19-2828; Rev 3; 6/07 Programmable DC-Balanced 21-Bit Serializers Features The MAX9209/MAX9211/MAX9213/MAX9215 serialize 21 bits of LVTTL/LVCMOS parallel input data to three LVDS outputs. A parallel rate clock on a fourth LVDS output provides timing for deserialization. The MAX9209/MAX9211/MAX9213/MAX9215 feature programmable DC balance, which allows isolation between the serializer and deserializer using AC-coupling. The DC balance circuits on each channel code the data, limiting the imbalance of transmitted ones and zeros to a defined range. The companion MAX9210/ MAX9212/MAX9214/MAX9216 deserializers decode the data. When DC balance is not programmed, the serializers are compatible with non-DC-balanced, 21-bit serializers like the DS90CR215 and DS90CR217. Two frequency ranges and two DC-balance default conditions are available for maximum replacement flexibility and compatibility with existing non-DC-balanced serializers. ♦ Programmable DC-Balanced or Non-DC-Balanced Operation ♦ DC Balance Allows AC-Coupling for Ground-Shift Tolerance ♦ As Low as 8MHz Operation ♦ Pin Compatible with DS90CR215 and DS90CR217 in Non-DC-Balanced Mode ♦ Integrated 110Ω (DC-Balanced) and 410Ω (NonDC-Balanced) Output Resistors ♦ 5V Tolerant LVTTL/LVCMOS Data Inputs ♦ PLL Requires No External Components ♦ Up to 1.785Gbps Throughput Automotive Navigation Systems ♦ LVDS Outputs Meet IEC 61000-4-2 and ISO 10605 Requirements ♦ LVDS Outputs Conform to ANSI TIA/EIA-644 LVDS Standard ♦ Low-Profile 48-Lead TSSOP and Space-Saving QFN Packages ♦ -40°C to +85°C Operating Temperature Range Automotive DVD Entertainment Systems ♦ +3.3V Supply The MAX9209/MAX9211/MAX9213/MAX9215 are available in TSSOP and space-saving thin QFN packages. Applications Digital Copiers Laser Printers Ordering Information Functional Diagram PART MAX9209 MAX9211 MAX9213 MAX9215 TxIN 0 - 20 LVDS DRIVER 0 TxOUT0+ 21 TIMING CONTROL DCB/NC PARALLEL-TOSERIAL CONVERTER AND DC-BALANCE LOGIC TxOUT0LVDS DRIVER 1 TxOUT1+ TxOUT1LVDS DRIVER 2 TxOUT2+ PLL 7X OR 9X PIN-PACKAGE 48 Thin QFN-EP** MAX9209EUM -40°C to +85°C 48 TSSOP MAX9209GUM -40°C to +105°C 48 TSSOP MAX9211ETM* -40°C to +85°C 48 Thin QFN-EP** MAX9211EUM* -40°C to +85°C 48 TSSOP MAX9213ETM* -40°C to +85°C 48 Thin QFN-EP** MAX9213EUM -40°C to +85°C 48 TSSOP MAX9215ETM* -40°C to +85°C 48 Thin QFN-EP** MAX9215EUM* -40°C to +85°C 48 TSSOP TxOUT2- *Future product—contact factory for availability. TxCLK OUT+ **EP = Exposed pad. LVDS CLK TxCLK IN TEMP RANGE -40°C to +85°C MAX9209ETM* CLOCK GENERATOR TxCLK OUT- Pin Configurations appear at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX9209/MAX9211/MAX9213/MAX9215 General Description MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers ABSOLUTE MAXIMUM RATINGS VCC to GND ...........................................................-0.5V to +4.0V LVDS Outputs (TxOUT_, TxCLK OUT_) to GND ...-0.5V to +4.0V 5V Tolerant LVTTL/LVCMOS Inputs (TxIN_, TxCLK IN, PWRDWN) to GND ..............-0.5V to +6.0V (DCB/NC) to GND ......................................-0.5V to (VCC + 0.5V) LVDS Outputs (TxOUT_, TxCLK OUT_) Short to GND and Differential Short .......................Continuous Continuous Power Dissipation (TA = +70°C) 48-Pin TSSOP (derate 16mW/°C above +70°C) ....... 1282mW 48-Lead QFN (derate 26.3mW/°C above +70°C) ......2105mW Storage Temperature Range .............................-65°C to +150°C Junction Temperature ......................................................+150°C ESD Protection Human Body Model (RD = 1.5kΩ, CS = 100pF) All Pins to GND..............................................................±2kV IEC 61000-4-2 (RD = 330Ω, CS = 150pF) Contact Discharge (TxOUT_, TxCLK OUT_) to GND ....±8kV Air Gap Discharge (TxOUT_, TxCLK OUT_) to GND ..±15kV ISO 10605 (RD = 2kΩ, CS = 330pF) Contact Discharge (TxOUT_, TxCLK OUT_) to GND ....±8kV Air Gap Discharge (TxOUT_, TxCLK OUT_) to GND ..±25kV Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (VCC = +3.0V to +3.6V, RL = 100Ω ±1%, PWRDWN = high, DCB/NC = high or low, unless otherwise noted. Typical values are at VCC = +3.3V, TA = +25°C.) (Notes 1, 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS SINGLE-ENDED INPUTS (TxIN_, TxCLK IN, PWRDWN, DCB/NC) High-Level Input Voltage VIH Low-Level Input Voltage VIL Input Current IIN Input Clamp Voltage VCL TxIN_, TxCLK IN, PWRDWN 2.0 5.5 DCB/NC 2.0 VCC + 0.3 -0.3 +0.8 V -20 +20 µA -0.9 -1.5 V 350 450 mV 2 25 mV 1.25 1.375 V 10 30 mV VIN = high or low, PWRDWN = high or low ICL = -18mA V LVDS OUTPUTS (TxOUT_, TxCLK OUT) Differential Output Voltage Change in VOD Between Complementary Output States Output Offset Voltage Change in VOS Between Complementary Output States Output Short-Circuit Current Magnitude of Differential Output Short-Circuit Current VOD Figure 1 ΔVOD Figure 1 VOS Figure 1 ΔVOS Figure 1 IOS IOSD Output High-Impedance Current 2 RO IOZ 1.125 VOUT+ or VOUT- = 0V or VCC, non-DC-balanced mode -10 ±5.7 +10 VOUT+ or VOUT- = 0V or VCC, DC-balanced mode -15 ±8.2 +15 VOD = 0V, non-DC-balanced mode (Note 3) 5.7 10 VOD = 0V, DC-balanced mode (Note 3) 8.2 15 DC-balanced mode Differential Output Resistance 250 Non-DC-balanced mode -40°C to +105°C -40°C to +105°C PWRDWN = low or VCC = 0V, VOUT+ = 0V or 3.6V, VOUT- = 0V or 3.6V mA 78 110 147 78 110 150 292 410 547 292 410 564 -0.5 ±0.1 +0.5 _______________________________________________________________________________________ mA Ω µA Programmable DC-Balanced 21-Bit Serializers (VCC = +3.0V to +3.6V, RL = 100Ω ±1%, PWRDWN = high, DCB/NC = high or low, unless otherwise noted. Typical values are at VCC = +3.3V, TA = +25°C.) (Notes 1, 2) PARAMETER SYMBOL CONDITIONS DC-balanced mode, worst-case pattern, CL = 5pF, Figure 2 Worst-Case Supply Current ICCW Non-DC-balanced mode, worst-case pattern, CL = 5pF, Figure 2 Power-Down Supply Current ICCZ PWRDWN = low MIN TYP MAX 8MHz MAX9209/MAX9211 40 54 16MHz MAX9209/MAX9211 48 68 34MHz MAX9209/MAX9211 71 90 16MHz MAX9213/MAX9215 46 64 34MHz MAX9213/MAX9215 59 87 66MHz MAX9213/MAX9215 94 108 10MHz MAX9209/MAX9211 30 39 20MHz MAX9209/MAX9211 37 53 33MHz MAX9209/MAX9211 49 70 40MHz MAX9209/MAX9211 56 75 20MHz MAX9213/MAX9215 36 49 33MHz MAX9213/MAX9215 45 62 40MHz MAX9213/MAX9215 49 70 66MHz MAX9213/MAX9215 68 89 85MHz MAX9213/MAX9215 83 100 17 50 UNITS mA µA _______________________________________________________________________________________ 3 MAX9209/MAX9211/MAX9213/MAX9215 DC ELECTRICAL CHARACTERISTICS (continued) MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers AC ELECTRICAL CHARACTERISTICS (VCC = +3.0V to +3.6V, RL = 100Ω ±1%, CL = 5pF, PWRDWN = high, DCB/NC = high or low, unless otherwise noted. Typical values are at VCC = +3.3V, TA = +25°C.) (Notes 4, 5) PARAMETER SYMBOL LVDS Low-to-High Transition Time LLHT Figure 3 LVDS High-to-Low Transition Time LHLT Figure 3 TxCLK IN Transition Time TCIT Figure 4 CONDITIONS MAX9209/MAX9211 MIN 150 TYP 280 MAX 400 MAX9213/MAX9215 150 260 350 MAX9209/MAX9211 150 280 400 MAX9213/MAX9215 150 260 350 4 UNITS ps ps ns 10MHz N/7 x TCIP N/7 x TCIP N/7 x TCIP MAX9209/MAX9211 - 0.25 + 0.25 20MHz N/7 x TCIP N/7 x TCIP N/7 x TCIP MAX9209/MAX9211 - 0.15 + 0.15 N = 0, 1, 2, 3, 4, 5, 6 non-DCbalanced mode, Figure 5 (Note 6) 40MHz N/7 x TCIP N/7 x TCIP N/7 x TCIP MAX9209/MAX9211 - 0.1 + 0.1 20MHz N/7 x TCIP N/7 x TCIP N/7 x TCIP MAX9213/MAX9215 - 0.25 + 0.25 40MHz N/7 x TCIP N/7 x TCIP N/7 x TCIP MAX9213/MAX9215 - 0.15 + 0.15 N/7 x TCIP 85MHz N/7 x TCIP N/7 x TCIP + 0.1 MAX9213/MAX9215 - 0.1 Output Pulse Position TPPosN ns N/9 x TCIP 8MHz N/9 x TCIP N/9 x TCIP + 0.25 MAX9209/MAX9211 - 0.25 N/9 x TCIP 16MHz N/9 x TCIP N/9 x TCIP + 0.15 MAX9209/MAX9211 - 0.15 N = 0, 1, 2, 3, 4, 5, 6, 7, 8 DC-balanced mode, Figure 6 (Note 6) N/9 x TCIP 34MHz N/9 x TCIP N/9 x TCIP + 0.1 MAX9209/MAX9211 - 0.1 N/9 x TCIP 16MHz N/9 x TCIP N/9 x TCIP + 0.25 MAX9213/MAX9215 - 0.25 N/9 x TCIP 34MHz N/9 x TCIP N/9 x TCIP + 0.15 MAX9213/MAX9215 - 0.15 66MHz N/9 x TCIP N/9 x TCIP N/9 x TCIP MAX9213/MAX9215 - 0.1 + 0.1 4 _______________________________________________________________________________________ Programmable DC-Balanced 21-Bit Serializers (VCC = +3.0V to +3.6V, RL = 100Ω ±1%, CL = 5pF, PWRDWN = high, DCB/NC = high or low, unless otherwise noted. Typical values are at VCC = +3.3V, TA = +25°C.) (Notes 4, 5) PARAMETER TxCLK IN High Time SYMBOL TCIH Figure 7 CONDITIONS MIN 0.3 x TCIP TxCLK IN Low Time TCIL Figure 7 0.3 x TCIP TxIN to TxCLK IN Setup TSTC Figure 7 2.2 TxIN to TxCLK IN Hold THTC Figure 7 ns DC-balanced mode, Figure 8 4.7 5.9 7.2 Figure 9 Serializer Power-Down Delay TPDD Figure 10 VOD 0 6.0 TPLLS ns 32800 x TCIP ns 50 ns 2 ns 14 595Mbps data rate, worst-case pattern ns ns 4.5 Serializer Phase-Locked Loop Set Magnitude of Differential Output Voltage 0.7 x TCIP 3.5 TCCD TJIT MAX UNITS 0.7 x TCIP ns Non-DC-balanced mode, Figure 8 TxCLK IN to TxCLK OUT Delay TxCLK IN Cycle-to-Cycle Jitter (Input Clock Requirement) TYP 250 mV Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except VOD , ΔVOD, and ΔVOS. Note 2: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production tested at TA = +25°C. Note 3: Guaranteed by design. Note 4: TCIP is the period of TxCLK IN. Note 5: AC parameters are guaranteed by design and characterization, and are not production tested. Limits are set at ±6 sigma. Note 6: Pulse position TPPosN is characterized using 27 - 1 PRBS data. Typical Operating Characteristics (VCC = +3.3V, RL = 100Ω ±1%, CL = 5pF, PWRDWN = high, TA = +25°C, unless otherwise noted.) WORST-CASE PATTERN 60 27 - 1 PRBS 80 WORST-CASE PATTERN 60 40 20 10 20 30 FREQUENCY (MHz) 40 50 MAX9213 NON-DC-BALANCED MODE 100 80 WORST-CASE PATTERN 60 27 - 1 PRBS 40 27 - 1 PRBS 20 20 0 120 MAX9209 toc02 MAX9209 NON-DC-BALANCED MODE SUPPLY CURRENT (mA) 80 40 100 MAX9209 toc01 MAX9209 DC-BALANCED MODE SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 100 WORST-CASE AND PRBS SUPPLY CURRENT vs. FREQUENCY WORST-CASE PATTERN AND PRBS SUPPLY CURRENT vs. FREQUENCY MAX9209 toc03 WORST-CASE PATTERN AND PRBS SUPPLY CURRENT vs. FREQUENCY 0 10 20 30 40 FREQUENCY (MHz) 50 60 15 30 45 60 75 90 FREQUENCY (MHz) _______________________________________________________________________________________ 5 MAX9209/MAX9211/MAX9213/MAX9215 AC ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (continued) (VCC = +3.3V, RL = 100Ω ±1%, CL = 5pF, PWRDWN = high, TA = +25°C, unless otherwise noted.) MAX9213 DC-BALANCED MODE 100 2m OF CAT-5 UTP CABLE TxCLK IN = 85MHz DC-COUPLED MAX9213 EYE DIAGRAM—NON-DC-BALANCED MODE MAX9209 TOC05 MAX9209 toc04 120 MAX9213 EYE DIAGRAM—NON-DC-BALANCED MODE 5m OF CAT-5 UTP CABLE TxCLK IN = 85MHz DC-COUPLED WORST-CASE PATTERN 80 100mV/div 100mV/div 0V DIFFERENTIAL 0V DIFFERENTIAL 60 27 - 1 PRBS 40 ALL-CHANNELS SWITCHING 20 15 30 45 75 60 27 - 1 PRBS PATTERN 100Ω TERMINATION 27 - 1 PRBS PATTERN 100Ω TERMINATION ALL-CHANNELS SWITCHING 300ps/div 300ps/div FREQUENCY (MHz) 100mV/div 100mV/div 0V DIFFERENTIAL ALL-CHANNELS SWITCHING 27 - 1 PRBS PATTERN 100Ω TERMINATION 2m OF CAT-5 UTP CABLE 0V DIFFERENTIAL ALL-CHANNELS SWITCHING 27 - 1 PRBS PATTERN 100Ω TERMINATION 300ps/div MAX9213 EYE DIAGRAM—DC-BALANCED MODE MAX9213 EYE DIAGRAM—DC-BALANCED MODE 5m OF CAT-5 UTP CABLE 100mV/div 0V DIFFERENTIAL ALL-CHANNELS SWITCHING 27 - 1 PRBS PATTERN 100Ω TERMINATION 300ps/div MAX9209 TOC09 300ps/div TxCLK IN = 66MHz AC-COUPLED USING 0.1μF CAPACITORS 6 TxCLK IN = 66MHz AC-COUPLED USING 0.1μF CAPACITORS MAX9209 TOC08 10m OF CAT-5 UTP CABLE TxCLK IN = 66MHz AC-COUPLED USING 0.1μF CAPACITORS 100mV/div 10m OF CAT-5 UTP CABLE 0V DIFFERENTIAL ALL-CHANNELS SWITCHING 27 - 1 PRBS PATTERN 100Ω TERMINATION 300ps/div _______________________________________________________________________________________ MAX9209 TOC10 TxCLK IN = 85MHz DC-COUPLED MAX9213 EYE DIAGRAM—DC-BALANCED MODE MAX9209 TOC07 MAX9213 EYE DIAGRAM—NON-DC-BALANCED MODE MAX9209 TOC06 WORST-CASE PATTERN AND PRBS SUPPLY CURRENT vs. FREQUENCY SUPPLY CURRENT (mA) MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers Programmable DC-Balanced 21-Bit Serializers PIN TSSOP QFN 1, 3, 4, 44, 45, 47, 48, 38, 39, 41, 42, 43, 45, 46 NAME TxIN0–TxIN6 FUNCTION 5V Tolerant LVTTL/LVCMOS Channel 0 Data Inputs. Internally pulled down to GND. 2, 8, 14, 21 2, 8, 15, 44 VCC Digital Supply Voltage 5, 11, 17, 24, 46 5, 11, 18, 40, 47 GND Ground 6, 7, 9, 10, 12, 13, 15 1, 3, 4, 6, 7, 9, 48 TxIN7–TxIN13 5V Tolerant LVTTL/LVCMOS Channel 1 Data Inputs. Internally pulled down to GND. 16, 18, 19, 20, 22, 23, 25 10, 12, 13, 14, 16, 17, 19 TxIN14–TxIN20 5V Tolerant LVTTL/LVCMOS Channel 2 Data Inputs. Internally pulled down to GND. 26 20 TxCLK IN 5V Tolerant LVTTL/LVCMOS Parallel Rate Clock Input. Internally pulled down to GND. 27 21 PWRDWN 5V Tolerant LVTTL/LVCMOS Power-Down Input. Internally pulled down to GND. Outputs are high impedance when PWRDWN = low or open. 28, 30 22, 24 PLL GND PLL Ground 29 23 PLL VCC PLL Supply Voltage 31, 36, 42 25, 30, 36 LVDS GND 32 26 TxCLK OUT+ 33 27 TxCLK OUT- 34 28 TxOUT2+ Noninverting Channel 2 LVDS Serial Data Output 35 29 TxOUT2- Inverting Channel 2 LVDS Serial Data Output 37 31 LVDS VCC LVDS Supply Voltage 38 32 TxOUT1+ Noninverting Channel 1 LVDS Serial Data Output 39 33 TxOUT1- Inverting Channel 1 LVDS Serial Data Output 40 34 TxOUT0+ Noninverting Channel 0 LVDS Serial Data Output 41 35 TxOUT0- Inverting Channel 0 LVDS Serial Data Output LVTTL/LVCMOS DC-Balance Programming Input: MAX9209: pulled up to VCC MAX9211: pulled down to GND MAX9213: pulled up to VCC MAX9215: pulled down to GND See Table 1. 43 37 DCB/NC — EP EP LVDS Ground Noninverting LVDS Parallel Rate Clock Output Inverting LVDS Parallel Rate Clock Output Exposed Paddle. Solder to ground. _______________________________________________________________________________________ 7 MAX9209/MAX9211/MAX9213/MAX9215 Pin Description MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers TxOUT_- OR TxCLK OUT- VOS(-) VOS(+) VOS(-) TxOUT_+ OR TxCLK OUT+ ΔVOS = |VOS(+) - VOS(-)| VOD(+) 0V ΔVOD = |VOD(+) - VOD(-)| VOD(-) VOD(-) (TxOUT_+) - (TxOUT_-) OR (TxCLK OUT+) - (TxCLK OUT-) Figure 1. LVDS Output DC Parameters TCIP TxCLK IN ODD TxIN EVEN TxIN Figure 2. Worst-Case Test Pattern TxOUT_+ OR TxCLK OUT+ 80% 80% RL TxOUT_- OR TxCLK OUT- CL CL 20% (TxOUT_+) - (TxOUT_-) OR (TxCLK OUT+) - (TxCLK OUT-) 20% LLHT LHLT Figure 3. LVDS Output Load and Transition Times VIH 90% 90% 10% 10% TxCLK IN TCIT VIL TCIT Figure 4. Clock Transition Time Waveform 8 _______________________________________________________________________________________ Programmable DC-Balanced 21-Bit Serializers CYCLE N - 1 CYCLE N TxOUT2 (SINGLE ENDED) TxIN15 TxIN14 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14 TxOUT1 (SINGLE ENDED) TxIN8 TxIN7 TxIN13 TxIN12 TxIN11 TxIN10 TxIN9 TxIN8 TxIN7 TxOUT0 (SINGLE ENDED) TxIN1 TxIN0 TxIN6 TxIN5 TxIN4 TxIN3 TxIN2 TxIN1 TxIN0 TPPos0 TPPos1 TPPos2 TPPos3 TPPos4 TPPos5 TPPos6 Figure 5. Non-DC-Balanced Mode LVDS Output Pulse Position Measurement Detailed Description The MAX9209/MAX9211 operate at a parallel clock frequency of 8MHz to 34MHz in DC-balanced mode and 10MHz to 40MHz in non-DC-balanced mode. The MAX9213/MAX9215 operate at a parallel clock frequency of 16MHz to 66MHz in DC-balanced mode and 20MHz to 85MHz in non-DC-balanced mode. DC-balanced or non-DC-balanced operation is controlled by the DCB/NC pin (see Table 1). In non-DCbalanced mode, each channel serializes 7 bits every cycle of the parallel clock. In DC-balanced mode, 9 bits are serialized every clock cycle (7 data bits + 2 DC-balance bits). The highest data rate in DC-balanced mode for the MAX9213 or MAX9215 is 66MHz x 9 = 594Mbps. In non-DC-balanced mode, the maximum data rate is 85MHz x 7 = 595Mbps. A bit time is 1 divided by the data rate, for example, 1 / 595Mbps = 1.68ns. DC Balance Through data coding, the DC-balance circuits limit the imbalance of ones and zeros transmitted on each channel. If +1 is assigned to each binary one transmitted and -1 is assigned to each binary zero transmitted, the Table 1. DC-Balance Programming DEVICE MAX9209 MAX9211 MAX9213 MAX9215 DCB/NC OPERATING MODE OPERATING FREQUENCY (MHz) High or open DC balanced 8 to 34 Low Non-DC balanced 10 to 40 High DC balanced 8 to 34 Low or open Non-DC balanced 10 to 40 High or open DC balanced 16 to 66 Low Non-DC balanced 20 to 85 High DC balanced 16 to 66 Low or open Non-DC balanced 20 to 85 variation in the running sum of assigned values is called the digital sum variation (DSV). The maximum DSV for the MAX9209/MAX9211/MAX9213/MAX9215 _______________________________________________________________________________________ 9 MAX9209/MAX9211/MAX9213/MAX9215 TxCLK OUT (DIFFERENTIAL) MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers TxCLK OUT (DIFFERENTIAL) CYCLE N - 1 CYCLE N TxOUT2 (SINGLE ENDED) DCA2 DCB2 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14 DCA2 DCB2 TxOUT1 (SINGLE ENDED) DCA1 DCB1 TxIN13 TxIN12 TxIN11 TxIN10 TxIN9 TxIN8 TxIN7 DCA1 DCB1 TxOUT0 (SINGLE ENDED) DCA0 DCB0 TxIN6 TxIN5 TxIN4 TxIN3 TxIN2 TxIN1 TxIN0 DCA0 DCB0 TPPos0 TPPos1 TPPos2 TPPos3 TPPos4 TPPos5 TPPos6 TPPos7 TPPos8 Figure 6. DC-Balanced Mode LVDS Output Pulse Position Measurement TCIP 2.0V TxCLK IN TCIH 1.5V 0.8V TCIL TSTC TxIN 0:20 1.5V SETUP THTC HOLD 1.5V Figure 7. Setup and Hold, High and Low Times 1.5V TxCLK IN TxCLK OUT+ TxCLK OUT- TCCD DIFFERENTIAL 0 Figure 8. Clock-In to Clock-Out Delay 10 ______________________________________________________________________________________ Programmable DC-Balanced 21-Bit Serializers MAX9209/MAX9211/MAX9213/MAX9215 2.0V PWRDWN 3.6V 3.0V VCC TPPLS TxCLK IN TxOUT_, TxCLK OUT VOD = 0 HIGH-Z DIFFERENTIAL 0 Figure 9. PLL Set Time PWRDWN 0.8V TxCLK IN TPDD TxOUT_, TxCLK OUT HIGH-Z Figure 10. Power-Down Delay TxCLK OUT+ TxCLK OUTCYCLE N - 1 DCA2 CYCLE N CYCLE N + 1 DCB2 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14 DCA2 DCB2 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14 DCB1 TxIN13 TxIN12 TxIN11 TxIN10 TxIN9 TxIN8 TxIN7 DCA1 DCB1 TxIN13 TxIN12 TxIN11 TxIN10 TxIN9 TxIN8 TxIN7 DCB0 TxIN6 TxIN5 TxIN4 TxIN3 TxIN2 TxIN1 TxIN0 DCA0 DCB0 TxIN6 TxIN5 TxIN4 TxIN3 TxIN2 TxIN1 TxIN0 TxOUT2 DCA1 TxOUT1 DCA0 TxOUT0 Figure 11. DC-Balanced Mode Inputs Mapped to LVDS Outputs data channels is 10. At most, 10 more zeros than ones, or 10 more ones than zeros, are transmitted. The maximum DSV for the clock channel is 5. Limiting the DSV and choosing the correct coupling capacitors maintain differential signal amplitude and reduce jitter due to droop on AC-coupled links. To obtain DC balance on the data channels, the parallel input data is inverted or not inverted, depending on the sign of the digital sum at the word boundary. Two complementary bits are appended to each group of 7 parallel input data bits to indicate to the MAX9210/MAX9212/ MAX9214/MAX9216 deserializers whether the data bits are inverted (Figure 11). The deserializer restores the original state of the parallel data. The LVDS clock signal alternates duty cycles of 4/9 and 5/9, which maintains DC balance. Figure 12 shows the non-DC-balanced mode inputs mapped to LVDS outputs. AC-Coupling Benefits Bit errors experienced with DC-coupling can be eliminated by increasing the receiver common-mode voltage range by AC-coupling. AC-coupling increases the ______________________________________________________________________________________ 11 MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers TxCLK OUT+ TxCLK OUTCYCLE N - 1 TxIN15 CYCLE N CYCLE N + 1 TxIN14 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14 TxIN7 TxIN13 TxIN12 TxIN11 TxIN10 TxIN9 TxIN8 TxIN7 TxIN13 TxIN12 TxIN11 TxIN10 TxIN9 TxIN8 TxIN7 TxIN0 TxIN6 TxIN5 TxIN4 TxIN3 TxIN2 TxIN1 TxIN0 TxIN6 TxIN5 TxIN4 TxIN3 TxIN2 TxIN1 TxIN0 TxOUT2 TxIN8 TxOUT1 TxIN1 TxOUT0 Figure 12. Non-DC-Balanced Mode Inputs Mapped to LVDS Outputs MAX9209 MAX9211 MAX9213 MAX9215 MAX9210 MAX9212 MAX9214 MAX9216 TRANSMISSION LINE TxOUT 7 RxIN 7 7:1 RO RT = 100Ω 1:7 7:1 RO RT = 100Ω 1:7 7:1 RO RT = 100Ω 1:7 PLL RO RT = 100Ω PLL 7 7 TxIN 7 PWRDWN TxCLK IN TxCLK OUT 21:3 SERIALIZER RxOUT 7 PWRDWN RxCLK OUT RxCLK IN 3:21 DESERIALIZER Figure 13. DC-Coupled Link, Non-DC-Balanced Mode common-mode voltage range of an LVDS receiver to nearly the voltage rating of the capacitor. The typical LVDS driver output is 350mV centered on an offset voltage of 1.25V, making single-ended output voltages of 1.425V and 1.075V. An LVDS receiver accepts signals 12 from 0V to 2.4V, allowing approximately ±1V commonmode difference between the driver and receiver on a DC-coupled link (2.4V - 1.425V = 0.975V and 1.075V 0V = 1.075V). Figure 13 shows the DC-coupled link, non-DC-balanced mode. ______________________________________________________________________________________ Programmable DC-Balanced 21-Bit Serializers HIGH-FREQUENCY CERAMIC SURFACE-MOUNT CAPACITORS CAN ALSO BE PLACED AT SERIALIZER INSTEAD OF DESERIALIZER. TxOUT RxIN 7 7 (7 + 2):1 RO RT = 100Ω 1:(9 - 2) (7 + 2):1 RO RT = 100Ω 1:(9 - 2) (7 + 2):1 RO RT = 100Ω 1:(9 - 2) PLL RO RT = 100Ω PLL 7 TxIN MAX9210 MAX9212 MAX9214 MAX9216 7 PWRDWN TxCLK IN TxCLK OUT 7 RxOUT 7 PWRDWN RxCLK OUT RxCLK IN 21:3 SERIALIZER 3:21 DESERIALIZER Figure 14. Two Capacitors per Link, AC-Coupled, DC-Balanced Mode Common-mode voltage differences may be due to ground potential variation or common-mode noise. If there is more than ±1V of difference, the receiver is not guaranteed to read the input signal correctly and may cause bit errors. AC-coupling filters low-frequency ground shifts and common-mode noise and passes high-frequency data. A common-mode voltage difference up to the voltage rating of the coupling capacitor (minus half the differential swing) is tolerated. DC-balanced coding of the data is required to maintain the differential signal amplitude and limit jitter on an AC-coupled link. A capacitor in series with each output of the LVDS driver is sufficient for AC-coupling. However, two capacitors—one at the serializer output and one at the deserializer input—provide protection in case either end of the cable is shorted to a high voltage. 5V Tolerant Inputs All signal and control inputs except DCB/NC are 5V tolerant and are internally pulled down to GND. The DCB/NC pin has a pulldown on MAX9211/MAX9215 and a pullup on the MAX9209/MAX9213. DCB/NC Pin Default Conditions The MAX9209/MAX9211/MAX9213/MAX9215 have programmable DC balance/non-DC balance. See Table 1 for DCB/NC default settings and operating modes. ______________________________________________________________________________________ 13 MAX9209/MAX9211/MAX9213/MAX9215 MAX9209 MAX9211 MAX9213 MAX9215 MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers MAX9209 MAX9211 MAX9213 MAX9215 MAX9210 MAX9212 MAX9214 MAX9216 HIGH-FREQUENCY CERAMIC SURFACE-MOUNT CAPACITORS TxOUT RxIN 7 RO RT = 100Ω 1:(9 - 2) (7 + 2):1 RO RT = 100Ω 1:(9 - 2) (7 + 2):1 RO RT = 100Ω 1:(9 - 2) PLL RO RT = 100Ω PLL 7 TxIN 7 (7 + 2):1 7 PWRDWN TxCLK IN TxCLK OUT 7 RxOUT 7 PWRDWN RxCLK OUT RxCLK IN 21:3 SERIALIZER 3:21 DESERIALIZER Figure 15. Four Capacitors per Link, AC-Coupled, DC-Balanced Mode Applications Information Selection of AC-Coupling Capacitors Voltage droop and the DSV of transmitted symbols cause signal transitions to start from different voltage levels. Because the transition time is finite, starting the signal transition from different voltage levels causes timing jitter. The time constant for an AC-coupled link needs to be chosen to reduce droop and jitter to an acceptable level. The RC network for an AC-coupled link consists of the LVDS receiver termination resistor (RT), the LVDS driver output resistor (RO), and the series AC-coupling capacitors (C). The RC time constant for two equal-value series capacitors is (C x (RT + RO)) / 2 (Figure 14). The RC time constant for four equal-value series capacitors is (C x (RT + RO)) / 4 (Figure 15). 14 RT is required to match the transmission line impedance (usually 100Ω) and RO is determined by the LVDS driver design, with a minimum value of 78Ω (see the DC Electrical Characteristics table). This leaves the capacitor selection to change the system time constant. In the following example, the capacitor value for a droop of 2% is calculated. Jitter due to this droop is then calculated assuming a 1ns transition time: C = -(2 x tB x DSV) / (ln (1 - D) x (RT + RO)) (Eq 1) where: C = AC-coupling capacitor (F) tB = bit time (s) DSV = digital sum variation (integer) ln = natural log D = droop (% of signal amplitude) RT = termination resistor (Ω) ______________________________________________________________________________________ Programmable DC-Balanced 21-Bit Serializers lock to the input clock and switches in the output termination resistors. The LVDS outputs are not driven until the PLL locks. The differential output resistance pulls the outputs together and the LVDS outputs are high impedance to ground. If the power supply is turned off, the output resistors are switched out and the LVDS outputs are high impedance. C = -(2 x tB x DSV) / (ln (1 - D) x (RT + RO)) C = -(2 x 13.9ns x 10) / (ln (1 - .02) x (100Ω + 78Ω)) C = 0.0773µF Jitter due to droop is proportional to the droop and transition time: The PLL lock time is set by an internal counter. The maximum time to lock is 32,800 clock periods. Power and clock should be stable to meet the lock-time specification. When the PLL is locking, the LVDS outputs are not active and have a differential output resistance of RO. tJ = tT x D (Eq 2) where: tJ = jitter (s) tT = transition time (s) (0% to 100%) D = droop (% of signal amplitude) Jitter due to 2% droop and assumed 1ns transition time is: tJ = 1ns x 0.02 tJ = 20ps There are separate power domains for LVDS, PLL, and digital circuits. Bypass each LVDS VCC, PLL VCC, and VCC pin with high-frequency surface-mount ceramic 0.1µF and 0.001µF capacitors in parallel as close to the device as possible, with the smallest value capacitor closest to the supply pin. The transition time in a real system depends on the frequency response of the cable driven by the serializer. The capacitor value decreases for a higher frequency parallel clock and for higher levels of droop and jitter. Use high-frequency, surface-mount ceramic capacitors. Equation 1 altered for four series capacitors (Figure 15) is: C = -(4 x tB x DSV) / (ln (1 - D) x (RT + RO)) (Eq 3) Integrated Termination The MAX9209/MAX9211/MAX9213/MAX9215 have an integrated output termination resistor across each of the four LVDS outputs. These resistors damp reflections from induced noise and mismatches between the transmission line impedance and termination resistor at the deserializer input. In DC-balanced mode, the differential output resistance is part of the RC time constant. In non-DC-balanced mode, the output termination is increased to 410Ω (typ) to reduce power. In powerdown mode (PWRDWN = low) or when the power supply is off, the output resistor is switched out and the LVDS outputs are high impedance. PLL Lock Time Power-Supply Bypassing LVDS Outputs The LVDS outputs are current sources. The voltage swing is proportional to the load impedance. The outputs are rated for a differential load of 100Ω ±1%. Cables and Connectors Interconnect for LVDS typically has a differential impedance of 100Ω. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities. Twisted-pair and shielded twisted-pair cables offer superior signal quality compared to ribbon cable and tend to generate less EMI due to magnetic field canceling effects. Balanced cables pick up noise as common mode, which is rejected by the LVDS receiver. Board Layout Keep the LVTTL/LVCMOS input and LVDS output signals separated to prevent crosstalk. A four-layer PCB with separate layers for power, ground, LVDS outputs, and digital signals is recommended. PWRDWN and Power-Off Driving PWRDWN low stops the PLL, switches out the integrated output termination resistors, puts the LVDS outputs in high impedance, and reduces supply current to 50µA or less. Driving PWRDWN high starts the PLL ______________________________________________________________________________________ 15 MAX9209/MAX9211/MAX9213/MAX9215 RO = output resistance (Ω) Equation 1 is for two series capacitors (Figure 14). The bit time (tB) is the period of the parallel clock divided by 9. The DSV is 10. See equation 3 for four series capacitors (Figure 15). The capacitor for 2% maximum droop at 8MHz parallel rate clock is: MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers ESD Protection The MAX9209/MAX9211/MAX9213/MAX9215 ESD tolerance is rated for IEC 61000-4-2, Human Body Model and ISO 10605 standards. IEC 61000-4-2 and ISO 10605 specify ESD tolerance for electronic systems. The IEC 61000-4-2 discharge components are CS = 150pF and RD = 330Ω (Figure 16). For IEC 61000-4-2, the LVDS outputs are rated for ±8kV contact and ±15kV 50Ω TO 100Ω CHARGE-CURRENTLIMIT RESISTOR HIGHVOLTAGE DC SOURCE CS 150pF RD 330Ω 1MΩ DISCHARGE RESISTANCE STORAGE CAPACITOR CHARGE-CURRENTLIMIT RESISTOR DEVICE UNDER TEST Figure 16. IEC 61000-4-2 Contact Discharge ESD Test Circuit 50Ω TO 100Ω CHARGE-CURRENTLIMIT RESISTOR HIGHVOLTAGE DC SOURCE CS 330pF air discharge. The Human Body Model discharge components are CS = 100pF and RD = 1.5kΩ (Figure 17). For the Human Body Model, all pins are rated for ±2kV contact discharge. The ISO 10605 discharge components are CS = 330pF and RD = 2kΩ (Figure 18). For ISO 10605, the LVDS outputs are rated for ±8kV contact and ±25kV air discharge. HIGHVOLTAGE DC SOURCE CS 100pF RD 1.5kΩ DISCHARGE RESISTANCE STORAGE CAPACITOR Figure 17. Human Body ESD Test Circuit RD 2kΩ DISCHARGE RESISTANCE STORAGE CAPACITOR DEVICE UNDER TEST Figure 18. ISO 10605 Contact Discharge ESD Test Circuit 16 ______________________________________________________________________________________ DEVICE UNDER TEST Programmable DC-Balanced 21-Bit Serializers LVDS VCC TxIN12 13 36 LVDS GND VCC 14 35 TxOUT2- TxIN13 15 34 TxOUT2+ TxIN14 16 33 TxCLK OUT- GND 17 32 TxCLK OUT+ TxIN15 18 31 LVDS GND TxIN16 19 30 PLL GND TxIN17 20 29 PLL VCC 21 28 PLL GND TxIN18 22 27 PWRDWN TxIN19 23 26 TxCLK IN GND 24 25 TxIN20 VCC TxIN1 TxIN0 DCB/NC 37 38 39 36 2 35 3 34 4 33 5 32 TxIN12 VCC 7 TxIN13 TxIN14 GND 9 10 TxIN15 12 6 31 MAX9209 MAX9211 MAX9213 MAX9215 8 30 29 28 27 11 26 EXPOSED PAD 25 LVDS GND TxOUT0TxOUT0+ TxOUT1TxOUT1+ LVDS VCC LVDS GND TxOUT2TxOUT2+ TxCLK OUTTxCLK OUT+ LVDS GND 24 37 1 23 TxIN11 12 40 TxOUT1+ TxIN8 VCC TxIN9 TxIN10 GND TxIN11 22 38 GND 11 41 TxOUT1- 21 TxOUT0+ 39 MAX9209 MAX9211 MAX9213 MAX9215 20 40 TxIN9 9 TxIN10 10 TxCLK IN PWRDN PLL GND PLL VCC PLL GND TxOUT0- TxIN4 TxIN3 TxIN2 GND 41 42 VCC 8 43 LVDS GND 19 DCB/NC 42 18 43 TxIN8 7 TxIN5 VCC TxIN7 6 44 TxIN0 45 44 17 GND 5 46 TxIN1 16 GND 45 15 46 TxIN6 4 TxIN7 TxIN5 3 GND TxIN6 TxIN2 47 47 14 VCC 2 13 TxIN3 TxIN17 VCC TxIN18 TxIN19 GND TxIN20 48 TxIN16 TxIN4 1 48 TOP VIEW Thin QFN TSSOP Chip Information MAX9209 TRANSISTOR COUNT: 9458 MAX9211 TRANSISTOR COUNT: 9458 MAX9213 TRANSISTOR COUNT: 9458 MAX9215 TRANSISTOR COUNT: 9458 PROCESS: CMOS ______________________________________________________________________________________ 17 MAX9209/MAX9211/MAX9213/MAX9215 Pin Configurations Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) 48L TSSOP.EPS MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers N MARKING AAA A E H 1 2 3 TOP VIEW BOTTOM VIEW SEE DETAIL A b A1 A2 A CL e D c END VIEW SEATING PLANE SIDE VIEW ( b ) PARTING LINE 0.25 L b1 WITH PLATING DETAIL A NOTES: 1. DIMENSIONS D & E ARE REFERENCE DATUMS AND DO NOT INCLUDE MOLD FLASH. 2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15MM ON D SIDE, AND 0.25MM ON E SIDE. 3. CONTROLLING DIMENSION: MILLIMETERS. 4. THIS PART IS COMPLIANT WITH JEDEC SPECIFICATION MO-153, VARIATIONS, ED (48L), EE (56L). 5. "N" REFERS TO NUMBER OF LEADS. 6. THE LEAD TIPS MUST LIE WITHIN A SPECIFIED ZONE. THIS TOLERANCE ZONE IS DEFINED BY TWO PARALLEL PLANES. ONE PLANE IS THE SEATING PLANE, DATUM (-C-), THE OTHER PLANE IS AT THE SPECIFIED DISTANCE FROM (-C-) IN THE DIRECTION INDICATED. 7. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. 8. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY. c1 BASE METAL SECTION C-C PACKAGE OUTLINE, 48 & 56L TSSOP, 6.1mm BODY 21-0155 18 c ______________________________________________________________________________________ C 1 1 Programmable DC-Balanced 21-Bit Serializers DETAIL A 32, 44, 48L QFN.EPS E (NE-1) X e E/2 k e D/2 C L (ND-1) X e D D2 D2/2 b L E2/2 C L k E2 C L C L L L e A1 A2 e A PACKAGE OUTLINE 32, 44, 48, 56L THIN QFN, 7x7x0.8mm 21-0144 F 1 2 ______________________________________________________________________________________ 19 MAX9209/MAX9211/MAX9213/MAX9215 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) MAX9209/MAX9211/MAX9213/MAX9215 Programmable DC-Balanced 21-Bit Serializers Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) PACKAGE OUTLINE 32, 44, 48, 56L THIN QFN, 7x7x0.8mm 21-0144 F 2 2 ___________________Revision History Pages changed at Rev 3: 1–5, 9, 14, 15, 18, 19, 20 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.