MITSUBISHI M81725FP

MITSUBISHI SEMICONDUCTORS <HVIC>
M81725FP
HIGH VOLTAGE HIGH SIDE DRIVER
DESCRIPTION
M81725FP is high voltage Power MOSFET and IGBT
driver for high side applications.
PIN CONFIGURATION (TOP VIEW)
FEATURES
¡FLOATING SUPPLY VOLTAGE ................................. 600V
¡OUTPUT CURRENT ............................................ ±3A (typ)
¡UNDERVOLTAGE LOCKOUT
¡INPUT FILTER
¡SOP-8 PACKAGE
1. VCC
8. VB
2. IN
7. OUT
3. NC
6. VS
4. GND
5. NC
APPLICATIONS
MOSFET and IGBT driver for PDP,HID lamp,
refrigerator, air-conditioner, washing machine,
AC-servomotor and general purpose.
Outline:8P2S
NC: NO CONNECTION
BLOCK DIAGRAM
VCC
1
VREG
HV LEVEL
SHIFT
UV DETECT
FILTER
8
VB
7
OUT
6
VS
POR
R Q
INTER
LOCK
IN
GND
2
VREG/VCC
LEVEL
SHIFT
FILTER
R
S
PULSE
GEN
4
Aug. 2009
1
MITSUBISHI SEMICONDUCTORS <HVIC>
M81725FP
HIGH VOLTAGE HIGH SIDE DRIVER
ABSOLUTE MAXIMUM RATINGS (Ta=25°C unless otherwise specified)
Symbol
VB
Parameter
High Side Floating Supply Absolute Voltage
Test conditions
VS
High Side Floating Supply Offset Voltage
VBS
High Side Floating Supply Voltage
VOUT
High Side Output Voltage
VCC
Low Side Fixed Supply Voltage
VIN
Logic Input Voltage
IN
Pd
Package Power Dissipation
Kq
Linear Derating Factor
Rth(j-c)
Junction - Case Thermal Resistance
Tj
VBS = VB-VS
Ratings
–0.5 ~ 624
Unit
V
VB-24 ~ VB+0.5
V
–0.5 ~ 24
V
VS–0.5 ~ VB+0.5
V
–0.5 ~ 24
V
–0.5 ~ VCC+0.5
V
Ta = 25°C , On Board
0.6
W
Ta > 25°C , On Board
4.8
mW/°C
50
°C/W
Junction Temperature
–20 ~ 150*
°C
Topr
Operation Temperature
–20 ~ 125
°C
Tstg
Storage Temperature
–40 ~ 150
°C
TL
Solder heat-proof(flow)
260(10s)
°C
For Pb Free
* Please adjust the VS potential to 500V or less when the junction temperature (Tj) exceeds 125°C.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Test conditions
Min.
Limits
Typ.
Max.
Unit
VB
High Side Floating Supply Absolute Voltage
VS+10
—
VS+20
V
VS
High Side Floating Supply Offset Voltage
VB > 10V
–5
—
500
V
VBS
High Side Floating Supply Voltage
VBS = VB–VS
10
—
20
V
VOUT
High Side Output Voltage
VS
—
VB
V
VCC
Low Side Fixed Supply Voltage
10
—
20
V
VIN
Logic Input Voltage
0
—
7
V
IN
* For proper operation, the device should be used within the recommended conditions.
THERMAL DERATING FACTOR CHARACTERISTIC (ABSOLUTE MAXIMUM RATINGS)
0.7
Power dissipation Pd (W)
0.6
0.5
0.4
0.3
0.2
0.1
0
0
25
50
75
100
125
150
Ambient Temparature Ta (°C)
Aug. 2009
2
MITSUBISHI SEMICONDUCTORS <HVIC>
M81725FP
HIGH VOLTAGE HIGH SIDE DRIVER
ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vcc=VBS(=VB-VS)=15V, unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Limits
Typ.*
Max.
Unit
IFS
Floating Supply Leakage Current
VB = VS = 600V
—
—
1.0
µA
IBS
VBS standby Current
IN = 0V
—
0.2
0.5
mA
ICC
Vcc standby Current
IN = 0V
0.1
0.3
0.6
mA
—
V
VOH
High Level Output Voltage
IO = 0A, LO, HO
13.8
14.4
VOL
Low Level Output Voltage
IO = 0A, LO, HO
—
—
0.1
V
VIH
High Level Input Threshold Voltage
IN
4.0
—
—
V
VIL
Low Level Input Threshold Voltage
IN
—
—
0.8
V
IIH
High Level Input Bias Current
VIN = 5V
—
17
40
µA
IIL
Low Level Input Bias Current
VIN = 0V
—
0
1
µA
VBSuvr
VBS Supply UV Reset Voltage
8.0
8.9
9.8
V
VBSuvt
VBS Supply UV Trip Voltage
7.4
8.2
9.0
V
VBSuvh
VBS Supply UV Hysteresis Voltage
0.3
0.7
—
V
tVBSuv
VBS Supply UV Filter Time
—
7.5
—
µs
VPonr
Power-On Reset Voltage
tPonr(FIL)
Power-On Reset Filter Time
—
—
6.0
V
300
—
—
ns
A
IOH
Output High Level Short Circuit Pulsed Current
VO = 0V, VIN = 5V, PWD < 10µs
2.0
3.0
—
IOL
Output Low Level Short Circuit Pulsed Current
VO = 15V, VIN = 0V, PWD < 10µs
2.0
3.0
—
A
ROH
Output High Level On Resistance
IO = –200mA, ROH = (VOH–VO)/IO
—
10
20
Ω
ROL
Output Low Level On Resistance
IO = 200mA, ROL = VO/IO
—
2.5
3.0
Ω
tdLH
Turn-On Propagation Delay
CL = 1000pF between OUT-Vs
—
200
280
ns
tdHL
Turn-Off Propagation Delay
CL = 1000pF between OUT-Vs
—
180
260
ns
tr
Turn-On Rise Time
CL = 1000pF between OUT-Vs
—
25
45
ns
tf
Turn-Off Fall Time
CL = 1000pF between OUT-Vs
—
20
35
ns
CONVEX PULSE : IN
—
100
—
ns
CONCAVE PULSE : IN
—
100
—
ns
IN(FIL)
Input Filter Time
* Typ. is not specified
Aug. 2009
3
MITSUBISHI SEMICONDUCTORS <HVIC>
M81725FP
HIGH VOLTAGE HIGH SIDE DRIVER
TIMING REQUIREMENT
IN
50%
tdLH
50%
tr
tdHL
90%
OUT
tf
90%
10%
10%
FUNCTION TABLE
IN
VBS UV
OUT
H→L
H
L
OUT = Low
L→H
H
H
OUT = High
X
L
L
OUT = Low, VBS UV tripped
Behavioral state
Note1 : “L” state of VBS UV, Vcc UV means that UV trip voltage.
2 : X (IN) : L→H or H→L.
3 : Output signal (HO) is triggered by the edge of input signal.
IN
HO
Aug. 2009
4
MITSUBISHI SEMICONDUCTORS <HVIC>
M81725FP
HIGH VOLTAGE HIGH SIDE DRIVER
Operation sequence Diagram
VCC
VBS UVTrip
VBS
VBS UVReset
VBSuvr
VBSuvt
VPonrReset
VPonr
IN
tPonr (FIL)
tVBSuv
OUT
1. Input/Output Timing
HIGH ACTIVE (When input signal is “H”, then output signal is “H”.)
2. VBS Supply Under Voltage Lockout
If VBS supply voltage drops below UV trip voltage (VBSuvt) for VBS supply UV filter time, output signal is shut down. As
soon as VBS supply voltage rises over UV reset voltage, output signal HO becomes “H” at following “H” edge of input
signal.
Note: If the VBS drops below VPON, the filter time will become tPOR (FIL) instead of tVBSuv.
3. Allowable Supply Voltage Transient
It is recommended to supply VCC firstly and supply VBS secondly. When shutting off supply voltage, please shut off VBS
firstly and shut off VCC secondly. When applying VCC and VBS, power supply should be applied slowly. If it rises rapidly,
output signal (HO or LO) may be malfunction.
Note: If VCC is below its recommended value: 10V, output may not response input signals.
Note: Please take enough evaluation in the case of power supply shut down and power supply applying after its shut-down.
Aug. 2009
5
MITSUBISHI SEMICONDUCTORS <HVIC>
M81725FP
HIGH VOLTAGE HIGH SIDE DRIVER
PACKAGE OUTLINE
5
E
NOTE)
1. DIMENSIONS “*1” AND “*2”
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT
INCLUDE TRIM OFFSET.
*1
F
1
Index mark
4
c
A2
A1
*2 D
L
A
HE
8
*3
e
bp
y
Detail F
Reference Dimension in Millimeters
Symbol
Min Nom Max
D
E
A2
A1
A
bp
c
q
HE
e
y
L
4.8
4.2
–
0.05
–
0.35
0.13
0°
5.9
1.12
–
0.2
5.0
4.4
1.5
–
–
0.4
0.15
–
6.2
1.27
–
0.4
5.2
4.6
–
–
1.9
0.5
0.2
10°
6.5
1.42
0.1
0.6
Aug. 2009
6