FUJITSU SEMICONDUCTOR DATA SHEET DS04-27248-1E ASSP for Power Supply Applications (Secondary battery) DC/DC Converter IC for Charging Li-ion Battery MB39A125/126 ■ DESCRIPTION MB39A125/126 is a DC/DC converter IC for charging Li-ion battery, which is suitable for down-conversion, and uses pulse width modulation (PWM) for controlling the output voltage and current independently. This IC integrates the build-in comparator for the voltage detection of the AC adapter, and selects the AC adapter or battery automatically for power supply to the system. Provides a wide range of power supply voltage, low standby current, and high efficiency, which makes them ideal as a built-in charging device in products such as notebook PC. ■ FEATURES • • • • High efficiency : 97% (MAX) Built-in two constant current control circuits Analog control of the charging current value (+INE1, +INE2 terminal) Built-in AC adapter voltage detection function (ACOK, XACOK terminal) (Continued) ■ PACKAGES 24-pin plastic SSOP 28-pin plastic QFN (FPT-24P-M03) (LCC-28P-M11) MB39A125/126 (Continued) • External output voltage setting resistor : MB39A125 • Built-in output voltage setting resistor : MB39A126 • Built-in charge stop function at low VCC • Output voltage setting accuracy : ± 0.74% (Ta = −10 °C to +85 °C) : MB39A125 : 12.6 V/16.8 V ± 0.8% (Ta = −10 °C to +85 °C) : MB39A126 • Built-in high accuracy current detection amplifier (±5%) (At input voltage difference 100 mV) , (±15%) (At input voltage difference 20 mV) • In IC standby mode (Icc = 0 µA Typ) , make output voltage setting resistor open to prevent inefficient current loss • Built-in soft-start circuit • Standby current : 0 µA (Typ) • Totem-pole type output for Pch MOS FET 2 MB39A125/126 ■ PIN ASSIGNMENTS • MB39A125 (TOP VIEW) −INC2 1 24 +INC2 OUTC2 2 23 GND +INE2 3 22 CS −INE2 4 21 VCC ACOK 5 20 OUT VREF 6 19 VH ACIN 7 18 XACOK −INE1 8 17 RT +INE1 9 16 −INE3 OUTC1 10 15 FB123 OUTD 11 14 CTL −INC1 12 13 +INC1 (FPT-24P-M03) (Continued) 3 MB39A125/126 (Continued) CS VCC OUT VH XACOK RT −INE3 (TOP VIEW) 28 27 26 25 24 23 22 CTL +INC2 3 19 +INC1 N.C. 4 18 N.C. −INC2 5 17 −INC1 OUTC2 6 16 OUTD +INE2 7 15 N.C. 8 9 10 11 12 13 14 OUTC1 20 +INE1 2 −INE1 GND ACIN FB123 VREF 21 ACOK 1 −INE2 N.C. (LCC-28P-M11) Note : Connect IC’s radiation board at bottom side to potential of GND. 4 MB39A125/126 • MB39A126 (TOP VIEW) −INC2 1 24 +INC2 OUTC2 2 23 GND +INE2 3 22 CS −INE2 4 21 VCC ACOK 5 20 OUT VREF 6 19 VH ACIN 7 18 XACOK −INE1 8 17 RT +INE1 9 16 −INE3 OUTC1 10 15 FB123 SEL 11 14 CTL −INC1 12 13 +INC1 (FPT-24P-M03) (Continued) 5 MB39A125/126 (Continued) CS VCC OUT VH XACOK RT −INE3 (TOP VIEW) 28 27 26 25 24 23 22 CTL +INC2 3 19 +INC1 N.C. 4 18 N.C. −INC2 5 17 −INC1 OUTC2 6 16 SEL +INE2 7 15 N.C. 8 9 10 11 12 13 14 OUTC1 20 +INE1 2 −INE1 GND ACIN FB123 VREF 21 ACOK 1 −INE2 N.C. (LCC-28P-M11) Note : Connect IC’s radiation board at bottom side to potential of GND. 6 MB39A125/126 ■ PIN DESCRIPTIONS • MB39A125 : SSOP-24 Pin No. Pin Name I/O Description 1 −INC2 I Current detection amplifier (Current Amp2) inverted input terminal 2 OUTC2 O Current detection amplifier (Current Amp2) output terminal 3 +INE2 I Error amplifier (Error Amp2) non-inverted input terminal 4 −INE2 I Error amplifier (Error Amp2) inverted input terminal 5 ACOK O AC adapter voltage detection block (AC Comp.) output terminal ACOK = L when ACIN = H, ACOK = Hi-Z when ACIN = L, ACOK = Hi-Z when CTL = L 6 VREF O Reference voltage output terminal 7 ACIN I AC adapter voltage detection block (AC Comp.) input terminal 8 −INE1 I Error amplifier (Error Amp1) inverted input terminal 9 +INE1 I Error amplifier (Error Amp1) non-inverted input terminal 10 OUTC1 O Current detection amplifier (Current Amp1) output terminal 11 OUTD O When IC is standby mode, this terminal is set to “Hi-Z” to prevent loss of inefficient current through the output voltage setting resistor. Set CTL terminal to “H” level to output “L” level. 12 −INC1 I Current detection amplifier (Current Amp1) inverted input terminal 13 +INC1 I Current detection amplifier (Current Amp1) non-inverted input terminal 14 CTL I Power supply control terminal Setting the CTL terminal at “L” level places the IC in the standby mode. 15 FB123 O Error amplifier (Error Amp1, 2, 3) output terminal 16 −INE3 I Error amplifier (Error Amp3) inverted input terminal 17 RT ⎯ Triangular wave oscillation frequency setting resistor connection terminal 18 XACOK O AC adapter voltage detection block ( AC Comp.) output terminal XACOK = Hi-Z when ACIN = H, XACOK = L when ACIN = L, XACOK = Hi-Z when CTL = L 19 VH O Power supply terminal for FET drive circuit (VH = VCC − 6 V) 20 OUT O External FET gate drive terminal 21 VCC ⎯ Power supply terminal for reference voltage, control circuit, and output circuit 22 CS ⎯ Soft-start setting capacitor connection terminal 23 GND ⎯ Ground terminal 24 +INC2 I Current detection amplifier (Current Amp2) non-inverted input terminal 7 MB39A125/126 • MB39A125 : QFN-28 Pin No. Pin Name 8 I/O Description 1 N.C. ⎯ No connection 2 GND ⎯ Ground terminal 3 +INC2 I 4 N.C. ⎯ 5 −INC2 I Current detection amplifier (Current Amp2) inverted input terminal 6 OUTC2 O Current detection amplifier (Current Amp2) output terminal 7 +INE2 I Error amplifier (Error Amp2) non-inverted input terminal 8 −INE2 I Error amplifier (Error Amp2) inverted input terminal 9 ACOK O AC adapter voltage detection block (AC Comp.) output terminal ACOK = L when ACIN = H, ACOK = Hi-Z when ACIN = L, ACOK = Hi-Z when CTL = L 10 VREF O Reference voltage output terminal 11 ACIN I AC adapter voltage detection block (AC Comp.) input terminal 12 −INE1 I Error amplifier (Error Amp1) inverted input terminal 13 +INE1 I Error amplifier (Error Amp1) non-inverted input terminal 14 OUTC1 O Current detection amplifier (Current Amp1) output terminal 15 N.C. ⎯ No connection 16 OUTD O When IC is standby mode, this terminal is set to “Hi-Z” to prevent loss of inefficient current through the output voltage setting resistor. Set CTL terminal to “H” level to output “L” level. 17 −INC1 I Current detection amplifier (Current Amp1) inverted input terminal 18 N.C. ⎯ 19 +INC1 I Current detection amplifier (Current Amp1) non-inverted input terminal 20 CTL I Power supply control terminal Setting the CTL terminal at “L” level places the IC in the standby mode. 21 FB123 O Error amplifier (Error Amp1, 2, 3) output terminal 22 −INE3 I Error amplifier (Error Amp3) inverted input terminal 23 RT ⎯ Triangular wave oscillation frequency setting resistor connection terminal 24 XACOK O AC adapter voltage detection block ( AC Comp.) output terminal XACOK = Hi-Z when ACIN = H, XACOK = L when ACIN = L, XACOK = Hi-Z when CTL = L 25 VH O Power supply terminal for FET drive circuit (VH = VCC - 6 V) 26 OUT O External FET gate drive terminal 27 VCC ⎯ Power supply terminal for reference voltage, control circuit, and output circuit 28 CS ⎯ Soft-start setting capacitor connection terminal Current detection amplifier (Current Amp2) non-inverted input terminal No connection No connection MB39A125/126 • MB39A126 : SSOP-24 Pin No. Pin Name I/O Description 1 −INC2 I Current detection amplifier (Current Amp2) inverted input terminal 2 OUTC2 O Current detection amplifier (Current Amp2) output terminal 3 +INE2 I Error amplifier (Error Amp2) non-inverted input terminal 4 −INE2 I Error amplifier (Error Amp2) inverted input terminal 5 ACOK O AC adapter voltage detection block (AC Comp.) output terminal ACOK = L when ACIN = H, ACOK = Hi-Z when ACIN = L, ACOK = Hi-Z when CTL = L 6 VREF O Reference voltage output terminal 7 ACIN I AC adapter voltage detection block (AC Comp.) input terminal 8 −INE1 I Error amplifier (Error Amp1) inverted input terminal 9 +INE1 I Error amplifier (Error Amp1) non-inverted input terminal 10 OUTC1 O Current detection amplifier (Current Amp1) output terminal 11 SEL I Charge voltage setting switch terminal (3cells or 4cells) SEL terminal “H” level : Charge voltage setting 16.8 V (4cells) SEL terminal “L” level : Charge voltage setting 12.6 V (3cells) 12 −INC1 I Current detection amplifier (Current Amp1) inverted input terminal 13 +INC1 I Current detection amplifier (Current Amp1) non-inverted input terminal 14 CTL I Power supply control terminal Setting the CTL terminal at “L” level places the IC in the standby mode. 15 FB123 O Error amplifier (Error Amp1, 2, 3) output terminal 16 −INE3 I Error amplifier (Error Amp3) inverted input terminal 17 RT ⎯ Triangular wave oscillation frequency setting resistor connection terminal 18 XACOK O AC adapter voltage detection block ( AC Comp.) output terminal XACOK = Hi-Z when ACIN = H, XACOK = L when ACIN = L, XACOK = Hi-Z when CTL = L 19 VH O Power supply terminal for FET drive circuit (VH = VCC - 6 V) 20 OUT O External FET gate drive terminal 21 VCC ⎯ Power supply terminal for reference voltage, control circuit, and output circuit 22 CS ⎯ Soft-start setting capacitor connection terminal 23 GND ⎯ Ground terminal 24 +INC2 I Current detection amplifier (Current Amp2) non-inverted input terminal 9 MB39A125/126 • MB39A126 : QFN-28 Pin No. Pin Name 10 I/O Description 1 N.C. ⎯ No connection 2 GND ⎯ Ground terminal 3 +INC2 I 4 N.C. ⎯ 5 −INC2 I Current detection amplifier (Current Amp2) inverted input terminal 6 OUTC2 O Current detection amplifier (Current Amp2) output terminal 7 +INE2 I Error amplifier (Error Amp2) non-inverted input terminal 8 −INE2 I Error amplifier (Error Amp2) inverted input terminal 9 ACOK O AC adapter voltage detection block (AC Comp.) output terminal ACOK = L when ACIN = H, ACOK = Hi-Z when ACIN = L, ACOK = Hi-Z when CTL = L 10 VREF O Reference voltage output terminal 11 ACIN I AC adapter voltage detection block (AC Comp.) input terminal 12 −INE1 I Error amplifier (Error Amp1) inverted input terminal 13 +INE1 I Error amplifier (Error Amp1) non-inverted input terminal 14 OUTC1 O Current detection amplifier (Current Amp1) output terminal 15 N.C. ⎯ No connection 16 SEL I Charge voltage setting switch terminal (3cells or 4cells) . SEL terminal “H” level : Charge voltage setting 16.8 V (4cells) SEL terminal “L” level : Charge voltage setting 12.6 V (3cells) 17 −INC1 I Current detection amplifier (Current Amp1) inverted input terminal 18 N.C. ⎯ 19 +INC1 I Current detection amplifier (Current Amp1) non-inverted input terminal 20 CTL I Power supply control terminal Setting the CTL terminal at “L” level places the IC in the standby mode. 21 FB123 O Error amplifier (Error Amp1, 2, 3) output terminal 22 −INE3 I Error amplifier (Error Amp3) inverted input terminal 23 RT ⎯ Triangular wave oscillation frequency setting resistor connection terminal 24 XACOK O AC adapter voltage detection block ( AC Comp.) output terminal XACOK = Hi-Z when ACIN = H, XACOK = L when ACIN = L, XACOK = Hi-Z when CTL = L 25 VH O Power supply terminal for FET drive circuit (VH = VCC - 6 V) 26 OUT O External FET gate drive terminal 27 VCC ⎯ Power supply terminal for reference voltage, control circuit, and output circuit 28 CS ⎯ Soft-start setting capacitor connection terminal Current detection amplifier (Current Amp2) non-inverted input terminal No connection No connection MB39A125/126 ■ BLOCK DIAGRAMS • MB39A125 ACIN ACOK XACOK 7 5 18 <AC Comp.> + −INE1 8 − 1.4 V OUTC1 10 +INC1 13 −INC1 12 VREF <Current Amp1> + ×20 − <Error Amp1> − 0.2 V <UV Comp.> + + +INE1 9 −INE2 4 − −INC1 (Vo) 21 VCC <PWM Comp.> + OUTC2 2 +INC2 24 −INC2 1 +INE2 3 FB123 15 <Current Amp2> − <Error Amp2> − + ×20 − <OUT> Drive 20 OUT + −2.5 V −1.5 V (VCC − 6 V) 19 VH VH Bias Voltage <Error Amp3> −INE3 16 − OUTD 11 + 4.2 V <UVLO> VREF UVLO VREF 4.2 V Bias < SOFT> 10 µA Slope Control <OSC> 500 kHz Max CS <REF> VCC <CTL> 14 CTL 22 VREF 5.0 V CT (45 pF) 17 6 23 RT VREF GND 11 MB39A125/126 • MB39A126 ACIN ACOK XACOK 7 5 18 <AC Comp.> + −INE1 8 − 1.4 V OUTC1 10 +INC1 13 −INC1 12 VREF <Current Amp1> + ×20 − <Error Amp1> − 0.2 V <UV Comp.> + + +INE1 9 −INE2 4 − −INC1 (Vo) 21 VCC <PWM Comp.> + OUTC2 2 +INC2 24 −INC2 1 +INE2 3 FB123 15 <Current Amp2> − <Error Amp2> − + ×20 − <OUT> Drive 20 OUT + −2.5 V −1.5 V (VCC − 6 V) 19 VH VH −INE3 Bias Voltage <Error Amp3> R1 − 16 R2 + 4.2 V/3.15 V <UVLO> VREF UVLO SEL 11 Hi : 4 Cells Lo : 3 Cells VREF 4.2 V Bias < SOFT> 10 µA Slope Control <OSC> 500 kHz Max CS <REF> <CTL> 22 VREF 5.0 V CT (45 pF) 12 VCC 17 6 23 RT VREF GND 14 CTL MB39A125/126 ■ ABSOLUTE MAXIMUM RATINGS Parameter Symbol Condition Power supply voltage VCC Output current Peak output current Power dissipation Storage temperature Rating Unit Min Max VCC terminal ⎯ 28 V IOUT ⎯ ⎯ 60 mA IOUT Duty ≤ 5% (t = 1 / fosc × Duty) ⎯ 700 Ta ≤ +25 °C (SSOP-24) ⎯ Ta ≤ +25 °C (QFN-28) ⎯ 3700* ⎯ −55 +125 PD TSTG mA 1 740* 2 mW mW °C *1 : When mounted on a 10cm square epoxy double-sided. *2 : The packages are mounted on the dual-sided epoxy board (10 cm × 10 cm) . Connect IC’s radiation board at bottom side to potential of GND. WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. 13 MB39A125/126 ■ RECOMMENDED OPERATION CONDITIONS Parameter Symbol Condition VCC terminal Value Unit MIN TYP MAX 8 ⎯ 25 V Power supply voltage VCC Reference voltage Output current IREF ⎯ −1 ⎯ 0 mA VH terminal output current IVH ⎯ 0 ⎯ 30 mA Input voltage VINE +INE, −INE terminal 0 ⎯ 5 V VINC +INC, −INC terminal 0 ⎯ VCC V CTL terminal input voltage VCTL ⎯ 0 ⎯ 25 V Output current IOUT ⎯ −45 ⎯ +45 mA Peak output current IOUT −600 ⎯ +600 mA ACIN terminal input Voltage VACIN ⎯ 0 ⎯ VCC V ACOK terminal output voltage VACOK ⎯ 0 ⎯ 25 V ACOK terminal output current IACOK ⎯ 0 ⎯ 1 mA XACOK terminal output voltage VXACOK ⎯ 0 ⎯ 25 V XACOK terminal output current IXACOK ⎯ 0 ⎯ 1 mA OUTD terminal output voltage : MB39A125 VOUTD ⎯ 0 ⎯ 17 V OUTD terminal output current : MB39A125 IOUTD ⎯ 0 ⎯ 2 mA SEL terminal input voltage : MB39A126 VSEL ⎯ 0 ⎯ 25 V Oscillation frequency fOSC ⎯ 100 300 500 kHz Timing resistor RT ⎯ 27 47 130 kΩ Soft-start capacitor CS ⎯ ⎯ 0.22 1.0 µF VH terminal capacitor CVH ⎯ ⎯ 0.1 1.0 µF Reference voltage output capacitor CREF ⎯ ⎯ 0.22 1.0 µF Ta ⎯ −30 +25 +85 °C Operating ambient Temperature Duty ≤ 5% (t = 1 / fosc × Duty) Note : The terminal number which has been described in the text is the one of the SSOP-24P package after this. WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 14 MB39A125/126 ■ ELECTRICAL CHARACTERISTICS (VCC = 19 V, VREF = 0 mA, Ta = +25 °C) Parameter 2. Under voltage lockout protection circuit block [UVLO] Pin No. VREF1 6 Ta = +25 °C VREF2 6 VREF1 Remarks 4.963 5.000 5.037 V MB39A125 Ta = −10 °C to +85 °C 4.95 5.05 V MB39A125 6 Ta = +25 °C 4.943 4.980 5.017 V MB39A126 VREF2 6 Ta = −10 °C to +85 °C 4.930 4.980 5.030 V MB39A126 Input stability Line 6 VCC = 8 V to 25 V ⎯ 3 10 mV Load stability Load 6 VREF = 0 mA to −1 mA ⎯ 1 10 mV Output current at short circuit Ios 6 VREF = 1 V −50 −25 −12 mA VTLH 6 VREF = 2.6 2.8 3.0 V VTHL 6 VREF = 2.4 2.6 2.8 V VH 6 ⎯ ⎯ 0.2* ⎯ V ICS 22 ⎯ −14 −10 −6 µA fOSC 20 RT = 47 kΩ 270 300 330 kHz ∆f/fdt 20 Ta = −30 °C to +85 °C ⎯ 1* ⎯ % ⎯ 1 5 mV Threshold voltage Hysteresis width 3. Charge Soft start block current [SOFT] Oscillation 4. frequency Triangular wave oscillator Frequency temperature block [OSC] stability Input offset voltage Input bias current VIO Condition Value Unit Output voltage 1. Reference voltage block [REF] Symbol 3, 4, FB123 = 2 V 8, 9 Min Typ 5.000 Max IB 3, 4, 8, 9 ⎯ −100 −30 ⎯ nA VCM 3, 4, 8, 9 ⎯ 0 ⎯ 5 V Av 15 DC ⎯ 100* ⎯ dB BW 15 AV = 0 dB ⎯ 1.3* ⎯ MHz VFBH 15 ⎯ 4.8 5.0 ⎯ V VFBL 15 ⎯ ⎯ 0.8 0.9 V Output source ISOURCE current 15 FB123 = 2 V ⎯ −120 −60 µA Output sink current 15 FB123 = 2 V 2.0 4.0 ⎯ mA Common mode input voltage range 5-1. Error amplifier Voltage gain block Frequency [Error Amp1, bandwidth Error Amp2] Output voltage ISINK * : Standard design value (Continued) 15 MB39A125/126 (VCC = 19 V, VREF = 0 mA, Ta = +25 °C) Symbol Pin No. Input current IINE 16 −INE3 = 0 V Voltage gain Av 15 Frequency bandwidth BW 15 VFBH 15 VFBL Parameter Remarks ⎯ nA MB39A125 100* ⎯ dB ⎯ 1.3* ⎯ MHz ⎯ 4.8 5.0 ⎯ V 15 ⎯ ⎯ 0.8 0.9 V ISOURCE 15 FB123 = 2 V ⎯ −120 −60 µA ISINK 15 FB123 = 2 V 2.0 4.0 ⎯ mA VTH1 16 FB123 = 2 V, Ta = +25 °C 4.179 4.200 4.220 V MB39A125 VTH2 16 FB123 = 2 V, Ta = −10 °C to +85 °C 4.169 4.200 4.231 V MB39A125 VTH3 12 SEL = 5 V, FB123 = 2 V, 16.700 16.800 16.900 Ta = +25 °C V MB39A126 VTH4 12 SEL = 5 V, FB123 = 2 V, 16.666 16.800 16.934 Ta = −10 °C to +85 °C V MB39A126 VTH5 12 SEL = 0 V, FB123 = 2 V, 12.525 12.600 12.675 Ta = +25 °C V MB39A126 VTH6 12 SEL = 0 V, FB123 = 2 V, 12.500 12.600 12.700 Ta = −10 °C to +85 °C V MB39A126 OUTD terminal output leak current ILEAK 11 OUTD = 17 V ⎯ 0 1 µA MB39A125 OUTD terminal output ON resistance RON 11 OUTD = 1 mA ⎯ 35 50 Ω MB39A125 IIN 12 −INC1 = 16.8 V ⎯ 84 150 µA MB39A126 R1 12, 16 ⎯ 105 150 195 kΩ MB39A126 R2 16 ⎯ 35 50 65 kΩ MB39A126 Output source current Output sink current 5-2. Error amplifier block [Error Amp3] Value Unit Output voltage Threshold voltage Input current Input resistance Condition Min Typ Max −100 −30 DC ⎯ AV = 0 dB * : Standard design value (Continued) 16 MB39A125/126 (VCC = 19 V, VREF = 0 mA, Ta = +25 °C) Parameter Symbol Input current Input offset voltage Input current 6. Current Detection Amplifier Block [Current Amp1, Current Amp2] Condition Value Unit Remarks 25 V MB39A126 ⎯ 0.8 V MB39A126 ⎯ 50 100 µA MB39A126 ⎯ 0 1 µA MB39A126 ⎯ +3 mV Min Typ Max 11 Error Amp3 reference voltage = 4.2 V (4-cell setting) 2 ⎯ VOFF 11 Error Amp3 reference voltage = 3.15 V (3-cell setting) 0 ISELH 11 SEL = 5 V ISELL 11 SEL = 0 V VON 5-2. SEL input Error voltage amplifier block [Error Amp3] Pin No. VIO +INC1 = +INC2 = 1, 12, −INC1 = −INC2 = 13, 24 3 V to VCC I+INCH +INC1 = +INC2 = 13, 24 3 V to VCC, ∆VIN = −100 mV ⎯ 20 30 µA 1, 12 +INC1 = +INC2 = 3 V to VCC, ∆VIN = −100 mV ⎯ 0.1 0.2 µA MB39A125 1 +INC1 = +INC2 = 3 V to VCC, ∆VIN = −100 mV ⎯ 0.1 0.2 µA MB39A126 I-INCH −3 I+INCL 13, 24 +INC1 = +INC2 = 0 V, ∆VIN = −100 mV −180 −120 ⎯ µA I-INCL 1, 12 +INC1 = +INC2 = 0 V, ∆VIN = −100 mV −195 −130 ⎯ µA VOUTC1 2, 10 +INC1 = +INC2 = 3 V to VCC, ∆VIN = −100 mV 1.9 2.0 2.1 V VOUTC2 2, 10 +INC1 = +INC2 = 3 V to VCC, ∆VIN = −20 mV 0.34 0.40 0.46 V VOUTC3 2, 10 +INC1 = +INC2 = 0 V, ∆VIN = −100 mV 1.8 2.0 2.2 V VOUTC4 2, 10 +INC1 = +INC2 = 0 V, ∆VIN = −20 mV 0.2 0.4 0.6 V Common mode input voltage range VCM 1, 12, 13, 24 ⎯ 0 ⎯ VCC V Voltage gain Av 2, 10 19 20 21 V/V Current detection voltage +INC1 = +INC2 = 3 V to VCC, ∆VIN = −100 mV (Continued) 17 MB39A125/126 (VCC = 19 V, VREF = 0 mA, Ta = +25 °C) Parameter 6. Current Detection Amplifier Block [Current Amp1, Current Amp2] 9. Low Input Voltage Detection Block [UV Comp.] 10. AC Adapter Voltage Detection Block [AC Comp.] Pin No. BW 2, 10 VOUTCH 2, 10 VOUTCL Condition Value Unit Min Typ Max ⎯ 2* ⎯ MHz ⎯ 4.7 4.9 ⎯ V 2, 10 ⎯ ⎯ 20 200 mV Output source cur- ISOURCE rent 2, 10 OUTC1 = OUTC2 = 2 V ⎯ −2 −1 mA Output sink current ISINK 2, 10 OUTC1 = OUTC2 = 2 V 150 300 ⎯ µA VTL 15 Duty cycle = 0% 1.4 1.5 ⎯ V VTH 15 Duty cycle = 100% ⎯ 2.5 2.6 V Output source cur- ISOURCE rent 20 OUT = 13 V, Duty ≤ 5% (t = 1 / fosc × Duty) ⎯ −400* ⎯ mA Output sink current ISINK 20 OUT = 19 V, Duty ≤ 5% (t = 1 / fosc × Duty) ⎯ 400* ⎯ mA Output ON resistance ROH 20 OUT = −45 mA ⎯ 6.5 9.8 Ω ROL 20 OUT = 45 mA ⎯ 5.0 7.5 Ω Rise time tr1 20 OUT = 3300 pF ⎯ 50* ⎯ ns Fall time tf1 20 OUT = 3300 pF ⎯ 50* ⎯ ns VTLH 21 VCC = , −INC1 = 16.8 V 17.2 17.4 17.6 V VTHL 21 VCC = , −INC1 = 16.8 V 16.8 17.0 17.2 V VH 21 ⎯ 0.4* ⎯ V VTLH 7 ACIN = 1.3 1.4 1.5 V VTHL 7 ACIN = 1.2 1.3 1.4 V VH 7 ⎯ 0.1* ⎯ V Frequency bandwidth Output voltage 7. PWM Comp. Threshold Block voltage [PWM Comp.] 8. Output block [OUT] Symbol Threshold voltage Hysteresis width Threshold voltage Hysteresis width AV = 0 dB ⎯ ⎯ Remarks * : Standard design value (Continued) 18 MB39A125/126 (Continued) (VCC = 19 V, VREF = 0 mA, Ta = +25 °C) Symbol Pin No. ACOK terminal output leak current ILEAK 5 ACOK terminal output ON resistance RON XACOK terminal output leak current XACOK terminal output ON resistance Parameter Condition Value Unit Min Typ Max ACOK = 25 V ⎯ 0 1 µA 5 ACOK = 1 mA ⎯ 200 400 Ω ILEAK 18 XACOK = 25 V ⎯ 0 1 µA RON 18 XACOK = 1 mA ⎯ 200 400 Ω VON 14 IC operation mode 2 ⎯ 25 V VOFF 14 IC standby mode 0 ⎯ 0.8 V ICTLH 14 CTL = 5 V ⎯ 100 150 µA ICTLL 14 CTL = 0 V ⎯ 0 1 µA 12. Bias Voltage Output Block Voltage [VH] VH 19 VCC = 8 V to 25 V, VH = 0 mA to 30 mA VCC − 6.5 VCC − 6.0 VCC − 5.5 V Standby current ICCS 21 CTL = 0 V ⎯ 0 10 µA Power supply current ICC 21 CTL = 5 V ⎯ 5 7.5 mA 10. AC Adapter Voltage Detection Block [AC Comp.] 11. Power Supply Control Block [CTL] 13. General CTL input voltage Input current Remarks * : Standard design value 19 MB39A125/126 ■ TYPICAL CHARACTERISTICS 6 1000 5 4 3 2 Ta = +25 °C CTL = 5 V 1 Ta = +25 °C VCC = 19 V VREF = 0 mA 900 800 600 5 10 15 20 4 3 300 ICTL 200 1 0 5 10 15 0 25 20 CTL terminal input voltage VCTL (V) Reference Voltage vs. Power Supply Voltage Reference Voltage vs. Load Current 6 Reference voltage VREF (V) 6 Reference voltage VREF (V) 2 100 Power supply voltage VCC (V) 5 4 3 2 Ta = +25 °C CTL = 5 V VREF = 0 mA 1 0 0 5 10 15 20 Ta = +25 °C VCC = 19 V CTL = 5 V 5 4 3 2 1 0 0 25 5 Power supply voltage VCC (V) 10 15 20 25 30 35 Load current IREF (mA) Reference Voltage vs. Operating Ambient Temperature Triangular Wave Oscillation Frequency vs. Power Supply Voltage 340 VCC = 19 V CTL = 5 V VREF = 0 mA 5.06 5.04 5.02 5.00 4.98 4.96 4.94 4.92 −40 −20 Triangular wave oscillation frequency fosc (kHz) 5.08 Reference voltage VREF (V) 5 400 25 8 6 VREF 500 0 0 9 7 700 0 10 Reference voltage VREF (V) CTL Terminal Input Current, Reference Voltage vs. CTL Terminal Input Voltage CTL terminal input current ICTL (µA) Power supply current Icc (mA) Power Supply Current vs. Power Supply Voltage Ta = +25 °C CTL = 5 V RT = 47 kΩ 330 320 310 300 290 280 270 260 0 20 40 60 80 Operating ambient temperature Ta ( °C) 100 0 5 10 15 20 25 Power Supply Voltage VCC (V) (Continued) 20 MB39A125/126 340 VCC = 19 V CTL = 5 V RT = 47 kΩ 330 320 310 300 290 280 270 260 −40 Triangular Wave Oscillation Frequency vs. Timing Resistor Triangular wave oscillation frequency fosc (kHz) Triangular wave oscillation frequency fosc (kHz) Triangular Wave Oscillation Frequency vs. Operating Ambient Temperature 1000 Ta = +25 °C VCC = 19 V CTL = 5 V 100 10 −20 0 20 40 60 80 100 10 100 4.28 Timing resistor RT (kΩ) VCC = 19 V CTL = 5 V VREF = 0 mA 4.26 4.24 4.22 4.20 4.18 4.16 4.14 4.12 −40 −20 0 20 40 60 80 100 Operating ambient temperature Ta ( °C) Error amplifier threshold voltage VTH (V) <MB39A126> Error Amplifier Threshold Voltage vs. Operating Ambient Temperature 16.90 VCC = 19 V CTL = 5 V SEL = 5 V 16.85 16.80 16.75 16.70 −40 −20 0 20 40 60 80 100 Operating ambient temperature Ta ( °C) Error amplifier threshold voltage VTH (V) Error amplifier threshold voltage VTH (V) Operating ambient temperature Ta ( °C) <MB39A125> Error Amplifier Threshold Voltage vs. Operating Ambient Temperature 1000 Error Amplifier Threshold Voltage vs. Operating Ambient Temperature 12.70 VCC = 19 V CTL = 5 V SEL = 0 V 12.65 12.60 12.55 12.50 −40 −20 0 20 40 60 80 100 Operating ambient temperature Ta ( °C) (Continued) 21 MB39A125/126 Error Amplifier, Gain, Phase vs. Frequency Vcc = 19 V Ta = +25 °C VCC = 19 V 180 40 4.2 V 10 kΩ 20 90 φ 10 Av 0 0 −10 −90 −20 Phase φ (deg) Gain Av (dB) 30 IN 1 µF + 240 kΩ 10 kΩ −INE1, 2 2.4 kΩ − 8 FB123 15 (4) + (3) +INE1, 2 OUT 9 10 kΩ 10 kΩ −30 Error Amp1 (Error Amp2) −180 −40 100 1k 10k 100k 1M 10M Frequency f (Hz) Error Amplifier, Gain, Phase vs. Frequency Ta = +25 °C VCC = 19 V 180 40 30 φ 10 Av 0 0 −10 −90 −20 −30 240 kΩ 10 kΩ 90 Phase φ (deg) Gain Av (dB) 20 IN 1µF + −INE3 16 − 2.4 kΩ FB123 15 + 10 kΩ 4.2 V OUT Error Amp3 −180 −40 100 1k 10k 100k 1M 10M Frequency f (Hz) Current Detection Amplifier, Gain, Phase vs. Frequency 40 30 0 0 φ −10 −20 −90 Phase φ (deg) 90 10 VCC = 19 V + 13 ×20 (24) −INC − 12 (1) Av 20 Gain Av (dB) +INC 180 OUTC 10 (2) OUT Current Amp1 (Current Amp2) 12.6 V 12.55 V −30 −40 100 −180 1k 10k 100k 1M 10M Frequency f (Hz) (Continued) 22 MB39A125/126 (Continued) Power Dissipation vs. Operating Ambient Temperature (QFN) 800 740 700 Power dissipation PD (mW) Power dissipation PD (mW) Power Dissipation vs. Operating Ambient Temperature (SSOP) 600 500 400 300 200 100 0 −40 −20 4000 3700 3500 3000 2500 2000 1500 1000 500 0 0 20 40 60 80 Operating ambient temperature Ta ( °C) 100 −40 −20 0 20 40 60 80 100 Operating ambient temperature Ta ( °C) 23 MB39A125/126 ■ FUNCTIONAL DESCRIPTION 1. DC/DC Converter Block (1) Reference voltage block (REF) The reference voltage circuit uses the voltage supplied from the VCC terminal (pin 21) to generate a temperature compensated, stable voltage (5.0 V Typ) used as the reference power supply voltage for the IC’s internal circuitry. This block can also be used to obtain a load current to a maximum of 1 mA from the reference voltage VREF terminal (pin 6) . (2) Triangular wave oscillator block (OSC) The triangular wave oscillator block has built-in capacitor for frequency setting into and generates the triangular wave oscillation waveform by connecting the frequency setting resistor with the RT terminal (pin 17) . The triangular wave is input to the PWM comparator circuits on the IC. (3) Error amplifier block (Error Amp1) This amplifier detects the output signal from the current detection amplifier (Current Amp1) , compares this to the +INE1 terminal (pin 9) , and outputs a PWM control signal to be used in controlling the charge current. In addition, an arbitrary loop gain can be set up by connecting a feedback resistor and capacitor between the FB123 terminal (pin 15) and −INE1 terminal (pin 8) , providing stable phase compensation to the system. (4) Error amplifier block (Error Amp2) This amplifier detects the output signal from the current detection amplifier (Current Amp2) , compares this to the +INE2 terminal (pin 3) , and outputs a PWM control signal to be used in controlling the charge current. In addition, an arbitrary loop gain can be set up by connecting a feedback resistor and capacitor between the FB123 terminal (pin 15) and −INE2 terminal (pin 4) , providing stable phase compensation to the system. (5) Error amplifier block (Error Amp3) This error amplifier (Error Amp3) detects the output voltage from the DC/DC converter and outputs the PWM control signal. MB39A125 can set the desired level of output voltage from 1 cell to 4 cells by connecting external output voltage setting resistors to the error amplifier inverted input terminal. MB39A126 can set the output voltage for 3 cells or 4 cells by SEL terminal (pin 11) input. In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB123 terminal (pin 15) to the −INE3 terminal (pin 16) , enabling stable phase compensation to the system. (6) Current detection amplifier block (Current Amp1) The current detection amplifier (Current Amp1) detects a voltage drop which occurs between both ends of the output sense resistor (RS2) due to the flow of the charge current, using the +INC1 terminal (pin 13) and −INC1 terminal (pin 12) . The signal amplified to 20 times is output to the OUTC1 terminal (pin 10) . 24 MB39A125/126 (7) Current detection amplifier block (Current Amp2) The current detection amplifier (Current Amp2) detects a voltage drop which occurs between both ends of the output sense resistor (RS1) due to the flow of the AC adapter current, using the +INC2 terminal (pin 24) and −INC2 terminal (pin 1) . The signal amplified to 20 times is output to the OUTC2 terminal (pin 2) . (8) PWM comparator block (PWM Comp.) The PWM comparator circuit is a voltage-pulse width converter for controlling the output duty of the error amplifiers (Error Amp1 to Error Amp3) depending on their output voltage. The PWM comparator circuit compares the triangular wave voltage the lowest generated by the triangular wave oscillator to the error amplifier output voltage and turns on the external output transistor, during the interval in which the triangular wave voltage is lower than the error amplifier output voltage. (9) Output block (OUT) The output circuit uses a totem-pole configuration capable of driving an external Pch MOS FET. The output “L” level sets the output amplitude to 6 V (Typ) using the voltage generated by the bias voltage block (VH) . This results in increasing conversion efficiency and suppressing the withstand voltage of the connected external transistor in a wide range of input voltages. (10) Power supply control block (CTL) Setting the CTL terminal (pin 14) low places the IC in the standby mode. (The power supply current is 10µA at maximum in the standby mode.) CTL function table : MB39A125 CTL Power OUTD L OFF (Standby) Hi-Z H ON (Active) L CTL function table : MB39A126 CTL Power L OFF (Standby) H ON (Active) (11) Bias voltage block (VH) The bias voltage circuit outputs VCC − 6 V (Typ) as the minimum potential of the output circuit. In the standby mode, this circuit outputs the potential equal to VCC. 25 MB39A125/126 2. Protection Functions (1) Under voltage lockout protection circuit block (UVLO) The transient state or a momentary decrease in power supply voltage or internal reference voltage (VREF) , which occurs when the power supply (VCC) is turned on, may cause malfunctions in the control IC, resulting in breakdown or deterioration of the system. To prevent such malfunction, the under voltage lockout protection circuit detects internal reference voltage drop and fixes the OUT terminal (pin 20) to the “H” level. The system restores voltage supply when the internal reference voltage reaches the threshold voltage of the under voltage lockout protection circuit. Protection circuit (UVLO) operation function table : MB39A125 When UVLO is operating (VREF voltage is lower than UVLO threshold voltage, the logic of the following terminal is fixed.) OUTD OUT CS ACOK XACOK Hi-Z H L H L Protection circuit (UVLO) operation function table : MB39A126 When UVLO is operating (VREF voltage is lower than UVLO threshold voltage, the logic of the following terminal is fixed.) OUT CS ACOK XACOK H L H L (2) Low input voltage detection block (UV Comp.) UV Comp. detects that power supply voltage (VCC) is lower than the battery voltage +0.2 V (Typ) and fixes the OUT terminal (pin 20) to the “H” level. The system restores voltage supply when the power supply voltage reaches the threshold voltage of the AC adapter detection block. Protection circuit (UV Comp.) operation function table : MB39A125 When UV Comp. is operating (VCC voltage is lower than UV Comp. threshold voltage, the logic of the following terminal is fixed.) OUTD OUT CS L H L Protection circuit (UV Comp.) operation function table : MB39A126 When UV Comp. is operating (VCC voltage is lower than UV Comp. threshold voltage, the logic of the following terminal is fixed.) OUT CS H 26 L MB39A125/126 3. Detection Function (1) AC adapter voltage detection block (AC Comp.) When ACIN terminal (pin 7) voltage is lower than 1.3 V (Typ) , AC adapter voltage detection block (AC Comp.) outputs “Hi-Z” level to the ACOK terminal (pin 5) and outputs “L” level to the XACOK terminal (pin 18) . When CTL terminal (pin 14) is set to “L” level, ACOK terminal (pin 5) and XACOK terminal (pin 18) are fixed to “Hi-Z” level. ACIN ACOK XACOK H L Hi-Z L Hi-Z L 4. Switch Function : MB39A126 The charge voltage can be set to 16.8 V/12.6 V with the SEL terminal (pin 11) . SEL function table SEL DC/DC output setting voltage H 16.8 V L 12.6 V 27 MB39A125/126 ■ CONSTANT CHARGING VOLTAGE AND CURRENT OPERATION MB39A125/126 is DC/DC converter with the pulse width modulation (PWM) . MB39A125 is in the output voltage control loop, the Error Amp3 compares internal voltage reference voltage 4.2 V and DC/DC converter output to output the PWM controlled signal. MB39A126 is in the output voltage control loop, the Error Amp3 compares internal voltage reference voltage 4.2 V/3.15 V and DC/DC converter output to output the PWM controlled signal. In the charging current control loop, the voltage drop generated at both ends of charging current sense resistor (RS2) is sensed by +INC1 terminal (pin 13) , −INC1 terminal (pin 12) of Current Amp1, and the signal is output to OUTC1 terminal (pin 10) , which is amplified by 20 times. Error Amp1 compares the OUTC1 terminal (pin 10) voltage, which is the output of Current Amp1, and +INE1 terminal (pin 9) to output the PWM control signal and regulates the charging current. In the AC adapter current control loop, the voltage drop generated at both ends of AC adapter current sense resistor (RS1) is sensed by +INC2 terminal (pin 24) , −INC2 terminal (pin 1) of Current Amp2, and the signal is output to OUTC2 terminal (pin 2) , which is amplified by 20 times. Error Amp2 compares OUTC2 terminal (pin 2) voltage, which is output of Current Amp2, and +INE2 terminal (pin 3) voltage and outputs PWM controlled signal, and it limits the charging current due to the AC adapter current not to exceed the setting value. The PWM comparator compares the triangular wave to the smallest terminal voltage among the Error AMP1, Error AMP2 and Error AMP3. And the triangular wave voltage generated by the triangular wave oscillator. When the triangular wave voltage is smaller than the error amplifier output voltage, the main side output transistor is turned on. 28 MB39A125/126 ■ SETTING THE CHARGE VOLTAGE MB39A125 The charging voltage (DC/DC output voltage) can be set by connecting external output voltage setting resistors (R3, R4) to the −INE3 terminal (pin 16) . Be sure to select a resistor value that allows you to ignore the onresistance (35 Ω, 1 mA) of the internal FET connected to the OUTD terminal (pin 11) . Battery charging voltage : Vo Vo (V) = (R3 + R4) / R4 × 4.2 (V) B Vo R3 −INE3 <Error Amp3> 16 R4 − + 11 4.2 V OUTD 29 MB39A125/126 MB39A126 The setting of the charge voltage is switched to 3cells or 4cells by the SEL terminal (pin 11) . Charge voltage is set to 16.8 V when SEL terminal is “H” level, and charge voltage is set to 12.6 V when SEL terminal is “L” level. Battery charging voltage : Vo Vo (V) = (150 kΩ + 50 kΩ) / 50 kΩ × 4.2 (V) = 16.8 (V) (SEL = H) Vo (V) = (150 kΩ + 50 kΩ) / 50 kΩ × 3.15 (V) = 12.6 (V) (SEL = L) −INC1 12 R3 −INE3 150 kΩ <Error Amp3> − 16 R4 50 kΩ + SEL 11 3.15 V 30 4.2 V MB39A125/126 ■ SETTING THE CHARGE CURRENT The charge current value can be set at the analog voltage value of the +INE1 terminal (pin 9) . Charge current formula : Ichg (A) = V+INE1 (V) / (20 × RS1 (Ω) ) Charge current setting voltage : V+INE1 (V) = 20 × Ichg (A) × RS1 (Ω) ■ SETTING THE INPUT CURRENT The input limit current value can be set at the analog voltage value of the +INE2 terminal (pin 3) . Input current formula : IIN (A) = V+INE2 (V) / (20 × RS2 (Ω) ) Input current setting voltage : V+INE2 (V) = 20 × IIN (A) × RS2 (Ω) ■ SETTING THE TRIANGULAR WAVE OSCILLATION FREQUENCY The triangular wave oscillation frequency can be set by the timing resistor (RT) connected to the RT terminal (pin 17) . Triangular wave oscillation frequency fosc fosc (kHz) =: 14100 / RT (kΩ) 31 MB39A125/126 ■ SETTING THE SOFT-START TIME Soft-start function prevents rush current at start-up of IC when the Soft-start capacitor (Cs) is connected to the CS terminal (pin 22) . This IC charges external soft-start capacitor (Cs) with 10 µA after CTL terminal (pin 14) voltage level becomes high and IC starts (when VCC ≥ UVLO threshold voltage) . Output ON duty depends on PWM comparator, which compares the FB123 terminal (pin 15) voltage with the triangular wave oscillator output voltage. During soft start, FB123 terminal (pin 15) voltage increases with sum voltage of CS terminal and diode voltage. Therefore, the output voltage of the DC/DC converter and current increase can be set by output ON duty in proportion to rise of CS terminal (pin 22) voltage. The ON Duty is affected by the ramp voltage of FB123 terminal (pin 15) until an output voltage of one Error Amp reaches the DC/DC converter loop controlled voltage. Soft-start time is obtained from the following formula : Soft-start time : ts (time to output on duty 80 %) ts (s) =: 0.13 × Cs (µF) • Soft-start timing chart CS CT FB123 CS FB123 CT 0V OUT OUT 0V Vo Error Amp3 threshold voltage Vo 0V Io 0A 32 Io MB39A125/126 ■ TRANSIENT RESPONSE AT LOAD-STEP The constant voltage control loop and the constant current control loop are independent. With the load-step, these two control loops change. The battery voltage and current overshoot are generated by the delay time of the control loop when the mode changes. The delay time is determined by phase compensation constant. When the battery is removed if the charge control is switched from the constant current control to the constant voltage control, and the charging voltage does overshoot by generating the period controlled with high duty by output setting voltage. The excessive voltage is not applied to the battery because the battery is not connected. When the battery is connected if the charge control is switched from the constant voltage control to the constant current control, and the charging current does overshoot by generating the period controlled with high duty by charge current setting. The battery pack manufacturer in Japan thinks it is not the problem the current overshoot of 10 ms or less. • Timing chart at load-step Error Amp3 Output Error Amp1 Output Constant Current Battery Voltage Battery Current Error Amp1 Output Error Amp3 Output Constant Voltage Constant Current When charge control switches from the constant current control to the constant voltage control, the voltage does overshoot by generating the period controlled with high duty by output setting voltage. The battery pack manufacturer in Japan thinks it is not the problem the current overshoot of 10 ms or less. 10 ms 33 MB39A125/126 ■ AC ADAPTER DETECTION FUNCTION When ACIN terminal (pin 7) voltage is lower than 1.3 V (Typ) , AC adapter voltage detection block (AC Comp.) outputs “Hi-Z” level to the ACOK terminal (pin 5) and outputs “L” level to the XACOK terminal (pin 18) . When CTL terminal (pin 14) is set to “L” level, ACOK terminal (pin 5) and XACOK terminal (pin 18) are fixed to “Hi-Z” level. (1) AC adapter presence If you connect as shown in the figure below the presence of AC adapter can be easily detected because the signal is output from the ACOK terminal (pin 5) to microcomputer etc. In this case, if the CTL terminal is set to “L” level, IC becomes the standby state (ICC = 0 µA Typ). • Connection example of detecting AC adapter presence micon AC adapter ACIN ACOK 7 5 <AC Comp.> + − 34 XACOK 18 MB39A125/126 (2) Automatic changing system power supply between AC adapter and battery The AC adapter voltage is detected and external switch at input side and battery side can be changed automatically with the connection as follows. Connect CTL terminal (pin 14) to VCC terminal (pin 21) for this function. OFF duty cycle becomes 100% when CS terminal (pin 22) voltage is made to be 0 V, if it is needed after full charge. • Connection example of automatic changing system power supply between AC adapter and battery System AC adapter 7 ACIN 5 ACOK 18 XACOK Battery <AC Comp.> + − VCC 21 CTL 14 < SOFT> VREF 10 µA CS micon 22 35 MB39A125/126 (3) Battery selector function When control signal from microcomputer etc. is input to ACIN terminal (pin 7) as shown in the following diagram, ACOK terminal (pin 5) output voltage and XACOK terminal (pin 18) output voltage are controlled to select one of the two batteries for charge. Connect CTL terminal (pin 14) to VCC terminal (pin 21) for this function. OFF duty cycle becomes 100% when CS terminal (pin 22) voltage is made to be 0 V, if it is needed after full charge. • Connection example of battery selector function System AC adapter 7 ACIN 5 <AC Comp.> + ACOK 18 XACOK A B ICHG RS1 − VCC CTL micon 36 CS 21 14 Battery1 < SOFT> VREF 10 µA 22 Battery2 MB39A125/126 (4) When AC Comp. is not used When AC Comp. (ACIN (pin 7) , ACOK (pin 5) , and XACOK (pin 18) terminals) is not used as follows, connect the ACIN (pin 7) , ACOK (pin 5) , and XACOK (pin 18) terminals to GND terminal (pin 23) . And connect VCC terminal (pin 21) to system, as follows, to avoid the reverse current from the battery to the VCC terminal (pin 21) . • Connection example when AC Comp. is not used System AC adapter ACIN 7 ACOK 5 <AC Comp.> + − XACOK 18 A B ICHG RS1 Battery VCC 21 37 MB39A125/126 ■ PHASE COMPENSATION • Example Circuit VIN 21 <Error Amp 3> −INE3 16 RS2 15mΩ VCC <PWM Comp.> − <OUT> + Cc OUT + 20 Drive I1 − 4.2 V Lo Rc −2.5V −1.5V FB123 15 19 VH VH RS1 33 mΩ (VCC − 6V) Ro Rin1 Co Bias Voltage OSC VBATT RL ESR Rin2 Lo : Inductance RL : Equivalent series resistance of inductance Co : Capacity of condenser ESR : Equivalent series resistance of condenser Ro : Load resistance • Frequency Characteristics of LC filter 90 80 70 60 50 40 30 20 10 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 gain phase Gain Phase 1 10 100 1k 10k Frequency [Hz] 38 100k 1M 180 160 140 120 100 80 60 40 20 0 −20 −40 −60 −80 −100 −120 −140 −160 −180 10M Cut-off frequency 1 f1 (Hz) = Phase [deg] Gain [dB] Frequency characteristic of power output LC filter (DC gain is included.) 2π Lo × Co × Lo = 15 µH Co = 14.1 µF Ro = 4.2 Ω RL = 30 mΩ ESR = 100 mΩ (Ro + ESR) (Ro + RL) MB39A125/126 • Frequency Characteristics of Error Amp 90 80 70 60 50 40 30 20 10 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 total gain AMP Open Loop Gain total phase Gain Phase 1 10 100 1k 10k 100k 180 160 140 120 100 80 60 40 20 0 −20 −40 −60 −80 −100 −120 −140 −160 −180 1M Cut-off frequency f2(Hz) = Phase [deg] Gain [dB] Total frequency characteristic 1 2π × Rc × Cc Rc = 150 kΩ Cc = 3300 pF Frequency [Hz] • Frequency Characteristics of DC/DC converter total gain AMP Open Loop Gain total phase Gain Phase 1 10 100 1k 10k Frequency [Hz] 100k 180 160 140 120 100 80 60 40 20 0 −20 −40 −60 −80 −100 −120 −140 −160 −180 1M Phase [deg] Gain [dB] Total frequency characteristic 90 80 70 60 50 40 30 20 10 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 The overview of frequency characteristic for DC/DC converter can be obtained in combination between “Frequency Characteristics of LC filter” and “Frequency Characteristics of Error Amp ” as mentioned above. Please note the following point in order to stabilize the frequency characteristics of DC/DC converter . Cut-off frequency of DC/DC converter should be set to half or less of the triangular wave oscillator frequency. Triangular wave frequency Notes : 1) Please review the Error Amp frequency characteristics, when LC filter parameter is modified. 2) When the ceramic capacitor is used as smoothing capacitor Co, phase margin is reduced because ESR of the ceramic capacitor is extremely small as shown in “Frequency Characteristics of LC filter which is using low ESR”. Therefore, change phase compensation of Error Amp or create resistance equivalent to ESR using pattern. 39 MB39A125/126 • Frequency Characteristics of LC filter which is using low ESR 90 80 70 60 50 40 30 20 10 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 gain phase Gain Phase 1 10 100 1k 10k 100k 1M 180 160 140 120 100 80 60 40 20 0 −20 −40 −60 −80 −100 −120 −140 −160 −180 10M Cut-off frequency 1 f1 (Hz) = Phase [deg] Gain [dB] Frequency characteristic of power output LC filter (DC gain is included.) 2π Lo × Co × (Ro + ESR) (Ro + RL) Lo = 15 µH Co = 14.1 µF Ro = 4.2 Ω RL = 30 mΩ ESR = 100 mΩ Frequency [Hz] <3Pole2Zero> DC/DC output < Additional ESR> − + 40 Board Pattern or connected resistor MB39A125/126 ■ PROCESSING WITHOUT USING OF THE CURRENT AMP1 AND AMP2 When Current Amp is not used, connect the +INC1 terminal (pin 13) , +INC2 terminal (pin 24) , −INC1 terminal (pin 12) , and −INC2 terminal (pin 1) to VREF terminal (pin 6) , and then leave OUTC1 terminal (pin 10) and OUTC2 terminal (pin 2) open. • Connection when Current Amp is not used 12 −INC1 1 −INC2 ”open” +INC1 13 +INC2 24 10 OUTC1 2 OUTC2 6 VREF ■ PROCESSING WITHOUT USING OF THE ERROR AMP1 AND AMP2 When Error Amp is not used, leave FB123 terminal (pin 15) open, connect the −INE1 terminal (pin 8) and −INE2 terminal (pin 4) to GND, and connect +INE1 terminal (pin 9) and +INE2 terminal (pin 3) to VREF terminal (pin 6) . • Connection when Error Amp is not used 9 +INE1 3 +INE2 GND 23 8 −INE1 4 −INE2 ”open” 16 FB123 6 VREF 41 MB39A125/126 ■ PROCESSING WITHOUT USING OF THE CS TERMINAL When soft-start function is not used, leave the CS terminal (pin 22) open. • Connection when no soft-start time is specified ”open” CS 22 42 MB39A125/126 ■ I/O EQUIVALENT CIRCUIT • <Reference voltage block> • <Power supply control block> VCC 21 1.235 V ESD protection element + − CTL 14 6 VREF 37.8 kΩ ESD protection element 12.35 kΩ GND 23 • <Soft-start block> VREF (5.0 V) 33.1 kΩ 51 kΩ GND • <Triangular wave oscillator block> • <Error amplifier block (Error Amp1) > VCC VREF (5.0 V) VCC 22 CS + − −INE1 8 FB123 17 RT GND GND GND 9 • <Error amplifier block (Error Amp2) > +INE1 • <Error amplifier block (Error Amp3) > VCC VCC VREF (5.0 V) CS −INE2 4 FB123 GND 16 4.2 V 15 FB123 GND 3 +INE2 • <Current detection amplifier block (Current Amp1) > • <Current detection amplifier block (Current Amp2) > VCC VCC −INC2 1 −INC1 12 10 OUTC1 GND 2 OUTC2 GND 13 +INC1 24 +INC2 (Continued) 43 MB39A125/126 (Continued) • <PWM comparator block> • <Output block> VCC VCC FB123 20 OUT CT VH GND GND • <AC adapter voltage detection block> ACIN 7 VCC VREF (5.0 V) 5 18 XACOK ACOK GND • <Bias voltage block> • <Invalidity current prevention block> • <Output voltage switching function block> <MB39A125> <MB39A126> VCC 11 OUTD SEL 11 33.1 kΩ 19 VH 51 kΩ GND 44 GND GND MB39A125/126 ■ APPLICATION EXAMPLE 1 • MB39A125 IIN to System Q2 R14 15 kΩ C15 0.22 µF R20 56 kΩ R19 100 kΩ R17 RS1 51 kΩ 0.015 Ω R18 24 kΩ Q3 R15 68 kΩ ACOK ACIN R16 10 kΩ 7 XACOK 5 18 <AC Comp.> −INE1 C8 6800 pF R6 10 kΩ VIN (8 V to 25 V) + +INE1 R11 1.1 kΩ − 8 10 OUTC1 +INC1 13 A B −INC1 12 R12 30 kΩ R13 20 kΩ R5 100 kΩ VREF <Current Amp 1> + ×20 − <Error Amp 1> 0.2 V <UV Comp.> + − − + −INC1 (Vo) 9 −INE2 4 R8 C10 100 kΩ 6800 pF 2 R7 10 kΩ OUTC2 24 +INC2 1 −INC2 SW2 R9 36 kΩ R10 20 kΩ R3 33 kΩ C13 22 pF C6 C14 2200 pF 47 pF <Current Amp 2> + ×20 − <Error Amp 2> − −2.5 V −1.5 V VH R21 100 kΩ R22 200 kΩ −INE3 16 R23 100 kΩ 11 OUTD (VCC − 6 V) VCC 21 C12 C7 0.1 µF 0.1 µF 20 OUT C1 10 µF A B Q1 L1 15 µH VH 19 D1 C3 10 µF Bias Voltage <Error Amp 3> ICHG RS2 0.033 Ω C4 10 µF Battery − + <UVLO> 4.2 V VREF UVLO <SOFT> 4.2 V Bias Slope Control 10 µF VCC CTL <OSC> 500 kHz Max CS <OUT> Drive + +INE2 3 FB123 15 VREF C11 0.22 µF <PWM Comp.> + − <REF> <CTL> 14 22 VREF 5.0 V CT (45 pF) RT R4 47 kΩ 17 VREF 6 GND C9 0.22 µF 23 45 MB39A125/126 ■ PARTS LIST 1 • MB39A125 COMPONENT ITEM SPECIFICATION VENDOR PARTS No. Q1, Q2, Q3 Pch FET VDS = −30 V, ID = −7.0 A NEC µPA2714GR D1 Diode VF = 0.42 V (Max) , At IF = 3 A ROHM RB053L-30 L1 Inductor 15 µH 3.6 A, 50 mΩ SUMIDA CDRH104R-150 C1, C3, C4 C6 C7, C12 C8, C10 C9, C11 C13 C14 C15 Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser 10 µF 2200 pF 0.1 µF 6800 pF 0.22 µF 22 pF 47 pF 0.22 µF 25 V 50 V 50 V 50 V 16 V 50 V 50 V 25 V TDK TDK TDK TDK TDK TDK TDK TDK C3225X5R1E106K C1608JB1H222K C1608JB1H104K C1608JB1H682K C1608JB1C224K C1608CH1H220J C1608CH1H470J C2012JB1E224K RS1 RS2 R3 R4 R5, R8 R6, R7 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19, R21, R23 R20 R22 Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor 15 mΩ 33 mΩ 33 kΩ 47 kΩ 100 kΩ 10 kΩ 36 kΩ 20 kΩ 1.1 kΩ 30 kΩ 20 kΩ 15 kΩ 68 kΩ 10 kΩ 51 kΩ 24 kΩ 100 kΩ 56 kΩ 200 kΩ 1% 1% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% KOA KOA ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm SL1TTE15LOF SL1TTE33LOF RR0816P-333-D RR0816P-473-D RR0816P-104-D RR0816P-103-D RR0816P-363-D RR0816P-203-D RR0816P-112-D RR0816P-303-D RR0816P-203-D RR0816P-153-D RR0816P-683-D RR0816P-103-D RR0816P-513-D RR0816P-243-D RR0816P-104-D RR0816P-563-D RR0816P-204-D Note : NEC ROHM SUMIDA TDK KOA ssm 46 : NEC Corporation : ROHM CO., LTD. : Sumida Corporation : TDK Corporation : KOA Corporation : SUSUMU CO., LTD. MB39A125/126 ■ APPLICATION EXAMPLE 2 • MB39A126 IIN to System Q2 R14 15 kΩ R17 RS1 51 kΩ 0.015 R18 Ω 24 kΩ C15 0.22 µF R20 56 kΩ R19 100 kΩ Q3 R15 68 kΩ XACOK ACOK ACIN R16 10 kΩ 7 5 18 <AC Comp.> + − −INE1 C8 6800 pF R6 10 kΩ VIN (8 V to 25 V) 8 10 OUTC1 +INC1 13 A 12 B −INC1 R12 30 kΩ R13 20 kΩ R5 100 kΩ +INE1 R11 1.1 kΩ VREF <Current Amp 1> + ×20 − <Error Amp 1> 0.2 V <UV Comp.> + − − + −INC1 (Vo) 9 −INE2 SW2 R9 36 kΩ R10 20 kΩ C13 22 pF 4 C10 R8 6800 100 kΩ pF 2 R7 10 kΩ OUTC2 24 +INC2 1 −INC2 3 +INE2 15 R3 FB123 33 kΩ C14 47 pF −INE3 C6 2200 pF <PWM Comp.> + − <Current Amp 2> + ×20 − <Error Amp 2> − <OUT> Drive + −2.5 V −1.5 V VH R1 R2 + B L1 15 µH D1 C3 10 µF ICHG RS2 0.033 Ω C4 10 µF Battery <UVLO> 4.2 V/3.15 V VREF VREF UVLO <SOFT> 4.2 V Bias Slope Control 10 µF VCC CTL <OSC> 500 kHz Max CS A Q1 VH 19 Bias Voltage <Error Amp 3> C1 10 µF − 16 SEL 11 Hi : 4 Cells Lo : 3 Cells (VCC − 6 V) VCC 21 C12 C7 0.1 µF 0.1 µF 20 OUT <REF> <CTL> 14 22 VREF 5.0 V CT C11 0.22 µF (45 pF) RT R4 47 kΩ 17 VREF 6 GND C9 0.22 µF 23 47 MB39A125/126 ■ PARTS LIST 2 • MB39A126 COMPONENT ITEM SPECIFICATION VENDOR PARTS No. Q1, Q2, Q3 Pch FET VDS = −30 V, ID = -7.0 A NEC µPA2714GR D1 Diode VF = 0.42 V (Max) , At IF = 3 A ROHM RB053L-30 L1 Inductor 15 µH 3.6 A, 50 mΩ SUMIDA CDRH104R-150 C1, C3, C4 C6 C7, C12 C8, C10 C9, C11 C13 C14 C15 Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser 10 µF 2200 pF 0.1 µF 6800 pF 0.22 µF 22 pF 47 pF 0.22 µF 25 V 50 V 50 V 50 V 16 V 50 V 50 V 25 V TDK TDK TDK TDK TDK TDK TDK TDK C3225X5R1E106K C1608JB1H222K C1608JB1H104K C1608JB1H682K C1608JB1C224K C1608CH1H220J C1608CH1H470J C2012JB1E224K RS1 RS2 R3 R4 R5, R8 R6, R7 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor 15 mΩ 33 mΩ 33 kΩ 47 kΩ 100 kΩ 10 kΩ 36 kΩ 20 kΩ 1.1 kΩ 30 kΩ 20 kΩ 15 kΩ 68 kΩ 10 kΩ 51 kΩ 24 kΩ 100 kΩ 56 kΩ 1% 1% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% KOA KOA ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm ssm SL1TTE15LOF SL1TTE33LOF RR0816P-333-D RR0816P-473-D RR0816P-104-D RR0816P-103-D RR0816P-363-D RR0816P-203-D RR0816P-112-D RR0816P-303-D RR0816P-203-D RR0816P-153-D RR0816P-683-D RR0816P-103-D RR0816P-513-D RR0816P-243-D RR0816P-104-D RR0816P-563-D Note : NEC ROHM SUMIDA TDK KOA ssm 48 : NEC Corporation : ROHM CO., LTD. : Sumida Corporation : TDK Corporation : KOA Corporation : SUSUMU CO., LTD. MB39A125/126 ■ SELECTION OF COMPONENTS • Pch MOS FET The Pch MOS FET for switching use should be rated for at least +20% more than the input voltage. To minimize continuity loss, use a FET with low RDS (ON) between the drain and source. For high input voltage and high frequency operation, on-cycle switching loss will be higher so that power dissipation must be considered. In this application, the NEC µPA2714GR is used. Continuity loss, on/off switching loss, and total loss are determined by the following formulas. The selection must ensure that peak drain current does not exceed rated values. Continuity loss : Pc = ID2 × RDS (ON) × Duty PC On-cycle switching loss : PS (ON) PS (ON) = VD (Max) × ID × tr × fosc 6 Off-cycle switching loss : PS (OFF) PS (OFF) = VD (Max) × ID (Max) × tf × fosc 6 Total loss : PT = PC + PS (ON) + PS (OFF) PT Example) Using the µPA2714GR 16.8 V setting Input voltage VIN (Max) = 25 V, output voltage VO = 16.8 V, drain current ID = 3 A, oscillation frequency fosc = 300 kHz, L = 15 µH, drain-source on resistance RDS (ON) =: 18 mΩ, tr =: 15 ns, tf =: 42 ns Drain current (Max) : ID (Max) ID (Max) = Io + = 3+ =: 3.6 A VIN − Vo 2L tON 25 − 16.8 2 × 15 × 10 −6 × 1 300 × 103 × 0.672 Drain current (Min) : ID (Min) ID (Min) = Io− = 3− =: 2.4 A VIN − Vo 2L tON 25 − 16.8 2 × 15 × 10−6 × 1 300 × 103 × 0.672 49 MB39A125/126 PC = ID2 × RDS (ON) × Duty = 32 × 0.018 × 0.672 =: PS (ON) 0.109 W = = =: PS (OFF) = = =: VD × ID × tr × fosc 6 25 × 3 × 15 × 10−9 × 300 × 103 6 0.056 W VD × ID (Max) × tf × fosc 6 25 × 3.6 × 42 × 10−9 × 300 × 103 6 0.189 W PT = PC + PS (ON) + PS (OFF) =: 0.109 + 0.056 + 0.189 =: 0.354 W The above power dissipation figures for the µPA2714GR are satisfied with ample margin at 2.0 W. 12.6 V setting Input voltage VIN (Max) = 22 V, output voltage VO = 12.6 V, drain current ID = 3 A, oscillation frequency fosc = 300 kHz, L = 15 µH, drain-source on resistance RDS (ON) =: 18 mΩ, tr =: 15 ns, tf =: 42 ns Drain current (Max) : ID (Max) ID (Max) = Io + = 3+ =: 3.6 A VIN − Vo 2L tON 22 − 12.6 2 × 15 × 10 −6 × 1 300 × 103 × 0.572 Drain current (Min) : ID (Min) ID (Min) 50 = Io − = 3− =: 2.4 A VIN − Vo 2L tON 22 − 12.6 2 × 15 × 10−6 × 1 300 × 103 × 0.572 MB39A125/126 PC = ID2 × RDS (ON) × Duty = 32 × 0.018 × 0.572 =: 0.093 W = PS (ON) = =: PS (OFF) = = =: PT VD × ID × tr × fosc 6 22 × 3 × 15 × 10−9 × 300 × 103 6 0.050 W VD × ID (Max) × tf × fosc 6 22 × 3.6 × 42 × 10−9 × 300 × 103 6 0.166 W = PC + PS (ON) + PS (OFF) =: 0.093 + 0.050 + 0.166 =: 0.309 W The above power dissipation figures for the µPA2714GR are satisfied with ample margin at 2.0 W. The Pch MOS FET for switching use must use the one of more than input voltage +20%. FET which operates when the AC adapter is connected should select FET which satisfies the current decided by sense resistance R1 enough. Because FET which operates when the AC adapter is not connected becomes a supply by the battery, it is necessary to select FET which satisfies the current of the system enough. In this application, the NEC µPA2714GR is used. • Inductor In selecting inductors, it is of course essential not to apply more current than the rated capacity of the inductor, but also to note that the lower limit for ripple current is a critical point that if reached will cause discontinuous operation and a considerable drop in efficiency. This can be prevented by choosing a higher inductance value, which will enable continuous operation under light-loads. Note that if the inductance value is too high, however, direct current resistance (DCR) is increased and this will also reduce efficiency. The inductance must be set at the point where efficiency is greatest. Note also that the DC superimposition characteristic becomes worse as the load current value approaches the rated current value of the inductor, so that the inductance value is reduced and ripple current increases, causing loss of efficiency. The selection of rated current value and inductance value will vary depending on where the point of peak efficiency lies with respect to load current. Inductance values are determined by the following formulas. The L value for all load current conditions is set so that the peak to peak value of the ripple current is 1/2 the load current or less. 51 MB39A125/126 Inductance value : L L ≥ 2 (VIN − Vo) Io tON 16.8 V output Example) 2 (VIN (Max) − Vo) tON L ≥ Io ≥ 2 × (25 − 16.8) 3 × 1 300 × 103 × 0.672 ≥ 12.2 µH 12.6 V output Example) 2 (VIN (Max) − Vo) L ≥ tON Io ≥ 2 × (22 − 12.6) 3 × 1 300 × 103 × 0.572 ≥ 12.0 µH Inductance values derived from the above formulas are values that provide sufficient margin for continuous operation at maximum load current, but at which continuous operation is not possible at light loads. It is therefore necessary to determine the load level at which continuous operation becomes possible. In this application, the SUMIDA CDRH104R-150 is used. The following formula is available to obtain the load current as a continuous current condition when 15 µH is used. The value of the load current satisfying the continuous current condition : Io Io ≥ Vo 2L tOFF Example) Using the CDRH104R-150 15 µH (tolerance ± 30%) , rated current = 3.6 A 16.8 V output Vo Io ≥ tOFF 2L ≥ 16.8 2 × 15 × 10 ≥ 0.61 A 52 −6 × 1 300 × 103 × (1 − 0.672) MB39A125/126 12.6 V output Vo Io ≥ tOFF 2L 12.6 ≥ 2 × 15 × 10 −6 1 × 300 × 103 × (1 − 0.572) ≥ 0.60 A To determine whether the current through the inductor is within rated values, it is necessary to determine the peak value of the ripple current as well as the peak-to-peak values of the ripple current that affects the output ripple voltage. The peak value and peak-to-peak value of the ripple current can be determined by the following formulas. Peak Value : IL ≥ IL VIN − Vo Io + 2L tON Peak-to-peak Value : ∆IL = ∆IL VIN − Vo tON L Example) Using the CDRH104R-150 15 µH (tolerance ± 30%) , rated current = 3.6 A Peak Value 16.8 V output IL ≥ Io + ≥ 3+ VIN − Vo 2L tON 25−16.8 2 × 15 × 10 −6 × 1 300 × 103 × 0.672 ≥ 3.6 A 12.6 V output IL ≥ Io + ≥ 3+ VIN − Vo 2L tON 22 − 12.6 2 × 15 × 10 −6 × 1 300 × 103 × 0.572 ≥ 3.6 A 53 MB39A125/126 Peak-to-peak Value 16.8 V output VIN − Vo tON ∆IL = L = =: 25 − 16.8 15 × 10 =: 1 300 × 103 × 0.672 1.22 A 12.6 V output VIN − Vo ∆IL = L = × −6 tON 22 − 12.6 15 × 10−6 × 1 300 × 103 × 0.572 1.2 A • Flyback diode Shottky barrier diode (SBD) is generally used for the flyback diode when the reverse voltage to the diode is less than 40V. The SBD has the characteristics of higher speed in terms of faster reverse recovery time, and lower forward voltage, and is ideal for achieving high efficiency. As long as the DC reverse voltage is sufficiently higher than the input voltage, and the mean current flowing during the diode conduction time is within the mean output current level, and as the peak current is within the peak surge current limits, there is no problem. In this application the ROHM RB053L-30 are used. The diode mean current and diode peak current can be obtained by the following formulas. Diode mean current : IDi ≥ IDi Io × (1 − Vo ) VIN Diode peak current : IDip ≥ IDip Vo (Io + 2L tOFF) Example) Using the RB053L-30 VR (DC reverse voltage) = 30 V, mean output current = 3.0 A, peak surge current = 70 A, VF (forward voltage) = 0.42 V, at IF = 3.0 A 16.8 V output IDi ≥ Io × ≥ 3× (1 − VIN (1 − 0.672) ≥ 0.984 A 54 Vo ) MB39A125/126 12.6 V output IDi ≥ Io × ≥ 3× (1 − Vo VIN ) (1 − 0.572) ≥ 1.284 A 16.8 V output IDip ≥ (Io + Vo 2L tOFF) ≥ 3.6 A 12.6 V output IDip ≥ (Io + Vo 2L tOFF) ≥ 3.6 A • Charge current sense resistor Please note the following in selecting the charge current sense resistance. First of all, meet the electric power to the flowing current. However, the conversion efficiency deteriorates because the loss in the sense resistance grows when resistance is adjusted to a too big value. The accuracy of the charge current deteriorates because the voltage difference of both ends of the sense resistance becomes small when resistance is adjusted to a too small value oppositely. 33 mΩ of the KOA SL1TTE33LOF is used in this application. The sense resistance value can be determined by the following formulas. In this application, 33 mΩ of the KOA SL1TTE33LOF is used. Sense resistor : RS2 RS2 = +INE1 20 × Io Example) When the +INE1 terminal (pin 9) voltage is 2 V and the charge current (Io) is 3.0 A RS2 = = +INE1 20 × Io 2 20 × 3.0 = 33.3 mΩ 55 MB39A125/126 • Input current sense resistor Please note the following in selecting the input current sense resistance. First of all, meet the electric power to the flowing current. However, the conversion efficiency deteriorates because the loss in the sense resistance grows when resistance is adjusted to a too big value. The accuracy of the input current deteriorates because the voltage difference of both ends of the sense resistance becomes small when resistance is adjusted to a too small value oppositely. 33 mΩ of the KOA SL1TTE33LOF is used in this application. The sense resistance value can be determined by the following formulas. In this application, 15 mΩ of the KOA SL1TTE15LOF is used. Sense resistor : RS1 RS1 = +INE2 20 × IIN Example) When the +INE2 terminal (pin 3) voltage is 1.79 V and the input current (IIN) is 6.0 A RS1 = = +INE2 20 × IIN 1.79 20 × 6.0 = 14.9 mΩ 56 MB39A125/126 ■ REFERENCE DATA Conversion efficiency vs. Charging current (Constant Voltage mode) 100 Conversion efficiency η (%) Conversion efficiency η (%) Conversion efficiency vs. Charging current (Constant Voltage mode) 95 90 85 80 75 70 65 VIN = 19 V Vo = 16.8 V setting 60 55 0.1 10 1 90 85 80 75 70 65 VIN = 19 V Vo = 12.6 V setting 60 55 0.01 0.1 10 1 Charging current IO (A) Charging current IO (A) Conversion efficiency vs. Charging voltage (Constant Current mode) Conversion efficiency vs. Charging voltage (Constant Current mode) Conversion efficiency η (%) 100 95 90 85 80 75 70 65 VIN = 19 V Io = 3 A setting 60 55 50 0 2 4 6 8 10 12 14 16 100 95 90 85 80 75 70 65 55 50 0 6 8 10 12 14 16 Charging voltage vs. Charging current Charging voltage vs. Charging current 20 18 16 SW2 = OFF SW2 = ON 10 8 6 VIN = 19 V Vo = 16.8 V setting 4 2 0 0.0 4 Charging voltage VO (V) 18 12 2 Charging voltage VO (V) 20 14 VIN = 19 V Io = 3 A setting 60 18 Charging voltage VO (V) Conversion efficiency η (%) 95 50 50 0.01 Charging voltage VO (V) 100 0.5 1.0 1.5 2.0 2.5 3.0 Charging current IO (A) 3.5 4.0 18 VIN = 19 V Vo = 12.6 V setting 16 14 12 10 8 SW2 = ON SW2 = OFF 6 4 2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Charging current IO (A) (Continued) 57 MB39A125/126 Switching waveform (Constant Voltage Mode) VO = 12.6 V setting OUT (V) 15 VO = 16.8 V setting OUT (V) 15 OUT 10 10 5 5 0 Pch Drain (V) 10 Pch Drain VIN = 19 V Vo = 16.8 V setting Io = 1.5 A SW2 = OFF 0 Pch Drain (V) 10 5 5 0 0 0 OUT 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 (µs) Pch Drain 0 VIN = 19 V Vo = 12.6 V setting Io = 1.5 A SW2 = OFF 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 (µs) Switching waveform (Constant Current Mode) VO = 12.6 V setting OUT (V) 15 VO = 16.8 V setting OUT (V) 15 OUT 10 10 5 5 0 Pch Drain (V) 10 0 Pch Drain (V) 10 Pch Drain VIN = 19 V Vo = 10.0 V Io = 3.0 A setting SW2 = OFF 5 5 0 0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 (µs) OUT Pch Drain 0 VIN = 19 V Vo = 10.0 V Io = 3.0 A setting SW2 = OFF 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 (µs) (Continued) 58 MB39A125/126 Soft-start operating waveform (Constant Current Mode) Vo (V) 18 lo (A) VIN = 19 V Io = 3 A setting SW2 = OFF lo (A) 5 4 3 2 1 lo 0 CTL 5 5 14 4 12 Vo 0 16 2 CTL (V) 10 1 16 14 Vo 3 10 Vo (V) 18 VIN = 19 V Io = 3 A setting SW2 = OFF 12 lo 0 10 CTL (V) 10 CTL 0 10 15 20 25 30 35 40 45 0 50 (ms) 0 5 10 15 20 25 30 35 40 45 50 (ms) Soft-start operating waveform (Constant Voltage Mode) lo (A) 5 Vo (V) 18 lo (A) Vo 4 3 VIN = 19 V Vo = 16.8 V setting SW2 = OFF 2 1 lo 0 CTL 0 5 10 15 Vo (V) 18 Vo 16 5 16 14 4 14 12 3 10 2 CTL (V) 10 1 12 VIN = 19 V Vo = 16.8 V setting SW2 = OFF 10 CTL (V) 10 lo 0 CTL 0 20 25 30 35 40 45 50 (ms) 0 0 5 10 15 20 25 30 35 40 45 50 (ms) (Continued) 59 MB39A125/126 (Continued) Load-step response operation waveform (C.V mode → C.C mode) Load-step response operation waveform (C.C mode → C.V mode) Io (A) Vo (V) Io (A) 18 6 16 5 14 4 6 5 Vo 4 Vo 12 3 10 Io 2 VIN = 19 V Io = 3.0 A setting SW2 = OFF CV to CC 1 Io 0 0 2 4 6 8 10 12 14 16 18 VIN = 19 V Vo = 16.8 V setting SW2 = OFF CV to CV 3 Io 2 20 (ms) 14 12 10 2 0 2 10 4 6 8 10 12 14 16 18 20 (ms) Io (A) 6 VIN = 19 V Vo = 16.8 V setting SW2 = OFF CV to CV Vo 4 3 0 16 14 12 10 2 Io 1 Io Vo (V) 18 Vo 5 Io 1 Io 0 0 60 VIN = 19 V Io = 3.0 A setting SW2 = OFF CC to CV Io 16 4 12 3 0 Vo (V) 18 Vo Vo 14 Vo Load-step response operation waveform (C.V mode → C.V mode) Io (A) 5 16 1 Load-step response operation waveform (C.V mode → C.V mode) 6 Vo (V) 18 Vo 2 4 6 8 10 12 14 16 18 20 (ms) 0 2 4 6 8 10 12 14 16 18 20 (ms) MB39A125/126 ■ USAGE PRECAUTIONS • Printed circuit board ground lines should be set up with consideration for common impedance. • Take appropriate static electricity measures. • Containers for semiconductor materials should have anti-static protection or be made of conductive material. • After mounting, printed circuit boards should be stored and shipped in conductive bags or containers. • Work platforms, tools, and instruments should be properly grounded. • Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground. • Do not apply negative voltages. • The use of negative voltages below −0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation. ■ ORDERING INFORMATION Part number Package MB39A125PFV 24-pin plastic SSOP (FPT-24P-M03) MB39A125WQN 28-pin plastic QFN (LCC-28P-M11) MB39A126PFV 24-pin plastic SSOP (FPT-24P-M03) MB39A126WQN 28-pin plastic QFN (LCC-28P-M11) Remarks 61 MB39A125/126 ■ PACKAGE DIMENSIONS Note 1) *1 : Resin protrusion. (Each side : +0.15 (.006) Max). Note 2) *2 : These dimensions do not include resin protrusion. Note 3) Pins width and pins thickness include plating thickness. Note 4) Pins width do not include tie bar cutting remainder. 24-pin plastic SSOP (FPT-24P-M03) 0.17±0.03 (.007±.001) *17.75±0.10(.305±.004) 24 13 *2 5.60±0.10 7.60±0.20 (.220±.004) (.299±.008) INDEX Details of "A" part +0.20 1.25 –0.10 +.008 .049 –.004 (Mounting height) 0.25(.010) 1 "A" 12 0.65(.026) 0.24 .009 +0.08 –0.07 +.003 –.003 0.13(.005) 0~8˚ M 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) 0.10±0.10 (.004±.004) (Stand off) 0.10(.004) C 2003 FUJITSU LIMITED F24018S-c-4-5 Dimensions in mm (inches). Note: The values in parentheses are reference values. (Continued) 62 MB39A125/126 (Continued) 28-pin plastic QFN (LCC-28P-M11) 3.50±0.10 (.138±.004) 5.00±0.10 (.197±.004) 5.00±0.10 (.197±.004) INDEX AREA 3.50±0.10 (.138±.004) 0.25±0.10 (.010±.004) 3-R0.20 (3-R.008) 0.50(.020) TYP 0.40±0.10 (.016±.004) 1PIN CORNER (C0.30(C.012)) 0.08(.003) 0.02 .0008 C +0.05 –0.02 +.002 –.0008 0.80(.032) MAX 0.20(.008) 2004 FUJITSU LIMITED C28068Sc-2-1 Dimensions in mm (inches). Note: The values in parentheses are reference values. 63 MB39A125/126 FUJITSU LIMITED All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party’s intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan. F0511 © 2004 FUJITSU LIMITED Printed in Japan