
RL = 600 Ω to GND
Large-signal
differential
g
g
voltage amplification
TYP
Full range
Common-mode input voltage
g
range
M i
k output
t t voltage
lt
Maximum-peak
swing
LT1013M
MIN
Full range
Output low,
VOM
TA†
0.31
0.65
1
0.45
0.32
0.55
0.5
mA
0.65
† Full range is – 55°C to 125°C.
operating characteristics, VCC± = ±15 V, VIC = 0, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
Slew rate
MIN
TYP
0.2
0.4
f = 10 Hz
24
f = 1 kHz
22
MAX
UNIT
V/µs
Vn
Equivalent input noise voltage
VN(PP)
In
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz
0.55
µV
Equivalent input noise current
f = 10 Hz
0.07
pA/√Hz
nV/√Hz
Template Release Date: 7–11–94
VIO
TEST CONDITIONS
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
PARAMETER
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
10
electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC – = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted)
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
electrical characteristics at VCC+ = 5 V, VCC– = 0, VO = 1.4 V, VIC = 0, TA = 25°C (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
LT1013Y
MIN
MAX
UNIT
VIO
IIO
Input offset voltage
250
950
µV
Input offset current
0.3
2
nA
IIB
Input bias current
– 18
– 50
nA
VICR
Common-mode input voltage
g range
g
VOM
AVD
ICC
RS = 50 Ω
TYP
0
to
3.5
Maximum peak output voltage swing
Large-signal differential voltage amplification
Output low,
No load
Output low,
RL = 600 Ω to GND
Output low,
Output high,
Isink = 1 mA
No load
Output high,
RL = 600 Ω to GND
VO = 5 mV to 4 V,
RL = 500 Ω
0.3
to
3.8
V
15
25
5
10
220
350
4
4.4
3.4
4
V
1
Supply current per amplifier
mV
V/µV
0.32
0.5
mA
electrical characteristics at VCC+ = ±15 V, VIC = 0, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
IIO
IIB
TEST CONDITIONS
LT1013Y
MIN
RS = 50 Ω
Input offset voltage
TYP
MAX
200
800
UNIT
µV
µV/mo
Long-term drift of input offset voltage
0.5
Input offset current
0.2
1.5
nA
– 15
– 30
nA
Input bias current
VICR
Common-mode input voltage
g range
g
VOM
Maximum peak output voltage swing
– 15
to
13.5
– 15.3
to
1 3.8
± 12.5
± 14
RL = 600 Ω
0.5
2
RL = 2 Ω
1.2
7
97
114
RL = 2 kΩ
V
V
V/µV
AVD
Large signal differential voltage amplification
Large-signal
VO = ± 10 V
V,
CMRR
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio (∆VCC /∆VIO)
VIC = – 15 V to 13.5 V
VCC ± = ± 2 V to ± 18 V
100
117
dB
Channel separation
VO = ± 10 V,
120
137
dB
70
300
MΩ
4
GΩ
rid
Differential input resistance
ric
Common-mode input resistance
ICC
Supply current per amplifier
RL = 2 Ω
0.35
dB
0.55
mA
operating characteristics, VCC ± = ±15 V, VIC = 0, TA = 25°C
PARAMETER
TEST CONDITIONS
LT1013Y
MIN
TYP
0.2
0.4
MAX
UNIT
SR
Slew rate
Vn
Equivalent input noise voltage
VN(PP)
In
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz
0.55
µV
Equivalent input noise current
f = 10 Hz
0.07
pA/√Hz
POST OFFICE BOX 655303
f = 10 Hz
24
f = 1 kHz
22
• DALLAS, TEXAS 75265
V/µs
nV/√Hz
11
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
vs Source resistance
vs Temperature
1
2
∆VIO
IIO
Change in input offset voltage
vs Time
3
Input offset current
vs Temperature
4
IIB
VIC
Input bias current
vs Temperature
5
Common-mode input voltage
vs Input bias current
Differential voltage amplification
vs Load resistance
vs Frequency
Channel separation
vs Frequency
11
AVD
12
6
7,, 8
9, 10
Output saturation voltage
vs Temperature
12
CMRR
Common-mode rejection ratio
vs Frequency
13
kSVR
Supply voltage rejection ratio
