MITSUBISHI M52348SP

MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION
PIN CONFIGURATION (TOP VIEW)
The M52348SP is an semiconductor IC for RGBHV interface that
switches signals input from two types of image source and outputs
them to CRT display etc.
The synchronous signal meets the
VCC1(R)
1
32
VCC2(R)
INPUT1(R)
2
31
OUTPUT(R)
frequency band of 10 kHz to 200 kHz and is output with TTL. The
IC adopts 250 MHz for the frequency band width of video signal,
providing high resolution images.
It is optimum as an IC for
3
30
GND
4
29
VCC2(G)
VCC1(B)
5
28
OUTPUT(G)
INPUT1(B)
6
27
GND
INPUT1(H)
7
26
VCC2(B)
INPUT1(V)
8
25
OUTPUT(B)
interface with various types of new media including high resolution
CRT.
FEATURES
•
•
•
Frequency band : RGB..................................................250MHz
HV.........................................10Hz to 200kHz
Input level :
RGB..........................................0.7 V P-P (typ.)
HV TTL IN PUT
3 to 5 Vo-p (bipolar)
Only the G channel is equipped with output for sync-on-video.
HV output adopts TTL format.
APPLICATION
CRT display, TV, VCR, etc.
M52348SP
VCC1(G)
INPUT1(G)
GND
9
24
GND
INPUT2(V)
10
23
OUTPUT
(for Sync on G)
GND
11
22
NC
INPUT2(G)
12
21
VCC
GND
13
20 OUTPUT(H)
INPUT2(B)
14
19
OUTPUT(V)
INPUT2(H) 15
18 GND
INPUT2(V) 16
17
SWITCH
Outline 32P4B
RECOMMENDED OPERATING CONDITION
Supply voltage range.....................................................4.5V to 5.5V
Rated supply voltage..................................................................5.0V
NC:NO CONNECTION
BLOCK DIAGRAM
OUTPUT
OUTPUT
(for sync on G)
VCC 2 (G)
GND
(B)
OUTPUT
(G)
GND
GND
NC
VCC 2 (B)
OUTPUT(R)
VCC 2 (R)
32
1
31
30
2
3
INPUT1(R)
VCC 1 (R)
1
29
28
4
5
INPUT1(G)
V CC1 (G)
27
26
6
7
INPUT1(B)
VCC1 (B)
25
24
8
9
INPUT1(V)
INPUT1(H)
23
22
10
11
INPUT2(R)
GND
GND
OUTPUT
VCC
SWITCH
(V)
OUTPUT
(H)
21
20
12
13
INPUT2(G)
GND
19
18
14
15
INPUT2(B)
GND
17
16
INPUT2(V)
INPUT2(H)
MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
ABSOLUTE MAXIMUM RATINGS (Ta=25˚C)
Symbol
VCC
Pd
Topr
Tstg
Vopr
Vopr’
Sarge
Parameter
Supply voltage
Power dissipation
Operating temperature
Storage temperature
Recommended operating supply voltage
Recommended operating supply voltage range
Electrostatic discharge
Ratings
7.0
1603
-20 to +85
-40 to +150
5.0
4.5 to 5.5
±200
Unit
V
mW
˚C
˚C
V
V
V
ELECTRICAL CHARACTERISTICS (VCC=5V, Ta=25˚C)
Symbol
Parameter
Test
point
Power
supply
Vcc
ICC1
Circuit current 1
(no signal)
A
5
ICC1
Circuit current 2
(no signal)
A
5
Test conditions
SW
SW2
Rin1
SW4
Gin1
SW6
Bin1
SW7
Hin1
SW8 SW10 SW12 SW14 SW15 SW16
Vin1 Rin2 Gin2 Bin2 Hin2 Vin2
SW17
Swich
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
GND
a
OPEN
Limits
Unit
Min.
Typ.
Max.
46
66
86
mA
46
66
86
mA
RGB SW block
VDC1
Output DC
voltage 1
T.P.31
T.P.28
T.P.25
5
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
1.8
2.2
2.6
V
VDC2
Output DC
voltage 2
T.P.31
T.P.28
T.P.25
5
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
a
OPEN
1.8
2.2
2.6
V
T.P.23
5
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
GND
a
OPEN
1.5
1.9
V
5
b
b
-
1.1
T.P.23
b
b
-
1.1
1.5
1.9
V
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
1.4
1.6
-
VP-P
b
-
b
-
b
-
b
-
a
OPEN
1.4
1.6
-
VP-P
b
-
b
-
b
-
b
-
b
GND
-0.5
0.1
0.7
dB
-0.6
0
0.6
dB
-0.5
0.1
0.7
dB
-0.6
0
0.6
dB
VDC3
VDC4
Output DC
voltage 3
Output DC
voltage 4
Vimax1
Maximum allowable input 1
T.P.2
T.P.4
T.P.6
5
Vimax2
Maximum allowable input 2
T.P.10
T.P.12
T.P.14
5
GV1
Voltage gain 1
T.P.31
T.P.28
T.P.25
5
∆GV1
Relative voltage
gain 1
abb bab bba
SG1 SG1 SG1
b
-
b
-
b
-
abb bab bba
SG2 SG2 SG2
abb bab bba
SG1 SG1 SG1
b
-
b
-
b
-
Takes ratio of the values above
T.P.31
T.P.28
T.P.25
5
b
-
b
-
b
-
b
-
b
-
abb bab bba
SG2 SG2 SG2
b
-
b
-
a
OPEN
GV2
Voltage gain 2
∆GV2
Relative voltage
gain 2
GV3
Voltage gain 3
T.P.23
5
b
-
a
SG2
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
-0.4
0.2
0.8
dB
GV4
Voltage gain 4
T.P.23
5
b
-
b
-
b
-
b
-
b
-
b
-
a
SG2
b
-
b
-
b
-
a
OPEN
-0.4
0.2
0.8
dB
FC1
Frequency characteristics 1
(100MHz)
T.P.31
T.P.28
T.P.25
5
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
-0.1
0
1.0
dB
∆FC1
Relative frequency
characteristics 1
(100MHz)
-0.1
0
1.0
dB
FC2
Frequency characteristics 2
(100MHz)
-0.1
0
1.0
dB
∆FC2
Relative frequency
characteristics 2
(100MHz)
-0.1
0
1.0
dB
FC3
Frequency characteristics 3
(100MHz)
T.P.31
T.P.28
T.P.25
5
FC4
Relative frequency
characteristics 4
(250MHz)
T.P.31
T.P.28
T.P.25
5
Takes ratio of the values above.
abb bab bba
SG4 SG4 SG4
Takes ratio of the values above
T.P.31
T.P.28
T.P.25
5
b
-
b
-
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
b
-
b
-
a
OPEN
Takes ratio of the values above
abb bab bba
SG5 SG5 SG5
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
abb bab bba
SG5 SG5 SG5
b
-
b
-
b
GND
-3.0
1.5
1.0
dB
b
-
b
-
a
OPEN
-3.0
1.5
1.0
dB
2
MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS (cont.)
Symbol
Parameter
Test
point
Power
supply
Vcc
Test conditions
SW2
Rin1
SW4
Gin1
Crosstalk 1
between 2 inputs
(10MHz)
T.P.31
T.P.28
T.P.25
5
Crosstalk 2
between 2 inputs
(10MHz)
T.P.31
T.P.28
T.P.25
5
Crosstalk 3
between 2 inputs
(100MHz)
T.P.31
T.P.28
T.P.25
5
Crosstalk 4
between 2 inputs
(100MHz)
T.P.31
T.P.28
T.P.25
5
C.T.C.1
Crosstalk 1
between channels
(10MHz)
T.P.31
T.P.28
T.P.25
5
C.T.C.2
Crosstalk 2
between channels
(10MHz)
T.P.31
T.P.28
T.P.25
5
Crosstalk 3
between channels
(100MHz)
Crosstalk 4
between channels
(100MHz)
T.P.31
T.P.28
T.P.25
5
T.P.31
T.P.28
T.P.25
5
T.P.31
T.P.28
T.P.25
5
Tf1
T.P.31
T.P.28
T.P.25
5
Tr2
T.P.31
T.P.28
T.P.25
5
b
-
b
-
T.P.31
T.P.28
T.P.25
5
b
-
C.T.I.1
C.T.I.2
C.T.I.3
C.T.I.4
C.T.C.3
C.T.C.4
Tr1
Pulse characteristics 1
Pulse characteristics 2
Tf2
SW6
Bin1
abb bab bba
SG3 SG3 SG3
SW7
Hin1
SW
SW8 SW10 SW12 SW14 SW15 SW16
Vin1 Rin2 Gin2 Bin2 Hin2 Vin2
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
a
a
a
SG6 SG6 SG6
b
-
b
-
b
-
b
-
a
a
a
SG6 SG6 SG6
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
b
-
b
b
-
b
b
-
b
c
0V
b
b
-
b
b
-
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
b
-
b
-
b
-
abb bab bba
SG3 SG3 SG3
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
b
-
b
-
b
-
b
-
b
-
b
-
SW17
Swich
Limits
Unit
Min.
Typ.
Max.
-
-60
-50
dB
-
-60
-50
dB
-
-40
-35
dB
-
-40
-35
dB
GND
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
-
-50
-40
dB
b
-
b
-
a
OPEN
-
-50
-40
dB
b
-
b
-
b
GND
-
-30
-25
dB
b
-
b
-
a
OPEN
-
-30
-25
dB
b
-
b
-
b
-
b
GND
-
1.6
2.5
nsec
b
-
b
-
b
-
b
GND
-
1.6
2.5
nsec
a
a
a
SG6 SG6 SG6
b
-
b
-
a
OPEN
-
1.6
2.5
nsec
a
a
a
SG6 SG6 SG6
b
-
b
-
a
OPEN
-
1.6
2.5
nsec
4.5
5.0
-
V
4.5
5.0
-
V
-
0.2
5.0
V
-
0.2
5.0
V
2.0
2.5
3.0
V
2.0
2.5
3.0
V
-
100
150
nsec
-
100
150
nsec
-
50
100
nsec
-
50
100
nsec
c
0.5
1.5
2.0
V
c
0.5
1.5
2.0
V
abb bab bba
SG3 SG3 SG3
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
b
-
b
-
b
-
abb bab bba
SG3 SG3 SG3
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
OPEN
OPEN
GND
GND
OPEN
OPEN
GND
HV SW portion
3
VOH1
High-level output
voltage 1
T.P.19
T.P.20
5
VOH2
High-level output
voltage 2
T.P.19
T.P.20
5
VOL1
Low-level output
voltage 1
T.P.19
T.P.20
5
VOL2
Low level output
voltage 2
T.P.19
T.P.20
5
Vith1
Input threshold
voltage 1
T.P.7
T.P.8
5
b
b
-
Vith2
Input threshold
voltage 2
T.P.15
T.P.16
5
b
-
b
-
b
-
Trd1
Rising delay time 1
T.P.19
T.P.20
5
Trd2
Rising delay time 2
T.P.19
T.P.20
5
b
b
-
b
b
-
b
b
-
Tfd1
Falling delay
time 1
T.P.19
T.P.20
5
Tfd2
Falling delay
time 2
T.P.19
T.P.20
5
b
b
-
b
b
-
b
b
-
Vsth1
Switching threshold voltage 1
T.P.17
5
Vsth2
Switching threshold voltage 2
T.P.17
5
c
c
5.0V 5.0V
b
-
b
-
b
-
b
-
b
c
0V
b
b
-
b
b
-
b
b
-
b
c
b
c
Variable
Variable
b
b
-
b
b
-
b
b
-
b
b
GND
c
a
c
5.0V 5.0V OPEN
b
b
b
GND
c
a
c
0V 0V OPEN
b
b
b
GND
b
-
b
-
b
-
b
-
b
-
c
c
Variable
Variable
a
a
SG7 SG7
b
b
-
b
b
-
b
b
-
b
b
-
b
b
b
GND
a
a
a
SG7 SG7 OPEN
a
a
SG7 SG7
b
b
-
b
b
-
b
b
-
b
b
-
b
b
b
GND
a
a
a
SG7 SG7 OPEN
a
a
a
a
a
b
b
b
b
b
SG1 SG1 SG1 SG7 SG7 b
b
b
b
b
a
a
a
a
a
- SG1 SG1 SG1 SG7 SG7
a
OPEN
MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS TEST
METHOD
2. When this is the case, measure the output amplitude of T.P.23.
3. As in the case of GV1, ∆GV1, GV2 and ∆GV2, find GV3 and GV4.
Note) Omitted because the signal input pins and SW No. have been
described in the Electrical Characteristics Table. SWA shall take
FC1, ∆FC1 frequency characteristics 1, relative frequency
side a unless otherwise noted.
characteristics 1 (100 MHz)
FC2, ∆FC2 frequency characteristics 2, relative frequency
ICC1, ICC2 Circuit current 1, circuit current 2 (no signal)
characteristics 2 (100 MHz)
The conditions shall be as provided in the Electrical Characteristics
1. The conditions shall be as provided in the Electrical
Table. When SW17 is assigned to GND (or OPEN), and SWA is
Characteristics Table. This measurement shall use active probe.
placed on side b, take measurements in ampere meter A and
2. Assign SW17 to GND and input SG2 into pin 2 only. When this is
specify the value to be Icc1 (or ICC2).
the case, specify the output amplitude of T.P.31 to be VOR1.
In the same manner, specify the output to be VOR2 with SG4
VDC1, VDC2 Output DC voltage 1, output DC voltage 2
When SW17 is assigned to GND (or OPEN), and no signal is input,
measure T.P.31 (T.P.28, T.P.25) output DC voltage. Specify the
input.
3. In this case, calculate frequency characteristics F C1 by the
following formula:
voltage to be VDC1 (or VDC2).
FC1 = 20LOG
VDC3, VDC4, Output DC voltage 3, output DC voltage 4
Measure the output DC voltage of T.P.23 in the same manner as in
VDC1 and VDC2, and specify the voltage to be VDC3 (VDC4).
VOR2
[VP-P]
VOR1
[VP-P]
4. In response to inputs into pin
4
and pin
6
(dB)
only, find frequency
characteristics Fc1 in the same manner.
5. Calculate the difference in frequency characteristics between
Vimax1, Vimax2, maximum allowable input 1, maximum
allowable input 2
channels to find relative frequency characteristics∆Fc1.
6. Assign SW17 to OPEN. In the same manner, find F C2 and ∆FC2.
Assign SW17 to GND and input SG1 into pin
2
only. Gradually
increasing the SG1 amplitude, read the amplitude of the input
FC3, FC4 Frequency characteristics 3, frequency
signal when the output waveform of T.P.31 is strained. The value is
characteristics 4 (250 MHz)
specified to be Vimax1. In the same manner, measure Vimax 1 in
In the same manner as finding FC1, ∆FC1, FC2 and∆FC2, find FC3
response to inputs into pin
and FC4 in response to input signal SG5.
4
and pin
6
only.
Then assign SW17 to OPEN, measure the values at inputs into pins
10
,
12
, and
14
only. Then specify the values to be Vimax2.
C.T.I.1 Crosstalk 1 between 2 inputs
C.T.I.2 Crosstalk 2 between 2 inputs (10 MHz)
1. The conditions shall be as provided in the Electrical
GV1,∆GV1, voltage gain 1, relative voltage gain 1
Characteristics Table.
GV2, ∆GV2, voltage gain 2, relative voltage gain 2
probe.
1. The conditions shall be as provided in the Electrical
Characteristics Table.
This measurement shall take active
2. Assign SW17 to GND and input SG3 into pin
the case, read the amplitude of T.P.31 output and specify the
value as VOR1.
to be VOR3.
3. Assign SW17 to ONPEN, measure the output amplitude of T.P.31
at that time and specify the value to be VOR3'.
3. Calculate voltage gain GV1 by the following formula:
GV1=20LOG
VOR1
[VP-P]
0.7
[VP-P]
4. When this is the case, calculate crosstalk C.T.L1 between 2
inputs by the following formula:
(dB)
C.T.I.1 = 20LOG
4. In the same manner, find voltage gain G V1 in response to inputs
4
and pin
only. Measure
the output amplitude of T.P.31 at that time and specify the value
2. Assign SW17 to GND and input SG2 into pin 2 only. When this is
into pin
2
6
only.
5. Calculate the difference in voltage gain between channels to find
relative voltage gain ∆GV1.
VOR3’
[VP-P]
VOR3
[VP-P]
(dB)
5. In the same manner, find crosstalk between 2 inputs in response
to inputs into pin
4
and pin
6
only.
6. Assign SW17 to OPEN and then input SG3 into pin
10
only.
6. In the same manner, find GV2 and ∆GV2.
Measure the output amplitude of T.P.31 at that time and specify
GV3, ∆GV4 Voltage gain 3, voltage gain 4
7. Assign SW17 to GND and then measure the output amplitude of
the value to be VOR4'.
1. The conditions shall be as provided in the Electrical
T.P.31 at that time. Specify the value to be VOR4'.
Characteristics Table.
4
MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
8. When this is the case, calculate crosstalk C.T.I.2 between 2
inputs by the following formula:
C.T.I.2 = 20LOG
2. With active probe, measure rising Tri and falling Tfi for 10% to
90% of the input pulse.
VOR4’
[VP-P]
VOR4
[VP-P]
3. With active probe, measure rising Tro and falling Tfo for 10% to
90% of the output pulse.
(dB)
4. The pulse characteristics Tr1 and Tf1 (Tr2 and Tf2) are as follows:
9. As in the same manner, find crosstalk between 2 pints in
100%
90%
response to input into pin
12
and pin
14
only.
10%
0%
C.T.I.3 Crosstalk 3 between 2 inputs
Tr
Tf
C.T.I.4 Crosstalk 4 between 2 inputs (100 MHz)
Specify input signal to be SG4. In the same manner as in C.T.I.1
and C.T.I.2, find crosstalk C.T.I.3/C.T.I.4 between 2 inputs.
C.T.C.1 Crosstalk 1 between channels
C.T.C.2 Crosstalk 2 between channels (10 MHz)
(Tro)2 - (Tri)2
(nsec)
Tf1(Tf2) =
(Tfo)2 - (Tfi)2
(nsec)
VOH1, VOH2 High-level output voltage 1 and high-level output
1. The conditions shall be as provided in the Electrical
Characteristics Table.
Tr1(Tr2) =
This measurement shall take active
probe.
voltage 2
The conditions shall be as provided in the Electrical Characteristics
Table. Assign SW17 to GND (or OPEN), apply 5V to the input pin
2. Assign SW17 to GND and input signal SG3 into pin
2
only.
Specify the output amplitude of T.P.31 to be VOR5 at that time.
and measure the output voltage. Specify the value to be VOH1
(VOH2).
3. In the same status, measure the output amplitude of T.P.28 and
T.P.25and specify the values to be VOG5 and VOB5.
VOL1, VOL2 Low-level output voltage 1 and low-level output
4. When this is the case, calculate crosstalk C.T.C1 between
channels by the following formula:
C.T.C.1 = 20LOG
VOG5 or VOB5 [VP-P]
VOR5
voltage 2
The conditions shall be as provided in the Electrical Characteristics
Table. Assign SW17 to GND (or OPEN), apply 0V to the input pin
(dB)
and measure the output voltage. Specify the value to be VOL1
[VP-P]
(VOL2).
5. In the same manner, find crosstalk between channels in
response to inputs into pin
4
and pin
6
Vith1 Input threshold voltage 1
only.
6. Assign SW17 to OPEN and then input signal SG3 into pin
10
Vith2 Input threshold voltage 2
only. Specify the output amplitude of T.P.31 to be VOR6 at that
The conditions shall be as provided in the Electrical Characteristics
time.
Table. Assign SW17 to GND (or OPEN). Gradually increasing the
7. In the same status, measure the output amplitude of T.P.28 and
voltage of input pin from 0V, measure the input voltage when the
output voltage is Hi (4.5V or more). Specify the value to be Vith1
T.P.25. Specify the values to be VOG6 and VOB6.
8. When this is the case, calculate crosstalk C.T.C.2 between
(Vith2).
channels by the following formula:
Trd1, Trd2 Rising delay time 1 and rising delay time 2
C.T.C.2 = 20LOG
VOG6 or VOB6 [VP-P]
VOR6
(dB)
[VP-P]
9. As in the same manner, find crosstalk between channels in
response to inputs into pin
12
and pin
14
only.
Tfd1, Tfd2 Falling delay time 1 and falling delay time 2
The conditions shall be as provided in the Electrical Characteristics
Table. Assign SW17 to GND (or OPEN), input SG7 into the input
pin and measure the output waveform.
Rising delay time Trd1 (Trd2) and falling delay time Tfd1 (Tfd2) shall
be found according to the following diagram.
C.T.C.3 Crosstalk 3 between channels
C.T.C.4 Crosstalk 4 between channels (100 MHz)
Specify input signal to be SG4. In the same manner as in C.T.C.1
and C.T.C.2, find crosstalk C.T.C.3/C.T.C.4 between 2 channels.
50%
SG7
Trd
Tr1, Tf1, Tr2, Tf2 Pulse characteristics 1
and pulse characteristics 2
1. The conditions shall be as provided in the Electrical
Characteristics Table. Assign SW17 to GND (or OPEN).
5
Tfd
50%
OOO
MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
TYPICAL CHARACTERISTICS
Vsth1 Switching threshold voltage 1
Vsth2 Switching threshold voltage 2
THERMAL DERATING (MAXIMUM RATING)
1. The conditions shall be as provided in the Electrical
SG7 into pins
7
and
8
2
,
4
and
6
. Do not input signal into other pins.
2. Apply a voltage of 0V to pin
17
and check each of TP19, TP20,
TP23, TP25, TP28 and TP31 for output of signal.
3. Gradually increasing the voltage at pin
pin
17
17
, specify the output at
to be Vsth1 when the signal is not output from the above
pins.
4. As in the same manner, input SG1 into pins
input SG7 into pins
10
,
12
and
14
and
and
16
. Do not input signal into other
5. Apply a voltage of 5V to pin
17
and check each of TP19, TP20,
15
pins.
pin
17
17
1603
1600
1200
800
400
-20
0
25
50
75 85 100
125
150
AMBIENT TEMPERATURE Ta (˚C)
TP23, TP25, TP28 and TP31 for output of signal.
6. Gradually decreasing the voltage at pin
2000
. Input
POWER DISSIPATION Pd(mW)
Characteristics Table. Input SG7 into pins
, specify the output at
to be Vsth2 when the signal is not output from the above
pins.
INPUT SIGNAL
SG No.
signals
Sine wave (f=60 kHz, 0.7VP-P, amplitude variable)
SG1
0.7VP-P
(Amplitude variable)
SG2
SG3
SG4
SG5
SG6
Sine wave (f=1 MHz, amplitude 0.7V P-P)
Sine wave (f=10 MHz, amplitude 0.7V P-P)
Sine wave (f=100 MHz, amplitude 0.7V P-P)
Sine wave (f=250 MHz, amplitude 0.7V P-P)
Pulse of 0.7VP-P in amplitude
(f=60kHz, duty 80%)
0.7VP-P
Square wave
(Amplitude 5.0 VO-P TTL, f=60 kHz, duty = 50%)
SG7
5V
0V
6
7
SW A
a
Vcc
5V
A
b
47µ
0.01µ
0.01µ
0.01µ
a
0.01µ
TP2
0.01µ
b
47µ
3
30
47µ
0.01µ
SW4
a
b
0.01µ
47µ
SW6
5
4
47µ
28
29
TP4
47µ
2
31
0.01µ
TP28
G
7
6
a
b
24
SW7
SW8
SG1
SG2
SG3
SG4
SG5
SG6
c
a b
8
0.01µ
a
TP10
10
23
b
47µ
12
21
SG7
SW12
a
TP12
0.01µ
11
22
0.01µ
TP23
GOUT
(for Sync on G)
SW10
9
M52348SP
25
TP25
B
TP8
c
a b
47µ
TP7
26
27
0.01µ
TP6
SW2
1
32
TP31
R
b
47µ
SW14
a
TP14
14
19
TP19
V
0.01µ
13
22
47µ
TP20
H
b
47µ
SW15
TP16
16
17
SW OPEN:INPUT2
SW GND:INPUT1
c
b
a OPEN
SW16
c a b c
a b
TP15
15
18
SW17
MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
TEST CIRCUIT
0.01µ
Units Reslstance : Ω
Capacitance : F
MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION OF PIN
Pin No.
Name
DC voltage
(V)
Peripheral circuit of pins
VCC1(R)
VCC1(G)
VCC1(B)
1
3
5
Description of function
5.0
800Ω
Input at low impedance.
4
INPUT1(G)
6
INPUT1(B)
2.0
2.8V
INPUT1(R)
620Ω
2
1.0mA
Input pulse of 3V or more and 5V or less.
7
INPUT1(H)
8
INPUT1(V)
-
3 to 5V
0V
0.2mA
9
18
11
24
13
27
GND
GND
30
800Ω
Input at low impedance.
12
INPUT2(G)
14
INPUT2(B)
2.0
2.8V
INPUT2(R)
620Ω
10
1.0mA
8
MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION OF PIN (cont.)
Pin No.
Name
DC voltage
(V)
Peripheral circuit of pins
Description of function
Input pulse of 3V or more and 5V or less.
3 to 5V
15
INPUT2(H)
16
INPUT2(V)
0V
0.2mA
7.3kΩ
SWITCH
13kΩ
17
12kΩ
10kΩ
Enables switching between OPEN and
GND.
2.6
2.3V
19
OUTPUT(V)
20
OUTPUT(H)
21
VCC1(R)
(H,V,SWITCH)
22
NC
1kΩ
Contains output resistance.
-
5.0
Apply the same voltage.
Contains output resistance.
23
25
28
31
OUTPUT
(SYNC ONG)
OUTPUT(B)
OUTPUT(G)
OUTPUT(R)
23
430Ω
26
29
32
9
VCC2(B)
VCC2(G)
VCC2(R)
1.5
2.2
50Ω
50Ω
25 , 28 , 31
500Ω
5.0
MITSUBISHI ICs (Monitor)
M52348SP
WIDE FREQUENCY BAND ANALOG SWITCH
CAUTIONS FOR USING THE IC
1. Standard video inputs for R, G and B are specified to be 0.7 V P-P.
CAUTIONS FOR MANUFACTURING BOARDS
Built-in wide band analog switch may cause oscillation due to the
2. The H and V inputs are specified to be 5.0 VTTL.
wiring shape on the board. Be careful for the following points.
3. Input signals into input pins at fully lowered impedance.
•
4. The H and V output pins (pins
•
•
•
19
and
20
) are as shown in Figure
1. Resistance can be inserted into a portion between power
supplies to improve the rising speed. However, set the R value
to limit the current to 7.5 mA or less. In Figure 1, R is 2 kΩ or
more.
5V
•
•
5V
When inserting an output pull-down resistance, make wire
between the output pin and the resistance as short as possible.
Make the load capacitance of output pins as small as possible.
Install the Vcc-GND bus controller capacitance near the pin.
Vcc shall use a stable power supply. (Individual Vcc should use
an independent power supply.)
Insertion of a resistance of several tens of Ω between the output
pin and the circuit at the next stage makes oscillation harder.
GND should be as wide as possible. Basically, solid earth should
be used.
R
1kΩ
I=7.5 mA or less
Fig. 1
5. The R, G and B output pins (pins
25
,
28
and
31
) are as shown in
Figure 2. Pull-down resistance can be added to between GNDs
according to the driving capability. However, set the R value to
limit current I to 10 mA or less. In Figure 2, R is 500Ω or more.
5V
I=10 mA or less
50Ω
430kΩ
R
Fig. 2
6. The switch (pin
17
) can be switched with GND and OPEN.
GND: Outputs signal from the INPUT 1 side.
OPEN: Outputs signal from the INPUT 2 side.
For switching by applying voltage as shown in Figure 3;
0 to 0.5V: Outputs signal from INPUT 1 side.
2 to 5V: Outputs signal from INPUT 2 side.
The applied voltage shall be less than Vcc.
17
Fig. 3
10