MGP19N35CL, MGB19N35CL Preferred Device Ignition IGBT 19 Amps, 350 Volts N−Channel TO−220 and D2PAK http://onsemi.com This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over−Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required. • Ideal for IGBT−On−Coil or Distributorless Ignition System Applications • High Pulsed Current Capability up to 50 A • Gate−Emitter ESD Protection • Temperature Compensated Gate−Collector Voltage Clamp Limits Stress Applied to Load • Integrated ESD Diode Protection • Low Threshold Voltage to Interface Power Loads to Logic or Microprocessor Devices • Low Saturation Voltage • Optional Gate Resistor (RG) 19 AMPERES 350 VOLTS (Clamped) VCE(on) @ 10 A = 1.8 V Max N−Channel C G RGE 4 E 4 1 MAXIMUM RATINGS (−55°C ≤ TJ ≤ 175°C unless otherwise noted) Rating Symbol Value Unit Collector−Emitter Voltage VCES 380 VDC Collector−Gate Voltage VCER 380 VDC Gate−Emitter Voltage VGE 22 VDC IC 19 50 ADC AAC Collector Current − Continuous @ TC = 25°C − Pulsed ESD (Human Body Model) R = 1500 Ω, C = 100 pF ESD ESD (Machine Model) R = 0 Ω, C = 200 pF ESD 800 V PD 165 1.1 Watts W/°C TJ, Tstg −55 to 175 °C Total Power Dissipation @ TC = 25°C Derate above 25°C Operating and Storage Temperature Range Characteristic Symbol Single Pulse Collector−to−Emitter Avalanche Energy VCC = 50 V, VGE = 5.0 V, Pk IL = 22.4 A, L = 2.0 mH, Starting TJ = 25°C VCC = 50 V, VGE = 5.0 V, Pk IL = 17.4 A, L = 2.0 mH, Starting TJ = 150°C EAS © Semiconductor Components Industries, LLC, 2005 February, 2005 − Rev. XXX 3 1 D2PAK CASE 418B STYLE 4 TO−220AB CASE 221A STYLE 9 2 MARKING DIAGRAMS & PIN ASSIGNMENTS 3 4 Collector 4 Collector kV 8.0 Value Unit G19N35CL YWW 3 Emitter 2 Collector mJ 1 Gate 3 Emitter 2 Collector G19N35CL = Device Code Y = Year WW = Work Week ORDERING INFORMATION 500 300 EAS(R) G19N35CL YWW 1 Gate UNCLAMPED COLLECTOR−TO−EMITTER AVALANCHE CHARACTERISTICS (−55°C ≤ TJ ≤ 175°C) Reverse Avalanche Energy VCC = 100 V, VGE = 20 V, L = 3.0 mH, Pk IL = 25.8 A, Starting TJ = 25_C 2 mJ Device Package Shipping MGP19N35CL TO−220 50 Units/Rail MGB19N35CLT4 D2PAK 800 Tape & Reel 1000 Preferred devices are recommended choices for future use and best overall value. 1 Publication Order Number: MGP19N35CL/D MGP19N35CL, MGB19N35CL THERMAL CHARACTERISTICS Characteristic Symbol Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient Value Unit °C/W RθJC 0.9 TO−220 RθJA 62.5 D2PAK (Note 1.) RθJA 50 TL 275 Maximum Lead Temperature for Soldering Purposes, 1/8″ from case for 5 seconds °C ELECTRICAL CHARACTERISTICS Characteristic Symbol Test Conditions Temperature Min Typ Max Unit BVCES IC = 2.0 mA TJ = −40°C to 150°C 320 350 380 VDC IC = 10 mA TJ = −40°C to 150°C 330 360 380 TJ = 25°C − 1.5 20 TJ = 150°C − 15 40* TJ = −40°C − 0.7 1.5 TJ = 25°C − 0.35 1.0 TJ = 150°C − 10 20* TJ = −40°C − 0.05 0.5 TJ = 25°C 25 33 50 TJ = 150°C 25 36 50 TJ = −40°C 25 30 50 OFF CHARACTERISTICS Collector−Emitter Clamp Voltage Zero Gate Voltage g Collector Current Reverse Collector−Emitter Leakage g Current Reverse Collector−Emitter Clamp p Voltage g Gate−Emitter Clamp Voltage ICES VCE = 300 V, V VGE = 0 V IECS VCE = −24 24 V BVCES(R) IC = −75 75 mA A µADC µ mA VDC BVGES IG = 5.0 mA TJ = −40°C to 150°C 17 20 22 VDC IGES VGE = 10 V TJ = −40°C to 150°C 384 500 1000 µADC Gate Resistor (Optional) RG − TJ = −40°C to 150°C − 70 − Ω Gate Emitter Resistor RGE − TJ = −40°C to 150°C 10 20 26 kΩ VDC Gate−Emitter Leakage Current ON CHARACTERISTICS (Note 2.) g Gate Threshold Voltage Threshold Temperature Coefficient (Negative) VGE(th) TJ = 25°C 1.4 1.7 2.0 IC = 1.0 1 0 mA, A VGE = VCE TJ = 150°C 0.75 1.1 1.4 TJ = −40°C 1.6 1.9 2.1* − − − 4.4 − − 1. When surface mounted to an FR4 board using the minimum recommended pad size. 2. Pulse Test: Pulse Width v 300 µS, Duty Cycle v 2%. *Maximum Value of Characteristic across Temperature Range. http://onsemi.com 2 mV/°C MGP19N35CL, MGB19N35CL ELECTRICAL CHARACTERISTICS (continued) Characteristic Symbol Test Conditions Temperature Min Typ Max Unit TJ = 25°C 1.0 1.25 1.6 IC = 6.0 60A A, VGE = 4.0 V VDC TJ = 150°C 0.8 1.05 1.4 TJ = −40°C 1.15 1.4 1.75* ON CHARACTERISTICS (continued) (Note 3.) g Collector−to−Emitter On−Voltage Collector−to−Emitter On−Voltage Forward Transconductance VCE(on) TJ = 25°C 1.2 1.5 1.8 IC = 10 A A, VGE = 4.0 V TJ = 150°C 1.0 1.3 1.6 TJ = −40°C 1.3 1.6 1.9* TJ = 25°C 1.5 1.75 2.1 IC = 15 A A, VGE = 4.0 V TJ = 150°C 1.35 1.65 1.95 TJ = −40°C 1.5 1.8 2.1* TJ = 25°C 1.7 2.0 2.3 IC = 20 A A, VGE = 4.0 V TJ = 150°C 1.6 1.9 2.2 TJ = −40°C 1.7 2.0 2.3* TJ = 25°C 2.0 2.25 2.6 IC = 25 A A, VGE = 4.0 V TJ = 150°C 2.0 2.3 2.7* TJ = −40°C 2.0 2.2 2.6 VCE(on) IC = 10 A, VGE = 4.5 V TJ = 150°C − 1.3 1.8 VDC gfs VCE = 5.0 V, IC = 6.0 A TJ = −40°C to 150°C 8.0 15 25 Mhos − 1500 1800 pF p VCC = 25 V V, VGE = 0 V f = 1.0 MHz TJ = −40°C 40°C to t 150 C 150°C − 130 160 − 6.0 8.0 TJ = 25°C − 5.0 10 TJ = 150°C − 6.0 10 TJ = 25°C − 6.0 10 TJ = 150°C − 11 15* TJ = 25°C − 6.0 10 TJ = 150°C − 7.0 10 TJ = 25°C − 12 20 TJ = 150°C − 18 22* DYNAMIC CHARACTERISTICS Input Capacitance CISS Output Capacitance COSS Transfer Capacitance CRSS SWITCHING CHARACTERISTICS (Note 3.) ( ) Turn−Off Delayy Time (Inductive) Fall Time ((Inductive)) Turn−Off Delay y Time ((Resistive)) Fall Time ((Resistive)) Turn−On Delay y Time Rise Time td(off) VCC = 300 V, IC = 10 A RG = 1 1.0 0 kΩ kΩ, L = 300 µH H tf VCC = 300 V, IC = 10 A RG = 1 1.0 0 kΩ kΩ, L = 300 µH H td(off) VCC = 300 V, IC = 6.5 A RG = 1 1.0 0 kΩ kΩ, RL = 46 Ω tf VCC = 300 V, IC = 6.5 A RG = 1 1.0 0 kΩ kΩ, RL = 46 Ω td(on) VCC = 10 V, IC = 6.5 A RG = 1 1.0 0 kΩ kΩ, RL = 1 1.5 5Ω tr VCC = 10 V, IC = 6.5 A RG = 1 1.0 0 kΩ kΩ, RL = 1 1.5 5Ω 3. Pulse Test: Pulse Width v 300 µS, Duty Cycle v 2%. *Maximum Value of Characteristic across Temperature Range. http://onsemi.com 3 TJ = 25°C − 1.5 2.0 TJ = 150°C − 1.5 2.0 TJ = 25°C − 4.0 6.0 TJ = 150°C − 5.0 6.0 µSec µ µSec µ µSec µ MGP19N35CL, MGB19N35CL TYPICAL ELECTRICAL CHARACTERISTICS (unless otherwise noted) 60 IC, COLLECTOR CURRENT (AMPS) VGE = 10.0 V VGE = 4.0 V 50 VGE = 5.0 V 40 VGE = 4.5 V TJ = 25°C VGE = 3.5 V 30 20 VGE = 3.0 V 10 VGE = 2.5 V 0 0 1 3 2 5 4 7 6 IC, COLLECTOR CURRENT (AMPS) TJ = 150°C 40 35 30 25 TJ = 25°C 20 15 10 TJ = 150°C 5 TJ = −40°C 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VGE, GATE TO EMITTER VOLTAGE (VOLTS) VGE = 3.0 V 20 VGE = 2.5 V 10 0 1 3 2 4 5 6 7 8 3.0 VGE = 5.0 V 2.5 IC = 25 A IC = 20 A 2.0 1.5 1.0 IC = 15 A 0.0 −50 IC = 5 A IC = 10 A 0.5 −25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 3. Transfer Characteristics Figure 4. Collector−to−Emitter Saturation Voltage vs. Junction Temperature 2.5 10000 THRESHOLD VOLTAGE (VOLTS) Ciss 1000 C, CAPACITANCE (pF) VGE = 3.5 V 30 Figure 2. Output Characteristics 45 Coss 100 Crss 10 1 0 VGE = 4.0 V Figure 1. Output Characteristics VCE = 10 V 0 VGE = 5.0 V 40 VCE, COLLECTOR TO EMITTER VOLTAGE (VOLTS) 50 0 50 VCE, COLLECTOR TO EMITTER VOLTAGE (VOLTS) 60 55 VGE = 4.5 V VGE = 10.0 V 0 8 VCE, COLLECTOR TO EMITTER VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (AMPS) 60 0 20 40 60 80 100 120 2.0 1.5 Mean Mean − 4 σ 1.0 0.5 0.0 −50 140 160 180 IC = 1 mA Mean + 4 σ −25 0 25 50 75 100 125 VCE, COLLECTOR TO EMITTER VOLTAGE (VOLTS) TEMPERATURE (°C) Figure 5. Capacitance Variation Figure 6. Threshold Voltage vs. Temperature http://onsemi.com 4 150 MGP19N35CL, MGB19N35CL 14 14 VCC = 300 V VGE = 5.0 V RG = 1000 Ω IC = 10 A L = 300 µH 10 tf 8 6 td(off) 4 0 −50 −25 0 25 50 75 100 125 VCC = 300 V VGE = 5.0 V RG = 1000 Ω TJ = 150°C L = 300 µH 4 0 2 4 6 8 10 12 14 IC, COLLECTOR CURRENT (AMPS) Figure 7. Switching Speed vs. Case Temperature Figure 8. Switching Speed vs. Collector Current 16 30 VCC = 50 V VGE = 5.0 V RG = 1000 Ω 25 T = 25°C IL, LATCH CURRENT (AMPS) IL, LATCH CURRENT (AMPS) td(off) 6 TC, CASE TEMPERATURE (°C) 20 15 T = 150°C 10 5 0 2 4 8 6 25 L = 2.0 mH 20 15 L = 3.0 mH 10 L = 6.0 mH 5 VCC = 50 V VGE = 5.0 V RG = 1000 Ω 0 −50 −25 10 0 25 50 75 100 125 150 INDUCTOR (mH) TEMPERATURE (°C) Figure 9. Minimum Open Secondary Latch Current vs. Inductor Figure 10. Minimum Open Secondary Latch Current vs. Temperature 30 175 30 25 L = 2.0 mH VCC = 50 V VGE = 5.0 V RG = 1000 Ω T = 25°C IL, LATCH CURRENT (AMPS) IL, LATCH CURRENT (AMPS) 8 0 150 30 20 15 T = 150°C 10 5 0 10 2 2 0 tf 12 SWITCHING TIME (µS) SWITCHING TIME (µS) 12 0 1 2 3 4 5 6 7 8 9 25 L = 3.0 mH 20 L = 6.0 mH 15 10 5 VCC = 50 V VGE = 5.0 V RG = 1000 Ω 0 −50 −25 10 0 25 50 75 100 125 150 INDUCTOR (mH) TEMPERATURE (°C) Figure 11. Typical Open Secondary Latch vs. Inductor Figure 12. Typical Open Secondary Latch vs. Temperature http://onsemi.com 5 175 MGP19N35CL, MGB19N35CL R(t), TRANSIENT THERMAL RESISTANCE (°C/Watt) 10 Duty Cycle = 0.5 1 0.2 0.1 0.05 0.02 0.1 0.01 t1 t2 Single Pulse 0.01 0.00001 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT T1 P(pk) DUTY CYCLE, D = t1/t2 0.0001 0.001 0.1 0.01 TJ(pk) − TA = P(pk) RθJA(t) RθJC ≅ R(t) for t ≤ 0.2 s 1 10 t,TIME (S) Figure 13. Transient Thermal Resistance (Non−normalized Junction−to−Ambient mounted on fixture in Figure 14) 1.5″ 4″ 4″ 0.125″ 4″ Figure 14. Test Fixture for Transient Thermal Curve (48 square inches of 1/8, thick aluminum) http://onsemi.com 6 100 1000 MGP19N35CL, MGB19N35CL 100 DC COLLECTOR CURRENT (AMPS) COLLECTOR CURRENT (AMPS) 100 100 µs 10 1 ms 1 10 ms 100 ms 0.1 0.01 1 10 100 1 ms 10 ms 100 ms 0.1 10 100 1000 COLLECTOR−EMITTER VOLTAGE (VOLTS) Figure 15. Single Pulse Safe Operating Area (Mounted on an Infinite Heatsink at TC = 255C) Figure 16. Single Pulse Safe Operating Area (Mounted on an Infinite Heatsink at TC = 1255C) 100 t1 = 1 ms D = 0.05 COLLECTOR CURRENT (AMPS) COLLECTOR CURRENT (AMPS) 1 COLLECTOR−EMITTER VOLTAGE (VOLTS) DC t1 = 2 ms D = 0.10 10 t1 = 3 ms D = 0.30 1 P(pk) t1 t2 0.01 1 100 µs 10 0.01 1 1000 100 0.1 DC DUTY CYCLE, D = t1/t2 10 100 DC t1 = 2 ms D = 0.10 t1 = 3 ms D = 0.30 1 P(pk) t1 0.1 t2 DUTY CYCLE, D = t1/t2 0.01 1 1000 t1 = 1 ms D = 0.05 10 10 100 1000 COLLECTOR−EMITTER VOLTAGE (VOLTS) COLLECTOR−EMITTER VOLTAGE (VOLTS) Figure 17. Pulse Train Safe Operating Area (Mounted on an Infinite Heatsink at TC = 255C) Figure 18. Pulse Train Safe Operating Area (Mounted on an Infinite Heatsink at TC = 1255C) http://onsemi.com 7 MGP19N35CL, MGB19N35CL PACKAGE DIMENSIONS TO−220 THREE−LEAD TO−220AB CASE 221A−09 ISSUE AA SEATING PLANE −T− B F T C S 4 DIM A B C D F G H J K L N Q R S T U V Z A Q 1 2 3 U H K Z L R V J NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. G D N INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 −−− −−− 0.080 STYLE 9: PIN 1. 2. 3. 4. http://onsemi.com 8 GATE COLLECTOR EMITTER COLLECTOR MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 −−− −−− 2.04 MGP19N35CL, MGB19N35CL PACKAGE DIMENSIONS D2PAK CASE 418B−03 ISSUE D C E −B− V 4 1 2 3 A S −T− SEATING PLANE K J G D 3 PL 0.13 (0.005) H M T B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E G H J K S V INCHES MIN MAX 0.340 0.380 0.380 0.405 0.160 0.190 0.020 0.035 0.045 0.055 0.100 BSC 0.080 0.110 0.018 0.025 0.090 0.110 0.575 0.625 0.045 0.055 STYLE 4: PIN 1. 2. 3. 4. http://onsemi.com 9 GATE COLLECTOR EMITTER COLLECTOR MILLIMETERS MIN MAX 8.64 9.65 9.65 10.29 4.06 4.83 0.51 0.89 1.14 1.40 2.54 BSC 2.03 2.79 0.46 0.64 2.29 2.79 14.60 15.88 1.14 1.40 MGP19N35CL, MGB19N35CL Notes http://onsemi.com 10 MGP19N35CL, MGB19N35CL Notes http://onsemi.com 11 MGP19N35CL, MGB19N35CL ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] Fax Response Line: 303−675−2167 or 800−344−3810 Toll Free USA/Canada N. American Technical Support: 800−282−9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor − European Support German Phone: (+1) 303−308−7140 (Mon−Fri 2:30pm to 7:00pm CET) Email: ONlit−[email protected] French Phone: (+1) 303−308−7141 (Mon−Fri 2:00pm to 7:00pm CET) Email: ONlit−[email protected] English Phone: (+1) 303−308−7142 (Mon−Fri 12:00pm to 5:00pm GMT) Email: [email protected] CENTRAL/SOUTH AMERICA: Spanish Phone: 303−308−7143 (Mon−Fri 8:00am to 5:00pm MST) Email: ONlit−[email protected] Toll−Free from Mexico: Dial 01−800−288−2872 for Access − then Dial 866−297−9322 ASIA/PACIFIC: LDC for ON Semiconductor − Asia Support Phone: 303−675−2121 (Tue−Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001−800−4422−3781 Email: ONlit−[email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 4−32−1 Nishi−Gotanda, Shinagawa−ku, Tokyo, Japan 141−0031 Phone: 81−3−5740−2700 Email: [email protected] ON Semiconductor Website: http://onsemi.com EUROPEAN TOLL−FREE ACCESS*: 00−800−4422−3781 *Available from Germany, France, Italy, UK, Ireland For additional information, please contact your local Sales Representative. http://onsemi.com 12 MGP19N35CL/D