vs Frequency
14
ICC
IOS
Supply current
vs Temperature
15
Short-circuit output current
vs Time
16
Vn
In
Equivalent input noise voltage
vs Frequency
17
Equivalent input noise current
vs Frequency
17
Vn(PP)
Peak-to-peak input noise voltage
vs Time
Pulse response
Small signal
g
Large signal
19,, 21
20, 22, 23
Phase shift
vs Frequency
9
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
18
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
TYPICAL CHARACTERISTICS†
INPUT OFFSET VOLTAGE
OF REPRESENTITIVE UNITS
vs
FREE-AIR TEMPERATURE
INPUT OFFSET VOLTAGE
vs
SUPPLY VOLTAGE
10
250
200
VIO
µV
V
IO – Input Offset Voltage – uV
VIO
V
IO – Input Offset Voltage – mV
VCC+ = 5 V, VCC – = 0
TA = – 55°C to 125°C
VCC± = ±15 V
TA = – 55°C to 125°C
1
VCC + = 5 V
VCC – = 0
TA = 25°C
0.1
RS
0.01
1k
–
+
VCC± = ± 15V
TA = 25°C
3k
10 k
150
100
50
0
– 50
– 100
– 150
– 200
RS
30 k 100 k 300 k 1 M
VCC± = ±15 V
3M
– 250
– 50
10 M
– 25
0
Figure 1
50
75
100
125
100
125
Figure 2
WARM-UP CHANGE
IN INPUT OFFSET VOLTAGE
vs
TIME AFTER POWER-ON
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
1
5
VCC± = ±15 V
TA = 25°C
VIC = 0
4
IIIO
IO – Input Offset Current – nA
∆V
XVIO
µV
IO – Change in Input Offset Voltage – uV
25
TA – Free-Air Temperature – °C
|VCC ±| – Supply Voltage – V
3
2
JG Package
1
0.8
0.6
VCC ± = ± 2.5 V
0.4
VCC+ = 5 V, VCC – = 0
0.2
VCC± = ±15 V
0
0
1
2
3
4
5
0
– 50
– 25
0
25
50
75
TA – Free-Air Temperature – °C
t – Time After Power-On – min
Figure 3
Figure 4
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
TYPICAL CHARACTERISTICS†
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
COMMON-MODE INPUT VOLTAGE
vs
INPUT BIAS CURRENT
15
VIC = 0
VIC
V IC – Common-Mode Input Voltage – V
IIB
I IB – Input Bias Current – nA
– 25
– 20
VCC ± = 5 V, VCC – = 0
– 15
VCC ± = ± 2.5 V
VCC ± = ± 15 V
– 10
5
TA = 25°C
–5
10
4
5
VCC ± = ± 15 V
(left scale)
0
2
–5
1
– 10
0
– 15
0
– 50
– 25
0
25
50
75
TA – Free-Air Temperature – °C
100
125
0
–5
– 10
– 15
– 20
– 25
IIB – Input Bias Current – nA
Figure 5
VCC ± = ± 15 V
VO = ± 10 V
TA = 25°C
4
TA = – 55°C
1
TA = 125°C
0.4
0.1
100
400
1k
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
A
AVD
VD – Differential Voltage Amplification – V/µV
10
–1
– 30
Figure 6
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
A
AVD
VD – Differential Voltage Amplification – V/ µV
3
VCC ± = 5 V
VCC – = 0
(right scale)
4k
10 k
10
VCC ± = 5 V, VCC – = 0
VO = 20 mV to 3.5 V
4
TA = – 55°C
1
TA = 25°C
0.4
TA = 125°C
0.1
100
RL – Load Resistance – Ω
400
1k
4k
10 k
RL – Load Resistance – Ω
Figure 7
Figure 8
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VIC
V IC – Common-Mode Input Voltage – V
– 30
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
TYPICAL CHARACTERISTICS†
DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE SHIFT
vs
FREQUENCY
80°
VCC± = ± 15 V
20
15
VIC = 0
CL = 100 pF
TA = 25°C
120°
Phase Shift
10
VCC + = 5 V
VCC – = 0
AVD
100°
5
140°
160°
VCC + = 5 V
VCC – = 0
180°
200°
–5
VCC ± = ± 15 V
– 10
220°
– 15
0.01
0.3
140
A
AVD
VD – Differential Voltage Amplification – dB
A
AVD
VD – Differential Voltage Amplification – dB
25
0
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREQUENCY
100
80
VCC + = 5 V
VCC – = 0
40
20
0
1
Figure 9
OUTPUT SATURATION VOLTAGE
vs
FREE-AIR TEMPERATURE
Limited by
Thermal
Interaction
120
Output Saturation Voltage – V
Channel Separation – dB
10
VCC ± = ± 15 V
VI(PP) = 20 V to 5 kHz
RL = 2 kΩ
TA = 25°C
140
RL = 100 Ω
RL = 1 kΩ
100
Limited by
Pin-to-Pin
Capacitance
80
10 100 1 k 10 k 100 k 1 M 10 M
f – Frequency – Hz
Figure 10
CHANNEL SEPARATION
vs
FREQUENCY
160
VCC ± = ± 15 V
60
–20
0.01 0.1
240°
10
1
3
f – Frequency – MHz
CL = 100 pF
TA = 25°C
120
1
VCC + = 5 V to 30 V
VCC – = 0
Isink = 10 mA
Isink = 5 mA
Isink = 1 mA
0.1
Isink = 100 µA
Isink = 10 µA
Isink = 0
60
10
100
1k
10 k
100 k
1M
0.01
– 50
– 25
f – Frequency – Hz
Figure 11
0
25
50
75
100
TA – Free-Air Temperature – °C
125
Figure 12
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
TYPICAL CHARACTERISTICS†
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
SUPPLY VOLTAGE REJECTION RATIO
vs
FREQUENCY
140
kSVR – Supply Voltage Rejection Ratio – dB
kSVR
CMRR – Common-Mode Rejection Ratio – dB
120
TA = 25°C
100
VCC ± = ± 15 V
VCC+ = 5 V
VCC – = 0
80
60
40
20
0
10
100
1k
10 k
100 k
100
Positive
Supply
80
Negative
Supply
60
40
20
0
0.1
1M
VCC± = ± 15 V
TA = 25°C
120
1
100
1k
10 k
100 k
Figure 14
Figure 13
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
40
I OS – Short-Circuit Output Current – mA
460
420
380
VCC± = ±15 V
340
300
VCC± = ±15 V
TA = – 55°C
30
TA = 25°C
20
TA = 125°C
10
0
TA = 125°C
– 10
TA = 25°C
– 20
TA = – 55°C
– 30
VCC + = 5 V, VCC – = 0
260
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
125
– 40
0
1
2
t – Elapsed Time – min
Figure 15
Figure 16
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
16
1M
f – Frequency – Hz
f – Frequency – Hz
I CC – Supply Current Per Amplifier – µ A
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE
AND EQUIVALENT INPUT NOISE CURRENT
vs
FREQUENCY
PEAK-TO-PEAK INPUT NOISE VOLTAGE
OVER A
10-SECOND PERIOD
1000
VCC ± = ± 2 V to ± 18 V
TA = 25°C
300
300
In
100
100
Vn
30
30
1/f Corner = 2 Hz
10
2000
V
Vn
nV/Hz
Hz
n – Equivalent Input Noise Voltage – fA/
VN(PP) – Noise Voltage – nV
VN(PP)
Vn – Equivalent Input Noise Voltage – nV/
Vn
nV/Hz
Hz
1000
10
1
100
10
VCC ± = ± 2 V to ± 18 V
f = 0.1 Hz to 10 Hz
TA = 25°C
1600
1200
800
400
0
1k
0
2
4
f – Frequency – Hz
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
10
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE-RESPONSE
20
VCC ± = ± 15 V
AV = 1
TA = 25°C
15
40
VCC ± = ± 15 V
AV = 1
TA = 25°C
10
VV)
O – Output Voltage – V
VO
VO – Output Voltage – mV
60
8
Figure 18
Figure 17
80
6
t – Time – s
20
0
– 20
– 40
– 60
5
0
–5
–10
–15
– 80
0
2
4
6
8
10
12
14
– 20
0
t – Time – µs
50
100 150 200 250 300 350
t – Time – µs
Figure 20
Figure 19
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
160
6
VCC + = 5 V, VCC – = 0
VI = 0 to 100 mV
RL = 600 Ω to GND
AV = 1
TA = 25°C
VO
VO – Output Voltage – mV
120
5
VO
VO – Output Voltage – mV
140
100
80
60
40
20
4
VCC+ = 5 V, VCC – = 0
VI = 0 to 4 V
RL = 4.7 kΩ to 5 V
AV = 1
TA = 25°C
3
2
1
0
–1
0
–2
– 20
0
20
40
60
80
0
100 120 140
t – Time – µs
Figure 22
Figure 21
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
6
VO
VO – Output Voltage – V
5
4
VCC+ = 5 V, VCC – = 0
VI = 0 to 4 V
RL = 0
AV = 1
TA = 25°C
3
2
1
0
–1
–2
0
10
20
30
40
50
60
t – Time – µs
Figure 23
18
10 20 30 40
t – Time – µs
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
70
50
60
70
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
APPLICATION INFORMATION
single-supply operation
The LT1013 is fully specified for single-supply operation (VCC – = 0). The common-mode input voltage range
includes ground, and the output swings to within a few millivolts of ground.
Furthermore, the LT1013 has specific circuitry that addresses the difficulties of single-supply operation, both
at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a
transient basis. If the input is more than a few hundred millivolts below ground, the LT1013 is designed to deal
with the following two problems that can occur:
1. On many other operational amplifiers, when the input is more than a diode drop below ground, unlimited
current will flow from the substrate (VCC – terminal) to the input, which can destroy the unit. On the
LT1013, the 400-Ω resistors in series with the input (see schematic) protect the device even when the
input is 5 V below ground.
2. When the input is more than 400 mV below ground (at TA = 25°C), the input stage of similar type
operational amplifiers saturates and phase reversal occurs at the output. This can cause lock up in
servo systems. Because of a unique phase-reversal protection circuitry (Q21, Q22, Q27, and Q28), the
LT1013 outputs do not reverse, even when the inputs are at – 1.5 V (see Figure 24).
This phase-reversal protection circuitry does not function when the other operational amplifier on the LT1013
is driven hard into negative saturation at the output. Phase-reversal protection does not work on amplifier 1
when 2’s output is in negative saturation or on amplifier 2 when 1’s output is in negative saturation.
At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more
than a few microproamperes while swinging to ground. The all-NPN output stage of the LT1013 maintains its
low output resistance and high gain characteristics until the output is saturated. In dual-supply operations, the
output stage is free of crossover distortion.
5
4
3
2
1
0
–1
–2
VO
VO – Output Voltage – V
5
VO
VO – Output Voltage – V
VI(PP)
V
I(PP) – Input Voltage – V
5
4
3
2
1
0
3
2
1
0
–1
–1
(a) VI(PP) = – 1.5 V TO 4.5 V
4
(b) OUTPUT PHASE REVERSAL
EXHIBITED BY LM358
(c) NO PHASE REVERSAL
EXHIBITED BY LT1013
Figure 24. Voltage-Follower Response With Input Exceeding
the Negative Common-Mode Input Voltage Range
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
APPLICATION INFORMATION
comparator applications
The single-supply operation of the LT1013 lends itself for use as a precision comparator with TTL-compatible
output. In systems using both operational amplifiers and comparators, the LT1013 can perform multiple duties.
Refer to Figures 25 and 26.
5
10 mV
5 mV
2 mV
3
2
Overdrive
1
VO
VO – Output Voltage – V
4
VCC+ = 5 V
VCC – = 0
TA = 25°C
4
3
2
5 mV
10 mV
2 mV
1
Overdrive
0
Differential
Input Voltage
0
100 mV
0
VCC+ = 5 V
VCC – = 0
TA = 25°C
50 100 150 200 250 300 350 400 450
t – Time – µs
Figure 25. Low-to-High-Level Output
Response for Various Input Overdrives
Differential
Input Voltage
VO
VO – Output Voltage – V
5
100 mV
0
50 100 150 200 250 300 350 400 450
t – Time – µs
Figure 26. High-to-Low-Level Output
Response for Various Input Overdrives
low-supply operation
The minimum supply voltage for proper operation of the LT1013 is 3.4 V (three Ni-Cad batteries). Typical supply
current at this voltage is 290 µA; therefore, power dissipation is only 1 mW per amplifier.
offset voltage and noise testing
The test circuit for measuring input offset voltage and its temperature coefficient is shown in Figure 30. This
circuit with supply voltages increased to ± 20 V is also used as the burn-in configuration.
The peak-to-peak equivalent input noise voltage of the LT1013 is measured using the test circuit shown in
Figure 27. The frequency response of the noise tester indicates that the 0.1-Hz corner is defined by only one
zero. The test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds, as this time limit acts as
an additional zero to eliminate noise contribution from the frequency band below 0.1 Hz.
An input noise voltage test is recommended when measuring the noise of a large number of units. A 10-Hz input
noise voltage measurement correlates well with a 0.1-Hz peak-to-peak noise reading because both results are
determined by the white noise and the location of the 1/f corner frequency.
Current noise is measured by the circuit and formula shown in Figure 28. The noise of the source resistors is
subtracted.
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
APPLICATION INFORMATION
offset voltage and noise testing (continued)
0.1 µF
100 kΩ
+
10 Ω
2 kΩ
LT1013
+
4.7 µF
–
Oscilloscope
Rin = 1 MΩ
2.2 µF
–
AVD = 50,000
22 µF
4.3 kΩ
LT1001
100 kΩ
110 kΩ
24.3 kΩ
0.1 µF
NOTE A: All capacitor values are for nonpolarized capacitors only.
Figure 27. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit
50 kΩ
(see Note A)
10 kΩ
10 Mن
10 Mن
15 V
+
100 Ω
LT1013
10 Mن
In
+
[V
10 Mن
no2
Vn
–
100 Ω
(see Note A)
+
LT1013
VO = 1000 VIO
–
* (820 nV)2]1ń2
50 kΩ
(see Note A)
– 15 V
40 MW100
† Metal-film resistor
NOTE A: Resistors must have low thermoelectric potential.
Figure 28. Noise-Current Test Circuit
and Formula
POST OFFICE BOX 655303
Figure 29. Test Circuit for VIO and αVIO
• DALLAS, TEXAS 75265
21
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
APPLICATION INFORMATION
typical applications
5V
Q3
2N2905
820 Ω
Q1
2N2905
T1‡
+
68 Ω
SN74HC04 (6)
+
10 kΩ
Q4
2N2222
820 Ω
10 kΩ
Q2
2N2905
100 kΩ
5V
–
1/2
LT1013
+
2 kΩ
10 µF
10 µF
0.002 µF
0.33 µF
1N4002 (4)
100 pF
10 kن
4 kن
10 kن
4.3 kΩ
10 kن
20-mA Trim
1 kΩ
4-mA
Trim
5V
LT1004
1.2 V
100 Ω†
80 kن
–
4-mA to 20-mA
To Load
2.2 kΩ MAX
1/2
LT1013
+
IN
0 to 4 V
† 1% film resistor. Match 10-kΩ resistors 0.05%.
‡ T1 = PICO-31080
Figure 30. 5-V 4-mA – 20-mA Current Loop Transmitter With 12-Bit Accuracy
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
APPLICATION INFORMATION
0.1 Ω
5V
To Inverter
Drive
1N4002 (4)
+
+
1/2
LT1013
–
100 kΩ
–
1/2
LT1013
+
T1
10 µF
68 kن
4-mA to 20-mA
Fully Floating
10 kن
4.3 kΩ
5V
LT1004
1.2 V
301 Ω†
4 kن
1 kΩ
20-mA
Trim
2 kΩ
4-mA
Trim
IN
0 to 4 V
† 1% film resistor
Figure 31. Fully Floating Modification to 4-mA – 20-mA Current Loop
Transmitter With 8-Bit Accuracy
IN +
6
1/2 LTC1043
5
1 µF 2
3
5V
5
8
+
1/2
1 µF
LT1013
6
–
4
7
OUT A
R2
15
IN – 18
R1
IN +
7
1/2 LTC1043
8
1 µF 11
12
IN –
13
3
+
1/2
1 µF
LT1013
2
–
1
OUT B
R2
14
0.01 µF
R1
NOTE A: VIO = 150 µV, AVD = (R1/R2) + 1, CMRR = 120 dB, VICR = 0 to 5 V
Figure 32. 5-V Single-Supply Dual Instrumentation Amplifier
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
LT1013, LT1013A, LT1013D, LT1013Y
DUAL PRECISION OPERATIONAL AMPLIFIERS
SLOS018B – MAY 1988 – REVISED OCTOBER 1996
APPLICATION INFORMATION
10
+
200 kΩ †
9
5V
2
‡
20 kΩ
3
IN –
–
–
LT1013
10 kΩ †
1
10 kΩ †
+
10 kΩ
5V
13
RG (2 kΩ typ)
‡
To Input
Cable Shields
8
LT1013
–
4
LT1013
12
1 µF
200 kΩ
6
‡
IN +
5
10 kΩ
11
–
LT1013
20 kΩ
+
7
10 kΩ †
+
10 kΩ †
‡
5V
† 1% film resistor. Match 10-kΩ resistors 0.05%.
‡ For high source impedances, use 2N2222 as diodes.
NOTE A: AVD = (400,000/RG) + 1
Figure 33. 5-V Precision Instrumentation Amplifier
24
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
OUT
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated