LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 D D D D D 1IN + VCC – 2IN + 2IN – 8 2 7 3 6 4 5 1IN – 1OUT VCC + 2OUT FK PACKAGE (TOP VIEW) NC 1IN – NC 1IN + NC description The LT1013 is a dual precision operational amplifier featuring low offset voltage temperature coefficient, high gain, low supply current, and low noise. 1 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN – NC NC 2IN+ NC D D PACKAGE (TOP VIEW) NC 1OUT NC VCC ± NC D Single-Supply Operation: Input Voltage Range Extends to Ground Output Swings to Ground While Sinking Current Input Offset Voltage 150 µV Max at 25°C for LT1013A Offset Voltage Temperature Coefficient 2.5 µV/°C Max for LT1013A Input Offset Current 0.8 nA Max at 25°C for LT1013A High Gain . . . 1.5 V/µV Min ( RL = 2 kΩ), 0.8 V/µV Min ( RL = 600 kΩ) for LT1013A Low Supply Current . . . 0.5 mA Max at TA = 25°C for LT1013A Low Peak-to-Peak Noise Voltage 0.55 µV Typ Low Current Noise . . . 0.07 pA/√HZ Typ NC V CC – D NC – No internal connection JG OR P PACKAGE (TOP VIEW) The LT1013 can be operated from a single 5-V power supply; the common-mode input voltage range includes ground, and the output can also swing to within a few millivolts of ground. Crossover distortion is eliminated. The LT1013 can be operated with both dual ± 15 -V and single 5 -V supplies. 1OUT 1IN – 1IN + VCC – 1 8 2 7 3 6 4 5 VCC + 2OUT 2IN – 2IN + The LT1013C and LT1013AC, and LT1013D are characterized for operation from 0°C to 70°C. The LT1013I and LT1013AI, and LT1013DI are characterized for operation from – 40°C to 105°C. The LT1013M and LT1013AM, and LT1013DM are characterized for operation over the full military temperature range of – 55°C to 125°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1996, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 AVAILABLE OPTIONS TA VIOmax AT 25°C 0°C to 70°C 150 µ µV 300 µV 800 µV – 40°C to 105°C – 55°C to 125°C PACKAGED DEVICES SMALL OUTLINE (D) CERAMIC DIP (JG) PLASTIC DIP (P) — — LT1013DD — — — — — — LT1013ACP LT1013CP LT1013DP LT1013Y 150 µ µV 300 µV 800 µV — — LT1013DID — — — — — — LT1013AIP LT1013IP LT1013DIP — 150 µ µV 300 µV 800 µV — — LT1013DMD LT1013AMFK LT1013MFK — — LT1013MJG LT1013DMJG LT1013AMP LT1013MP LT1013DMP — The D package is available taped and reeled. Add the suffix R to the device type (e.g., LT1013DDR). 2 CHIP FORM (Y) CHIP CARRIER (FK) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 schematic (each amplifier) VCC + 9 kΩ 9 kΩ 1.6 kΩ 1.6 kΩ 100 Ω 1.6 kΩ 800 Ω 1 kΩ Q36 Q5 Q6 Q13 Q16 Q14 Q15 Q32 Q35 Q30 J1 Q3 Q37 Q25 Q4 Q33 21 pF 400 Ω Q41 Q26 2.4 kΩ Q27 2.5 pF 14 kΩ 18 Ω Q38 IN – OUT Q21 Q2 Q28 Q39 400 Ω IN + Q12 4 pF Q18 Q22 Q31 Q40 Q29 Q10 Q11 Q19 Q7 10 pF Q17 10 pF Q23 Q20 75 pF 5 kΩ 5 kΩ 1.3 kΩ VCC – Component values are nominal. Q24 2 kΩ 2 kΩ 42 kΩ 30 Ω 600 Ω 3 SLOS018B – MAY 1988 – REVISED OCTOBER 1996 Q8 Q9 Q34 2 kΩ LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3.9 kΩ Q1 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 LT1013Y chip information This chip, when properly assembled, displays characteristics similar to the LT1013. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (1) (8) IN + (7) (3) VCC+ (8) + – IN – (6) (2) 2 IN + (5) (1) 1OUT (2) + (6) 2IN – (7) 2OUT – (4) 79 VCC – CHIP THICKNESS: 15 TYPICAL (5) (3) BONDING PADS: 4 × 4 MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. (4) ALL DIMENSIONS ARE IN MILS. 96 PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 V Supply voltage, VCC – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 22 V Differential input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 V Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC – – 5 V to VCC+ Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Operating free-air temperature range, TA: LT1013C, LT1013AC, LT1013D . . . . . . . . . . . . . . – 0 °C to 70°C LT1013I, LT1013AI, LT1013DI . . . . . . . . . . . . . . . – 40°C to 105°C LT1013M, LT1013AM, LT1013DM . . . . . . . . . . – 55 °C to 125°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65 °C to 150°C Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC – . 2. Differential voltages are at IN+ with respect to IN –. 3. The output may be shorted to either supply. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage TEST CONDITIONS Input offset current IIB Input bias current Maximum peak output voltage swing 04 0.4 25°C 0.5 25°C 0.2 Full range 25°C A VD Large-signal L i l differential diff ti l voltage lt am lification amplification – 15 – 15 to 13.5 Full range g – 15 to 13 VO = ± 10 V, VO = ± 10 V V, RL = 600 Ω RL = 2 kΩ Common mode rejection ratio Common-mode VIC = – 15 V to 13.5 V VIC = – 14.9 V to 13 V kSVR Supply-voltage y g rejection j ratio (∆VCC /∆VIO) VCC + = ± 2 V to ± 18 V Channel separation VO = ± 10 V, RL = 2 kΩ 200 1.5 0.15 2 07 0.7 0.4 – 12 ± 14 0.2 – 20 – 15 – 15.3 to 13.8 ± 13 ± 14 ± 12.5 ± 14 25°C 0.5 0.2 0.8 2.5 0.5 2 25°C 1.2 7 1.5 8 1.2 7 Full range 0.7 25°C 97 94 114 100 nA V ± 12 1 nA V – 15 to 13 ± 12.5 µV/°C – 15.3 to 13.8 ± 12 Full range – 30 – 38 – 15 to 13.5 µV µV/mo 1.5 2.8 – 25 – 15 to 13.5 5 0.5 0.8 1.5 – 30 800 1000 Full range V/µV 0.7 117 97 98 114 dB 94 25°C 100 Full range 97 25°C 120 137 123 140 120 137 dB 70 300 100 400 70 300 MΩ 117 25°C Common-mode input resistance 25°C 4 25°C 0.35 Full range 103 120 100 101 Differential input resistance † Full range is 0°C to 70°C. ‡ All typical values are at TA = 25°C. 03 0.3 – 15 to 13 ric Supply current per amplifier 25 2.5 – 15.3 to 13.8 rid ICC 150 UNIT 5 0.55 0.7 117 dB 97 0.35 4 0.5 0.55 0.35 GΩ 0.55 0.6 mA 5 SLOS018B – MAY 1988 – REVISED OCTOBER 1996 CMRR ± 12.5 LT1013DC MAX MIN TYP ‡ 240 – 38 25°C 25°C 40 2.8 Full range RL = 2 kΩ 300 400 Full range Common mode input voltage range Common-mode VOM 60 Full range LT1013AC MAX MIN TYP ‡ LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR LT1013C MAX MIN TYP ‡ 25°C RS = 50 Ω Long-term drift of input offset voltage IIO TA† Input offset voltage IIO Input offset current IIB Input bias current VICR POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Output low, Supply current per amplifier – 18 25°C 0 to 3.5 VO = 5 mV to 4 V, V RL = 500 Ω MAX 60 250 Full range g 0 to 3 MIN TYP 250 350 2 0.2 – 15 1.3 0.3 – 35 – 0.3 to 3.8 – 18 2 – 50 – 90 0 to 3.5 0 to 3 950 6 – 55 0 to 3.5 MAX 1200 3.5 – 50 – 0.3 to 3.8 LT1013DC TYP – 90 0.3 to 3.8 25 15 25 15 25 25°C 5 10 5 10 5 10 13 220 µV nA nA V 15 25°C UNIT 0 to 3 25°C Full range Isink = 1 mA No load MIN 6 Full range Output high, g , RL = 600 Ω to GND ICC 450 0.3 25°C Output high, Large-signal g g differential voltage amplification 90 Full range Output low,, RL = 600 Ω to GND A VD MAX 570 25°C No load LT1013AC TYP Full range Common-mode input voltage g range Maximum-peak M i k output t t voltage lt swing LT1013C MIN 25°C RS = 50 Ω Output low, VOM TA† 13 350 220 13 350 220 mV 350 25°C 4 4.4 4 4.4 4 4.4 25°C 3.4 4 3.4 4 3.4 4 V Full range 3.2 1 V/µV 3.3 25°C 1 25°C 0.32 Full range 3.2 1 0.5 0.31 0.55 0.45 0.32 0.5 0.5 0.55 mA † Full range is – 0°C to 70°C. operating characteristics, VCC± =±15 V, VIC = 0, TA = 25°C PARAMETER TEST CONDITIONS MIN TYP 0.2 0.4 MAX UNIT SR Slew rate Vn Equivalent input noise voltage VN(PP) In Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 0.55 µV Equivalent input noise current f = 10 Hz 0.07 pA/√Hz f = 10 Hz 24 f = 1 kHz 22 V/µs nV/√Hz Template Release Date: 7–11–94 VIO TEST CONDITIONS LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS018B – MAY 1988 – REVISED OCTOBER 1996 6 electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC– = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted) electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage TEST CONDITIONS Input offset current IIB Input bias current Maximum peak output voltage g swing 04 0.4 25°C 05 0.5 25°C 0.2 Full range 25°C A VD Large-signal L i l differential diff ti l voltage lt amplification am lification – 15 – 15 to 13.5 Full range g – 15 to 13 VO = ± 10 V, VO = ± 10 V V, RL = 600 Ω RL = 2 kΩ Common-mode rejection ratio VIC = – 15 V to 13.5 V VIC = – 14.9 V to 13 V kSVR Supply-voltage y g rejection j ratio (∆VCC /∆VIO) VCC ± = ± 2 V to ± 18 V Channel separation VO = ± 10 V, RL = 2 kΩ 200 2 07 0.7 04 0.4 1.5 0.15 – 12 0.8 ± 14 0.2 – 20 – 15 – 15.3 to 13.8 ± 13 1.5 – 30 – 38 – 15 to 13.5 ± 14 ± 12.5 nA nA V ± 14 ± 12 25°C 0.5 0.2 0.8 2.5 0.5 2 25°C 1.2 7 1.5 8 1.2 7 Full range 0.7 V ± 12 1 µV/°C – 15.3 to 13.8 – 15 to 13 ± 12.5 µV µV/mo 2.8 – 25 – 15 to 13.5 5 05 0.5 1.5 – 30 800 1000 Full range V/µV 0.7 25°C 97 Full range 94 25°C 100 Full range 97 25°C 120 137 123 140 120 137 dB 70 300 100 400 70 300 MΩ 114 117 117 97 103 25°C 25°C 4 25°C 0.35 120 100 0.7 dB 117 dB 97 5 0.55 114 94 101 Common-mode input resistance Full range 100 97 Differential input resistance † Full range is – 40°C to 105°C. ‡ All typical values are at TA = 25°C. 03 0.3 – 15 to 13 ric Supply current per amplifier 25 2.5 – 15.3 to 13.8 rid ICC 150 UNIT 0.35 4 0.5 0.55 0.35 GΩ 0.55 0.6 mA 7 SLOS018B – MAY 1988 – REVISED OCTOBER 1996 CMRR ± 12.5 LT1013DI MAX MIN TYP‡ 300 – 38 25°C 25°C 40 2.8 Full range RL = 2 kΩ 300 550 Full range Common mode input voltage range Common-mode VOM 60 Full range MAX LT1013AI MAX MIN TYP‡ LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR LT1013I MIN TYP‡ 25°C RS = 50 Ω Long-term g drift of input offset voltage IIO TA† Input offset voltage IIO Input offset current IIB Input bias current VICR POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Output low, Supply current per amplifier – 18 25°C 0 to 3.5 VO = 5 mV to 4 V V, RL = 500 Ω MAX 60 250 Full range g 0 to 3 MIN TYP 250 350 2 0.2 – 15 1.3 0.3 – 35 – 0.3 to 3.8 – 18 2 – 50 – 90 0 to 3.5 0 to 3 950 6 – 55 0 to 3.5 MAX 1200 3.5 – 50 – 0.3 to 3.8 LT1013DI TYP – 90 0.3 to 3.8 25 15 25 15 25 25°C 5 10 5 10 5 10 13 220 µV nA nA V 15 25°C UNIT 0 to 3 25°C Full range Isink = 1 mA No load MIN 6 Full range Output high, g , RL = 600 Ω to GND ICC 450 0.3 25°C Output high, Large-signal g g differential voltage amplification 90 Full range Output low,, RL = 600 Ω to GND A VD MAX 570 25°C No load LT1013AI TYP Full range Common-mode input voltage g range Maximum-peak M i k output t t voltage lt swing LT1013I MIN 25°C RS = 50 Ω Output low, VOM TA† 13 350 220 13 350 220 mV 350 25°C 4 4.4 4 4.4 4 4.4 25°C 3.4 4 3.4 4 3.4 4 V Full range 3.2 1 V/µV 3.3 25°C 1 25°C 0.32 Full range 3.2 1 0.5 0.31 0.55 0.45 0.32 0.5 0.5 0.55 mA † Full range is – 40°C to 105°C. operating characteristics, VCC± = ±15 V, VIC = 0, TA = 25°C PARAMETER TEST CONDITIONS MIN TYP 0.2 0.4 MAX UNIT SR Slew rate Vn Equivalent input noise voltage VN(PP) In Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 0.55 µV Equivalent input noise current f = 10 Hz 0.07 pA/√Hz f = 10 Hz 24 f = 1 kHz 22 V/µs nV/√Hz Template Release Date: 7–11–94 VIO TEST CONDITIONS LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS018B – MAY 1988 – REVISED OCTOBER 1996 8 electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC– = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted) electrical characteristics at specified free-air temperature, VCC± = ±15 V, VIC = 0 (unless otherwise noted) PARAMETER TEST CONDITIONS TA† LT1013M MIN TYP‡ MAX 25°C RS = 50 Ω 60 VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Full range 05 0.5 Long-term drift of input offset voltage 25°C 0.5 25°C 0.2 IIO Input offset current IIB Input bias current Full range 25°C VOM Maximum peak output voltage swing A VD Large-signal L i l differential diff ti l voltage lt am lification amplification – 15 RL = 2 kΩ VO = ± 10 V, VO = + 10 V V, RL = 600 Ω RL = 2 kΩ Common mode rejection ratio Common-mode VIC = – 15 V to 13.5 V VIC = – 14.9 V to 13 V kSVR Supply-voltage y g rejection j ratio (∆VCC /∆VIO) VCC ± = ± 2 V to ± 18 V Channel separation VO = ± 10 V, RL = 2 kΩ Full range g – 14.9 to 13 25°C ± 12.5 Full range ± 11.5 1.5 0.15 05 0.5 0.4 – 12 ± 14 0.2 – 20 – 15 – 15.3 to 13.8 ± 13 – 15.3 to 13.8 ± 14 ± 12.5 ± 12 ± 14 0.5 2 0.8 2.5 0.5 2 1.2 7 1.5 8 1.2 7 Full range 0.25 97 94 0.5 117 100 V V/µV 117 97 114 dB 94 25°C 100 Full range 97 25°C 120 137 123 140 120 137 dB 70 300 100 400 70 300 MΩ 25°C Common-mode input resistance 25°C 4 25°C 0.35 ∗ On products compliant to MIL-PRF-38535, Class B, this parameter is not production tested. † Full range is – 55°C to 125°C. ‡ All typical values are at TA = 25°C. 120 100 100 Differential input resistance Full range 103 nA 0.25 97 117 nA V ± 11.5 25°C 25°C µV/°C – 14.9 to 13 25°C Full range – 30 – 45 – 15 to 13.5 µV µV/mo 1.5 5 – 30 – 15 to 13.5 2.5 2 5∗ 0.5 0.8 2.5 – 30 800 1000 2∗ – 14.9 to 13 ric Supply current per amplifier 04 0.4 – 15.3 to 13.8 rid ICC 200 UNIT 5 0.55 0.7 117 dB 97 0.35 4 0.5 0.6 0.35 GΩ 0.55 0.7 mA 9 SLOS018B – MAY 1988 – REVISED OCTOBER 1996 CMRR 2.5 2 5∗ – 45 – 15 to 13.5 150 300 5 Full range Common mode input voltage range Common-mode 40 LT1013DM MIN TYP‡ MAX LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VICR 300 550 Full range 25°C LT1013AM MIN TYP‡ MAX Input offset voltage RS = 50 Ω RS = 50 Ω, IIO Input offset current IIB Input bias current VICR VIC = 0.1 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Output low, Output high, Output high, g , RL = 600 Ω to GND A VD ICC Supply current per amplifier VO = 5 mV to 4 V V, RL = 500 Ω LT1013DM TYP MAX MIN TYP MAX 90 450 60 250 250 950 1500 250 900 800 2000 125°C 200 750 120 450 560 1200 25°C 0.3 2 0.2 1.3 0.3 10 – 18 6 – 50 – 15 – 120 25°C 0 to 3.5 Full range g 0 to 3 – 0.3 to 3.8 – 18 – 80 0 to 3.5 – 0.3 to 3.8 2 10 – 35 – 50 – 120 0 to 3.5 0 to 3 – 0.3 to 3.8 15 25 15 25 15 25 5 10 5 10 5 10 18 220 15 350 220 18 350 220 25°C 4 4.4 4 4.4 4 4.4 25°C 3.4 4 3.4 4 3.4 4 Full range 3.1 3.2 25°C 1 25°C 0.32 Full range nA nA mV 350 V/µV 3.1 1 0.5 µV V 25°C 25°C UNIT 0 to 3 25°C Full range Isink = 1 mA No load MIN 400 25°C No load LT1013AM MAX 25 °C Full range Output low,, RL = 600 Ω to GND Large-signal differential g g voltage amplification TYP Full range Common-mode input voltage g range M i k output t t voltage lt Maximum-peak swing LT1013M MIN Full range Output low, VOM TA† 0.31 0.65 1 0.45 0.32 0.55 0.5 mA 0.65 † Full range is – 55°C to 125°C. operating characteristics, VCC± = ±15 V, VIC = 0, TA = 25°C PARAMETER SR TEST CONDITIONS Slew rate MIN TYP 0.2 0.4 f = 10 Hz 24 f = 1 kHz 22 MAX UNIT V/µs Vn Equivalent input noise voltage VN(PP) In Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 0.55 µV Equivalent input noise current f = 10 Hz 0.07 pA/√Hz nV/√Hz Template Release Date: 7–11–94 VIO TEST CONDITIONS LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS PARAMETER SLOS018B – MAY 1988 – REVISED OCTOBER 1996 10 electrical characteristics at specified free-air temperature, VCC+ = 5 V, VCC – = 0, VO = 1.4 V, VIC = 0 (unless otherwise noted) LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 electrical characteristics at VCC+ = 5 V, VCC– = 0, VO = 1.4 V, VIC = 0, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS LT1013Y MIN MAX UNIT VIO IIO Input offset voltage 250 950 µV Input offset current 0.3 2 nA IIB Input bias current – 18 – 50 nA VICR Common-mode input voltage g range g VOM AVD ICC RS = 50 Ω TYP 0 to 3.5 Maximum peak output voltage swing Large-signal differential voltage amplification Output low, No load Output low, RL = 600 Ω to GND Output low, Output high, Isink = 1 mA No load Output high, RL = 600 Ω to GND VO = 5 mV to 4 V, RL = 500 Ω 0.3 to 3.8 V 15 25 5 10 220 350 4 4.4 3.4 4 V 1 Supply current per amplifier mV V/µV 0.32 0.5 mA electrical characteristics at VCC+ = ±15 V, VIC = 0, TA = 25°C (unless otherwise noted) PARAMETER VIO IIO IIB TEST CONDITIONS LT1013Y MIN RS = 50 Ω Input offset voltage TYP MAX 200 800 UNIT µV µV/mo Long-term drift of input offset voltage 0.5 Input offset current 0.2 1.5 nA – 15 – 30 nA Input bias current VICR Common-mode input voltage g range g VOM Maximum peak output voltage swing – 15 to 13.5 – 15.3 to 1 3.8 ± 12.5 ± 14 RL = 600 Ω 0.5 2 RL = 2 Ω 1.2 7 97 114 RL = 2 kΩ V V V/µV AVD Large signal differential voltage amplification Large-signal VO = ± 10 V V, CMRR Common-mode rejection ratio kSVR Supply-voltage rejection ratio (∆VCC /∆VIO) VIC = – 15 V to 13.5 V VCC ± = ± 2 V to ± 18 V 100 117 dB Channel separation VO = ± 10 V, 120 137 dB 70 300 MΩ 4 GΩ rid Differential input resistance ric Common-mode input resistance ICC Supply current per amplifier RL = 2 Ω 0.35 dB 0.55 mA operating characteristics, VCC ± = ±15 V, VIC = 0, TA = 25°C PARAMETER TEST CONDITIONS LT1013Y MIN TYP 0.2 0.4 MAX UNIT SR Slew rate Vn Equivalent input noise voltage VN(PP) In Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 10 Hz 0.55 µV Equivalent input noise current f = 10 Hz 0.07 pA/√Hz POST OFFICE BOX 655303 f = 10 Hz 24 f = 1 kHz 22 • DALLAS, TEXAS 75265 V/µs nV/√Hz 11 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage vs Source resistance vs Temperature 1 2 ∆VIO IIO Change in input offset voltage vs Time 3 Input offset current vs Temperature 4 IIB VIC Input bias current vs Temperature 5 Common-mode input voltage vs Input bias current Differential voltage amplification vs Load resistance vs Frequency Channel separation vs Frequency 11 AVD 12 6 7,, 8 9, 10 Output saturation voltage vs Temperature 12 CMRR Common-mode rejection ratio vs Frequency 13 kSVR Supply voltage rejection ratio vs Frequency 14 ICC IOS Supply current vs Temperature 15 Short-circuit output current vs Time 16 Vn In Equivalent input noise voltage vs Frequency 17 Equivalent input noise current vs Frequency 17 Vn(PP) Peak-to-peak input noise voltage vs Time Pulse response Small signal g Large signal 19,, 21 20, 22, 23 Phase shift vs Frequency 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 18 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 TYPICAL CHARACTERISTICS† INPUT OFFSET VOLTAGE OF REPRESENTITIVE UNITS vs FREE-AIR TEMPERATURE INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE 10 250 200 VIO µV V IO – Input Offset Voltage – uV VIO V IO – Input Offset Voltage – mV VCC+ = 5 V, VCC – = 0 TA = – 55°C to 125°C VCC± = ±15 V TA = – 55°C to 125°C 1 VCC + = 5 V VCC – = 0 TA = 25°C 0.1 RS 0.01 1k – + VCC± = ± 15V TA = 25°C 3k 10 k 150 100 50 0 – 50 – 100 – 150 – 200 RS 30 k 100 k 300 k 1 M VCC± = ±15 V 3M – 250 – 50 10 M – 25 0 Figure 1 50 75 100 125 100 125 Figure 2 WARM-UP CHANGE IN INPUT OFFSET VOLTAGE vs TIME AFTER POWER-ON INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 1 5 VCC± = ±15 V TA = 25°C VIC = 0 4 IIIO IO – Input Offset Current – nA ∆V XVIO µV IO – Change in Input Offset Voltage – uV 25 TA – Free-Air Temperature – °C |VCC ±| – Supply Voltage – V 3 2 JG Package 1 0.8 0.6 VCC ± = ± 2.5 V 0.4 VCC+ = 5 V, VCC – = 0 0.2 VCC± = ±15 V 0 0 1 2 3 4 5 0 – 50 – 25 0 25 50 75 TA – Free-Air Temperature – °C t – Time After Power-On – min Figure 3 Figure 4 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 TYPICAL CHARACTERISTICS† INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE COMMON-MODE INPUT VOLTAGE vs INPUT BIAS CURRENT 15 VIC = 0 VIC V IC – Common-Mode Input Voltage – V IIB I IB – Input Bias Current – nA – 25 – 20 VCC ± = 5 V, VCC – = 0 – 15 VCC ± = ± 2.5 V VCC ± = ± 15 V – 10 5 TA = 25°C –5 10 4 5 VCC ± = ± 15 V (left scale) 0 2 –5 1 – 10 0 – 15 0 – 50 – 25 0 25 50 75 TA – Free-Air Temperature – °C 100 125 0 –5 – 10 – 15 – 20 – 25 IIB – Input Bias Current – nA Figure 5 VCC ± = ± 15 V VO = ± 10 V TA = 25°C 4 TA = – 55°C 1 TA = 125°C 0.4 0.1 100 400 1k DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE A AVD VD – Differential Voltage Amplification – V/µV 10 –1 – 30 Figure 6 DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE A AVD VD – Differential Voltage Amplification – V/ µV 3 VCC ± = 5 V VCC – = 0 (right scale) 4k 10 k 10 VCC ± = 5 V, VCC – = 0 VO = 20 mV to 3.5 V 4 TA = – 55°C 1 TA = 25°C 0.4 TA = 125°C 0.1 100 RL – Load Resistance – Ω 400 1k 4k 10 k RL – Load Resistance – Ω Figure 7 Figure 8 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VIC V IC – Common-Mode Input Voltage – V – 30 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 TYPICAL CHARACTERISTICS† DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY 80° VCC± = ± 15 V 20 15 VIC = 0 CL = 100 pF TA = 25°C 120° Phase Shift 10 VCC + = 5 V VCC – = 0 AVD 100° 5 140° 160° VCC + = 5 V VCC – = 0 180° 200° –5 VCC ± = ± 15 V – 10 220° – 15 0.01 0.3 140 A AVD VD – Differential Voltage Amplification – dB A AVD VD – Differential Voltage Amplification – dB 25 0 DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY 100 80 VCC + = 5 V VCC – = 0 40 20 0 1 Figure 9 OUTPUT SATURATION VOLTAGE vs FREE-AIR TEMPERATURE Limited by Thermal Interaction 120 Output Saturation Voltage – V Channel Separation – dB 10 VCC ± = ± 15 V VI(PP) = 20 V to 5 kHz RL = 2 kΩ TA = 25°C 140 RL = 100 Ω RL = 1 kΩ 100 Limited by Pin-to-Pin Capacitance 80 10 100 1 k 10 k 100 k 1 M 10 M f – Frequency – Hz Figure 10 CHANNEL SEPARATION vs FREQUENCY 160 VCC ± = ± 15 V 60 –20 0.01 0.1 240° 10 1 3 f – Frequency – MHz CL = 100 pF TA = 25°C 120 1 VCC + = 5 V to 30 V VCC – = 0 Isink = 10 mA Isink = 5 mA Isink = 1 mA 0.1 Isink = 100 µA Isink = 10 µA Isink = 0 60 10 100 1k 10 k 100 k 1M 0.01 – 50 – 25 f – Frequency – Hz Figure 11 0 25 50 75 100 TA – Free-Air Temperature – °C 125 Figure 12 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 TYPICAL CHARACTERISTICS† COMMON-MODE REJECTION RATIO vs FREQUENCY SUPPLY VOLTAGE REJECTION RATIO vs FREQUENCY 140 kSVR – Supply Voltage Rejection Ratio – dB kSVR CMRR – Common-Mode Rejection Ratio – dB 120 TA = 25°C 100 VCC ± = ± 15 V VCC+ = 5 V VCC – = 0 80 60 40 20 0 10 100 1k 10 k 100 k 100 Positive Supply 80 Negative Supply 60 40 20 0 0.1 1M VCC± = ± 15 V TA = 25°C 120 1 100 1k 10 k 100 k Figure 14 Figure 13 SHORT-CIRCUIT OUTPUT CURRENT vs ELAPSED TIME SUPPLY CURRENT vs FREE-AIR TEMPERATURE 40 I OS – Short-Circuit Output Current – mA 460 420 380 VCC± = ±15 V 340 300 VCC± = ±15 V TA = – 55°C 30 TA = 25°C 20 TA = 125°C 10 0 TA = 125°C – 10 TA = 25°C – 20 TA = – 55°C – 30 VCC + = 5 V, VCC – = 0 260 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 – 40 0 1 2 t – Elapsed Time – min Figure 15 Figure 16 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 16 1M f – Frequency – Hz f – Frequency – Hz I CC – Supply Current Per Amplifier – µ A 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE AND EQUIVALENT INPUT NOISE CURRENT vs FREQUENCY PEAK-TO-PEAK INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD 1000 VCC ± = ± 2 V to ± 18 V TA = 25°C 300 300 In 100 100 Vn 30 30 1/f Corner = 2 Hz 10 2000 V Vn nV/Hz Hz n – Equivalent Input Noise Voltage – fA/ VN(PP) – Noise Voltage – nV VN(PP) Vn – Equivalent Input Noise Voltage – nV/ Vn nV/Hz Hz 1000 10 1 100 10 VCC ± = ± 2 V to ± 18 V f = 0.1 Hz to 10 Hz TA = 25°C 1600 1200 800 400 0 1k 0 2 4 f – Frequency – Hz VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 10 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE-RESPONSE 20 VCC ± = ± 15 V AV = 1 TA = 25°C 15 40 VCC ± = ± 15 V AV = 1 TA = 25°C 10 VV) O – Output Voltage – V VO VO – Output Voltage – mV 60 8 Figure 18 Figure 17 80 6 t – Time – s 20 0 – 20 – 40 – 60 5 0 –5 –10 –15 – 80 0 2 4 6 8 10 12 14 – 20 0 t – Time – µs 50 100 150 200 250 300 350 t – Time – µs Figure 20 Figure 19 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 160 6 VCC + = 5 V, VCC – = 0 VI = 0 to 100 mV RL = 600 Ω to GND AV = 1 TA = 25°C VO VO – Output Voltage – mV 120 5 VO VO – Output Voltage – mV 140 100 80 60 40 20 4 VCC+ = 5 V, VCC – = 0 VI = 0 to 4 V RL = 4.7 kΩ to 5 V AV = 1 TA = 25°C 3 2 1 0 –1 0 –2 – 20 0 20 40 60 80 0 100 120 140 t – Time – µs Figure 22 Figure 21 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 6 VO VO – Output Voltage – V 5 4 VCC+ = 5 V, VCC – = 0 VI = 0 to 4 V RL = 0 AV = 1 TA = 25°C 3 2 1 0 –1 –2 0 10 20 30 40 50 60 t – Time – µs Figure 23 18 10 20 30 40 t – Time – µs POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 70 50 60 70 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 APPLICATION INFORMATION single-supply operation The LT1013 is fully specified for single-supply operation (VCC – = 0). The common-mode input voltage range includes ground, and the output swings to within a few millivolts of ground. Furthermore, the LT1013 has specific circuitry that addresses the difficulties of single-supply operation, both at the input and at the output. At the input, the driving signal can fall below 0 V, either inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, the LT1013 is designed to deal with the following two problems that can occur: 1. On many other operational amplifiers, when the input is more than a diode drop below ground, unlimited current will flow from the substrate (VCC – terminal) to the input, which can destroy the unit. On the LT1013, the 400-Ω resistors in series with the input (see schematic) protect the device even when the input is 5 V below ground. 2. When the input is more than 400 mV below ground (at TA = 25°C), the input stage of similar type operational amplifiers saturates and phase reversal occurs at the output. This can cause lock up in servo systems. Because of a unique phase-reversal protection circuitry (Q21, Q22, Q27, and Q28), the LT1013 outputs do not reverse, even when the inputs are at – 1.5 V (see Figure 24). This phase-reversal protection circuitry does not function when the other operational amplifier on the LT1013 is driven hard into negative saturation at the output. Phase-reversal protection does not work on amplifier 1 when 2’s output is in negative saturation or on amplifier 2 when 1’s output is in negative saturation. At the output, other single-supply designs either cannot swing to within 600 mV of ground or cannot sink more than a few microproamperes while swinging to ground. The all-NPN output stage of the LT1013 maintains its low output resistance and high gain characteristics until the output is saturated. In dual-supply operations, the output stage is free of crossover distortion. 5 4 3 2 1 0 –1 –2 VO VO – Output Voltage – V 5 VO VO – Output Voltage – V VI(PP) V I(PP) – Input Voltage – V 5 4 3 2 1 0 3 2 1 0 –1 –1 (a) VI(PP) = – 1.5 V TO 4.5 V 4 (b) OUTPUT PHASE REVERSAL EXHIBITED BY LM358 (c) NO PHASE REVERSAL EXHIBITED BY LT1013 Figure 24. Voltage-Follower Response With Input Exceeding the Negative Common-Mode Input Voltage Range POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 APPLICATION INFORMATION comparator applications The single-supply operation of the LT1013 lends itself for use as a precision comparator with TTL-compatible output. In systems using both operational amplifiers and comparators, the LT1013 can perform multiple duties. Refer to Figures 25 and 26. 5 10 mV 5 mV 2 mV 3 2 Overdrive 1 VO VO – Output Voltage – V 4 VCC+ = 5 V VCC – = 0 TA = 25°C 4 3 2 5 mV 10 mV 2 mV 1 Overdrive 0 Differential Input Voltage 0 100 mV 0 VCC+ = 5 V VCC – = 0 TA = 25°C 50 100 150 200 250 300 350 400 450 t – Time – µs Figure 25. Low-to-High-Level Output Response for Various Input Overdrives Differential Input Voltage VO VO – Output Voltage – V 5 100 mV 0 50 100 150 200 250 300 350 400 450 t – Time – µs Figure 26. High-to-Low-Level Output Response for Various Input Overdrives low-supply operation The minimum supply voltage for proper operation of the LT1013 is 3.4 V (three Ni-Cad batteries). Typical supply current at this voltage is 290 µA; therefore, power dissipation is only 1 mW per amplifier. offset voltage and noise testing The test circuit for measuring input offset voltage and its temperature coefficient is shown in Figure 30. This circuit with supply voltages increased to ± 20 V is also used as the burn-in configuration. The peak-to-peak equivalent input noise voltage of the LT1013 is measured using the test circuit shown in Figure 27. The frequency response of the noise tester indicates that the 0.1-Hz corner is defined by only one zero. The test time to measure 0.1-Hz to 10-Hz noise should not exceed 10 seconds, as this time limit acts as an additional zero to eliminate noise contribution from the frequency band below 0.1 Hz. An input noise voltage test is recommended when measuring the noise of a large number of units. A 10-Hz input noise voltage measurement correlates well with a 0.1-Hz peak-to-peak noise reading because both results are determined by the white noise and the location of the 1/f corner frequency. Current noise is measured by the circuit and formula shown in Figure 28. The noise of the source resistors is subtracted. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 APPLICATION INFORMATION offset voltage and noise testing (continued) 0.1 µF 100 kΩ + 10 Ω 2 kΩ LT1013 + 4.7 µF – Oscilloscope Rin = 1 MΩ 2.2 µF – AVD = 50,000 22 µF 4.3 kΩ LT1001 100 kΩ 110 kΩ 24.3 kΩ 0.1 µF NOTE A: All capacitor values are for nonpolarized capacitors only. Figure 27. 0.1-Hz to 10-Hz Peak-to-Peak Noise Test Circuit 50 kΩ (see Note A) 10 kΩ 10 MΩ† 10 MΩ† 15 V + 100 Ω LT1013 10 MΩ† In + [V 10 MΩ† no2 Vn – 100 Ω (see Note A) + LT1013 VO = 1000 VIO – * (820 nV)2]1ń2 50 kΩ (see Note A) – 15 V 40 MW100 † Metal-film resistor NOTE A: Resistors must have low thermoelectric potential. Figure 28. Noise-Current Test Circuit and Formula POST OFFICE BOX 655303 Figure 29. Test Circuit for VIO and αVIO • DALLAS, TEXAS 75265 21 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 APPLICATION INFORMATION typical applications 5V Q3 2N2905 820 Ω Q1 2N2905 T1‡ + 68 Ω SN74HC04 (6) + 10 kΩ Q4 2N2222 820 Ω 10 kΩ Q2 2N2905 100 kΩ 5V – 1/2 LT1013 + 2 kΩ 10 µF 10 µF 0.002 µF 0.33 µF 1N4002 (4) 100 pF 10 kΩ† 4 kΩ† 10 kΩ† 4.3 kΩ 10 kΩ† 20-mA Trim 1 kΩ 4-mA Trim 5V LT1004 1.2 V 100 Ω† 80 kΩ† – 4-mA to 20-mA To Load 2.2 kΩ MAX 1/2 LT1013 + IN 0 to 4 V † 1% film resistor. Match 10-kΩ resistors 0.05%. ‡ T1 = PICO-31080 Figure 30. 5-V 4-mA – 20-mA Current Loop Transmitter With 12-Bit Accuracy 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 APPLICATION INFORMATION 0.1 Ω 5V To Inverter Drive 1N4002 (4) + + 1/2 LT1013 – 100 kΩ – 1/2 LT1013 + T1 10 µF 68 kΩ† 4-mA to 20-mA Fully Floating 10 kΩ† 4.3 kΩ 5V LT1004 1.2 V 301 Ω† 4 kΩ† 1 kΩ 20-mA Trim 2 kΩ 4-mA Trim IN 0 to 4 V † 1% film resistor Figure 31. Fully Floating Modification to 4-mA – 20-mA Current Loop Transmitter With 8-Bit Accuracy IN + 6 1/2 LTC1043 5 1 µF 2 3 5V 5 8 + 1/2 1 µF LT1013 6 – 4 7 OUT A R2 15 IN – 18 R1 IN + 7 1/2 LTC1043 8 1 µF 11 12 IN – 13 3 + 1/2 1 µF LT1013 2 – 1 OUT B R2 14 0.01 µF R1 NOTE A: VIO = 150 µV, AVD = (R1/R2) + 1, CMRR = 120 dB, VICR = 0 to 5 V Figure 32. 5-V Single-Supply Dual Instrumentation Amplifier POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 LT1013, LT1013A, LT1013D, LT1013Y DUAL PRECISION OPERATIONAL AMPLIFIERS SLOS018B – MAY 1988 – REVISED OCTOBER 1996 APPLICATION INFORMATION 10 + 200 kΩ † 9 5V 2 ‡ 20 kΩ 3 IN – – – LT1013 10 kΩ † 1 10 kΩ † + 10 kΩ 5V 13 RG (2 kΩ typ) ‡ To Input Cable Shields 8 LT1013 – 4 LT1013 12 1 µF 200 kΩ 6 ‡ IN + 5 10 kΩ 11 – LT1013 20 kΩ + 7 10 kΩ † + 10 kΩ † ‡ 5V † 1% film resistor. Match 10-kΩ resistors 0.05%. ‡ For high source impedances, use 2N2222 as diodes. NOTE A: AVD = (400,000/RG) + 1 Figure 33. 5-V Precision Instrumentation Amplifier 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 14 OUT IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated