STMICROELECTRONICS M68AW128ML70ZB6T

M68AW128ML
2 Mbit (128K x16) 3.0V Asynchronous SRAM
FEATURES SUMMARY
■ SUPPLY VOLTAGE: 2.7 to 3.3V
■
128K x 16 bits SRAM with OUTPUT ENABLE
■
EQUAL CYCLE and ACCESS TIME: 55ns
■
SINGLE BYTE READ/WRITE
■
LOW STANDBY CURRENT
■
LOW VCC DATA RETENTION: 1.5V
■
TRI-STATE COMMON I/O
■
AUTOMATIC POWER DOWN
Figure 1. Packages
44
1
TSOP44 Type II (ND)
BGA
TFBGA48 (ZB)
6 x 8 mm
May 2002
1/20
M68AW128ML
TABLE OF CONTENTS
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. TFBGA Connections (Top view through package). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 6. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 8. Address Controlled, Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 9. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms. . . . . . . . . . . . . . 10
Figure 10. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms . . . . . . . . . . . . . . . . 10
Table 7. Read and Standby Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. Chip Enable Controlled, Write AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 13. UB/LB Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9. Low VCC Data Retention Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
TSOP44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Outline . . . . . . . . . . . . . . . 16
TSOP 44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Mechanical Data . . . . . . . 16
TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Bottom View Package Outline. . . . . . . . 17
TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Package Mechanical Data . . . . . . . . . . 17
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2/20
M68AW128ML
SUMMARY DESCRIPTION
The M68AW128ML is a 2 Mbit (2,097,152 bit)
CMOS SRAM, organized as 131,072 words by 16
bits. The device features fully static operation requiring no external clocks or timing strobes, with
equal address access and cycle times. It requires
a single 2.7 to 3.3V supply. This device has an au-
tomatic power-down feature, reducing the power
consumption by over 99% when deselected.
The M68AW128ML is available in TFBGA48
(0.75 mm pitch) and in TSOP44 Type II packages.
Figure 2. Logic Diagram
Table 1. Signal Names
VCC
17
16
A0-A16
DQ0-DQ15
A0-A16
Address Inputs
DQ0-DQ15
Data Input/Output
E
Chip Enable
G
Output Enable
W
Write Enable
UB
Upper Byte Enable Input
LB
Lower Byte Enable Input
VCC
Supply Voltage
VSS
Ground
NC
Not Connected Internally
DU
Don’t Use as Internally Connected
W
E
M68AW128ML
G
UB
LB
VSS
AI04835
3/20
M68AW128ML
Figure 3. TSOP Connections
A4
A3
A2
A1
A0
E
DQ0
DQ1
DQ2
DQ3
VCC
VSS
DQ4
DQ5
DQ6
DQ7
W
A16
A15
A14
A13
A12
1
44
2
43
3
42
4
41
5
40
6
39
7
38
8
37
9
36
10
35
11
34
M68AW128ML
12
33
13
32
14
31
15
30
16
29
17
28
18
27
19
26
20
25
21
24
22
23
AI04836
4/20
A5
A6
A7
G
UB
LB
DQ15
DQ14
DQ13
DQ12
VSS
VCC
DQ11
DQ10
DQ9
DQ8
NC
A8
A9
A10
A11
DU
M68AW128ML
Figure 4. TFBGA Connections (Top view through package)
1
2
3
4
5
6
A
LB
G
A0
A1
A2
NC
B
DQ8
UB
A3
A4
E
DQ0
C
DQ9
DQ10
A5
A6
DQ1
DQ2
D
VSS
DQ11
NC
A7
DQ3
VCC
E
VCC
DQ12
NC
A16
DQ4
VSS
F
DQ14
DQ13
A14
A15
DQ5
DQ6
G
DQ15
NC
A12
A13
W
DQ7
H
NC
A8
A9
A10
A11
DU
AI04837
5/20
M68AW128ML
Figure 5. Block Diagram
VCC
VSS
A16
ROW
DECODER
MEMORY
ARRAY
A7
DQ15
(8)
I/O CIRCUITS
UB
COLUMN
DECODER
DQ0
(8)
LB
A0
A6
(8)
UB
W
E
UB
(8)
LB
LB
G
AI04838
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for periods greater than 1 sec periods may
affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant
quality documents.
Table 2. Absolute Maximum Ratings
Symbol
Value
Unit
Output Current
20
mA
PD
Power Dissipation
1
W
TA
Ambient Operating Temperature
–55 to 125
°C
TSTG
Storage Temperature
–65 to 150
°C
VCC
Supply Voltage
–0.5 to 4.6
V
–0.5 to VCC +0.5
V
IO (1)
VIO (2)
Parameter
Input or Output Voltage
Note: 1. One output at time not to exceed 1 second duration.
2. Up to a maximum operating VCC of 3.3V only.
6/20
M68AW128ML
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 3. Operating and AC Measurement Conditions
Parameter
M68AW128ML
VCC Supply Voltage
2.7 to 3.3V
Range 1
0 to 70°C
Range 6
–40 to 85°C
Ambient Operating Temperature
Load Capacitance (CL)
30pF
Output Circuit Protection Resistance (R1)
3.0kΩ
Load Resistance (R2)
3.1kΩ
Input Rise and Fall Times
1ns/V
0 to VCC
Input Pulse Voltages
Input and Output Timing Ref. Voltages
VCC/2
Output Transition Timing Ref. Voltages
VRL = 0.3VCC; VRH = 0.7VCC
Figure 6. AC Measurement I/O Waveform
Figure 7. AC Measurement Load Circuit
VCC
I/O Timing Reference Voltage
R1
VCC
VCC/2
0V
DEVICE
UNDER
TEST
OUT
CL
Output Timing Reference Voltage
VCC
0V
R2
0.7VCC
0.3VCC
AI05831
CL includes probe and 1 TTLcapacitance
AI05832
7/20
M68AW128ML
Table 4. Capacitance
C IN
Test
Conditio n
Parameter (1,2)
Symbol
Max
Unit
VIN = 0V
8
pF
V OUT = 0V
10
pF
Input Capacitance on all pins (except DQ)
C OUT
Output Capacitance
Min
Note: 1. Sampled only, not 100% tested.
2. At TA = 25°C, f = 1 MHz, VCC = 3.0V.
Table 5. DC Characteristics
Symbol
Parameter
ICC1 (1,2)
Operating Supply Current
ICC2 (3)
Operating Supply Current
ISB
Standby Supply Current CMOS
ILI
Input Leakage Current
ILO (4)
Output Leakage Current
Test Condi tion
VCC = 3.3V, f = 1/tAVAV,
IOUT = 0mA
Min
Typ
Max
Unit
70ns
20
mA
55ns
26
mA
2
mA
10
µA
V CC = 3.3V, f = 1MHz,
I OUT = 0mA
VCC = 3.3V, f = 0,
E ≥ VCC –0.2V or
LB=UB ≥ VCC –0.2V
5
0V ≤ VIN ≤ V CC
–1
1
µA
0V ≤ V OUT ≤ VCC
–1
1
µA
VIH
Input High Voltage
2.2
VCC + 0.3
V
V IL
Input Low Voltage
–0.3
0.6
V
VOH
Output High Voltage
IOH = –1.0mA
VOL
Output Low Voltage
IOL = 2.1mA
Note: 1.
2.
3.
4.
8/20
Average AC current, cycling at tAVAV minimum.
E = VIL, LB OR/AND UB = VIL, VIN = VIL OR VIH.
E ≤ 0.2V, LB OR/AND UB ≤ 0.2V, VIN ≤ 0.2V OR VIN ≥ VCC –0.2V.
Output disabled.
2.4
V
0.4
V
M68AW128ML
OPERATION
The M68AW128ML has a Chip Enable power
down feature which invokes an automatic standby
mode whenever either Chip Enable is de-asserted
(E = High) or LB and UB are de-asserted (LB and
UB = High). An Output Enable (G) signal provides
a high speed tri-state control, allowing fast read/
write cycles to be achieved with the common I/O
data bus. Operational modes are determined by
device control inputs W, E, LB and UB as summarized in the Operating Modes table (see Table 6).
Table 6. Operating Modes
Operation
E
W
G
LB
UB
DQ0-DQ7
DQ8-DQ15
Power
Deselected
VIH
X
X
X
X
Hi-Z
Hi-Z
Standby (ISB)
Deselected
X
X
X
VIH
VIH
Hi-Z
Hi-Z
Standby (ISB)
Lower Byte Read
V IL
VIH
VIL
VIL
VIH
Data Output
Hi-Z
Active (ICC)
Lower Byte Write
V IL
V IL
X
VIL
VIH
Data Input
Hi-Z
Active (ICC)
Output Disabled
V IL
VIH
VIH
X
X
Hi-Z
Hi-Z
Active (ICC)
Upper Byte Read
V IL
VIH
VIL
VIH
VIL
Hi-Z
Data Output
Active (ICC)
Upper Byte Write
V IL
V IL
X
VIH
VIL
Hi-Z
Data Input
Active (ICC)
Word Read
V IL
VIH
VIL
VIL
VIL
Data Output
Data Output
Active (ICC)
Word Write
V IL
V IL
X
VIL
VIL
Data Input
Data Input
Active (ICC)
Note: 1. X = VIH or VIL.
Read Mode
The M68AW128ML is in the Read mode whenever
Write Enable (W) is High with Output Enable (G)
Low, and Chip Enable (E) is asserted. This provides access to data from eight or sixteen, depending on the status of the signal UB and LB, of
the 2,097,152 locations in the static memory array,
specified by the 17 address inputs. Valid data will
be available at the eight or sixteen output pins
within tAVQV after the last stable address, providing G is Low and E is Low. If Chip Enable or Output
Enable access times are not met, data access will
be measured from the limiting parameter (tELQV,
tGLQV or tBLQV) rather than the address. Data out
may be indeterminate at tELQX, tGLQX and tBLQX
but data lines will always be valid at tAVQV.
Figure 8. Address Controlled, Read Mode AC Waveforms
tAVAV
A0-A16
VALID
tAVQV
DQ0-DQ7 and/or DQ8-DQ15
tAXQX
DATA VALID
AI04839
Note: E = Low, G = Low, W = High, UB = Low and/or LB = Low.
9/20
M68AW128ML
Figure 9. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.
tAVAV
A0-A16
VALID
tAVQV
tAXQX
tELQV
tEHQZ
E
tELQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ15
VALID
tBLQV
tBHQZ
UB, LB
tBLQX
AI04840
Note: Writ e Enable (W) = High.
Figure 10. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms
E, UB, LB
ICC
ISB
tPU
tPD
50%
AI03856
10/20
M68AW128ML
Table 7. Read and Standby Mode AC Characteristics
M68AW128ML
Symbol
Parameter
Unit
55
70
tAVAV
Read Cycle Time
Min
55
70
ns
tAVQV
Address Valid to Output Valid
Max
55
70
ns
Data hold from address change
Min
5
5
ns
tBHQZ (2,3)
Upper/Lower Byte Enable High to Output Hi-Z
Max
20
25
ns
tBLQV
Upper/Lower Byte Enable Low to Output Valid
Max
55
70
ns
Upper/Lower Byte Enable Low to Output Transition
Min
5
5
ns
tEHQZ (2,3)
Chip Enable High to Output Hi-Z
Max
20
25
ns
tELQV
Chip Enable Low to Output Valid
Max
55
70
ns
Chip Enable Low to Output Transition
Min
5
5
ns
tGHQZ (2,3)
Output Enable High to Output Hi-Z
Max
20
25
ns
tGLQV
Output Enable Low to Output Valid
Max
25
35
ns
Output Enable Low to Output Transition
Min
5
5
ns
tPD (4)
Chip Enable or UB/LB High to Power Down
Max
0
0
ns
tPU (4)
Chip Enable or UB/LB Low to Power Up
Min
55
70
ns
tAXQX (1)
tBLQX (1)
tELQX (1)
tGLQX (2)
Note: 1. Test conditions assume transition timing reference level = 0.3VCC or 0.7VCC.
2. At any given temperature and voltage condition, tGHQZ is less than tGLQX, tBHQZ is less than tBLQX and tEHQZ is less than tELQX for
any given device.
3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
4. Tested initially and after any design or process changes that may affect these parameters.
11/20
M68AW128ML
Write Mode
The M68AW128ML is in the Write mode whenever
the W and E are Low. Either the Chip Enable input
(E) or the Write Enable input (W) must be deasserted during Address transitions for
subsequent write cycles. When E (W) is Low, and
UB or LB is Low, write cycle begins on the W (E)’s
falling edge. When E and W are Low, and UB = LB
= High, write cycle begins on the first falling edge
of UB or LB. Therefore, address setup time is
referenced to Write Enable, Chip Enable or UB/LB
as tAVWL , tAVEL and tAVBL respectively, and is
determined by the latter occurring edge.
The Write cycle can be terminated by the earlier
rising edge of E, W or UB/LB.
If the Output is enabled (E = Low, G = Low, LB or
UB = Low), then W will return the outputs to high
impedance within tWLQZ of its falling edge. Care
must be taken to avoid bus contention in this type
of operation. Data input must be valid for tDVWH
before the rising edge of Write Enable, or for tDVEH
before the rising edge of E, or for tDVBH before the
rising edge of UB/LB whichever occurs first, and
remain valid for tWHDX, tEHDX and tBHDX respectively.
Figure 11. Write Enable Controlled, Write AC Waveforms
tAVAV
A0-A16
VALID
tAVWH
tELWH
tWHAX
E
tWLWH
tAVWL
W
tWLQZ
tWHQX
tWHDX
DQ0-DQ15
DATA
(1)
DATA INPUT
DATA (1)
tDVWH
tBLWH
UB, LB
AI04841
Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applioed.
12/20
M68AW128ML
Figure 12. Chip Enable Controlled, Write AC Waveforms
tAVAV
A0-A16
VALID
tAVEH
tAVEL
tELEH
tEHAX
E
tWLEH
W
tEHDX
DQ0-DQ15
DATA INPUT
tDVEH
tBLEH
UB, LB
AI04842
Figure 13. UB/LB Controlled, Write AC Waveforms
tAVAV
A0-A16
VALID
tAVBH
tBHAX
tELBH
E
tWLBH
W
tBHDX
DQ0-DQ15
DATA (1)
DATA INPUT
tDVBH
tAVBL
tBLBH
UB, LB
AI04843
Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied.
13/20
M68AW128ML
Table 8. Write Mode AC Characteristics
M68AW128ML
Symbol
Parameter
Unit
55
70
tAVAV
Write Cycle Time
Min
55
70
ns
tAVBH
Address Valid to LB, UB High
Min
45
60
ns
tAVBL
Addess Valid to LB, UB Low
Min
0
0
ns
tAVEH
Address Valid to Chip Enable High
Min
45
60
ns
tAVEL
Address valid to Chip Enable Low
Min
0
0
ns
tAVWH
Address Valid to Write Enable High
Min
45
60
ns
t AVWL
Address Valid to Write Enable Low
Min
0
0
ns
tBHAX
LB, UB High to Address Transition
Min
0
0
ns
tBHDX
LB, UB High to Input Transition
Min
0
0
ns
tBLBH
LB, UB Low to LB, UB High
Min
45
60
ns
tBLEH
LB, UB Low to Chip Enable High
Min
45
60
ns
tBLWH
LB, UB Low to Write Enable High
Min
45
60
ns
tDVBH
Input Valid to LB, UB High
Min
25
30
ns
tDVEH
Input Valid to Chip Enable High
Min
25
30
ns
tDVWH
Input Valid to Write Enable High
Min
25
30
ns
tEHAX
Chip Enable High to Address Transition
Min
0
0
ns
tEHDX
Chip enable High to Input Transition
Min
0
0
ns
tELBH
Chip Enable Low to LB, UB High
Min
45
60
ns
tELEH
Chip Enable Low to Chip Enable High
Min
45
60
ns
tELWH
Chip Enable Low to Write Enable High
Min
45
60
ns
tWHAX
Write Enable High to Address Transition
Min
0
0
ns
tWHDX
Write Enable High to Input Transition
Min
0
0
ns
Write Enable High to Output Transition
Min
5
5
ns
tWLBH
Write Enable Low to LB, UB High
Min
45
60
ns
tWLEH
Write Enable Low to Chip Enable High
Min
45
60
ns
Write Enable Low to Output Hi-Z
Max
20
20
ns
Write Enable Low to Write Enable High
Min
45
60
ns
tWHQX (1)
tWLQZ (1,2)
tWLWH
Note: 1. At any given temperature and voltage condition, tWLQZ is less than tWHQX for any given device.
2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
14/20
M68AW128ML
Figure 14. Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
3.3V
VCC
2.7V
VDR > 1.5V
tCDR
tR
E ≥ VDR – 0.2V or UB = LB ≥ VDR – 0.2V
E or UB/LB
AI05805
Table 9. Low VCC Data Retention Characteristics
Symbol
Parameter
ICCDR (1) Supply Current (Data Retention)
Test Condi tion
Min
V CC = 1.5V, E ≥ VCC –0.2V or
UB = LB ≥ VCC –0.2V, f = 0 (3)
Typ
Max
Unit
4.5
9
µA
t CDR (1,2)
Chip Deselected to Data
Retention Time
0
ns
tR (2)
Operation Recovery Time
tAVAV
ns
1.5
V
VDR (1)
Supply Voltage (Data Retention)
E ≥ VCC –0.2V or
UB = LB ≥ VCC –0.2V, f = 0
Note: 1. All other Inputs at VIH ≥ VCC –0.2V or VIL ≤ 0.2V.
2. Tested initially and after any design or process changes that may affect these parameters. tAVAV is Read cycle time.
3. No input may exceed VCC +0.2V.
15/20
M68AW128ML
PACKAGE MECHANICAL
Figure 15. TSOP44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Outline
D
N
E1
E
N/2
1
ZD
b
e
A2
A
C
A1
CP
α
L
TSOP-d
Note: Drawing is not to scale.
Table 10. TSOP 44 Type II - 44 lead Plastic Thin Small Outline Type II, Package Mechanical Data
Symbol
millimeters
Typ
Min
A
Max
Typ
Min
1.200
Max
0.0472
A1
0.050
0.150
0.0020
0.0059
A2
0.950
1.050
0.0374
0.0413
0.0047
0.0083
b
0.350
c
0.0138
0.120
0.210
D
18.410
–
–
0.7248
–
–
e
0.800
–
–
0.0315
–
–
E
11.760
–
–
0.4630
–
–
E1
10.160
–
–
0.4000
–
–
L
0.500
0.400
0.600
0.0197
0.0157
0.0236
ZD
0.805
–
–
0.0317
–
–
0°
5°
0°
5°
α
CP
N
16/20
inches
0.100
44
0.0039
44
M68AW128ML
Figure 16. TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Bottom View Package Outline
D
D1
FD
FE
SD
SE
BALL ”A1”
E
E1
ddd
e
e
b
A
A2
A1
BGA-Z26
Note: Drawing is not to scale.
Table 11. TFBGA48 6x8mm - 6x8 active ball array, 0.75 mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.200
A1
0.0472
0.260
A2
0.0102
0.900
b
Max
0.350
0.450
0.0354
0.0138
0.0177
D
6.000
5.900
6.100
0.2362
0.2323
0.2402
D1
3.750
–
–
0.1476
–
–
ddd
0.100
0.0039
E
8.000
7.900
8.100
0.3150
0.3110
0.3189
E1
5.250
–
–
0.2067
–
–
e
0.750
–
–
0.0295
–
–
FD
1.125
–
–
0.0443
–
–
FE
1.375
–
–
0.0541
–
–
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
17/20
M68AW128ML
PART NUMBERING
Table 12. Ordering Information Scheme
Example:
M68AW128 M
L
55 ZB
6
T
Device Type
M68
Mode
A = Asynchronous
Operating Voltage
W = 2.7 to 3.3V
Array Organization
128 = 2 Mbit (128K x16)
Optio n 1
M = 1 Chip Enable; Write and Standby from UB and LB
Optio n 2
L = Low Leakage
Speed Class
55 = 55 ns
70 = 70 ns
Package
ND = TSOP 44 Type II
ZB = TFBGA48: 0.75 mm pitch
Operative Temperature
1 = 0 to 70 °C
6 = –40 to 85 °C
Shipping
T = Tape & Reel Packing
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
18/20
M68AW128ML
REVISION HISTORY
Table 13. Document Revision History
Date
Version
Revision Details
July 2001
-01
First Issue
10-Dec-2001
-02
Document completely revised
18-Feb-2002
-03
Tables 6, 7, 8 and 9 clarified
25-Mar-2002
-04
Read and Standby Mode AC Characteristics table clarified (Table 7)
Low VCC Data Retention Characteristics table clarified (Table 9)
17-May-2002
-05
VCC range changed to 2.7 to 3.3V
19/20
M68AW128ML
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express writt en approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
20/20