MARVELL MV76100-A0-BHO-C080

Cover
MV76100
Discovery™ Innovation Series CPU
Family
Hardware Specifications
MV-S105424-U0, Rev. B
December 6, 2008
L
Marvell. Moving Forward Faster
Document Classification: Proprietary Information
MV76100
Hardware Specifications
Document Conventions
Note: Provides related information or information of special importance.
Caution: Indicates potential damage to hardware or software, or loss of data.
Warning: Indicates a risk of personal injury.
Document Status
Doc Status: Preliminary
Technical Publication: 0.x
For more information, visit our website at: www.marvell.com
Disclaimer
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose,
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any
kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.
With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:
1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;
2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,
3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant,
not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons
by the EAR, or is subject to controls under the U.S. Munitions List ("USML").
At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any
such information.
Copyright © 2008. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas,
Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell.
Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, and VCT are trademarks of Marvell. All
other trademarks are the property of their respective owners.
MV-S105424-U0 Rev. B
Page 2
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
MV76100
Discovery™ Innovation Series CPU Family
Hardware Specifications
PRODUCT OVERVIEW
Building upon the Marvell® high-performance Sheeva™
CPU core, the MV76100 device is optimally designed for
a broad range of applications ranging from sophisticated
routers, switches, and single board computers to
high-volume storage and laser printer applications.
„
The MV76100 incorporates a fully ARMv5TE-compliant
dual-issue CPU core, with a double-precision, IEEE
compliant Floating-Point Unit (FPU), and 256 KB of
L2 cache.
Its innovative crossbar architecture, advanced
communications peripherals, and performance-tuned
interfaces, make it a perfect, high-performance solution
for embedded applications such as:
•
•
•
•
•
•
„
Printers
Core and edge routers
Cellular base stations
Ethernet switch management
Storage arrays
Network Attached Storage (NAS) devices
The MV76100 Includes
• High-performance Sheeva™ dual-issue CPU with
IEEE compliant FPU support
• 256 KB L2 cache
• High-bandwidth DDR2 memory interface (32-bit
DDR2–800 MHz data rate with an 8-bit ECC
option)
• 8/16/32-bit device bus with up to five chip selects,
and with NAND and NOR Flash support
• Two PCI Express ports with integrated PHY—Port0
is x4 or four x1 lanes, and Port1 is x1 lane.
• Two Gigabit Ethernet MAC controllers
• Three USB 2.0 ports with integrated PHYs
• One SATA II port with integrated 3 Gbps SATA II
PHY
• Security Cryptographic engine
• Three 16550 compatible UARTs
• Four IDMA engines
• Integrated Storage Accelerator engine (two XOR
DMA or iSCSI CRC engines)
• Timers
• Interrupt controller
Dual-Issue CPU with FPU support
Up to 800 MHz
Super-scalar, dual-issue CPU
Single-precision and double-precision FPU support
32-bit and 16-bit RISC architecture
Compliant with v5TE architecture, published in the
ARM Architect Reference Manual, Second Edition
• Supports 32-bit instruction set for performance and
flexibility
• Supports 16-bit Thumb instruction set for code
density
• Supports DSP instructions to boost performance
for signal processing applications
• Includes MMU to support virtual memory features
• MPU can be used instead of MMU
• 32-KB I-Cache and 32-KB D-Cache, parity
protected
• 256-KB unified L2 cache, ECC protected
• 64-bit internal data bus
• Variable pipeline stages—six to nine stages
• Out-of-order execution for increased performance
• In-order retire via Reordering Buffer (ROB)
• Branch Prediction Unit
• Supports JTAG/ARM-compatible ICE
• Supports both Big and Little Endian modes
•
•
•
•
•
„
DDR2 SDRAM controller
• 40-bit interface (32-bit data + 8-bit ECC)
• Up to 400 MHz clock frequency (DDR2–800 MHz
data rate)
• DDR SDRAM with a clock ratio of 1:N and 2:N
(up to 1:4) between the DDR SDRAM and the
Sheeva™ core, respectively
• SSTL 1.8V I/Os
• Auto-calibration of I/Os output impedance
• Supports four DRAM banks
• Supports all DDR devices, densities up to 2 Gb
• Up to 4 GB address space
• Supports all DIMMs configurations (registered and
un-buffered, x8 or x16 DRAM devices)
• Supports 2T mode to enable high-frequency
operation, even under heavy load configuration
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 3
MV76100
Hardware Specifications
• Supports DRAM bank interleaving
• Supports up to 32 open pages
• Supports up to 128-byte burst per single memory
• Supports PCI Express access to all of the device’s
internal registers
„
Two Gigabit Ethernet MACs
• Support 10/100/1000 Mbps
• Full wire speed receive and transmit of short
packets
• GMII/MII interface when using a single port
• RGMII interface when using dual ports
• Priority queueing on receive based on DA,
VLAN-Tag, IP-TOS
• Also supports queuing based on Marvell DSA Tag
• Layer2/3/4 frame encapsulation detection
• Supports long frames (up to 9K) on both receive
and transmit
• Hardware TCP/IP checksum on receive and
transmit
„
Three USB 2.0 ports
• Each port can act as USB host or peripheral
• USB 2.0 compliant
• Integrated USB 2.0 PHY
• EHCI compatible as a host
• As a host, supports direct connection to all
peripheral types (LS, FS, HS)
• As a peripheral, connects to all host types (HS, FS)
and hubs
• Up to six independent endpoints supporting control,
interrupt, bulk, and isochronous data transfers
• Dedicated DMA for data movement between
memory and port
„
Integrates a Single Marvell 3 Gbps SATA PHY
• Compliant with SATA II Phase 1 specifications
- Supports SATA II Native Command Queuing
(NCQ), up to 128 outstanding commands per
port
- First party DMA (FPDMA) full support
- Backwards compatible with SATA I devices
access
„
Device Bus controller
• 32-bit multiplexed address/data bus
• Supports different types of standard memory
devices such as Flash, ROM, and SRAM
• Supports NAND Flash
• Five chip selects with programmable timing
• Optional external wait-state support
• 8-, 16-, or 32-bit width device support
• Up to 128-byte burst per single device bus access
• Support for boot ROMs
„
Two PCI Express interfaces; a single x4 interface
and an additional x1 interface
• PCI Express Base 1.1 compliant
• Integrated low-power SERDES PHY, based on
proven Marvell SERDES technology
• Can be configured as an Endpoint or as Root
Complex
• x1/x4 link width, 2.5 GHz signalling
• Lane polarity reversal support
• Maximum payload size of 128 bytes
• Single Virtual Channel (VC-0)
• Replay buffer support
• Extended PCI Express configuration space
• Advanced Error Reporting (AER) support
• Power management: L0s and SW L1 support
• Interrupt emulation message support
• Error message support
„
„
„
Configurable PCI Express x4 or Quad x1 port
• PCI Express Port0 x4 can be configured to act as
four independent x1 ports. Useful for interfacing
multiple off-the-shelf PCI-Express devices.
• Each of the x1 ports is PCI Express Base 1.1
compliant, has its own register file, and supports
the full feature set as the x4 port.
PCI Express Master specific features
• Host to PCI Express bridge—translates CPU
cycles to PCI Express Memory or configuration
cycles
• Supports DMA bursts between memory and
PCI-Express
• Supports up to four outstanding read transactions
• Maximum read request of up to 128 bytes
• Maximum write request of up to 128 bytes
PCI Express Target specific features
• Supports reception of up to four read requests
• Maximum read request of up to 4 KB
• Maximum write request of up to 128 bytes
• Supports SATA II Phase 2 advanced features
- 3 Gbps SATA II speed
- Port Multiplier (PM)—Performs FIS-Based
Switching as defined in SATA working group PM
definition
- Port Selector (PS)—Issues the protocol-based
OOB sequence to select the active host port
• Supports device 48-bit addressing
• Supports ATA Tag Command Queuing
„
SATA II Host controller
• A single SATA II port
• Enhanced-DMA [EDMA] for the SATA port
• Automatic command execution without host
intervention
MV-S105424-U0 Rev. B
Page 4
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Product Overview
• Command queuing support, for up to 128
•
•
•
•
•
„
„
„
outstanding commands
Separate SATA request/response queues
64-bit addressing support for descriptors and data
buffers in system memory
Read ahead
Advanced interrupt coalescing
Advanced drive diagnostics via the ATA SMART
command
Cryptographic engine
• Hardware implementation on encryption and
authentication engines to boost packet processing
speed
• Dedicated DMA to feed the hardware engines with
data from the internal SRAM memory or from the
DDR memory
• Implements AES, DES, and 3DES encryption
algorithms
• Implements SHA1 and MD5 authentication
algorithms
Three UART interfaces
• 16550 UART compatible
• Each port has two pins for transmit and receive
operations, and two pins for modem control
functions
• One channel also supports DMA
Four Channel Independent DMA controller
• Chaining via linked-lists of descriptors
• Moves data from any interface to any interface
• DMA trigger by software or external hardware
• Supports increment or hold on both Source and
Destination Address
„
Two XOR DMAs
• Useful for RAID application
• Supports XOR operation on up to eight source
blocks
• Supports also iSCSI CRC-32 calculation
„
Interrupt controller
Maskable interrupts to CPU core
(and PCI Express in the case of PCI Express
Endpoint)
„
Four General Purpose 32-bit Timer/Counters
SPI port
• General purpose SPI interface
• Also support boot from SPI ROM
„
„
Two TWSI interfaces
General purpose TWSI master/slave
„
24 Multi-Purpose pins dedicated for peripheral
functions and General Purpose I/O
• Each pin can be configured independently
• GPIO inputs can be used to register interrupts from
external devices, and to generate maskable
interrupts
„
Clock Generation
• Supports internal generation of CPU core clock,
DRAM clock, core clock, GbE clock, USB clock,
and SATA clock from a single 25 MHz reference
clock
• Also supports spread spectrum reference clock
„
Power Down support
• Supports CPU Wait for Interrupt mode (shut down
CPU core clock)
• Selectable gating of clock trees of different
interfaces
• Supports DRAM self-refresh
• Supports PCI-Express, USB, and SATA PHYs shut
down
„
27 x 27 mm FCBGA package, 1mm ball pitch
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 5
MV76100
Hardware Specifications
Table of Contents
Preface.......................................................................................................................................................14
About this Document .......................................................................................................................................14
Related Documentation...................................................................................................................................14
Document Conventions ...................................................................................................................................15
1
Overview....................................................................................................................................... 16
2
Pin Information ............................................................................................................................ 18
2.1
Pin Logic .........................................................................................................................................................19
2.2
Pin Descriptions ..............................................................................................................................................20
3
Unused Interface Strapping........................................................................................................ 39
4
MV76100 Pin Map and Pin List ................................................................................................... 40
5
Clocking ....................................................................................................................................... 41
5.1
Clock Domains ................................................................................................................................................41
5.2
PLLs and Clock Pins .......................................................................................................................................41
6
Pin Multiplexing ........................................................................................................................... 44
6.1
MPP Multiplexing ............................................................................................................................................44
7
System Power Up and Reset Settings ....................................................................................... 49
7.1
Power Up/Down Sequence Requirements......................................................................................................49
7.2
Hardware Reset ..............................................................................................................................................51
7.3
PCI Express Reset ..........................................................................................................................................51
7.4
Pins Sample Configuration..............................................................................................................................52
7.5
Power Up and Boot Sequence ........................................................................................................................57
8
JTAG Interface ............................................................................................................................. 59
9
Electrical Specifications (Preliminary) ...................................................................................... 60
9.1
Absolute Maximum Ratings ............................................................................................................................60
9.2
Recommended Operating Conditions .............................................................................................................62
9.3
Thermal Power Dissipation (Preliminary) ........................................................................................................64
9.4
Current Consumption (Preliminary).................................................................................................................65
9.5
DC Electrical Specifications ............................................................................................................................66
9.6
AC Electrical Specifications ............................................................................................................................70
9.7
Differential Interface Electrical Characteristics..............................................................................................102
MV-S105424-U0 Rev. B
Page 8
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Table of Contents
10
Thermal Data (Preliminary) .......................................................................................................114
11
Package Mechanical Dimensions ............................................................................................115
12
Part Order Numbering/Package Marking ................................................................................116
13
Revision History ........................................................................................................................118
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 9
MV76100
Hardware Specifications
List of Tables
1
Overview............................................................................................................................................ 16
2
Pin Information ................................................................................................................................. 18
3
Table 1:
Pin Functions and Assignments Table Key ......................................................................................20
Table 2:
Interface Pin Prefixes........................................................................................................................20
Table 3:
Power Supply Pins............................................................................................................................22
Table 4:
Miscellaneous Pin Assignments .......................................................................................................24
Table 5:
DDR SDRAM Interface Pin Assignments .........................................................................................26
Table 6:
Device Bus Interface Pin Assignments .............................................................................................28
Table 7:
PCI Express Port 0/1 Interface Pin Assignments .............................................................................30
Table 8:
PCI Express Common Pin Assignments ..........................................................................................30
Table 9:
Gigabit Ethernet Port Interface Pin Assignments .............................................................................31
Table 10:
USB 2.0 Ports 0/1/2 Interface Pin Assignments ...............................................................................35
Table 11:
SATA II Port Interface Pin Assignments ...........................................................................................35
Table 12:
TWSI Interface Pin Assignments ......................................................................................................36
Table 13:
SPI Interface Pin Assignments .........................................................................................................36
Table 14:
UART 0/1/2 Interfaces Pin Assignments ..........................................................................................37
Table 15:
MPP Interface Pin Assignments .......................................................................................................38
Table 16:
JTAG Pin Assignments .....................................................................................................................38
Unused Interface Strapping............................................................................................................. 39
Table 17:
Unused Interface Strapping ..............................................................................................................39
4
MV76100 Pin Map and Pin List ........................................................................................................ 40
5
Clocking............................................................................................................................................. 41
Table 18:
6
Pin Multiplexing ................................................................................................................................ 44
Table 19:
7
HCLK and PCLK Frequencies ..........................................................................................................41
MPP Function Summary ...................................................................................................................45
System Power Up and Reset Settings ............................................................................................49
Table 20:
I/O and Core Voltages ......................................................................................................................49
Table 21:
Reset Configuration ..........................................................................................................................52
8
JTAG Interface .................................................................................................................................. 59
9
Electrical Specifications (Preliminary) ........................................................................................... 60
Table 22:
Absolute Maximum Ratings ..............................................................................................................60
Table 23:
Recommended Operating Conditions...............................................................................................62
Table 24:
Thermal Power Dissipation ...............................................................................................................64
Table 25:
Current Consumption........................................................................................................................65
Table 26:
General 3.3V Interface (CMOS) DC Electrical Specifications...........................................................66
MV-S105424-U0 Rev. B
Page 10
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
List of Tables
10
Table 27:
General 1.8V Interface (CMOS) DC Electrical Specifications...........................................................67
Table 28:
SDRAM DDR2 Interface DC Electrical Specifications ......................................................................68
Table 29:
TWSI Interface 3.3V DC Electrical Specifications.............................................................................69
Table 30:
Reference Clock and Reset AC Timing Specifications .....................................................................70
Table 31:
RGMII AC Timing Table....................................................................................................................73
Table 32:
MII AC Timing Table ........................................................................................................................75
Table 33:
GMII AC Timing Table ......................................................................................................................77
Table 34:
SMI Master Mode AC Timing Table..................................................................................................79
Table 35:
SDRAM DDR2 400 MHz Interface AC Timing Table ........................................................................81
Table 36:
SDRAM DDR2 400 MHz Interface Address and Control Timing Table ............................................82
Table 37:
SDRAM DDR2 400 MHz Clock Specifications..................................................................................83
Table 38:
SDRAM DDR2 333 MHz Interface AC Timing Table ........................................................................84
Table 39:
SDRAM DDR2 333 MHz Interface Address and Control Timing Table ............................................85
Table 40:
SDRAM DDR2 333 MHz Clock Specifications..................................................................................86
Table 41:
SDRAM DDR2 266 MHz Interface AC Timing Table ........................................................................87
Table 42:
SDRAM DDR2 200 MHz Interface AC Timing Table ........................................................................88
Table 43:
SPI (Master Mode) AC Timing Table ................................................................................................91
Table 44:
TWSI Master AC Timing Table .........................................................................................................94
Table 45:
TWSI Slave AC Timing Table ...........................................................................................................94
Table 46:
Device Bus Interface AC Timing Table (when using TCLK_OUT as the reference clock) ...............97
Table 47:
Device Bus Interface AC Timing Table (when using TCLK_IN as the reference clock) ...................97
Table 48:
JTAG Interface 30 MHz AC Timing Table ......................................................................................100
Table 49:
PCI Express Interface Differential Reference Clock Characteristics ..............................................102
Table 50:
PCI Express Interface Spread Spectrum Requirements.................................................................103
Table 51:
PCI Express Interface Driver and Receiver Characteristics ...........................................................104
Table 52:
SATA I Interface Gen1i Mode Driver and Receiver Characteristicss..............................................106
Table 53:
SATA I Interface Gen1m Mode Driver and Receiver Characteristics .............................................107
Table 54:
SATA II Interface Gen2i Mode Driver and Receiver Characteristics ..............................................108
Table 55:
SATA II Interface Gen2m Mode Driver and Receiver Characteristics ............................................109
Table 56:
USB Low Speed Driver and Receiver Characteristics ....................................................................110
Table 57:
USB Full Speed Driver and Receiver Characteristics.....................................................................111
Table 58:
USB High Speed Driver and Receiver Characteristics ...................................................................112
Thermal Data (Preliminary) ............................................................................................................114
Table 59:
11
12
Package Mechanical Dimensions .................................................................................................115
Part Order Numbering/Package Marking......................................................................................116
Table 60:
13
Thermal Data for the MV76100 in FCBGA Package ......................................................................114
MV76100 Part Order Options .........................................................................................................116
Revision History .............................................................................................................................118
Table 61:
Revision History ..............................................................................................................................118
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 11
MV76100
Hardware Specifications
List of Figures
1
Overview........................................................................................................................................... 16
Figure 1:
2
MV76100 Application Example ........................................................................................................17
Pin Information ................................................................................................................................ 18
Figure 2:
MV76100 Interface Pin Logic Diagram ............................................................................................19
3
Unused Interface Strapping............................................................................................................ 39
4
MV76100 Pin Map and Pin List ....................................................................................................... 40
5
Clocking............................................................................................................................................ 41
Figure 3:
MV76100 Clocks...............................................................................................................................42
6
Pin Multiplexing ............................................................................................................................... 44
7
System Power Up and Reset Settings ........................................................................................... 49
Figure 4:
8
JTAG Interface ................................................................................................................................. 59
Figure 5:
9
Power Up Sequence Example ..........................................................................................................50
MV76100 TAP Controller ..................................................................................................................59
Electrical Specifications (Preliminary) .......................................................................................... 60
Figure 6:
TCLK_Out Reference Clock Test Circuit ..........................................................................................71
Figure 7:
TCLK_Out AC Timing Diagram ........................................................................................................72
Figure 8:
RGMII Test Circuit ............................................................................................................................73
Figure 9:
RGMII AC Timing Diagram ...............................................................................................................74
Figure 10:
MII Test Circuit..................................................................................................................................75
Figure 11:
MII Output Delay AC Timing Diagram ..............................................................................................75
Figure 12:
MII Input AC Timing Diagram ...........................................................................................................76
Figure 13:
GMII Test Circuit ...............................................................................................................................77
Figure 14:
GMII Output AC Timing Diagram ......................................................................................................78
Figure 15:
GMII Input AC Timing Diagram.........................................................................................................78
Figure 16:
MDIO Master Mode Test Circuit .......................................................................................................79
Figure 17:
MDC Master Mode Test Circuit ........................................................................................................80
Figure 18:
SMI Master Mode Output AC Timing Diagram .................................................................................80
Figure 19:
SMI Master Mode Input AC Timing Diagram ....................................................................................80
Figure 20:
SDRAM DDR2 Interface Test Circuit ................................................................................................89
Figure 21:
SDRAM DDR2 Interface Write AC Timing Diagram .........................................................................89
Figure 22:
SDRAM DDR2 Interface Address and Control AC Timing Diagram .................................................89
Figure 23:
SDRAM DDR2 Interface Read AC Timing Diagram .........................................................................90
Figure 24:
SPI (Master Mode) Test Circuit ........................................................................................................91
Figure 25:
SPI (Master Mode) Normal Output AC Timing Diagram ...................................................................92
MV-S105424-U0 Rev. B
Page 12
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
List of Figures
Figure 26:
10
11
SPI (Master Mode) Opposite Output AC Timing Diagram ................................................................93
Figure 28:
SPI (Master Mode) Opposite Input AC Timing Diagram ...................................................................93
Figure 29:
TWSI Test Circuit..............................................................................................................................95
Figure 30:
TWSI Output Delay AC Timing Diagram...........................................................................................95
Figure 31:
TWSI Input AC Timing Diagram .......................................................................................................96
Figure 32:
Device Bus Interface Test Circuit .....................................................................................................98
Figure 33:
Device Bus Interface Output Delay AC Timing Diagram ..................................................................98
Figure 34:
Device Bus Interface Input AC Timing Diagram ...............................................................................99
Figure 35:
JTAG Interface Test Circuit ............................................................................................................100
Figure 36:
JTAG Interface Output Delay AC Timing Diagram .........................................................................101
Figure 37:
JTAG Interface Input AC Timing Diagram ......................................................................................101
Figure 38:
PCI Express Interface Test Circuit..................................................................................................105
Thermal Data (Preliminary) ........................................................................................................... 114
Package Mechanical Dimensions ................................................................................................ 115
Figure 42:
12
13
SPI (Master Mode) Normal Input AC Timing Diagram......................................................................92
Figure 27:
655 Pin FCBGA Package and Dimensions ....................................................................................115
Part Order Numbering/Package Marking..................................................................................... 116
Figure 43:
Sample Part Number ......................................................................................................................116
Figure 44:
MV76100 Commercial Package Marking and Pin 1 Location.........................................................117
Revision History ............................................................................................................................ 118
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 13
MV76100
Hardware Specifications
Preface
About this Document
The MV76100 Hardware Specifications provides a features list, overview, pin description, ball map,
and electrical specifications for the MV76100 device. This datasheet also includes information on
configuration settings and physical specifications.
It is intended to be the basic source of information for designers of new systems.
In this document, the MV76100 is often referred to as “the device”.
Related Documentation
The following documents contain additional information related to the MV76100:
„
MV76100, MV78100, and MV78200 Functional Specification (Doc. No. MV-S800598-U0)
MV76100, MV78100, and MV78200 Design Guide (Doc. No. MV-S301291-00)1
„
TB-235: Differences Between the MV76100, MV78100, and MV78200 Revisions A0 and A1
(Doc. No. MV-S105821-00)1
See the Marvell® Extranet website for the latest product documentation.
„
1. This document is a Marvell proprietary confidential document requiring an NDA and can be downloaded from the
Marvell Extranet.
MV-S105424-U0 Rev. B
Page 14
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Preface
Document Conventions
Document Conventions
The following conventions are used in this document:
Signal Range
A signal name followed by a range enclosed in brackets represents a range of logically related
signals. The first number in the range indicates the most significant bit (MSb) and the last
number indicates the least significant bit (LSb).
Example: DB_Addr[12:0]
Active Low Signals #
An n letter at the end of a signal name indicates that the signal’s active state occurs when
voltage is low.
Example: INTn
State Names
State names are indicated in italic font.
Example: linkfail
Register Naming
Conventions
Register field names are indicated by angle brackets.
Example: <RegInit>
Register field bits are enclosed in brackets.
Example: Field [1:0]
Register addresses are represented in hexadecimal format.
Example: 0x0
Reserved: The contents of the register are reserved for internal use only or for future use.
A lowercase <n> in angle brackets in a register indicates that there are multiple registers with
this name.
Example: Multicast Configuration Register<n>
Reset Values
Reset values have the following meanings:
0 = Bit clear
1 = Bit set
Abbreviations
Gb: gigabit
GB: gigabyte
Kb: kilobit
KB: kilobyte
Mb: megabit
MB: megabyte
Numbering Conventions
Unless otherwise indicated, all numbers in this document are decimal (base 10).
An 0x prefix indicates a hexadecimal number.
An 0b prefix indicates a binary number.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 15
MV76100
Hardware Specifications
1
Overview
The MV76100 device provides a single-chip, high-performance, cost-effective solution for different
type of applications, such as printers, routers, web switches, storage applications, and Network
Attached Storage (NAS) devices.
The MV76100 integrates a dual-issue, ARMv5 compatible CPU, with integrated double-precision
FPU, and 256 KB of L2 cache. The MV76100 supports the following interfaces:
„
32-bit DDR2 SDRAM interface with an additional 8-bit ECC option
„
8/16/32-bit device bus interface
„
A single PCI Express x4 interface (that can act as four x1 interfaces) and an additional single
PCI Express x1 interface
„
Three USB 2.0 ports
„
One SATA II port
„
Two Gigabit Ethernet MACs
Additionally, the MV76100 integrates:
„
A cryptographic hardware accelerator
„
Two XOR DMA engines
„
Four IDMA engines
„
Three 16550 compatible UARTs; one interface can support DMA-based transmit
„
SPI port
„
Two TWSI ports
„
Four general purpose timers/counters
„
A watchdog timer
„
An interrupt controller
The MV76100 architecture is based on an Mbus fabric connecting all of the units. Each unit is
connected to the Mbus via a full duplex 64-bit data path.
The Mbus architecture enables concurrency of transactions between multiple units, resulting in high
accumulative throughput. It also supports split transactions with out-of-order completion.
For low latency CPU-to-DRAM access, the MV76100 also implements a dedicated point-to-point,
64-bit full duplex data path, between the ARM compliant CPU core and the DRAM controller. The
CPU Bus Interface Unit (BIU) and DRAM controller complex run synchronously. This
implementation guarantees minimum CPU-to-DRAM latency, which is critical in embedded
applications.
MV-S105424-U0 Rev. B
Page 16
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Overview
A typical application is shown in Figure 1.
Figure 1: MV76100 Application Example
DDR2 DIMM
USB Host
USB Client
USB Client
MV76100
L
a
t
c
h
®
Alaska
PHY
RGMII
Boot ROM
SATA
x1
PCIe
ASIC
x1
PCI-E
PCI-E
PCI-E
device
PCIe
device
device
device
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 17
MV76100
Hardware Specifications
2
Pin Information
This section provides the pin logic diagram for MV76100 and a detailed description of the pin
assignments and their functionality.
MV-S105424-U0 Rev. B
Page 18
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Logic
2.1
Pin Logic
4 PCI Express Port0 Lanes
<n> = 0 thru 3
Figure 2: MV76100 Interface Pin Logic Diagram
PEX_CLK_P
PEX_CLK_N
PEX0_TX<n>_P
PEX0_TX<n>_N
PEX0_RX<n>_P
PEX0_RX<n>_N
PEX0_ISET
PEX1_TX_P
PEX1_TX_N
PEX1_RX_P
PEX1_RX_N
PEX1_ISET
PEX_TP
REF_CLK_SSC
Misc.
TCLK_OUT
TCLK_IN
PCI
Express0/1
USB_DP
USB_DM
DEV_BootCSn
DEV_OEn
DEV_WEn[3:0]
Device
PEX_HSDACP
MPP[23:0]
USB0/1/2
DEV_CSn[3:0]
PEX_HSDACN
TWSIx_SDA
TWSIx_SCK
REF_CLK_PT
SYSRSTn
DEV_ALE[1:0]
DEV_AD[31:0]
DEV_A[2:0]
DEV_READYn
TWSI
DEV_BURSTn/
DEV_LASTn
GE0_TXCLKOUT
GE0_TXCLK
MPP
GE0_TXD[3:0]
GE0_TXD[7:4]
UA0_RXD
UA0_TXD
UA1_RXD
UA1_TXD
UART
Gigabit Ethernet
GE0_COL
GE_MDC
GE_MDIO
JT_CLK
JT_TDI
JT_TDO
JT_TMS_CPU
JT_TMS_CORE
JT_RSTn
GE0_TXERR
GE0_TXCTL/GE0_TXEN
GE0_RXD[3:0]
GE0_RXD[7:4]
GE0_RXERR
GE0_RXCTL/GE0_RXDV
GE0_RXCLK
JTAG
M_VREF
M_CLKOUT[2:0]
M_CLKOUTn[2:0]
M_CKE[3:0]
M_RASn
SATA_TX_P
SATA_TX_N
SATA_RX_P
SATA_RX_N
SATA_USB_TP
SATA_USB_RES
SATA
SDRAM
M_CASn
M_WEn
M_A[14:0]
M_BA[2:0]
M_CSn[3:0]
M_DQ[31:0]
M_CB[7:0]
M_DQS[4:0]
M_DQSn[4:0]
SPI_CSn
SPI_CLK
SPI_MOSI
SPI_MISO
M_DM[4:0]
SPI
M_ODT[3:0]
M_STARTBURST
M_STARTBURST_IN
M_PCAL
M_NCAL
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 19
MV76100
Hardware Specifications
2.2
Pin Descriptions
This section details all the pins for the different interfaces providing a functional description of each
pin and pin attributes.
Table 1 lists the conventions used to identify I/O or O type pins.
Table 1:
Pin Functions and Assignments Table Key
Te r m
D e fi n it io n
<n>
Represents port number
Analog
Analog Driver/Receiver or Power Supply
Calib
Calibration pad type
CML
Common Mode Logic
CMOS
Complementary Metal-Oxide-Semiconductor
DDR
Double Data Rate
GND
Ground Supply
HCSL
High-speed Current Steering Logic
I
Input
I/O
Input/Output
O
Output
o/d
Open Drain pin
The pin allows multiple drivers simultaneously (wire-OR connection).
A pull-up is required to sustain the inactive value.
Power
VDD Power Supply
SDR
Single Data Rate
SSTL
Stub Series Terminated Logic for 1.8V
t/s
Tri-State pin
TS
Tri-State Value
XXXn
n - Suffix represents an Active Low Signal
Table 2:
Interface Pin Prefixes
In t e r f a c e
Prefix
DDR SDRAM
M_
PCI Express
PEX_
Gigabit Ethernet
GE_
USB 2.0
USB_
TWSI
TWSI_
SPI
SPI_
MV-S105424-U0 Rev. B
Page 20
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Descriptions
Table 2:
Interface Pin Prefixes (Continued)
In t e r f a c e
Prefix
UART
UA_
Device Bus
DEV_
MPP
N/A
JTAG
JT_
Misc
N/A
SATA
SATA_
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 21
MV76100
Hardware Specifications
2.2.1
Power Supply Pins
Table 3 provides the voltage levels for the various interface pins. These also include the analog
power supplies for the PLLs or PHYS.
Table 3:
Power Supply Pins
Pin Name
Pi n Ty p e
D es c r ip t i o n
VDD_CPU
Power
1.0V CPU voltage
VDD_CPU
Power
1.1V CPU voltage
VDD
Power
1.0V core voltage
VDD_GE
Power
1.8V or 3.3V I/O supply voltage for the Ethernet interface (for the exact reset
configuration, refer to Section 7.4, Pins Sample Configuration)
VDD_M
Power
1.8V I/O supply voltage for the DRAM interface
VDDO_A
Power
3.3V I/O supply voltage for the TWSI1, SPI, JTAG interfaces
VDDO_B
Power
1.8V or 3.3V I/O supply voltage for Device Bus[31:16], TWSI0 (for the exact
reset configuration, refer to Section 7.4, Pins Sample Configuration)
VDDO_C
Power
1.8V or 3.3V I/O supply voltage for the Device Bus[15:0], Device Bus
controls, MPP[23:12], UART, and system signals:
• REF_CLK_SSC
• REF_CLK_PT
• SYSRSTn
• TCLK_OUT
• TCLK_IN
(For the exact reset configuration, refer to Section 7.4, Pins Sample
Configuration.)
VDDO_D
Power
1.8V or 3.3V I/O supply voltage for MPP[11:0] (for the exact reset
configuration, refer to Section 7.4, Pins Sample Configuration)
VSS
GND
PLL_AVDD
Power
PCLK PLL quiet power supply 1.8V
NOTE: Implement the PLL filter as described in the MV76100, MV78100,
and MV78200 Design Guide.
PLL_AVSS
GND
PCLK PLL quiet VSS
NOTE: Implement the PLL filter as described in the MV76100, MV78100,
and MV78200 Design Guide.
IREF_AVDD
Power
SATA and USB PHYs current source voltage filtered 1.8V
NOTE: Implement the PLL filter as described in the MV76100, MV78100,
and MV78200 Design Guide.
M_VREF
Power
SSTL Reference Voltage
Reference voltage for SSTL interface, typically VDD_M/2.
Note: See the MV76100, MV78100, and MV78200 Design Guide for the
VREF recommended topology.
PEX0_AVDD
PEX1_AVDD
Power
PCI Express PHY quiet power supply 1.8V.
NOTE: See the MV76100, MV78100, and MV78200 Design Guide for
power supply filtering recommendations.
MV-S105424-U0 Rev. B
Page 22
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Descriptions
Table 3:
Power Supply Pins
Pin Name
Pi n Ty p e
D es c r ip t i o n
USB0_AVDD
USB1_AVDD
USB2_AVDD
Power
USB 2.0 PHY quiet 3.3V power supply.
NOTE: See the MV76100, MV78100, and MV78200 Design Guide for power
supply filtering recommendation.
SATA_AVDD
Power
SATA quiet 2.5V power supply
NOTE: See MV76100, MV78100, and MV78200 Design Guide for power
supply filtering recommendation.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 23
MV76100
Hardware Specifications
2.2.2
Miscellaneous Pin Assignment
The Miscellaneous signal list contains clocks, reset, and PLL related signals.
Table 4:
Miscellaneous Pin Assignments
Pin Name
I/O
P in
Ty p e
Power
Rail
D e s cr ip t i o n
REF_CLK_SSC
I
CMOS
VDDO_C
25 MHz reference clock input for TCLK PLL and PCLK (CPU core,
Mbus-L, and SDRAM clock) PLL. Supports a SSC source clock.
NOTE: REF_CLK_SSC voltage swing is according to VDDO_C.
REF_CLK_PT
I
CMOS
VDDO_C
25 MHz reference clock input for USB 2.0 PHY, GbE interface,
and SATA PHY. Must be a pure tone clock.
NOTES:
• If the SSC clock is not required, REF_CLK_PT can be
configured via reset strapping to also drive the PCLK and TCLK
PLLs. In this configuration, tie REF_CLK_SSC to VSS.
• REF_CLK_PT voltage swing is according to VDDO_C.
SYSRSTn
I
CMOS
VDDO_C
System Reset
Main reset signal of the device.
Used to reset all units to their initial state.
NOTE: For reset timing, see in the MV76100, MV78100, and
MV78200 Design Guide.
SYSRST_OUTn
O
CMOS
See
descrpition
Open Drain Reset Output
Reset request from the device to the board reset logic.
The power rail in use is determined by the MPP pin used for
SYSRST_OUTn:
• VDDO_B (DEV_AD[21], DEV_AD[24], DEV_AD[29],
DEV_AD[30], DEV_AD[31])
• VDDO_C (MPP[13])
TCLK_OUT
O
CMOS
VDDO_C
TCLK PLL Output.
NOTES:
• TCLK_OUT pin can be configured to drive a clock running at 1:N
of TCLK rate, rather than TCLK PLL output.
• If using an external TCLK_IN core clock input rather than the
internally generated TCLK, leave TCLK_OUT not connected.
TCLK_OUT voltage swing is according to VDDO_C.
TCLK_IN
I
CMOS
VDDO_C
Core Clock Input (150 MHz–200 MHz). An alternative to the
internally generated TCLK. De-skewed inside the chip to 0 skew
between the input to the internal clock tree. Useful for high speed
synchronous interface operation.
NOTES:
• If using the internally generated TCLK, connect TCLK_IN to
VSS.
• The TCLK_IN voltage swing is according to VDDO_C.
THERMAL_A
THERMAL_C
I
Analog
Temperature diode anode/cathode
THERMAL_A and THERMAL_C provide connectivity to the on-chip
temperature diode that can be used to determine the die junction
temperature.
NOTE: When unused can be left unconnected.
MV-S105424-U0 Rev. B
Page 24
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Descriptions
Table 4:
Miscellaneous Pin Assignments (Continued)
Pin Name
I/O
P in
Ty p e
Power
Rail
D e s cr ip t i o n
SATA_USB_TP
O
Analog
SATA and USB test point
NOTE: Can be left unconnected.
SATA_USB_RES
I
Analog
Pull-down resistor for the SATA and USB reference current.
6.04 kilohm pull-down to VSS with resistor accuracy of 1%.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 25
MV76100
Hardware Specifications
2.2.3
Table 5:
DDR SDRAM Interface Pin Assignments
DDR SDRAM Interface Pin Assignments
Pin Name
I/ O
P in Ty p e
P ow e r
Rail
Description
M_CLKOUT[2:0]
M_CLKOUTn[2:0]
O
SSTL
VDD_M
Three pairs of DRAM differential clocks.
When not using all clock pairs use one of the following strapping
configurations and register setting for the unused pair/s:
• Leave the unused pair unconnected. In addition, for the
unused pair, set <Clk1Drv> bit[12] or <Clk2Drv> bit[13] to 1
(driven normally), in the DDR Controller Control (Low) (Offset:
0x1404).
• Connect the unused pair to pull down. In addition, for the
unused pair, set <Clk1Drv> bit[12] or <Clk2Drv> bit[13] to 0
(high-z).
NOTE: M_CLKOUT[0] and M_CLKOUTn[0] cannot be disabled
and is always driven.
M_CKE[3:0]
O
SSTL
VDD_M
Driven by the MV76100 device high to enable DRAM clock.
Driven low when setting the DRAM in self refresh mode.
NOTES:
• All four CKE pins are driven together (no separate self refresh
per each DRAM bank).
• When unused can be left unconnected.
M_RASn
O
SSTL
VDD_M
SDRAM Row Address Select
Asserted to indicate an active ROW address driven on the
SDRAM address lines.
M_CASn
O
SSTL
VDD_M
SDRAM Column Address Select
Asserted to indicate an active column address driven on the
SDRAM address lines.
M_WEn
O
SSTL
VDD_M
SDRAM Write Enable
Asserted to indicate a write command to the SDRAM.
M_A[14:0]
O
SSTL
VDD_M
SDRAM Address
Driven during RASn and CASn cycles to generate, together with
the bank address bits, the SDRAM address.
M_BA[2:0]
O
SSTL
VDD_M
Driven by the MV76100 device during M_RASn and M_CASn
cycles to select one of the eight DRAM virtual banks.
NOTE: If an SDRAM device does not support the BA[2] pin, leave
the M_BA[2] unconnected.
M_CSn[3:0]
O
SSTL
VDD_M
SDRAM Chip Selects
Asserted to select a specific SDRAM bank.
NOTE: When unused can be left unconnected.
M_DQ[31:0]
t/s
I/O
SSTL
VDD_M
SDRAM Data Bus
Driven during write to SDRAM.
Driven by SDRAM during reads.
MV-S105424-U0 Rev. B
Page 26
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Descriptions
Table 5:
DDR SDRAM Interface Pin Assignments (Continued)
Pin Name
I/ O
P in Ty p e
P ow e r
Rail
Description
M_CB[7:0]
t/s
I/O
SSTL
VDD_M
DRAM ECC
Driven by the MV76100 during write to SDRAM.
Driven by SDRAM during reads.
NOTE: When ECC is unused, leave M_CB[7:0] unconnected.
M_DQS[4:0],
M_DQSn[4:0]
t/s
I/O
SSTL
VDD_M
SDRAM Data Strobe
Driven by the MV76100 during write to SDRAM.
Driven by SDRAM during reads.
NOTE: When ECC is unused, leave M_DQS[4] unconnected.
M_DM[4:0]
O
SSTL
VDD_M
SDRAM Data Mask
Asserted by the MV76100 to select the specific bytes out of the
40-bit data/ECC to be written to the SDRAM.
NOTE: When ECC is unused, leave M_DM[4] unconnected.
M_ODT[3:0]
O
SSTL
VDD_M
SDRAM On Die Termination Control
Driven by the MV76100 device high to connect DRAM on die
termination, and low to disconnect the DRAM termination.
NOTES:
• For the recommended setting, refer to the MV76100,
MV78100, and MV78200 Design Guide.
• When unused can be left unconnected.
M_STARTBURST
O
SSTL
VDD_M
MV76100 indication of starting a burst.
NOTE: For the exact length calculation for routing and
termination requirements, see the MV76100, MV78100,
and MV78200 Design Guide.
M_START
BURST_IN
I
SSTL
VDD_M
M_STARTBURST signal routed back to MV76100. Used as a
reference signal for the incoming read data driven by the
SDRAM.
NOTE: For the exact length calculation for routing and
termination requirements, see the MV76100, MV78100,
and MV78200 Design Guide.
M_BB
I
CMOS
VDDO_C
SDRAM battery backup trigger
NOTE: This signal is multiplexed on the MPP pins, see Section 6,
Pin Multiplexing, on page 44.
M_PCAL
I
Calib
DRAM interface signals P channel output driver calibration.
Connect to VSS through a 35–70 Ω resistor.
NOTE: See the MV76100, MV78100, and MV78200 Design
Guide for the recommended values of the calibration
resistors.
M_NCAL
I
Calib
DRAM interface signals N channel output driver calibration.
Connect to VDD_M through a 35–70 Ω resistor..
NOTE: See the MV76100, MV78100, and MV78200 Design
Guide for the recommended values of the calibration
resistors.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 27
MV76100
Hardware Specifications
2.2.4
Device Bus Interface Pin Assignments
Note
If using a 16-bit Device Bus, DEV_AD[23:16] and DEV_WEn[3:2] can be used for pins
multiplexing (as MPP pins). If using an 8-bit Device Bus also DEV_AD[15:9] and
DEV_WEn[1] can be used for pins multiplexing (see Section 6, Pin Multiplexing,
on page 44 for more details).
NAND Flash interface signals are multiplexed on the Device Bus interface and on MPP
pins. Refer to the NAND Flash section in the MV76100, MV78100, and MV78200
Functional Specifications for more information.
Table 6:
Device Bus Interface Pin Assignments
Pin Name
I/ O
P in Ty p e
P ow e r
Rail
Description
DEV_CSn[3:0]
O
CMOS
VDDO_C
Device Bus Chip Select corresponds to Bank [3:0].
NOTE: These pins have internal pullup resistors.
DEV_BootCSn
O
CMOS
VDDO_C
Device Bus Boot Chip Select corresponds to Boot Bank.
NOTE: This pin has an integrated pullup resistor.
DEV_OEn/
DEV_A[15]
O
CMOS
VDDO_C
Device Bus Output Enable
NOTE: This pin has an integrated pullup resistor.
Used as DEV_A[15] (device address bus) during first ALE cycle
(DEV_ALE[1]).
DEV_WEn[3:0]/
DEV_A[16]
O
CMOS
VDDO_C
Device Bus Byte Write Enable (bit per byte)
NOTE: These pins have integrated pullup/pulldown resistors.
See details in Table 21, Reset Configuration, on page 52.
DEV_WEn[0] is used as DEV_A[16] (device address bus) during
first ALE cycle (DEV_ALE[1]).
DEV_ALE[1:0]
O
CMOS
VDDO_C
Device Bus Address Latch Enable
NOTE: These pins have integrated pullup/pulldown resistors.
See details in Table 21, Reset Configuration, on page 52.
DEV_AD[7:0]/
DEV_A[13:6]/
DEV_A[26:19]
t/s
I/O
CMOS
VDDO_C
Used as DEV_AD[7:0] (device data bus) during the data phase.
Driven by MV76100 on write access, and by the device on read
access.
NOTE: These pins have integrated pullup/pulldown resistors.
See details in Table 21, Reset Configuration, on page 52.
Used as DEV_A[13:6] (device address bus) during first ALE cycle
(DEV_ALE[1]).
Used as DEV_A[26:19] (device address bus) during second ALE
cycle (DEV_ALE[0]).
MV-S105424-U0 Rev. B
Page 28
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Descriptions
Table 6:
Device Bus Interface Pin Assignments (Continued)
Pin Name
I/ O
P in Ty p e
P ow e r
Rail
Description
DEV_AD[15:8]/
DEV_A[14]/
DEV_A[15])
t/s
I/O
CMOS
VDDO_C
Used as DEV_AD[15:8] (device data bus) during the data phase.
Driven by MV76100 on write access, and by the device on read
access.
NOTE: These pins have integrated pullup/pulldown resistors.
See details in Table 21, Reset Configuration, on page 52.
DEV_AD[8] is used as DEV_A[14] (device address bus) during
first ALE cycle (DEV_ALE[1]).
DEV_AD[8] is used as DEV_A[15] (device address bus) during
second ALE cycle (DEV_ALE[0]).
DEV_AD[31:16]
t/s
I/O
CMOS
VDDO_B
DEV_A[2:0]/
DEV_A[5:3]/
DEV_A[18:16]
t/s
I/O
CMOS
VDDO_C
Used as DEV_AD[31:16] (device data bus) during the data
phase.
Driven by MV76100 on write access, and by the device on read
access.
NOTE: When using Device Bus as a 8/16b interface,
DEV_AD[23:16] can be used for other functions. See
Section 6, Pin Multiplexing.
These pins have integrated pullup/pulldown resistors.
See details in Table 21, Reset Configuration, on page 52.
Device Bus Address Bus
Used as DEV_A[2:0] during the data phase.
DEV_A[2:0] is not latched, but connected directly to the device. It
is an incrementing address in case of burst access.
NOTE:
These pins have integrated pullup/pulldown resistors.
See details in Table 21, Reset Configuration, on page 52.
Device Bus Address
Used as DEV_A[5:3] during the first ALE cycle (DEV_ALE[1]).
Device Bus address
Used as DEV_A[18:16] during the second ALE cycle
(DEV_ALE[0]).
DEV_READYn
I
CMOS
VDDO_C
Device READY
Used as cycle extender when interfacing a slow device.
NOTE: When inactive during a device access, access is
extended until DEV_READYn assertion.
This pin has an integrated pulldown resistor.
DEV_BURSTn/
DEV_LASTn
O
CMOS
VDDO_C
Device Burst/Device Last
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 29
MV76100
Hardware Specifications
2.2.5
Table 7:
PCI Express Interface Pin Assignments
PCI Express Port 0/1 Interface Pin Assignments
Pin Name
I/ O
P in Ty p e
P ow e r R a il
D e s c r i p t io n
PEX0_CLK_P
PEX0_CLK_N
I
HCSL
PEX0_AVDD
PCI Express Port0 Reference Clock Input
100 MHz, differential pair
PEX0_TX<n>_P1
PEX0_TX<n>_N
O
CML
PEX0_AVDD
Port0 Transmit Lane 0/1/2/3
Differential pair of PCI Express transmit data
PEX0_RX<n>_P
PEX0_RX<n>_N
I
CML
PEX0_AVDD
Port0 Receive Lane 0/1/2/3
Differential pair of PCI Express receive data
Port0
PEX0_ISET
Analog
Reference Current
4.99 kilohm pull-down to VSS with resistor accuracy of
1%.
Port1
PEX1_CLK_P
PEX1_CLK_N
I
HCSL
PEX1_AVDD
PCI Express Port1 Reference Clock Input
100 MHz, differential pair
PEX1_TX_P
PEX1_TX_N
O
CML
PEX1_AVDD
Port1 Transmit Lane
Differential pair of PCI Express transmit data
PEX1_RX_P
PEX1_RX_N
I
CML
PEX1_AVDD
Port1 Receive Lane
Differential pair of PCI Express receive data
PEX1_ISET
Analog
Reference Current
4.99 kilohm pull-down to VSS with resistor accuracy of
1%.
1. This port contains four lanes. It can be configured to x4 or to Quad x1. For details on this port’s configuration, see
Table 21, Reset Configuration, on page 52.
Table 8:
PCI Express Common Pin Assignments
Pin Name
I/ O
P in Ty p e
P ow e r R a il
D e s c r i p t io n
PEX_TP
O
Analog
Analog Test Point
Test point signals should be left unconnected
PEX_HSDACP
PEX_HSDACN
O
CML
High Speed DAC
NOTE: See the MV76100, MV78100, and MV78200
Design Guide for the recommended connectivity.
MV-S105424-U0 Rev. B
Page 30
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Descriptions
2.2.6
Gigabit Ethernet Port Interface Pin Assignments
Note
Table 9:
Some GbE interface pins are connected to the VDD_GE power rail and some pins are
connected to the VDDO_D power rail.
Gigabit Ethernet Port Interface Pin Assignments
Pin Name
I/O
P in
Ty p e
Power
R a il
Description
GE0_TXCLKOUT
t/s
O
CMOS
VDD_GE
RGMII Transmit Clock
RGMII transmit reference output clock for GE0_TXD[3:0] and
GE0_TXCTL Provides 125 MHz, 25 MHz or 2.5 MHz clock.
Not used in MII mode.
GMII Transmit Clock
Provides the timing reference for the transfer of the GE0_TXEN,
GE0_TXERR, and GE0_TXD[7:0] signals. This clock operates at
125 MHz.
GE0_TXCLK
I
CMOS
VDD_GE
MII Transmit Clock
MII transmit reference clock from PHY.
Provides the timing reference for the transmission of the
GE0_TXEN, GE0_TXERR, and GE0_TXD[3:0] signals. This clock
operates at 2.5 MHz or 25 MHz.
GE0_TXD[3:0]
t/s
O
CMOS
VDD_GE
RGMII Transmit Data
Contains the transmit data nibble outputs that run at double data
rate with bits [3:0] presented on the rising edge of
GE0_TXCLKOUT and bits [7:4] presented on the falling edge.
NOTE: These pins have integrated pullup/pulldown resistors. See
details in Table 21, Reset Configuration, on page 52.
MII Transmit Data
Contains the transmit data nibble outputs that are synchronous to
the GE0_TXCLK input.
GMII Transmit Data
Contains the transmit data nibble outputs that are synchronized to
GE0_TXCLKOUT.
GE0_TXD[7:4]
t/s
O
CMOS
VDDO_D
GMII Transmit Data
Contains the transmit data nibble outputs that are synchronized to
GE0_TXCLKOUT.
NOTE: Multiplexed on MPP.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 31
MV76100
Hardware Specifications
Table 9:
Gigabit Ethernet Port Interface Pin Assignments (Continued)
Pin Name
I/O
P in
Ty p e
Power
R a il
Description
GE0_TXCTL/
GE0_TXEN
t/s
O
CMOS
VDD_GE
RGMII Transmit Control
Transmit control synchronous to the GE0_TXCLKOUT output
rising/falling edge.
GE0_TXCTL is presented on the rising edge of GE0_TXCLKOUT.
A logical derivative of GE0_TXEN and GE0_TxER is presented on
the falling edge of GE0_TXCLKOUT.
NOTE: Internally pulled down to 0x0.
MII Transmit Enable
Indicates that the packet is being transmitted to the PHY. It Is
synchronous to GE0_TXCLK.
GMII Transmit Enable
Indicates that the packet is being transmitted to the PHY.
It Is synchronous to GE0_TXCLKOUT.
GE0_TXERR
t/s
O
CMOS
VDDO_D
MII Transmit Error
It is synchronous to GE0_TXCLK.
NOTE: Multiplexed on MPP.
GMII Transmit Error
It Is synchronous to GE0_TXCLKOUT.
NOTE: Multiplexed on MPP.
GE0_CRS
I
CMOS
VDDO_D
MII Carrier Sense
Indicates that the receive medium is non-idle. In half-duplex mode,
GE0_CRS is also asserted during transmission. GE0_CRS is not
synchronous to any clock.
NOTE: Multiplexed on MPP.
GMII Carrier Sense
NOTE: Multiplexed on MPP.
GE0_RXD[3:0]
I
CMOS
VDD_GE
RGMII Receive Data
Contains the receive data nibble inputs that are synchronous to
GE0_RXCLK input rising/falling edge.
MII Receive Data
Contains the receive data nibble inputs that are synchronous to
GE0_RXCLK input.
GMII Receive Data
Contains the receive data nibble inputs that are synchronous to
GE0_RXCLK input.
GE0_RXD[7:4]
I
CMOS
VDDO_D
GMII Receive Data
Contains the receive data nibble inputs that are synchronous to
GE0_RXCLK input.
NOTE: Multiplexed on MPP.
MV-S105424-U0 Rev. B
Page 32
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Descriptions
Table 9:
Gigabit Ethernet Port Interface Pin Assignments (Continued)
Pin Name
I/O
P in
Ty p e
Power
R a il
Description
GE0_RXERR
I
CMOS
VDDO_D
MII Receive Error
Indicates that an error symbol, a false carrier, or a carrier
extension symbol is detected on the cable. It is synchronous to
GE0_RXCLK input.
NOTE: Multiplexed on MPP.
GMII Receive Error
It is synchronous to GE0_RXCLK input.
NOTE: Multiplexed on MPP.
GE0_RXCTL/
GE0_RXDV
I
CMOS
VDD_GE
RGMII Receive Control
GE0_RXCTL is presented on the rising edge of GE0_RXCLK. A
logical derivative of GE0_RXDV and GE0_RXERR is presented on
the falling edge of RXCLK.
MII Receive Data Valid
Indicates that valid data is present on the GE0_RXD lines. It is
synchronous to GE0_RXCLK.
GMII Receive Data Valid
It is synchronous to GE0_RXCLK input.
GE0_RXCLK
I
CMOS
VDD_GE
RGMII Receive Clock
The receive clock provides a 125 MHz, 25 MHz, or 2.5 MHz
reference clock derived from the received data stream.
MII Receive Clock
Provides the timing reference for the reception of the GE0_RXDV,
GE0_RXERR, and GE0_RXD[3:0] signals. This clock operates at
2.5 MHz or 25 MHz.
GMII Receive Clock
Provides the timing reference for the reception of the GE0_RXDV,
GE0_RXERR, and GE0_RXD[7:0] signals. This clock operates at
125 MHz.
GE0_COL
I
CMOS
VDDO_D
MII Collision Detect
Indicates a collision has been detected on the wire. This input is
ignored in full-duplex mode. GE0_COL is not synchronous to any
clock.
NOTE: If not using the MII interface, this pin must be left
unconnected.
Multiplexed on MPP.
GE_MDC
t/s
O
CMOS
VDD_GE
Management Data Clock
MDC is derived from TCLK divided by 128.
Provides the timing reference for the transfer of the MDIO signal.
GE_MDIO
t/s
I/O
CMOS
VDD_GE
Management Data In/Out Used to transfer control information and
status between PHY devices and the GbE controller.
NOTE: A 2 kilohm pullup resistor is required.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 33
MV76100
Hardware Specifications
Note
GE0_TXD[7:4], GE0_RXD[7:4], GE0_TXERR, GE0_RXERR, GE0_CRS, and GE0_COL are multiplexed
on MPP pins. Also, GbE port 1 multiplexed on MPP pins. See Section 6, Pin Multiplexing, on page 44.
MV-S105424-U0 Rev. B
Page 34
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Descriptions
2.2.7
USB 2.0 Port Interface Pin Assignments
Table 10: USB 2.0 Ports 0/1/2 Interface Pin Assignments
Pin Name
I /O / P i n Ty p e
Power
Rails
D e s c r ip t i o n
Where <n> represents USB Port0, Port1, or Port2.
USB<n>_DP
USB<n>_DM
2.2.8
I/O
CML
USB0/1/2
_AVDD
USB 2.0 Port0/1/2 data+ and data- pair
SATA II Port Interface Pin Assignments
Table 11: SATA II Port Interface Pin Assignments
Pin Name
I/O
P in
Ty p e
Power
R a il s
D e sc r ip ti o n
SATA_TX_P
SATA_TX_N
O
CML
SATA_
AVDD
Transmit data: Differential analog output of SATA II port
SATA_RX_P
SATA_RX_N
I
CML
SATA_
AVDD
Receive data: Differential analog input of SATA II port
SATA_
PRESENTn
O
CMOS
VDDO_C
When this signal is asserted there is an active link between the
SATA II port and the external device (disk).
NOTE: This signal is multiplexed on the MPP pins, see Section 6,
Pin Multiplexing, on page 44.
SATA_ACTn
O
CMOS
VDDO_C
When this signal is asserted, there is an active and used link
between the SATA II port and the external device (disk).
NOTE: This signal is multiplexed on the MPP pins, see Section 6,
Pin Multiplexing, on page 44.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 35
MV76100
Hardware Specifications
2.2.9
TWSI Interface Pin Assignment
Table 12: TWSI Interface Pin Assignments
Pin Name
I/O
P in
Ty p e
Power
R a il s
Description
TWSI0_SDA
o/d
I/O
CMOS
VDDO_B
TWSI port0 SDA
Address or write data driven by the TWSI master or read response
data driven by the TWSI slave.
NOTE: Requires a pullup resistor to VDDO_B.
TWSI0_SCK
o/d
I/O
CMOS
VDDO_B
TWSI port0 Serial Clock
Serves as output when acting as an TWSI master.
Serves as input when acting as an TWSI slave.
NOTE: Requires a pullup resistor to VDDO_B.
TWSI1_SDA
o/d
I/O
CMOS
VDDO_A
TWSI port1 SDA
Address or write data driven by the TWSI master or read response
data driven by the TWSI slave.
NOTE: Requires a pull-up 4.7 kΩ resistor to VDDO_A.
TWSI1_SCK
o/d
I/O
CMOS
VDDO_A
TWSI port1 Serial Clock
Serves as output when acting as an TWSI master.
Serves as input when acting as an TWSI slave.
NOTE: Requires a pull-up 4.7 kΩ resistor to VDDO_A.
2.2.10
SPI Interface Pin Assignment
Table 13: SPI Interface Pin Assignments
Pin Name
I/O
P in
Ty p e
Power
R a il s
Description
SPI_CSn
O
CMOS
VDDO_A
SPI chip select
SPI_CLK
O
CMOS
VDDO_A
SPI clock
SPI_MOSI
O
CMOS
VDDO_A
SPI data output
SPI_MISO
I
CMOS
VDDO_A
SPI data input
MV-S105424-U0 Rev. B
Page 36
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Information
Pin Descriptions
2.2.11
UART Interface Pin Assignment
Table 14: UART 0/1/2 Interfaces Pin Assignments
Pin Name
I/O
P in
Ty p e
Power
R a il s
Description
UA0_RXD
UA1_RXD
I
CMOS
VDDO_C
UART0/1 RX Data
UA0_TXD
UA1_TXD
O
CMOS
VDDO_C
UART0/1 TX Data
UA0_CTSn
UA1_CTSn
I
CMOS
VDDO_C
UART0/1 Clear To Send
NOTE: Multiplexed on MPP.
UA0_RTSn
UA1_RTSn
O
CMOS
VDDO_C
UART0/1 Request To Send
NOTE: Multiplexed on MPP.
UA2_RXD
I
CMOS
VDDO_C
or
VDDO_B
UART2 RX Data
NOTE: Multiplexed on MPP.
UA2_TXD
I
CMOS
VDDO_C
or
VDDO_B
UART2 TX Data
NOTE: Multiplexed on MPP.
UA2_CTSn
I
CMOS
VDDO_C
or
VDDO_B
UART2 Clear To Send
NOTE: Multiplexed on MPP.
UA2_RTSn
O
CMOS
VDDO_C
or
VDDO_B
UART2 Request To Send
NOTE: Multiplexed on MPP.
Note
For the UART pins that are multiplexed, see Section 6, Pin Multiplexing, on page 44 for
details.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 37
MV76100
Hardware Specifications
2.2.12
MPP Interface Pin Assignment
Table 15: MPP Interface Pin Assignments
Pin Name
I/O
P in
Ty p e
Power
R a il s
D e sc r ip ti on
MPP[11:0]
t/s
I/O
CMOS
VDDO_D
Multi Purpose Pin
Various functionalities
NOTE: These pins have internal pullup resistors.
MPP[23:12]
t/s
I/O
CMOS
VDDO_C
Multi Purpose Pin
Various functionalities
NOTE: These pins have internal pullup resistors.
2.2.13
JTAG Interface Pin Assignment
Table 16: JTAG Pin Assignments
Pin Name
I/O
P in
Ty p e
Power
R a il s
Description
JT_CLK
I
CMOS
VDDO_A
JTAG Clock
Clock input for the JTAG controller.
NOTE: This pin is internally pulled down to 0.
JT_RSTn
I
CMOS
VDDO_A
JTAG Reset
When asserted, resets the JTAG controller.
NOTE: This pin is internally pulled down to 0.1
JT_TMS_CPU
I
CMOS
VDDO_A
CPU JTAG Mode Select
Controls CPU JTAG controller state.
Sampled with the rising edge of JT_CLK.
NOTE: This pin is internally pulled up to 1.
JT_TMS_CORE
I
CMOS
VDDO_A
Core JTAG Mode Select
Controls the Core JTAG controller state.
Sampled with the rising edge of JT_CLK.
NOTE: This pin is internally pulled up to 1.
JT_TDO
O
CMOS
VDDO_A
JTAG Data Out
Driven on the falling edge of JT_CLK.
JT_TDI
I
CMOS
VDDO_A
JTAG Data In
JTAG serial data input. Sampled with the JT_CLK rising edge.
NOTE: This pin is internally pulled up to 1.
1. If this pull-down conflicts with other devices, the JTAG tool must not use this signal. This signal is not mandatory for the
JTAG interface, since the TAP (Test Access Port) can be reset by driving the JT_TMS signal HIGH for 5 JT_CLK cycles.
If JT_RSTn is not used it should be connected to reset signal. Otherwise the internal pull down will keep the TAP
controller in reset.
MV-S105424-U0 Rev. B
Page 38
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Unused Interface Strapping
3
Unused Interface Strapping
Table 17 lists the signal strapping for systems in which some of the MV76100 interfaces are unused, not connected.
Table 17: Unused Interface Strapping
Unused Interface
St r ap p in g
Ethernet RGMII
If not using Port0, use a 1–4.7 kilohm pull down for the following signals:
GE0_TXCLK, GE0_RXCLK, GE0_RXD[3:0], GE0_RXDV
Ethernet SMI
GE_MDIO must be 2 kilohm pulled up.
TWSI
TWSI0_SCK and TWSI0_SDA must be pulled up through a 1–4.7 kilohm resistor to
VDDO_B.
TWSI1_SCK and TWSI1_SDA must be pulled up through a 1–4.7 kilohm resistor to
VDDO_A.
Device
VDDO_B and VDDO_C power balls must be connected to 3.3V or to 1.8V according to
the corresponding reset strap setting.
USB
Discard the power filter.
Leave USBx_AVDD connected to 3.3V.
All other signals can be left unconnected.
PCI Express 0
Configure it to x4 reset_sampling Dev_AD[3] = 0.
Discard the analog power filters.
Connect PEX1_AVDD to VDD (1V), to save power suppliers.
Pull down the PEX0_CLK_N signal through a 50 kilohm resistor to GND.
Pull up the PEX0_CLK_P signal through a 16 kilohom resistor to VDD.
All other signals can be left unconnected.
PCI Express 1
Discard the analog power filters.
Connect PEX1_AVDD to VDD (1V), to save power suppliers.
Pull down the PEX1_CLKn signal through a 50 kilohm resistor to GND.
Pull up the PEX1_CLKp signal through a 16 kilohm resistor to VDD.
All of the other signals can be left unconnected.
SATA
Discard the analog power filters and connect it to VDD (1V)
Connect the SATA_USB_RES to a 6.04 kilohm resistor to pull down.
All other signals can be left unconnected.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 39
MV76100
Hardware Specifications
4
MV76100 Pin Map and Pin List
The MV76100 pin list is provided as an Excel file attachment.
To open the attached Excel pin list files, double-click the pin icons below:
MV76100_Pinout_External.xls
File attachments are only supported by Adobe Reader 6.0 and above.
Note
To download the latest version of free Adobe Reader go to http://www.adobe.com.
MV-S105424-U0 Rev. B
Page 40
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Clocking
Clock Domains
5
Clocking
5.1
Clock Domains
The MV76100 device has multiple clock domains:
„
PCLK: Sheeva™ CPU clock—up to 800 MHz
„
HCLK: The Sheeva™ CPU bus (MbusL) clock. Also used as the DRAM interface clock—up to
400 MHz
„
TCLK: The MV76100 core clock, also used as the reference clock for the MV76100 device bus.
Runs at 166 MHz or 200 MHz.
„
PCI-Express clock: Runs at 250 MHz
„
GbE ports clock: 125 MHz for 1000 Mbps, 25 MHz for 100 Mbps, and 2.5 MHz for 10 Mbps
operation
„
SATA clock: Runs at 150 Mhz
„
USB clock: Runs at 480 MHz
„
UART clock. Up to TCLK frequency divided by 16
„
SPI clock: Up to 50 MHz
„
TWSI clock: Up to 100 kHz
The supported PCLK to HCLK clock ratios are 1, 1.5, 2, 2.5, 3, 3.5, and 4 determined via reset
strapping. Table 18 summarizes the possible frequencies.
Table 18: HCLK and PCLK Frequencies
HCLK/Ratio
1
1 .5
2
2.5
3
3.5
4
4 .5
5
200
NA
NA
400
500
600
700
800
NA
NA
250
NA
NA
500
625
750
NA
NA
NA
NA
267
NA
400
533
667
800
NA
NA
NA
NA
300
NA
450
600
750
NA
NA
NA
NA
NA
333
NA
500
667
NA
NA
N/A
N/A
NA
NA
400
400
600
800
NA
NA
NA
NA
NA
NA
5.2
PLLs and Clock Pins
The MV76100 has the following on-chip PLLs:
„
PCLK PLL—Generates PCLK (Sheeva™ core clock) and HCLK (Sheeva™ bus and SDRAM I/F
clock)
„
TCLK PLL—Generates the internal core frequency
„
GE_CLK125 PLL—Generates 125 MHz reference clock for the GbE MAC
„
PCI Express PHY PLL
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 41
MV76100
Hardware Specifications
„
„
USB PHY PLL
SATA PHY PLL
Note
The different MV76100 PLLs require dedicated quiet power supplies (AVDD/AVSS).
See the MV76100, MV78100, and MV78200 Design Guide for a detailed description of
these power supplies and required power filtering.
The MV76100 clocking scheme is shown in Figure 3.
Figure 3: MV76100 Clocks
PCLK
PCLK
PLL
SheevaTM
Core
HCLK
DRAM
Controller
M_CLK_OUT[2:0]/
M_CLK_OUTn[2:0]
TCLK to all of
the chip units
CLK_25_SSC
TCLK_OUT
TCLK PLL
1:N
de-skew
PLL
TCLK_IN
CLK25_PT
USB PHY
PLL
CLK125
(GE) PLL
SATA
PHY PLL
PEX_0 100 MHz HCSL
PEX_1 100 MHz HCSL
PCI-E
PHYs
The MV76100 supports generation of PCLK, HCLK, and TCLK from a 25 MHz input clock
CLK25_SSC. This clock can be generated by a spread spectrum clock generator (SSCG) under the
following restrictions:
„
Spread does not exceed -0.5% of the maximum frequency.
„
The modulation frequency does not exceed 33 KHz.
The PLLs using this clock source track the spread characteristics of the input clock (meaning TCLK,
PCLK, HCLK, and M_CLK_OUT also become spread spectrum clocks).
There is a single PCLK PLL that generates PCLK (CPU clock), and HCLK (CPU bus clock which is
also DRAM clock). clocks are synchronous to each other (edge aligned), resulting in low latency
CPU to DRAM path (no synchronization required).
MV-S105424-U0 Rev. B
Page 42
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Clocking
PLLs and Clock Pins
The CPU L2 cache clock (named XPCLK) runs at 1:1 or 1:2 ratio relative to the CPU PCLK,
depending on PCLK frequency. XPCLK must not exceed 400 MHz (set ratio to 1:1 only if PCLK is
400 MHz or less).
The CPU can be placed in "wait for interrupt" mode. In this mode, most of the PCLK clock tree is
turned off (only wake-up logic is kept alive).
The TCLK clock tree can be generated from one of two sources:
„
„
TCLK PLL (selectable 166 MHz or 200 MHz operation)
From external TCLK_IN input. In this mode, clock input is de-skewed to have zero skew to the
external clock input. This mode is useful when using the chip device bus as a high speed
synchronous interface (better AC timing)
The MV76100 drives TCLK clock tree output on TCLK_OUT pin. The device can also configured to
drive a divided (1:N) TCLK on TCLK_OUT pin.
The TCLK clock tree to each of the MV76100 units can be gated via register. This is useful for power
saving modes, when most of the chip interfaces are not in use. See the Power Saving section in the
Functional Specification for further details.
A second 25 MHz input clock, CLK25_PT, is used as a reference clock for the USB PHY PLL, for the
CLK125 PLL, and for the SATA PHY PLL. This clock must be pure tone.
„
Note
„
If the SSC clock is not required, CLK25_PT can be configured via reset strapping
to also drive the PCLK and TCLK PLLs, as shown in Figure 3, MV76100 Clocks,
on page 42. If using this configuration, tie CLK25_SSC to VSS via a pull down
resistor.
The MV76100 SATA PHY generates an SSC signal on its output (TX_P/TX_N) and
tolerates an SSC signal on its input (RX_P/RX_N), as defined in the SATA
specification.
The PCI Express PHY receives a 100 MHz reference clock. It generates two clocks:
„
A 250 MHz PCLK used by the PCI Express unit (transaction layer, link layer, and PHY MAC
layer)
„
A 2.5 GHz clock for the PHY analog part.
The PCI Express PLL also tolerates a spread spectrum reference clock, as defined by the PCI
Express specification:
„
Spread of -0.5% of the maximum frequency
„
The modulation frequency does not exceed 33 kHz
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 43
MV76100
Hardware Specifications
6
Pin Multiplexing
6.1
MPP Multiplexing
The MV76100 device contains 24 Multi Purpose Pins (MPP). When using the device bus as a 16-bit
interface, DEV_AD[31:16] and DEV_WEn[3:2] are also used for pins multiplexing, resulting in a total
of 42 pins. When using 8-bit device bus, DEV_AD[15:9] and DEV_WEn[1] are also used for pins
multiplexing, resulting in total of 50 pins.
Each pin can be assigned to a different functionality through the MPP Control register.
„
GPIO: General Purpose In/Out Port, 32 GPIOs available—see the General Purpose I/O Port
section in the MV76100, MV78100, and MV78200 Functional Specification.
„
GE0_TXD[7:4], GE0_RXD[7:4], GE0_TXER, GE0_RXER, GE0_CRS, GE0_COL: GbE port0
Signals when configured to MII or GMII interface—see the Gigabit Ethernet Controller section in
the MV76100, MV78100, and MV78200 Functional Specification.
„
GE1_TXD[3:0], GE1_RXD[3:0], GE1_TXCLKOUT, GE1_TXCTL, GE1_RXCLK, GE1_RXCTL:
GbE port 1 pins.
„
M_BB: SDRAM battery backup trigger—see the DRAM Self Refresh section in the MV76100,
MV78100, and MV78200 Functional Specification.
„
UA2_RXD, UA2_TXD, UA2_CTSn, UA2_RTSn - UART pins.
SATA_ACTn/SATA_PRESENTn: SATA active and SATA present indications—see the SATA
section in the MV76100, MV78100, and MV78200 Functional Specification.
„
DEV_NFWEn[3:0], DEV_NFREn[3:0]: NAND Flash additional signals—see the Device Bus
section in the MV76100, MV78100, and MV78200 Functional Specification.
„
SYSRST_OUTn - open drain reset output—See Section 7, System Power Up and Reset
Settings, on page 49.
Table19 shows each MPP pins’ functionality as determined by the MPP Multiplex registers, refer to
the Pins Multiplexing Interface Registers section in the MV76100, MV78100, and MV78200
Functional Specification for more information. The coloring scheme demonstrates the different
power segments (yellow = VDDO_B, sky blue = VDDO_C, green = VDDO_D). Note that MPP[23:12]
share the same power segment (VDDO_C) as DEV_AD[15:0], all device bus control signals, UART0
and UART1 signals, and system signals (see pin list for more details).
„
MV-S105424-U0 Rev. B
Page 44
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Multiplexing
MPP Multiplexing
Empty fields in Table 19 indicate non-functional settings.
Note
Table 19: MPP Function Summary
MPP
Pi n
0x0
0x1
0x 2
0x3
0x 4
0x5
MPP[0]
GPIO[0]
(in/out)
GE0_COL
(in)
GE1_TXCLK
OUT (out)
MPP[1]
GPIO[1]
(in/out)
GE0_RXERR
(in)
GE1_TXCTL
(out)
MPP[2]
GPIO[2]
(in/out)
GE0_CRS
(in)
GE1_RXCTL
(in)
MPP[3]
GPIO[3]
(in/out)
GE0_TXERR
(out)
GE1_RXCLK
(in)
MPP[4]
GPIO[4]
(in/out)
GE0_TXD[4]
(out)
GE1_TXD[0]
(out)
MPP[5]
GPIO[5]
(in/out)
GE0_TXD[5]
(out)
GE1_TXD[1]
(out)
MPP[6]
GPIO[6]
(in/out)
GE0_TXD[6]
(out)
GE1_TXD[2]
(out)
MPP[7]
GPIO[7]
(in/out)
GE0_TXD[7]
(out)
GE1_TXD[3]
(out)
MPP[8]
GPIO[8]
(in/out)
GE0_RXD[4]
(in)
GE1_RXD[0]
(in)
MPP[9]
GPIO[9]
(in/out)
GE0_RXD[5]
(in)
GE1_RXD[1]
(in)
MPP[10]
GPIO[10]
(in/out)
GE0_RXD[6]
(in)
GE1_RXD[2]
(in)
MPP[11]
GPIO[11]
(in/out)
GE0_RXD[7]
(in)
GE1_RXD[3]
(in)
MPP[12]
MPP[13]
GPIO[12]
(in/out)
M_BB (in)
UA0_CTSn
(in)
NAND Flash
REn[0]
(out)
GPIO[13]
(in/out)
SYSRST_
OUTn (out)
UA0_RTSn
(out)
NAND Flash
WEn[0]
(out)
Copyright © 2008 Marvell
December 6, 2008, Preliminary
0x6
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 45
MV76100
Hardware Specifications
Table 19: MPP Function Summary (Continued)
MPP
Pi n
0x0
MPP[14]
GPIO[14]
(in/out)
MPP[15]
GPIO[15]
(in/out)
MPP[16]
GPIO[16]
(in/out)
MPP[17]
GPIO[17]
(in/out)
MPP[18]
0x1
0x 2
0x3
0x 4
0x5
UA1_CTSn
(in)
NAND Flash
REn[1]
(out)
UA1_RTSn
(out)
NAND Flash
WEn[1]
(out)
UA2_TXD
(out)
NAND Flash
REn[3]
(out)
UA2_RXD
[in)
NAND Flash
WEn[3]
(out)
GPIO[18]
(in/out)
UA0_CTSn
(in)
BOOT
NAND Flash
REn
(out)
MPP[19]
GPIO[19]
(in/out)
UA0_RTSn
(out)
BOOT
NAND Flash
WEn
(out)
MPP[20]
GPIO[20]
(in/out)
UA1_CTSn
(in)
MPP[21]
GPIO[21]
(in/out)
UA1_RTSn
(out)
MPP[22]
GPIO[22]
(in/out)
NAND Flash
REn[2]
(out)
MPP[23]
GPIO[23]
(in/out)
NAND Flash
WEn[2]
(out)
DEV_
AD[16]
GPIO[24]
(in/out)
UA2_TXD
(out)
DEV_
AD[17]
GPIO[25]
(in/out)
UA2_RXD
(in)
DEV_
AD[18]
GPIO[26]
(in/out)
UA2_CTSn
(in)
DEV_
AD[19]
GPIO[27]
(in/out)
UA2_RTSn
(out)
DEV_
AD[20]
GPIO[28]
(in/out)
SATA_ACTn
(out)
SATA_
PRESENTn
(out)
MV-S105424-U0 Rev. B
Page 46
0x6
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Pin Multiplexing
MPP Multiplexing
Table 19: MPP Function Summary (Continued)
MPP
Pi n
0x0
DEV_
AD[21]
GPIO[29]
(in/out)
DEV_
AD[22]
GPIO[30]
(in/out)
DEV_
AD[23]
GPIO[31]
(in/out)
0x1
0x 2
0x3
0x 4
0x5
0x6
SYSRST_
OUTn (out)
DEV_
AD[24]
GPIO[0]
(in/out)
SYSRST_
OUTn (out)
DEV_
AD[25]
GPIO[1]
(in/out)
DEV_
AD[26]
GPIO[2]
(in/out)
UA2_TXD
(out)
DEV_
AD[27]
GPIO[3]
(in/out)
UA2_RXD
(in)
DEV_
AD[28]
GPIO[4]
(in/out)
UA0_CTSn
(in)
UA2_TXD
(out)
DEV_
AD[29]
GPIO[5]
(in/out)
UA0_RTSn
(out)
UA2_RXD
(in)
DEV_
AD[30]
GPIO[6]
(in/out)
UA1_CTSn
(in)
SYSRST_
OUTn (out)
DEV_
AD[31]
GPIO[7]
(in/out)
UA1_RTSn
(out)
SYSRST_
OUTn (out)
DEV_
AD[9]
GPIO[17]
(in/out)
DEV_
AD[10]
GPIO[18]
(in/out)
DEV_
AD[11]
GPIO[19]
(in/out)
DEV_
AD[12]
GPIO[20]
(in/out)
DEV_
AD[13]
GPIO[21]
(in/out)
DEV_
AD[14]
GPIO[22]
(in/out)
SATA_ACTn
(out)
Copyright © 2008 Marvell
December 6, 2008, Preliminary
SYSRST_
OUTn (out)
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 47
MV76100
Hardware Specifications
Table 19: MPP Function Summary (Continued)
MPP
Pi n
0x0
0x1
DEV_
AD[15]
GPIO[23]
(in/out)
DEV_
WEn[1]
GPIO[16]
(in/out)
DEV_
WEn[2]
GPIO[8]
(in/out)
DEV_
WEn[3]
GPIO[9]
(in/out)
Note
0x 2
0x3
0x 4
SATA_ACTn
(out)
M_BB (in)
0x5
0x6
Depending on the pin’s configured functionality, each pin can act as an output or input
pin. MPP[23:0] and DEV_AD[23:16] wake up as GPIO. All other pins wake up as
non-functional inputs pads (0x0 Column), with one exception. If the chip is configured at
reset to boot from CE Care NAND Flash, MPP[19:18] wake up as BOOT NAND Flash
output signals.
The muxing options on DEV_AD[31:16] and DEV_WEn[3:2] only apply if all five device
chip selects are configured as 8- or 16-bit wide. Muxing options on DEV_AD[15:9] and
DEV_WEn[1] only apply if all five device chip selects are configured as 8-bit wide.
Where device bus pins multiplexing applies, these pins wake up as input (no drive).
MV-S105424-U0 Rev. B
Page 48
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
System Power Up and Reset Settings
Power Up/Down Sequence Requirements
7
System Power Up and Reset Settings
This section provides information about the MV76100 power-up sequence and configuration at
reset.
7.1
Power Up/Down Sequence Requirements
7.1.1
Power Up Sequence Requirements
These guidelines must be applied to meet the MV76100 device power-up requirements:
„
The Non-Core voltages (I/O and Analog) as listed in Table 20 must reach 70% of their voltage
level before the Core voltages reach 70% of their voltage level.
The order of the power up sequence between the Non-Core voltages is unimportant so long as
the Non-Core voltages power up before the Core voltages reach 70% of their voltage level
(shown in Figure 4).
„
The reset signal(s) must be asserted before the Core voltages reach 70% of their voltage level
(shown in Figure 4).
„
The reference clock(s) inputs must toggle with their respective voltage levels before the Core
Voltages reach 70% of their voltage level (shown in Figure 4).
Table 20: I/O and Core Voltages
N o n - C o r e Vol ta g e s
I/ O Vo lta ge s
A n a lo g P o w e r S up p li e s
VDD_GE
VDD_M
VDDO_A
VDDO_B
VDDO_C
VDDO_D
PLL_AVDD
PEX0_AVDD
PEX1_AVDD
USB0_AVDD, USB1_AVDD, USB2_AVDD
SATA_AVDD
Copyright © 2008 Marvell
December 6, 2008, Preliminary
C o r e Vo l ta g e s
VDD
VDD_CPU
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 49
MV76100
Hardware Specifications
Figure 4: Power Up Sequence Example
Voltage
Non-Core Voltage
70% of
Non-Core
Voltage
Core Voltage
70% of Core
Voltage
Reset(s)
Clock(s)
„
Note
7.1.2
„
It is the designer's responsibility to verify that the power sequencing requirements
of other components are also met.
Although the non-core voltages can be powered up any time before the core
voltages, allow a reasonable time limitation (for example, 100 ms) between the
first non-core voltage power-up and the last core voltage power-up.
Power Down Sequence Requirements
There are no special requirements for the core supply to go down first, or for reset assertion when
powering down.
Note
Although there is no limitation for power-down sequence between non-core and core
voltages, allow a reasonable time limitation (for example, 100 ms) between the first
and last voltage power-down.
MV-S105424-U0 Rev. B
Page 50
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
System Power Up and Reset Settings
Hardware Reset
7.2
Hardware Reset
The MV76100 has one reset input pin — SYSRSTn. When asserted, the entire chip is placed in its
initial state. All outputs are placed in high-z.
The following output pins are still active during SYSRSTn assertion:
„
TCLK_OUT
„
GE0_TXCLKOUT
„
M_CLKOUT[2:0], M_CLKOUTn[2:0]
„
M_CKE[3:0]
„
M_ODT[3:0]
„
M_STARTBURST
„
SATA_TX_P
„
SATA_TX_N
„
PEXx_TX_N
„
PEXx_TX_P
„
USBx_DM
„
USBx_DP
The MV76100 has an optional SYSRST_OUTn open drain output signal, multiplexed on MPP pins,
that is used as a reset request from the MV76100 to the board reset logic. This signal is set when
one of the following maskable events occurs:
„
Received hot reset indication from the PCI Express port 0.0 link (only relevant when used as a
PCI Express endpoint), and bit <PexRstOutEn> is set to 1 in the RSTOUTn Mask Register (see
the Reset register section of the MV76100 User Manual). In this case, SYSRST_OUTn is
asserted for duration of ~300 TCLK cycles.
„
PCI Express port 0.0 link failure (only relevant when used as a PCI Express endpoint), and bit
<PexRstOutEn> is set to 1 in the RSTOUTn Mask Register (see the Reset register section of
the MV76100 User Manual). In this case, SYSRST_OUTn is asserted for duration of ~300
TCLK cycles .
„
Watchdog timer expiration and bit <WDRstOutEn> is set to 1 in the RSTOUTn Mask Register
(see the Reset register section of the MV76100 User Manual).
„
Bit <SystemSoftRst> is set to 1 in System Soft Reset Register and bit <SoftRstOutEn> is set to
1 in RSTOUTn Mask Register.
Note
7.3
Reset must be active for a minimum length of 100ms. Core power, I/O power, and
analog power must be stable (VDD +/- 5%) during that time and onward.
PCI Express Reset
As a Root Complex, the MV76100 can generate a Hot Reset to the PCI Express port. Upon CPU
setting the PCI Express Control register’s <conf_mstr_hot_reset> bit, the PCI Express unit sends a
Hot Reset indication to the Endpoint (see the PCI Express Interface section in the MV76100,
MV78100, and MV78200 Functional Specification).
When the MV76100 works as an Endpoint, and a Hot Reset packet is received:
A maskable interrupt is asserted
„
If the PCI Express Debug Control register’s <conf_dis_hot_rst_reg_rst> is cleared, the
MV76100 also resets the PCI Express register file to its default values.
„
The MV76100 triggers an internal reset, if not masked by PCI Express Debug Control register’s
<conf_msk_hot_reset> bit.
„
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 51
MV76100
Hardware Specifications
Link failure is detected if the PCI Express link was up (LTTSSM L0 state) and dropped back to an
inactive state (LTSSM Detect state). When Link failure is detected:
„
A maskable interrupt is asserted
„
If the PCI Express Debug Control register’s <conf_dis_link_fail_reg_rst> is cleared, the
MV76100 also resets the PCI Express register file to its default values.
„
The MV76100 triggers an internal reset, if not masked by PCI Express Debug Control register’s
<conf_msk_link_fail> bit.
Whether initiated by a Hot Reset or link failure, this internal reset indication can be routed to
SYSRST_OUTn output as explained in Section 7.2, Hardware Reset, on page 51. The external
reset logic can assert SYSRSTn in response and reset the entire chip.
Note
7.4
Only PEX0 port (or PEX0.0 port in Quad x1 configuration) can act as PCI Express
endpoint, and only this port can generate the PCI Express internal reset indication.
Pins Sample Configuration
The following pins are sampled during SYSRSTn de-assertion. Internal pull up/down resistors set
the default mode. External pull up/down resistors are required to change the default mode of
operation. These signals must remain pulled up or down until SYSRSTn de-assertion (zero Hold
time in respect to SYSRSTn de-assertion).
Note
If external logic is used instead of pull up and pull down resistors, the logic must drive
all of the signals to the desired values during SYSRSTn assertion. To prevent bus
contention on these pins, the external logic must float the bus no later than the third
TCLK cycle after SYSRSTn de-assertion. Refer to the MV76100, MV78100, and
MV78200 Design Guide for additional information.
All reset sampled values are registered in Reset Sample (Low) and Reset Sample
(High) registers (see the Device Interface Registers in the MV76100, MV78100, and
MV78200 Functional Specification). This is useful for board debug purposes.
Multiple functionality applies to DEV_AD[31:9] and DEV_WEn[3:1], as described in
Section 6, Pin Multiplexing, on page 44. If an external device is driving any of these
signals, make sure to keep this external device in reset state (prevent it from driving) or
use glue logic to disconnect it from the MV76100 as long as the MV76100 SYSRSTn
input is asserted.
Table 21: Reset Configuration
Pi n
Po w e r R a il
C o n fi gu r a t io n F u nc t io n
DEV_AD[0]
VDDO_C
Reserved
This signal must be sampled as 0 at reset de-assertion.
NOTES:
• Internally pulled down to 0x0.
• The board design should support future pull up/pull down requirements on
this pin.
Setting recommendations will be published following silicon samples.
MV-S105424-U0 Rev. B
Page 52
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
System Power Up and Reset Settings
Pins Sample Configuration
Table 21: Reset Configuration (Continued)
Pi n
Po w e r R a il
C o n fi gu r a t io n F u nc t io n
DEV_AD[1]
VDDO_C
Reserved
This signal must be sampled as 0 at reset de-assertion.
NOTES:
• Internally pulled down to 0x0.
• The board design should support future pull up/pull down requirements on
this pin.
Setting recommendations will be published following silicon samples.
DEV_AD[2]
VDDO_C
PCI Express Port0 mode select
0 = Endpoint
1 = Root Complex
NOTES:
• Internally pulled up to 0x1.
• When PCI Express port0 is configured to Quad x 1 (DEV_AD[3]=1), this bit
controls Port 0.0 only.
DEV_AD[3]
VDDO_C
PCI Express Port0 configuration
0 = x4
1 = Quad x1
NOTE: Internally pulled down to 0x0.
DEV_AD[4]
VDDO_C
Reserved
NOTE: Internally pulled up to 0x1. This signal must be sampled as 1 at reset
de-assertion.
DEV_AD[7:5]
VDDO_C
HCLK Frequency select
0x0 = Reserved
0x1 = 200 MHz
0x2 = 267 MHz
0x3 = 333 MHz
0x4 = 400 MHz
0x5 = 250 MHz
0x6 = 300 MHz
0x7 = Reserved
NOTE: Internally pulled to 0x2.
DEV_AD[11:8]
VDDO_C
PCLK to HCLK ratio
0x0 = 1
0x1 = 1.5
0x2 = 2
0x3 = 2.5
0x4 = 3
0x5 = 3.5
0x6 = 4
0x7–0xF = Reserved
NOTE: Internally pulled to 0x4.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 53
MV76100
Hardware Specifications
Table 21: Reset Configuration (Continued)
Pi n
Po w e r R a il
C o n fi gu r a t io n F u nc t io n
DEV_AD[13:12]
VDDO_C
PCLK to CPU L2 ratio
0x0 = 1
0x1 = 2
0x2 = 3
0x3 = Reserved
NOTE: Internally pulled to 0x1.
DEV_AD[17:14]
[15:14] VDDO_C
[17:16] VDDO_B
Reserved
NOTE: Internally pulled to 0x4.
DEV_AD[19:18]
VDDO_B
Reserved
NOTE: Internally pulled to 0x1.
DEV_AD[20]
VDDO_B
Reserved
This signal must be sampled as 0 at reset de-assertion.
NOTE: Internally pulled down to 0x0.
DEV_AD[22:21]
VDDO_B
DEV_BootCEn Device Width
0x0 = 8 bits
0x1 = 16 bits
0x2 = 32 bits
0x3 = Reserved
NOTE: Internally pulled down to 0x0.
DEV_AD[24:23]
VDDO_B
Boot DeviceType Selection
0x0 = Boot from device bus
0x1 = Boot from SPI
0x2 = Boot from CE don’t care NAND Flash
0x3 = Boot from CE care NAND Flash
If DEV_AD[24:23] is set to 0x3, MPP[19:18] pins wake up as NAND Flash
outputs.
NOTE: Internally pulled down to 0x0.
DEV_AD[26:25]
VDDO_B
NAND Flash Initialization Sequence
Selects if NAND Flash initialization sequence is performed. Required for NAND
Flash devices that do not support preload feature. Only relevant if DEV_AD[24]
is set to 1 (boot from NAND Flash).
0x0 = No initialization
0x1 = Init sequence enabled, 3 address cycles
0x2 = Init sequence enabled, 4 address cycles
0x3 = Init sequence enabled, 5 address cycles
NOTE: Internally pulled down to 0x0.
DEV_AD[27]
VDDO_B
Big Endian/Little Endian mode
0 = Little Endian
1 = Big Endian
NOTE: Internally pulled down to 0x0.
MV-S105424-U0 Rev. B
Page 54
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
System Power Up and Reset Settings
Pins Sample Configuration
Table 21: Reset Configuration (Continued)
Pi n
Po w e r R a il
C o n fi gu r a t io n F u nc t io n
DEV_AD[28]
VDDO_B
CLK25 Select
0 = Both CLK25_PT and CLK25_SSC are used.
1 = Only CLK25_PT is used.
NOTE: Internally pulled up to 0x1.
DEV_AD[29]
VDDO_B
Reserved
This signal must be sampled as 1 at reset de-assertion.
NOTE: Internally pulled to 0x0.
DEV_AD[30]
VDDO_B
NAND Flash Initialization Command
Selects whether to append command 0x30 to the address cycles of the NAND
Flash initialization sequence or not. Relevant only when using the NAND Flash
initialization sequence (DEV_AD[26:25] != 0x0).
0 = Do not append command 0x30.
1 = Append command 0x30.
NOTE: Internally pulled to 0x0.
DEV_AD[31]
VDDO_B
VDDO_C Voltage Select
0 = 1.8V
1 = 3.3V
NOTE: Internally pulled up to 0x1.
DEV_ALE[0]
VDDO_C
VDDO_B Voltage Select
0 = 1.8V
1 = 3.3V
NOTE: Internally pulled up to 0x1.
DEV_ALE[1]
VDDO_C
VDDO_D Voltage Select
0 = 1.8V
1 = 3.3V
NOTE: Internally pulled up to 0x1.
DEV_WEn[0]
VDDO_C
VDD_GE Voltage Select
0 = 1.8V
1 = 3.3V
NOTE: Internally pulled down to 0x0.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 55
MV76100
Hardware Specifications
Table 21: Reset Configuration (Continued)
Pi n
Po w e r R a il
C o n fi gu r a t io n F u nc t io n
DEV_WEn[1]
VDDO_C
DEV_WEn and DEV_OEn multiplexing option for A[16:15] bits
Defines if OE and WE are latched at first ALE cycle as A[15] and A[16].
This fact influences the OEn and WEn signal as follows:
0 = A[16:15] bits are not multiplexed on OE and WE signals.
NOTE: Whenever CS is inactive OE and WE are inactive.
1 = A[16:15] bits are multiplexed on OE and WE signals
NOTE: Whenever CS is inactive and ALE[1:0] are high, OE and WE are
inactive.
NOTE: Internally pulled down to 0x0.
DEV_WEn[2]
VDDO_C
Reserved
This signal must be sampled as 0 at reset de-assertion.
NOTE: Internally pulled down to 0x0.
DEV_WEn[3]
VDDO_C
Reserved
This signal must be sampled as 0 at reset de-assertion.
NOTE: Internally pulled down to 0x0.
DEV_A[0]
VDDO_C
TCLK Mode Select
0 = TCLK is driven from TCLK_IN input (De-skew mode)
1 = TCLK generated internally by TCLK PLL
NOTE: Internally pulled up to 0x1.
DEV_A[2:1]
VDDO_C
TCLK frequency select/TCLK De-skew PLL Tune
If DEV_A[0] is set to 1 - DEV_A[2:1] functions as TCLK frequency select:
0x0 = 166 MHz
0x1 = 200 MHz
0x2, 0x3 = Reserved
If DEV_A[0] is set to 0, DEV_A[2:1] functions as TCLK de-skew PLL Tune.
A setting recommendation will be released after chip silicon testing.
When using TCLK_IN input Board design should support future pull up/pull
down requirement on these pins. A final setting recommendation will be
published following silicon samples.
NOTE: Internally pulled to 0x1.
GE0_TXD[0]
VDD_GE
TCLK De-skewer PLL Frequency Band Select
Functions as TCLK De-Skewer PLL Frequency band select. Relevant for
De-skew mode only (DEV_A[0] is set to 0) .
0 = 166 MHz
1 = 200 MHz
NOTE: Internally pulled down to 0x0.
MV-S105424-U0 Rev. B
Page 56
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
System Power Up and Reset Settings
Power Up and Boot Sequence
Table 21: Reset Configuration (Continued)
Pi n
Po w e r R a il
C o n fi gu r a t io n F u nc t io n
GE0_TXD[1]
VDD_GE
Reserved
This signal must be sampled as 1 at reset de-assertion.
NOTE: Internally pulled up to 0x1.
GE0_TXD[3:2]
VDD_GE
DEV_ALE Mode Select
Defines DEV_ALE[1:0] behaviour in respect to address driven by device bus
controller (address setup and hold time in respect to DEV_ALE falling edge).
Useful for device bus topologies in which DEV_AD bus is heavily loaded.
0x0 = Address is driven for two TCLK cycles. ALE toggles after one TCLK
cycle.
0x1 = Address is driven for three TCLK cycles. ALE toggles after two TCLK
cycles.
0x2 = Address is driven for four TCLK cycles. ALE toggles after three TCLK
cycles.
0x3 = Reserved
NOTE: Internally pulled down to 0x0.
GE0_TXCTL
VDD_GE
Reserved
This signal must be sampled as 0 at reset de-assertion.
NOTE: Internally pulled down to 0x0.
Even if using a 8/16-bit device, the reset sampling on the upper device bus is still used.
Note
7.5
Power Up and Boot Sequence
The MV76100 requires that SYSRSTn remain asserted for at least 1 ms after power and clocks are
stable. The following procedure describes the boot sequence starting with the reset assertion:
1. While SYSRSTn is asserted, the PCLK, TCLK, and CLK125 PLLS are locked. SYSRSTn
assertion should be at least 1 ms.
2. Upon SYSRSTn de-assertion, the pad drive auto-calibration process starts. It takes 512 TCLK
cycles.
3. In parallel, TCLK de-skew PLL locks when working in de-skew mode.
4. If configured to boot from NAND Flash which does not support preload operation, the MV76100
also performs a NAND Flash boot init sequence.
Upon completing the above sequence, the CPU reset is deasserted, and CPU starts executing boot
code from DEV_BOOTCSn (whether it is a NOR Flash or a NAND Flash or from SPI Flash).
As part of the CPU boot code, the CPU typically performs the following:
Change the chip default address map if required, and configure PCI-Express address map.
„
Configure device bus timing parameters according to devices attached to device bus.
„
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 57
MV76100
Hardware Specifications
„
„
„
Configures the proper DRAM controller parameters, and then triggers DRAM initialization (set
DRAM Initialization Control register’s <InitEn> bit [0] to 1).
If using DRAM ECC, also initializes DRAM content. Initializes proper ECC to the entire DRAM
space.
Set the <PEXEn> bits in the CPU Control and Status register to wake up the PCI Express link.
MV-S105424-U0 Rev. B
Page 58
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
JTAG Interface
8
JTAG Interface
The MV76100 JTAG interface is used for chip boundary scan as well as for CPU cores debugger.
TAP controllers implementation is described in the diagram below.
Figure 5: MV76100 TAP Controller
J_TDI
J_TCLK
CPU TAP Controller
J_TRST
J_TMS_CPU
CPU TDO
J_TDO
MV76100
TAP Controller
J_TMS_CORE
Boundary Scan TDO
The MV76100 supports the following test modes:
„
Boundary scan: In this mode, keep J_TMS_CPU high; this will reset the CPUs TAP controllers
and mux the boundary scan TDO signal on the J_TDO pin.
„
CPU debugger: In this mode, keep J_TMS_CORE high; this will reset the MV76100 TAP
controller and mux the CPU TDO signal on the J_TDO pin.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 59
MV76100
Hardware Specifications
9
Electrical Specifications (Preliminary)
The numbers specified in this section are PRELIMINARY and SUBJECT TO CHANGE.
Note
9.1
Absolute Maximum Ratings
Table 22: Absolute Maximum Ratings
Parameter
Min
Max
U n its
C o m m e n ts
VDD
-0.5
1.32
V
Core voltage
IREF_AVDD
-0.5
2.2
V
SATA and USB PHYs current source voltage filtered 1.8V
VDD_CPU
-0.5
1.32
V
CPU core voltage
PLL_AVDD
-0.5
2.2
V
Analog supply for the internal PLL
VDD_GE
-0.5
4.0
V
I/O voltage for:
RGMII/GMII/MII/SMI interfaces
VDD_M
-0.5
2.2
V
I/O voltage for:
SDRAM DDR2 interface
M_VREF
-0.5
1.1
V
Reference voltage for:
SDRAM DDR2 interface
VDDO_A
-0.5
4.0
V
I/O voltage for:
TWSI1, JTAG, and SPI interfaces
VDDO_B,
VDDO_C,
VDDO_D
-0.5
4.0
V
I/O voltage for:
Device Bus, TWSI0, UART interfaces, MPP,
REF_CLK_SSC, REF_CLK_PT, and SYSRSTn
PEX0_AVDD,
PEX1_AVDD
-0.5
2.2
V
Voltage for:
PCI Express interface
USB0_AVDD,
USB1_AVDD,
USB2_AVDD
-0.5
4.0
V
I/O voltage for:
USB interface
SATA_AVDD
-0.5
3.0
V
I/O voltage for:
SATA interface
TC
-40
125
°C
Case temperature
TSTG
-40
125
°C
Storage temperature
MV-S105424-U0 Rev. B
Page 60
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications (Preliminary)
Absolute Maximum Ratings
„
„
Caution
Note
Exposure to conditions at or beyond the maximum rating can damage the device.
Operation beyond the recommended operating conditions (Table 23) is neither
recommended nor guaranteed.
Before designing a system, it is recommended that you read application note AN-63:
Thermal Management for Marvell Technology Products. This application note presents
basic concepts of thermal management for Integrated Circuits (ICs) and includes
guidelines to ensure optimal operating conditions for Marvell Technology's products.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 61
MV76100
Hardware Specifications
9.2
Recommended Operating Conditions
Table 23: Recommended Operating Conditions
Parameter
M in
Ty p
Max
Units
C o m m e nts
VDD
0.95
1.0
1.05
V
Core voltage
IREF_AVDD
1.7
1.8
1.9
V
SATA and USB PHYs current source
voltage filtered 1.8V
VDD_CPU
0.95
1.0
1.05
V
CPU core voltage
PLL_AVDD
1.7
1.8
1.9
V
Analog supply for the internal PLL
VDD_GE
1.7
1.8
1.9
V
I/O voltage for:
RGMII/SMI 1.8V interfaces
NOTE: VDD_GE can be set to either 1.8V
or 3.3V according to Section 7.2,
Hardware Reset, on page 51.
3.15
3.3
3.45
V
I/O voltage for:
RGMII/GMII/MII/SMI 3.3V interfaces
VDD_M
1.7
1.8
1.9
V
I/O voltage for:
SDRAM DDR2 interface
M_VREF
0.49*VDD_
M
0.5*VDD_M
0.51*VDD_M
V
Reference voltage for:
SDRAM DDR2 interface
VDDO_A
3.15
3.3
3.45
V
I/O voltage for:
TWSI1, JTAG, and SPI interfaces
VDDO_B,
VDDO_C,
VDDO_D
1.7
1.8
1.9
V
3.15
3.3
3.45
V
I/O voltage for:
Device Bus, TWSI0, UART interfaces, and
MPP
NOTE: VDDO_B, VDDO_C, and
VDDO_D can be set to either 1.8V
or 3.3V according to Section 7.2,
Hardware Reset, on page 51.
PEX0_AVDD,
PEX1_AVDD
1.7
1.8
1.9
V
Voltage for:
PCI Express interface
USB0_AVDD,
USB1_AVDD,
USB2_AVDD
3.15
3.3
3.45
V
I/O voltage for:
USB interface
SATA_AVDD
2.375
2.5
2.625
V
Voltage for:
SATA interface
TJ
0
105
°C
Junction Temperature
MV-S105424-U0 Rev. B
Page 62
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications (Preliminary)
Recommended Operating Conditions
Caution
Operation beyond the recommended operating conditions is neither recommended nor
guaranteed.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 63
MV76100
Hardware Specifications
9.3
Thermal Power Dissipation (Preliminary)
.
Table 24: Thermal Power Dissipation
In t e r f a c e
S y m bo l
Core
PVDD
Embedded CPU
PVDD_CPU
RGMII 1.8V interface
Ty p
Un its
1200
mW
800 Mhz, VDD_CPU=1V
1700
mW
PVDD_GE
One Port, VDD_GE=1.8V
90
mW
DDR2 DIMM interface (40-bit) ODT
PVDD_M
M_CLK=333 MHz
1250
mW
Miscellaneous
(Device Bus interface, TWSI, JTAG, MPP,
SPI, UART)
PMISC
300
mW
PCI Express Port0 interface
PPEX
For Port0 PCI Express interface in x4
mode
400
mW
For PCI Express interface in x1 mode
145
mW
For one USB port
70
mW
180
mW
USB interface
PUSB
SATA interface
PSATA
Te s t C on d it io n s
Notes:
1.
2.
3.
The values are for nominal voltage.
Trace load is 5 pF unless otherwise specified.
Power in mW is calculated using the typical recommended VDDIO specification for each power
rail.
MV-S105424-U0 Rev. B
Page 64
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications (Preliminary)
Current Consumption (Preliminary)
9.4
Current Consumption (Preliminary)
.
Table 25: Current Consumption
In t e r f a c e
S y m bo l
Core
IVDD
Embedded CPU
IVDD_CPU
RGMII 1.8V interface
Max
Units
1500
mA
800 MHz, VDD_CPU=1.1V
1800
mA
IVDD_GE
One Port, VDD_GE=1.8V
50
mA
DDR2 DIMM interface (40-bit) ODT
IVDD_M
M_CLK=333 MHz
900
mA
Miscellaneous
(Device Bus interface, TWSI, JTAG, MPP,
SPI, UART)
IMISC
90
mA
PCI Express interface
IPEX
For PCI Express Port0 interface in x4
mode
220
mA
For PCI Express interface in x1 mode
85
mA
For one USB port
25
mA
75
mA
USB interface
IUSB
SATA interface
ISATA
Te s t C on d it io n s
Notes:
1.
2.
3.
4.
Trace load is 5 pF unless otherwise specified.
Current in mA is calculated using maximum recommended VDDIO specification for each power
rail.
All output clocks toggling at their specified rate.
Maximum drawn current from the power supply.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 65
MV76100
Hardware Specifications
9.5
DC Electrical Specifications
See the Pin Description Section for internal pullup/pulldown,
Note
9.5.1
General 3.3V (CMOS) DC Electrical Specifications
Table 26 is relevant for the following interfaces that only operate at 3.3V:
„
SPI
„
JTAG
Table 26 is also relevant if the following interfaces are configured to operate at 3.3V, according to
Section 7.2, Hardware Reset, on page 51.
„
Device Bus
„
MPP
„
RGMII
„
GMII
„
MII
„
SMI
„
SYSRSTn
„
UART
„
REF_CLK_PT
„
TCLK_OUT
„
TCLK_IN
Table 26: General 3.3V Interface (CMOS) DC Electrical Specifications
Param eter
Input low level
Sym bol
Test Condition
VIL
Min
Typ
Max
Units Notes
-0.3
0.8
V
-
Input high level
VIH
2.0
VDDIO+0.3
V
-
Output low level
VOL
IOL = 2 mA
-
0.4
V
-
Output high level
VOH
IOH = -2 mA
2.4
-
V
-
0 < VIN < VDDIO
-10
10
uA
1, 2
pF
-
Input leakage current
Pin capacitance
IIL
Cpin
5
Notes:
1. While I/O is in High-Z.
2. This current does not include the current flow ing through the pullup/pulldow n resistor.
MV-S105424-U0 Rev. B
Page 66
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
DC Electrical Specifications
9.5.2
General 1.8V (CMOS) DC Electrical Specifications
Table 26 is relevant if the following interfaces are configured to operate at 1.8V, according to
Section 7.2, Hardware Reset, on page 51.
„
Device Bus
„
MPP
„
GMII
„
MII
„
RGMII
„
SMI
„
SYSRSTn
„
UART
„
REF_CLK_PT
„
REF_CLK_SSC
„
TCLK_OUT
„
TCLK_IN
Table 27: General 1.8V Interface (CMOS) DC Electrical Specifications
Param eter
Sym bol
Test Condition
Min
Typ
Max
Units Notes
Input low level
VIL
-0.3
0.35*VDDIO
V
-
Input high level
VIH
0.65*VDDIO
VDDIO+0.3
V
-
Output low level
VOL
IOL = 2 mA
-
0.45
V
-
Output high level
VOH
IOH = -2 mA
VDDIO-0.45
-
V
-
Input leakage current
IIL
0 < VIN < VDDIO
-10
10
uA
1, 2
Pin capacitance
Cpin
pF
-
5
Notes:
1. While I/O is in High-Z.
2. This current does not include the current flow ing through the pullup/pulldow n resistor.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 67
MV76100
Hardware Specifications
9.5.3
SDRAM DDR2 Interface DC Electrical Specifications
Table 28: SDRAM DDR2 Interface DC Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Units Notes
Input low level
VIL
-
-0.3
VREF - 0.125
V
-
Input high level
VIH
-
VREF + 0.125
VDDIO + 0.3
V
-
Output low level
VOL
IOL = 13.4 mA
0.28
V
-
Output high level
VOH
IOH = -13.4 mA
V
-
Rtt effective impedance value
RTT
See note 2
Deviation of VM w ith respect to VDDQ/2
dVm
See note 3
-6
0 < VIN < VDDIO
-10
Input leakage current
Pin capacitance
IIL
Cpin
1.42
120
150
180
ohm
1,2
60
75
90
ohm
1,2
40
50
60
ohm
1,2
6
%
3
10
uA
4, 5
pF
-
-
5
Notes:
1. See SDRAM functional description section for ODT configuration.
2. Measurement definition for RTT: Apply VREF +/- 0.25 to input pin separately,
then measure current I(VREF + 0.25) and I(VREF - 0.25) respectively.
RTT =
0 .5
I (VREF + 0.25 ) − I (VREF
− 0.25 )
3. Measurement definition for VM: Measured voltage (VM) at input pin (midpoint) w ith no load.
⎛ 2 × Vm
⎞
− 1 ⎟ × 100 %
dVM = ⎜
⎝ VDDIO
⎠
4. While I/O is in High-Z.
5. This current does not include the current flow ing through the pullup/pulldow n resistor.
MV-S105424-U0 Rev. B
Page 68
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
DC Electrical Specifications
9.5.4
Two-Wire Serial Interface (TWSI) 3.3V DC Electrical
Specifications
Table 29: TWSI Interface 3.3V DC Electrical Specifications
Param eter
Sym bol
Input low level
VIL
Test Condition
Input high level
VIH
Output low level
VOL
IOL = 3 mA
Input leakage current
IIL
0 < VIN < VDDIO
Pin capacitance
Cpin
Min
Typ
Max
Units Notes
-0.5
0.3*VDDIO
V
-
0.7*VDDIO
VDDIO+0.5
V
-
-
0.4
V
-
-10
10
uA
1, 2
pF
-
5
Notes:
1. While I/O is in High-Z.
2. This current does not include the current flow ing through the pullup/pulldow n resistor.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 69
MV76100
Hardware Specifications
9.6
AC Electrical Specifications
See Section 9.7, Differential Interface Electrical Characteristics, on page 102 for differential interface
specifications.
9.6.1
Reference Clock and Reset AC Timing Specifications
Table 30: Reference Clock and Reset AC Timing Specifications
D e s c r i p t io n
Symbol
Min
Max
U ni ts
Frequency
FREF_CLK_SSC
FREF_CLK_PT
25 100 ppm
25 +
100 ppm
MHz
Clock duty cycle
DCREF_CLK_SSC
DCREF_CLK_PT
40
60
%
Slew rate
SRREF_CLK_SSC
SRREF_CLK_PT
0.7
Pk-Pk jitter
JRREF_CLK_SSC
JRREF_CLK_PT
N ot e s
Core Reference Clock
V/ns
200
ps
1
C o r e R e f e r e n c e C l o c k Sp r e a d Sp e c t r u m R e q u ir em e n ts
Modulation Frequency
FmodREF_CLK_SSC
0
33
kHz
2
Modulation Index
FspreadREF_CLK_SSC
-0.5
0
%
2
FGE0_TXCLK
2.5 100 ppm
25 +
100 ppm
MHz
35
65
%
E t h er n e t R e f e r e n c e C lo c k
Frequency in MII-MAC mode
FGE0_RXCLK
MII clock duty cycle
DCGE0_TXCLK
DCGE0_RXCLK
Slew rate
SRGE0_TXCLK
0.7
V/ns
FGE_MDC
TCLK/128
MHz
FTWSI0_SCK,
FTWSI1_SCK
TCLK/1600
kHz
FSPI_SCK
TCLK/30
1
SRGE0_RXCLK
S M I M a s t e r M o d e R e f e r e n c e C l o ck
SMI output MDC clock
T WS I M a s t er M o d e R e fe re n c e C lo c k
SCK output clock
SP I O ut pu t C l o c k
SPI output clock
MV-S105424-U0 Rev. B
Page 70
TCLK/4
MHz
6
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
AC Electrical Specifications
Table 30: Reference Clock and Reset AC Timing Specifications
D e s c r i p t io n
Symbol
Min
Max
U ni ts
T C L K _ O U T R e fe r e n c e C lo c k
N ot e s
5
166
MHz
40
60
%
3
FTCLK_IN
150
200
MHz
4
Clock duty cycle
DCTCLK_IN
40
60
%
Slew rate
SRTCLK_IN
0.7
Pk-Pk jitter
JRTCLK_IN
Frequency
FTCLK_OUT
Clock duty cycle
DCTCLK_OUT
Frequency
TCLK_IN Reference Clock
V/ns
200
1
ps
R e s e t Sp e c if ic a t i o n s
Refer to Section 7, System Power Up and Reset
Settings.
Notes:
1.
2.
Slew rate is defined from 20% to 80% of the reference clock signal.
Defined on linear sweep or “Hershey’s Kiss” (US Patent 5,631,920) modulations.
3.
4.
5.
6.
The load is CL = 15 pF.
See Table 21, Reset Configuration, on page 52 for more details.
Relevant only when working in source synchronous device bus mode.
For additional information regarding configuring this clock, see the Serial Memory Interface
Control Register in the MV76100, MV78100, and MV78200 Functional Specification.
7.
Figure 6: TCLK_Out Reference Clock Test Circuit
Test Point
CL
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 71
MV76100
Hardware Specifications
Figure 7: TCLK_Out AC Timing Diagram
Cycle Time
VDDIO/2
MV-S105424-U0 Rev. B
Page 72
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.2
Reduced Gigabit Media Independent Interface (RGMII) AC
Timing
9.6.2.1
RGMII AC Timing Table
Table 31: RGMII AC Timing Table
Description
Sym bol
Clock frequency
fCK
Data to Clock output skew
Min
Max
125.0
Units Notes
MHz
2
Tskew T
-0.50
0.50
ns
Tskew R
1.00
2.60
ns
-
Tcyc
7.20
8.80
ns
1,2
Duty cycle for Gigabit
Duty_G
0.45
0.55
tCK
2
Duty cycle for 10/100 Megabit
Duty_T
0.40
0.60
tCK
2
Data to Clock input skew
Clock cycle duration
Notes:
General comment: All values w ere measured from vddio/2 to vddio/2, unless otherw ise specified.
General comment: tCK = 1/fCK.
General comment: If the PHY does not support internal-delay mode, the PC board design requires
routing clocks so that an additional trace delay of greater than 1.5 ns and less
than 2.0 ns is added to the associated clock signal.
For 10/100 Mbps RGMII, the Max value is unspecified.
1. For RGMII at 10 Mbps and 100 Mbps, Tcyc w ill scale to 400 ns +/-40 ns and 40 ns +/-4 ns, respectively.
2. For all signals, the load is CL = 5 pF.
9.6.2.2
RGMII Test Circuit
Figure 8: RGMII Test Circuit
Test Point
CL
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 73
MV76100
Hardware Specifications
9.6.2.3
RGMII AC Timing Diagram
Figure 9: RGMII AC Timing Diagram
TX
CLOCK
(At Transmitter)
TX
DATA
TskewT
RX
CLOCK
(At Receiver)
RX
DATA
TskewR
MV-S105424-U0 Rev. B
Page 74
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.3
Media Independent Interface (MII) AC Timing
9.6.3.1
MII AC Timing Table
Table 32: MII AC Timing Table
Description
Sym bol
Min
Max
Units
Notes
tSU
8.0
-
ns
-
Data input hold relative to RX_CLK rising edge
tHD
8.0
-
ns
-
Data output delay relative to MII_TX_CLK rising edge
tOV
0.0
20.0
ns
1
Data input setup relative to RX_CLK rising edge
Notes:
General comment: All values w ere measured from VIL(max) to VIH(min), unless otherw ise specified.
1. For all signals, the load is CL = 5 pF.
9.6.3.2
MII Test Circuit
Figure 10: MII Test Circuit
Test Point
CL
9.6.3.3
MII AC Timing Diagrams
Figure 11: MII Output Delay AC Timing Diagram
Vih(min)
MII_TX_CLK
Vil(max)
Vih(min)
TXD, TX_EN, TX_ER
Vil(max)
TOV
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 75
MV76100
Hardware Specifications
Figure 12: MII Input AC Timing Diagram
Vih(min)
RX_CLK
Vih(min)
RXD, RX_EN, RX_ER
Vil(max)
tSU
tHD
MV-S105424-U0 Rev. B
Page 76
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.4
Gigabit Media Independent Interface (GMII) AC Timing
9.6.4.1
GMII AC Timing Table
Table 33: GMII AC Timing Table
125 MHz
Description
GTX_CLK cycle time
RX_CLK cycle time
Sym bol
Min
Max
Units
Notes
tCK
7.5
8.5
ns
-
tCKrx
7.5
-
ns
-
GTX_CLK and RX_CLK high level w idth
tHIGH
2.5
-
ns
1
GTX_CLK and RX_CLK low level w idth
tLOW
2.5
-
ns
1
GTX_CLK and RX_CLK rise time
tR
-
1.0
ns
1, 2
GTX_CLK and RX_CLK fall time
tF
-
1.0
ns
1, 2
Data input setup time relative to RX_CLK rising edge
tSETUP
2.0
-
ns
-
Data input hold time relative to RX_CLK rising edge
tHOLD
0.0
-
ns
-
Data output valid before GTX_CLK rising edge
tOVB
2.5
-
ns
1
Data output valid after GTX_CLK rising edge
tOVA
0.5
-
ns
1
Notes:
General comment: All values w ere measured from VIL(max) to VIH(min), unless otherw ise specified.
1. For all signals, the load is CL = 5 pF.
2. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max).
9.6.4.2
GMII Test Circuit
Figure 13: GMII Test Circuit
Test Point
CL
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 77
MV76100
Hardware Specifications
9.6.4.3
GMII AC Timing Diagrams
Figure 14: GMII Output AC Timing Diagram
tLOW
tHIGH
VIH(min)
GTX_CLK
VIL(max)
VIH(min)
TXD, TX_EN, TX_ER
VIL(max)
tOVB
tOVA
Figure 15: GMII Input AC Timing Diagram
tLOW
tHIGH
VIH(min)
RX_CLK
VIL(max)
VIH(min)
RXD, RX_EN, RX_ER
VIL(max)
tSETUP
tHOLD
MV-S105424-U0 Rev. B
Page 78
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.5
Serial Management Interface (SMI) AC Timing
9.6.5.1
SMI Master Mode AC Timing Table
Table 34: SMI Master Mode AC Timing Table
Description
Sym bol
Min
Max
Units
Notes
MHz
2
MDC clock frequency
fCK
MDC clock duty cycle
tDC
0.4
0.6
tCK
-
MDIO input setup time relative to MDC rise time
tSU
40.0
-
ns
-
MDIO input hold time relative to MDC rise time
tHO
0.0
-
ns
-
MDIO output valid before MDC rise time
tOVB
15.0
-
ns
1
MDIO output valid after MDC rise time
tOVA
15.0
-
ns
1
See note 2
Notes:
General comment: All timing values w ere measured from VIL(max) and VIH(min) levels, unless otherw ise specified.
General comment: tCK = 1/fCK.
1. For MDC signal, the load is CL = 390 pF, and for MDIO signal, the load is CL = 470 pF.
2. See "Reference Clocks" table for more details.
9.6.5.2
SMI Master Mode Test Circuit
Figure 16: MDIO Master Mode Test Circuit
VDDIO
Test Point
2 kilohm
MDIO
CL
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 79
MV76100
Hardware Specifications
Figure 17: MDC Master Mode Test Circuit
Test Point
MDC
CL
9.6.5.3
SMI Master Mode AC Timing Diagrams
Figure 18: SMI Master Mode Output AC Timing Diagram
VIH(min)
MDC
VIH(min)
MDIO
VIL(max)
tOVB tOVA
Figure 19: SMI Master Mode Input AC Timing Diagram
VIH(min)
MDC
VIH(min)
MDIO
VIL(max)
tSU
tHO
MV-S105424-U0 Rev. B
Page 80
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.6
SDRAM DDR2 Interface AC Timing
9.6.6.1
SDRAM DDR2 400 MHz Interface AC Timing Table
Table 35: SDRAM DDR2 400 MHz Interface AC Timing Table
400 MHz @ 1.8V
Description
Sym bol
Clock frequency
Min
fCK
Max
400.0
Units
Notes
MHz
-
DQ and DM valid output time before DQS transition
tDOVB
0.38
-
ns
-
DQ and DM valid output time after DQS transition
tDOVA
0.38
-
ns
-
DQ and DM output pulse w idth
tDIPW
0.35
-
tCK(avg)
-
DQS output high pulse w idth
tDQSH
0.35
-
tCK(avg)
-
DQS output low pulse w idth
tDQSL
0.35
-
tCK(avg)
-
DQS falling edge to CLK-CLKn rising edge
tDSS
0.34
-
tCK(avg)
1
DQS falling edge from CLK-CLKn rising edge
tDSH
0.34
-
tCK(avg)
1
CLK-CLKn rising edge to DQS output rising edge
tDQSS
-0.11
0.11
tCK(avg)
-
DQS w rite preamble
tWPRE
0.35
-
tCK(avg)
-
DQS w rite postamble
tWPST
0.41
-
tCK(avg)
-
CLK-CLKn high-level w idth
tCH
0.48
0.52
tCK(avg)
1, 2, 3
CLK-CLKn low -level w idth
tCL
0.48
0.52
tCK(avg)
1, 2, 4
DQ input setup time relative to DQS in transition
tDSI
-0.40
-
ns
-
DQ input hold time relative to DQS in transition
tDHI
0.60
-
ns
-
Address and control output pulse w idth
tIPW
0.67
-
tCK(avg)
-
Notes:
General comment: All timing values w ere measured from vref to vref, unless otherw ise specified.
General comment: All input timing values assume minimum slew rate of 1 V/ns (slew rate measured from Vref +/-125 mV).
General comment: All timing parameters w ith DQS signal are defined on DQS-DQSn crossing point.
General comment: For Address and Control output timing parameters, refer to the Address Timing table.
General comment: tCK = 1/fCK.
General comment: For all signals, the load is CL = 14 pF.
1. This timing value is defined on CLK / CLKn crossing point.
2. Refer to SDRAM DDR2 clock specifications table for more information.
3. tCH(avg) is defined as the average HIGH pulse w idth, as calculated across any consecutive 200 HIGH pulses.
4. tCL(avg) is defined as the average LOW pulse w idth, as calculated across any consecutive 200 LOW pulses.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 81
MV76100
Hardware Specifications
Table 36: SDRAM DDR2 400 MHz Interface Address and Control Timing Table
400 MHz @ 1.8V
Description
Sym bol
Min
Max
Units
Notes
tAOIB
-
0.20
ns
1, 3
Address and Control invalid output time before CLK-CLkn rising edge
Address and Control invalid output time after CLK-CLKn rising edge
tAOIA
-
0.40
ns
1, 3
Address and Control valid output time before CLK-CLkn rising edge
tAOVB
0.95
-
ns
1, 2
Address and Control valid output time after CLK-CLKn rising edge
tAOVA
0.95
-
ns
1, 2
Address and Control valid output time before CLK-CLkn rising edge
tAOVB
1.50
-
ns
1, 4
Address and Control valid output time after CLK-CLKn rising edge
tAOVA
0.45
-
ns
1, 4
Notes:
General comment: All timing values w ere measured from vref to vref, unless otherw ise specified.
General comment: For all signals, the load is CL = 14 pF.
1. This timing value is defined on CLK / CLKn crossing point.
2. This timing value is defined w hen Address and Control signals are output on CLK-CLKn falling edge.
For more information, see register settings.
3. This timing value is defined w hen Address and Control signals are output on CLK-CLKn rising edge
(1T and 2T configurations). For more information, see register settings.
4. This timing value is defined w hen Address and Control signals are output ¼ cycle after CLK-CLKn rising edge.
MV-S105424-U0 Rev. B
Page 82
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.6.2
SDRAM DDR2 400 MHz Clock Specifications
Table 37: SDRAM DDR2 400 MHz Clock Specifications
Description
Sym bol
Min
Max
Units
Notes
tJIT(per)
-100
100
ps
1
tJIT(per,lck)
-80
80
ps
2
Clock period jitter
Clock perior jitter during DLL locking period
Cycle to cycle clock period jitter
tJIT(cc)
-200
200
ps
3
Cycle to cycle clock period jitter during DLL locking period
tJIT(cc,lck)
-160
160
ps
4
Cumulative error across 2 cycles
tERR(2per)
-150
150
ps
5
Cumulative error across 3 cycles
tERR(3per)
-175
175
ps
5
Cumulative error across 4 cycles
tERR(4per)
-200
200
ps
5
Cumulative error across 5 cycles
tERR(5per)
-200
200
ps
5
Cumulative error across n cycles, n=6...10, inclusive
tERR(6-10per)
-300
300
ps
5
Cumulative error across n cycles, n=11…50, inclusive
tERR(11-50per)
-450
450
ps
5
Duty cycle jitter
tJIT(duty)
-100
100
ps
6
Absolute clock period
tCK(abs)
See note 7
ps
7
Absolute clock high pulse w idth
tCH(abs)
See note 8
ps
8
Absolute clock low pulse w idth
tCL(abs)
See note 9
ps
9
Notes:
General comment: All timing values are defined on CLK / CLKn crossing point, unless otherw ise specified.
1. tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg).
tJIT(per) = Min/max of {tCKi- tCK(avg) w here i=1 to 200}.
tJIT(per) defines the single period jitter w hen the DLL is already locked.
2. tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.
3. tJIT(cc) is defined as the difference in clock period betw een tw o consecutive clock cycles: tJIT(cc) = Max of |tCKi+1 – tCKi|.
tJIT(cc) defines the cycle to cycle jitter w hen the DLL is already locked.
4. tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.
5. tERR(nper) is defined as the cumulative error across multiple consecutive cycles from tCK(avg).
Refer to JEDEC Standard No. 79-2 (DDR2 SDRAM Specification) for more information.
6. tJIT(duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of
any single tCH from tCH(avg). tCL jitter is the largest deviation of any single tCL from tCL(avg).
tJIT(duty) = Min/max of {tJIT(CH), tJIT(CL)} w here,
tJIT(CH) = {tCHi- tCH(avg) w here i=1 to 200}; tJIT(CL) = {tCLi- tCL(avg) w here i=1 to 200}.
7. tCK(abs),min = tCK(avg),min + tJIT(per),min; tCK(abs),max = tCK(avg),max + tJIT(per),max.
8. tCH(abs),min = tCH(avg),min x tCK(avg),min + tJIT(duty),min; tCH(abs),max = tCH(avg),max x tCK(avg),max + tJIT(duty),max.
9. tCL(abs),min = tCL(avg),min x tCK(avg),min + tJIT(duty),min; tCL(abs),max = tCL(avg),max x tCK(avg),max + tJIT(duty),max.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 83
MV76100
Hardware Specifications
9.6.6.3
SDRAM DDR2 333 MHz Interface AC Timing Table
Table 38: SDRAM DDR2 333 MHz Interface AC Timing Table
333 MHz @ 1.8V
Description
Sym bol
Clock frequency
Min
Max
333.0
fCK
Units
Notes
MHz
-
ns
-
DQ and DM valid output time before DQS transition
tDOVB
0.45
-
DQ and DM valid output time after DQS transition
tDOVA
0.45
-
ns
-
DQ and DM output pulse w idth
tDIPW
0.35
-
tCK(avg)
-
DQS output high pulse w idth
tDQSH
0.35
-
tCK(avg)
-
DQS output low pulse w idth
tDQSL
0.35
-
tCK(avg)
-
DQS falling edge to CLK-CLKn rising edge
tDSS
0.34
-
tCK(avg)
1
DQS falling edge from CLK-CLKn rising edge
tDSH
0.34
-
tCK(avg)
1
CLK-CLKn rising edge to DQS output rising edge
tDQSS
-0.11
0.11
tCK(avg)
-
DQS w rite preamble
tWPRE
0.35
-
tCK(avg)
-
DQS w rite postamble
tWPST
0.41
-
tCK(avg)
-
CLK-CLKn high-level w idth
tCH
0.48
0.52
tCK(avg)
1, 2, 3
CLK-CLKn low -level w idth
tCL
0.48
0.52
tCK(avg)
1, 2, 4
DQ input setup time relative to DQS in transition
tDSI
-0.50
-
ns
-
DQ input hold time relative to DQS in transition
tDHI
0.75
-
ns
-
Address and control output pulse w idth
tIPW
0.67
-
tCK(avg)
-
Notes:
General comment: All timing values w ere measured from vref to vref, unless otherw ise specified.
General comment: All input timing values assume minimum slew rate of 1 V/ns (slew rate measured from Vref +/-125 mV).
General comment: All timing parameters w ith DQS signal are defined on DQS-DQSn crossing point.
General comment: For Address and Control output timing parameters, refer to the Address Timing table.
General comment: tCK = 1/fCK.
General comment: For all signals, the load is CL = 14 pF.
1. This timing value is defined on CLK / CLKn crossing point.
2. Refer to SDRAM DDR2 clock specifications table for more information.
3. tCH(avg) is defined as the average HIGH pulse w idth, as calculated across any consecutive 200 HIGH pulses.
4. tCL(avg) is defined as the average LOW pulse w idth, as calculated across any consecutive 200 LOW pulses.
MV-S105424-U0 Rev. B
Page 84
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
Table 39: SDRAM DDR2 333 MHz Interface Address and Control Timing Table
333 MHz @ 1.8V
Sym bol
Min
Max
Units
Notes
Address and Control invalid output time before CLK-CLkn rising edge
tAOIB
-
0.28
ns
1, 3
Address and Control invalid output time after CLK-CLKn rising edge
tAOIA
-
0.28
ns
1, 3
Address and Control valid output time before CLK-CLkn rising edge
tAOVB
1.00
-
ns
1, 2
Address and Control valid output time after CLK-CLKn rising edge
tAOVA
1.00
-
ns
1, 2
Description
Notes:
General comment: All timing values w ere measured from vref to vref, unless otherw ise specified.
General comment: For all signals, the load is CL = 14 pF.
1. This timing value is defined on CLK / CLKn crossing point.
2. This timing value is defined w hen Address and Control signals are output on CLK-CLKn falling edge.
For more information, see register settings.
3. This timing value is defined w hen Address and Control signals are output on CLK-CLKn rising edge
(1T and 2T configurations). For more information, see register settings.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 85
MV76100
Hardware Specifications
9.6.6.4
SDRAM DDR2 333 MHz Clock Specifications
Table 40: SDRAM DDR2 333 MHz Clock Specifications
Description
Sym bol
Min
Max
Units
Notes
tJIT(per)
-125
125
ps
1
tJIT(per,lck)
-100
100
ps
2
Clock period jitter
Clock perior jitter during DLL locking period
Cycle to cycle clock period jitter
tJIT(cc)
-250
250
ps
3
Cycle to cycle clock period jitter during DLL locking period
tJIT(cc,lck)
-200
200
ps
4
Cumulative error across 2 cycles
tERR(2per)
-175
175
ps
5
Cumulative error across 3 cycles
tERR(3per)
-225
225
ps
5
Cumulative error across 4 cycles
tERR(4per)
-250
250
ps
5
Cumulative error across 5 cycles
tERR(5per)
-250
250
ps
5
Cumulative error across n cycles, n=6...10, inclusive
tERR(6-10per)
-350
350
ps
5
Cumulative error across n cycles, n=11…50, inclusive
tERR(11-50per)
-450
450
ps
5
Duty cycle jitter
tJIT(duty)
-125
125
ps
6
Absolute clock period
tCK(abs)
See note 7
ps
7
Absolute clock high pulse w idth
tCH(abs)
See note 8
ps
8
Absolute clock low pulse w idth
tCL(abs)
See note 9
ps
9
Notes:
General comment: All timing values are defined on CLK / CLKn crossing point, unless otherw ise specified.
1. tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg).
tJIT(per) = Min/max of {tCKi- tCK(avg) w here i=1 to 200}.
tJIT(per) defines the single period jitter w hen the DLL is already locked.
2. tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.
3. tJIT(cc) is defined as the difference in clock period betw een tw o consecutive clock cycles: tJIT(cc) = Max of |tCKi+1 – tCKi|.
tJIT(cc) defines the cycle to cycle jitter w hen the DLL is already locked.
4. tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.
5. tERR(nper) is defined as the cumulative error across multiple consecutive cycles from tCK(avg).
Refer to JEDEC Standard No. 79-2 (DDR2 SDRAM Specification) for more information.
6. tJIT(duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of
any single tCH from tCH(avg). tCL jitter is the largest deviation of any single tCL from tCL(avg).
tJIT(duty) = Min/max of {tJIT(CH), tJIT(CL)} w here,
tJIT(CH) = {tCHi- tCH(avg) w here i=1 to 200}; tJIT(CL) = {tCLi- tCL(avg) w here i=1 to 200}.
7. tCK(abs),min = tCK(avg),min + tJIT(per),min; tCK(abs),max = tCK(avg),max + tJIT(per),max.
8. tCH(abs),min = tCH(avg),min x tCK(avg),min + tJIT(duty),min; tCH(abs),max = tCH(avg),max x tCK(avg),max + tJIT(duty),max.
9. tCL(abs),min = tCL(avg),min x tCK(avg),min + tJIT(duty),min; tCL(abs),max = tCL(avg),max x tCK(avg),max + tJIT(duty),max.
MV-S105424-U0 Rev. B
Page 86
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.6.5
SDRAM DDR2 266 MHz Interface AC Timing Table
Table 41: SDRAM DDR2 266 MHz Interface AC Timing Table
266 MHz @ 1.8V
Description
Clock frequency
Sym bol
Min
Max
266.0
fCK
Units
Notes
MHz
-
DQ and DM valid output time before DQS transition
tDOVB
0.42
-
ns
-
DQ and DM valid output time after DQS transition
tDOVA
0.42
-
ns
-
DQ and DM output pulse w idth
tDIPW
0.35
-
tCK
-
DQS output high pulse w idth
tDQSH
0.35
-
tCK
-
DQS output low pulse w idth
tDQSL
0.35
-
tCK
-
DQS falling edge to CLK-CLKn rising edge
tDSS
0.34
-
tCK
1
DQS falling edge from CLK-CLKn rising edge
tDSH
0.34
-
tCK
1
CLK-CLKn rising edge to DQS output rising edge
tDQSS
-0.11
0.11
tCK
-
DQS w rite preamble
tWPRE
0.35
-
tCK
-
DQS w rite postamble
tWPST
0.41
-
tCK
-
tCH
0.45
0.55
tCK
1
CLK-CLKn high-level w idth
CLK-CLKn low -level w idth
tCL
0.45
0.55
tCK
1
DQ input setup time relative to DQS in transition
tDSI
-0.50
-
ns
-
DQ input hold time relative to DQS in transition
tDHI
1.20
-
ns
-
Address and Control valid output time before CLK-CLkn rising edge
tAOVB
2.90
-
ns
1, 2
Address and Control valid output time after CLK-CLKn rising edge
tAOVA
0.30
-
ns
1, 2
tIPW
0.67
-
tCK
-
Address and control output pulse w idth
Notes:
General comment: All timing values w ere measured from vref to vref, unless otherw ise specified.
General comment: All input timing values assume minimum slew rate of 1 V/ns (slew rate measured from Vref +/-125 mV).
General comment: tCK = 1/fCK.
General comment: For all signals, the load is CL = 16 pF.
1. This timing value is defined on CLK / CLKn crossing point.
2. This timing value is defined w hen Address and Control signals are output ¼tCK after CLK-CLKn rising edge.
For more information, see register settings.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 87
MV76100
Hardware Specifications
9.6.6.6
SDRAM DDR2 200 MHz Interface AC Timing Table
Table 42: SDRAM DDR2 200 MHz Interface AC Timing Table
200 MHz @ 1.8V
Description
Sym bol
Clock frequency
Min
Max
200.0
fCK
Units
Notes
MHz
-
DQ and DM valid output time before DQS transition
tDOVB
0.50
-
ns
-
DQ and DM valid output time after DQS transition
tDOVA
0.50
-
ns
-
DQ and DM output pulse w idth
tDIPW
0.35
-
tCK
-
DQS output high pulse w idth
tDQSH
0.35
-
tCK
-
DQS output low pulse w idth
tDQSL
0.35
-
tCK
-
DQS falling edge to CLK-CLKn rising edge
tDSS
0.34
-
tCK
1
DQS falling edge from CLK-CLKn rising edge
tDSH
0.34
-
tCK
1
CLK-CLKn rising edge to DQS output rising edge
tDQSS
-0.11
0.11
tCK
-
DQS w rite preamble
tWPRE
0.35
-
tCK
-
DQS w rite postamble
tWPST
0.41
-
tCK
-
CLK-CLKn high-level w idth
tCH
0.45
0.55
tCK
1
CLK-CLKn low -level w idth
tCL
0.45
0.55
tCK
1
DQ input setup time relative to DQS in transition
tDSI
-0.55
-
ns
-
DQ input hold time relative to DQS in transition
tDHI
1.50
-
ns
-
Address and Control valid output time before CLK-CLkn rising edge
tAOVB
2.25
-
ns
1, 2
Address and Control valid output time after CLK-CLKn rising edge
tAOVA
0.80
-
ns
1, 2
tIPW
0.67
-
tCK
-
Address and control output pulse w idth
Notes:
General comment: All timing values w ere measured from vref to vref, unless otherw ise specified.
General comment: All input timing values assume minimum slew rate of 1 V/ns (slew rate measured from Vref +/-125 mV).
General comment: tCK = 1/fCK.
General comment: For all signals, the load is CL = 16 pF.
1. This timing value is defined on CLK / CLKn crossing point.
2. This timing value is defined w hen Address and Control signals are output ¼tCK after CLK-CLKn rising edge.
For more information, see register settings.
MV-S105424-U0 Rev. B
Page 88
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.6.7
SDRAM DDR2 Interface Test Circuit
Figure 20: SDRAM DDR2 Interface Test Circuit
VDDIO/2
Test Point
50 ohm
CL
9.6.6.8
SDRAM DDR2 Interface AC Timing Diagrams
Figure 21: SDRAM DDR2 Interface Write AC Timing Diagram
CLK
tCH
tDSH
tDSS
tDQSH
tDQSL
tCL
CLKn
DQS
tWPRE
tWPST
DQSn
tDIPW
DQ
tDOVB tDOVA
Figure 22: SDRAM DDR2 Interface Address and Control AC Timing Diagram
CLK
tCH
tCL
CLKn
tIPW
ADDRESS/
CONTROL
tAOVB
tAOVA
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 89
MV76100
Hardware Specifications
Figure 23: SDRAM DDR2 Interface Read AC Timing Diagram
DQS
DQSn
DQ
tDSI
tDHI
MV-S105424-U0 Rev. B
Page 90
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
AC Electrical Specifications
9.6.7
Serial Peripheral Interface (SPI) AC Timing
9.6.7.1
SPI (Master Mode) AC Timing Table
Table 43: SPI (Master Mode) AC Timing Table
SPI
Description
Sym bol
Units
Notes
MHz
3
tCK
1
-
tCK
1
-
V/ns
1
2.5
ns
1
8.0
-
ns
1
Min
Max
See Note 3
SCLK clock frequency
fCK
SCLK high time
tCH
0.46
SCLK low time
tCL
0.46
SCLK slew rate
tSR
0.5
Data out valid relative to SCLK falling edge
tDOV
-2.5
CS active before SCLK rising edge
tCSB
CS not active after SCLK rising edge
-
tCSA
8.0
-
ns
1
Data in setup time relative to SCLK rising edge
tSU
0.2
-
tCK
2
Data in hold time relative to SCLK rising edge
tHD
5.0
-
ns
2
Notes:
General comment: All values w ere measured from 0.3*vddio to 0.7*vddio, unless otherw ise specified.
General comment: tCK = 1/fCK.
1. For all signals, the load is CL = 10 pF.
2. Defined from vddio/2 to vddio/2.
3. See "Reference Clocks" table for more details.
9.6.7.2
SPI (Master Mode) Test Circuit
Figure 24: SPI (Master Mode) Test Circuit
Test Point
CL
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 91
MV76100
Hardware Specifications
9.6.7.3
SPI (Master Mode) Timing Diagrams
Figure 25: SPI (Master Mode) Normal Output AC Timing Diagram
tCH
tCL
SCLK
Data
Out
tDOVmin
tDOVmax
CS
tCSB
tCSA
Figure 26: SPI (Master Mode) Normal Input AC Timing Diagram
SCLK
Data in
tSU
tHD
MV-S105424-U0 Rev. B
Page 92
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
AC Electrical Specifications
Figure 27: SPI (Master Mode) Opposite Output AC Timing Diagram
tCH
tCL
SCLK
Data
Out
tDOVmin
tDOVmax
CS
tCSB
tCSA
Figure 28: SPI (Master Mode) Opposite Input AC Timing Diagram
SCLK
Data in
tSU
tHD
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 93
MV76100
Hardware Specifications
9.6.8
Two-Wire Serial Interface (TWSI) AC Timing
9.6.8.1
TWSI AC Timing Table
Table 44: TWSI Master AC Timing Table
Description
Sym bol
SCK clock frequency
fCK
SCK minimum low level w idth
tLOW
SCK minimum high level w idth
Min
Max
See note 1
Units
Notes
kHz
1
0.47
-
tCK
2
tHIGH
0.40
-
tCK
2
SDA input setup time relative to SCK rising edge
tSU
250.0
-
ns
-
SDA input hold time relative to SCK falling edge
tHD
0.0
-
ns
-
tr
-
1000.0
ns
2, 3
tf
-
300.0
ns
2, 3
tOV
0.0
0.4
tCK
2
SDA and SCK rise time
SDA and SCK fall time
SDA output delay relative to SCK falling edge
Notes:
General comment: All values referred to VIH(min) and VIL(max) levels, unless otherw ise specified.
General comment: tCK = 1/fCK.
1. See "Reference Clocks" table for more details.
2. For all signals, the load is CL = 100 pF, and RL value can be 500 ohm to 8 kilohm.
3. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max).
Table 45: TWSI Slave AC Timing Table
100 kHz (Max)
Description
Sym bol
Min
Max
Units
Notes
SCK minimum low level w idth
tLOW
4.7
-
us
1
SCK minimum high level w idth
tHIGH
4.0
-
us
1
SDA input setup time relative to SCK rising edge
tSU
250.0
-
ns
-
SDA input hold time relative to SCK falling edge
tHD
0.0
-
ns
-
SDA and SCK rise time
tr
-
1000.0
ns
1, 2
SDA and SCK fall time
tf
-
300.0
ns
1, 2
tOV
0.0
4.0
us
1
SDA output delay relative to SCK falling edge
Notes:
General comment: All values referred to VIH(min) and VIL(max) levels, unless otherw ise specified.
1. For all signals, the load is CL = 100 pF, and RL value can be 500 ohm to 8 kilohm.
2. Rise time measured from VIL(max) to VIH(min), fall time measured from VIH(min) to VIL(max).
MV-S105424-U0 Rev. B
Page 94
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.8.2
TWSI Test Circuit
Figure 29: TWSI Test Circuit
VDDIO
Test Point
RL
CL
9.6.8.3
TWSI AC Timing Diagrams
Figure 30: TWSI Output Delay AC Timing Diagram
tHIGH
tLOW
Vih(min)
SCK
Vil(max)
Vih(min)
SDA
Vil(max)
tOV(min)
tOV(max)
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 95
MV76100
Hardware Specifications
Figure 31: TWSI Input AC Timing Diagram
tLOW
tHIGH
Vih(min)
SCK
Vil(max)
Vih(min)
SDA
Vil(max)
tSU
tHD
MV-S105424-U0 Rev. B
Page 96
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.9
Device Bus Interface AC Timing
9.6.9.1
Device Bus Interface AC Timing Table
Table 46: Device Bus Interface AC Timing Table (when using TCLK_OUT as the reference clock)
Description
Sym bol
Min
Max
Units
Notes
Data/READYn input setup relative to clock rising edge
tSU
3.0
-
ns
-
Data/READYn input hold relative to clock rising edge
tHD
1.0
-
ns
-
Address/Data output delay relative to clock rising edge
tOV
0.8
3.5
ns
1
Address output valid before ALE signal falling edge
tAOAB
7.5
-
ns
1,2
Address output valid after ALE signal falling edge
tAOAA
3.5
-
ns
1,2
Notes:
General comment: All timing values are for interfacing synchronous devices.
General comment: All values w ere measured from VIL(max) to VIH(min), unless otherw ise specified.
1. For all signals, the load is CL = 10 pF.
2. The AD bus is normally loaded w ith high capacitance. Make sure to w ork according to HW design guidelines
or simulations in order to meet the latch AC timing requirements.
Table 47: Device Bus Interface AC Timing Table (when using TCLK_IN as the reference clock)
Sym bol
Min
Max
Units
Notes
Data/READYn input setup relative to clock rising edge
Description
tSU
1.5
-
ns
-
Data/READYn input hold relative to clock rising edge
tHD
0.5
-
ns
-
Address/Data output delay relative to clock rising edge
tOV
1.5
3.0
ns
1
Address output valid before ALE signal falling edge
tAOAB
5.2
-
ns
1,2
Address output valid after ALE signal falling edge
tAOAA
2.8
-
ns
1,2
Notes:
General comment: All timing values are for interfacing synchronous devices.
General comment: All values are defined on VDDIO/2.2, unless otherw ise specified.
1. For all signals, the load is CL = 5 pF.
2. The AD bus is normally loaded w ith high capacitance. Make sure to w ork according to HW design guide lines
or simulations in order to meet the latch AC timing requirements.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 97
MV76100
Hardware Specifications
9.6.9.2
Device Bus Interface Test Circuit
Figure 32: Device Bus Interface Test Circuit
Test Point
CL
9.6.9.3
Device Bus Interface AC Timing Diagram
Figure 33: Device Bus Interface Output Delay AC Timing Diagram
Vih(min)
CLOCK
Vil(max)
Vih(min)
DATA
Vil(max)
TOV(min)
TOV(max)
Vih(min)
ALE
Vil(max)
Vih(min)
AD Bus
Vil(max)
TAOAB
TAOAA
MV-S105424-U0 Rev. B
Page 98
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
Figure 34: Device Bus Interface Input AC Timing Diagram
Vih(min)
CLOCK
Vil(max)
Vih(min)
DATA
Vil(max)
tSU
tHO
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 99
MV76100
Hardware Specifications
9.6.10
JTAG Interface AC Timing
9.6.10.1
JTAG Interface AC Timing Table
Table 48: JTAG Interface 30 MHz AC Timing Table
30 MHz
Description
Sym bol
JTClk frequency
Min
Max
30.0
fCK
Units
Notes
MHz
-
JTClk minimum pulse w idth
Tpw
0.45
0.55
tCK
-
JTClk rise/fall slew rate
Sr/Sf
0.50
-
V/ns
2
JTRSTn active time
Trst
1.0
-
ms
-
Tsetup
6.67
-
ns
-
TMS, TDI input hold relative to JTClk rising edge
Thold
13.0
-
ns
-
JTClk falling edge to TDO output delay
Tprop
1.0
8.33
ns
1
TMS, TDI input setup relative to JTClk rising edge
Notes:
General comment: All values w ere measured from vddio/2 to vddio/2, unless otherw ise specified.
General comment: tCK = 1/fCK.
1. For TDO signal, the load is CL = 10 pF.
2. Defined from VIL to VIH for rise time, and from VIH to VIL for fall time.
9.6.10.2
JTAG Interface Test Circuit
Figure 35: JTAG Interface Test Circuit
Test Point
CL
MV-S105424-U0 Rev. B
Page 100
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.6.10.3
JTAG Interface AC Timing Diagrams
Figure 36: JTAG Interface Output Delay AC Timing Diagram
Tprop
(max)
JTCK
VIH
VIL
TDO
Tprop
(min)
Figure 37: JTAG Interface Input AC Timing Diagram
JTCK
TMS,TDI
Tsetup
Thold
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 101
MV76100
Hardware Specifications
9.7
Differential Interface Electrical Characteristics
This section provides the reference clock, AC, and DC characteristics for the following differential
interfaces:
„
PCI Express (PCIe) Interface Electrical Characteristics
„
SATA Interface Electrical Characteristics
„
USB Interface Electrical Characteristics
9.7.1
Differential Interface Reference Clock Characteristics
9.7.1.1
PCI Express Interface Differential Reference Clock Characteristics
Table 50
Note
The reference clock characteristics in Table 50 is relevant for the PEX0_CLK_P,
PEX0_CLK_N, PEX1_CLK_P, PEX1_CLK_N pins.
Table 49: PCI Express Interface Differential Reference Clock Characteristics
Description
Sym bol
Min
Max
100.0
Units
Notes
MHz
-
Clock frequency
fCK
Clock duty cycle
DCrefclk
0.4
0.6
tCK
-
Differential rising/falling slew rate
SRrefclk
0.6
4.0
V/nS
3
Differential high voltage
VIHrefclk
150.0
-
mV
-
Differential low voltage
VILrefclk
-
-150.0
mV
-
Absolute crossing point voltage
Vcross
250.0
550.0
mV
1
Vcrs_dlta
-
140.0
mV
1
Average differential clock period accuracy
Tperavg
-300.0
2800.0
ppm
-
Absolute differential clock period
Tperabs
9.8
10.2
nS
2
Tccjit
-
150.0
pS
-
Variation of Vcross over all rising clock edges
Differential clock cycle-to-cycle jitter
Notes:
General Comment: The reference clock timings are based on 100 ohm test circuit.
General Comment: Refer to the PCI Express Card Electromechanical Specification, Revision 1.1,
March 2005, section 2.1.3 for more information.
1. Defined on a single-ended signal.
2. Including jitter and spread spectrum.
3. Defined from -150 mV to +150 mV on the differential w aveform.
MV-S105424-U0 Rev. B
Page 102
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
Differential Interface Electrical Characteristics
PCI Express Interface Spread Spectrum Requirements
Table 50:
PCI Express Interface Spread Spectrum Requirements
Sym bol
Min
Max
Units
Notes
Fmod
0.0
33.0
kHz
1
Fspread
-0.5
0.0
%
1
Notes:
1. Defined on linear sw eep or “Hershey’s Kiss” (US Patent 5,631,920) modulations.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 103
MV76100
Hardware Specifications
9.7.2
PCI Express (PCIe) Interface Electrical Characteristics
9.7.2.1
PCI Express Interface Driver and Receiver Characteristics
Table 51: PCI Express Interface Driver and Receiver Characteristics
Units
Notes
Baud rate
Description
Sym bol
BR
2.5
Gbps
-
Unit interval
UI
400.0
ps
-
Baud rate tolerance
Bppm
Min
Max
-300.0
300.0
ppm
2
Driver parameters
Differential peak to peak output voltage
VTXpp
0.8
1.2
V
-
Minimum TX eye w idth
TTXeye
0.75
-
UI
-
Differential return loss
TRLdiff
10.0
-
dB
1
Common mode return loss
TRLcm
6.0
-
dB
1
DC differential TX impedance
ZTXdiff
80.0
120.0
Ohm
-
Receiver parameters
Differential input peak to peak voltage
VRXpp
0.175
1.2
V
-
Minimum receiver eye w idth
TRXeye
0.4
-
UI
-
Differential return loss
RRLdiff
10.0
-
dB
1
Common mode return loss
RRLcm
6.0
-
dB
1
DC differential RX impedance
ZRXdiff
80.0
120.0
Ohm
-
DC common input impedance
ZRXcm
40.0
60.0
Ohm
-
Notes:
General Comment: For more information, refer to the PCI Express Base Specification, Revision 1.1, March, 2005.
1. Defined from 50 MHz to 1.25 GHz.
2. Does not account for SSC dictated variations.
MV-S105424-U0 Rev. B
Page 104
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
9.7.2.2
PCI Express Interface Test Circuit
Figure 38: PCI Express Interface Test Circuit
Test Points
+
C_TX
D+
D-
C_TX
50 ohm
50 ohm
When measuring Transmitter output parameters, C_TX is an optional portion of the
Test/Measurement load. When used, the value of C_TX must be in the range of 75 nF to 200 nF.
C_TX must not be used when the Test/Measurement load is placed in the Receiver package
reference plane.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 105
MV76100
Hardware Specifications
9.7.3
SATA Interface Electrical Characteristics
9.7.3.1
SATA I Interface Gen1 Mode Driver and Receiver Characteristics
Table 52: SATA I Interface Gen1i Mode Driver and Receiver Characteristicss
Description
Sym bol
Baud Rate
Min
Max
BR
Baud rate tolerance
Bppm
1.5
-350.0
350.0
Units
Notes
Gbps
-
ppm
-
Spread spectrum modulation frequency
Fssc
30.0
33.0
kHz
-
Spread spectrum modulation Deviation
SSCtol
-5000.0
0.0
ppm
-
ps
-
Unit Interval
UI
666.67
Driver Parameters
Differential impedance
Zdifftx
85.0
115.0
Ohm
Single ended impedance
Zsetx
40.0
-
Ohm
-
Differential return loss (75 MHz-150 MHz)
RLOD
14.0
-
dB
-
Differential return loss (150 MHz-300 MHz)
RLOD
8.0
-
dB
-
Differential return loss (300 MHz-1.2 GHz)
RLOD
6.0
-
dB
-
Differential return loss (1.2 GHz-2.4 GHz)
RLOD
3.0
-
dB
-
Differential return loss (2.4 GHz-3.0 GHz)
RLOD
1.0
-
dB
-
Output differential voltage
Vdifftx
400.0
600.0
mV
2
Total jitter at connector data-data, 5UI
TJ5
-
0.355
UI
1
Deterministic jitter at connector data-data, 5UI
DJ5
-
0.175
UI
-
TJ250
-
0.470
UI
1
DJ250
-
0.220
UI
-
Total jitter at connector data-data, 250UI
Deterministic jitter at connector data-data, 250UI
Receiver Parameters
Differential impedance
Zdiffrx
85.0
115.0
Ohm
Single ended impedance
Zsetx
40.0
-
Ohm
-
Differential return loss (75 MHz-150 MHz)
RLID
18.0
-
dB
-
Differential return loss (150 MHz-300 MHz)
RLID
14.0
-
dB
-
Differential return loss (300 MHz-600 MHz)
RLID
10.0
-
dB
-
Differential return loss (600 MHz-1.2 GHz)
RLID
8.0
-
dB
-
Differential return loss (1.2 GHz-2.4 GHz)
RLID
3.0
-
dB
-
Differential return loss (2.4 GHz-3.0 GHz)
RLID
1.0
-
dB
-
Vdiffrx
325.0
600.0
mV
-
Input differential voltage
Total jitter at connector data-data, 5UI
TJ5
-
0.430
UI
1
Deterministic jitter at connector data-data, 5UI
DJ5
-
0.250
UI
-
Total jitter at connector data-data, 250UI
TJ250
-
0.600
UI
1
Deterministic jitter at connector data-data, 250UI
DJ250
-
0.350
UI
-
Notes:
General Comment: For more information, refer to SATA II Revision 2.6 Specification, February, 2007.
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.
General Comment: To comply w ith the values presented in this table, refer to your local
Marvell representative for register settings.
1. Total jitter is defined as TJ = (14 * RJσ) + DJ w here Rjσ is random jitter.
2. Output Differential Amplitude and Pre-Emphasis are configurabile. See functional register description
for more details.
MV-S105424-U0 Rev. B
Page 106
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
Table 53: SATA I Interface Gen1m Mode Driver and Receiver Characteristics
Description
Sym bol
Baud Rate
Min
Max
BR
Baud rate tolerance
Bppm
1.5
-350.0
350.0
Units
Notes
Gbps
-
ppm
-
Spread spectrum modulation frequency
Fssc
30.0
33.0
kHz
-
Spread spectrum modulation Deviation
SSCtol
-5000.0
0.0
ppm
-
ps
-
Unit Interval
UI
666.67
Driver Parameters
Differential impedance
Zdifftx
85.0
115.0
Ohm
-
Single ended impedance
Zsetx
40.0
-
Ohm
-
Differential return loss (75 MHz-150 MHz)
RLOD
14.0
-
dB
-
Differential return loss (150 MHz-300 MHz)
RLOD
8.0
-
dB
-
Differential return loss (300 MHz-1.2 GHz)
RLOD
6.0
-
dB
-
Differential return loss (1.2 GHz-2.4 GHz)
RLOD
3.0
-
dB
-
Output differential voltage
Vdifftx
400.0
600.0
mV
2
1
Total jitter at connector data-data, 5UI
TJ5
-
0.355
UI
Deterministic jitter at connector data-data, 5UI
DJ5
-
0.175
UI
-
Total jitter at connector data-data, 250UI
TJ250
-
0.470
UI
1
Deterministic jitter at connector data-data, 250UI
DJ250
-
0.220
UI
-
Receiver Parameters
Differential impedance
Zdiffrx
85.0
115.0
Ohm
-
Single ended impedance
Zsetx
40.0
-
Ohm
-
Differential return loss (75 MHz-150 MHz)
RLID
18.0
-
dB
-
Differential return loss (150 MHz-300 MHz)
RLID
14.0
-
dB
-
Differential return loss (300 MHz-600 MHz)
RLID
10.0
-
dB
-
Differential return loss (600 MHz-1.2 GHz)
RLID
8.0
-
dB
-
Differential return loss (1.2 GHz-2.4 GHz)
RLID
3.0
-
dB
-
Vdiffrx
240.0
600.0
mV
-
Total jitter at connector data-data, 5UI
TJ5
-
0.430
UI
1
Deterministic jitter at connector data-data, 5UI
DJ5
-
0.250
UI
-
Total jitter at connector data-data, 250UI
TJ250
-
0.600
UI
1
Deterministic jitter at connector data-data, 250UI
DJ250
-
0.350
UI
-
Input differential voltage
Notes:
General Comment: For more information, refer to SATA II Revision 2.6 Specification, February, 2007.
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.
General Comment: To comply w ith the values presented in this table, refer to your local
Marvell representative for register settings.
1. Total jitter is defined as TJ = (14 * RJσ) + DJ w here Rjσ is random jitter.
2. Output Differential Amplitude and Pre-Emphasis are configurabile. See functional register description
for more details.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 107
MV76100
Hardware Specifications
9.7.3.2
SATA II Interface Gen2 Mode Driver and Receiver Characteristics
Table 54: SATA II Interface Gen2i Mode Driver and Receiver Characteristics
De s cription
Baud Rate
Baud rate tolerance
Sym bol
M in
M ax
3.0
BR
Bppm
-350.0
350.0
Units
Note s
Gbps
-
ppm
-
Spread spectrum modulation f requency
Fssc
30.0
33.0
kHz
-
Spread spectrum modulation Deviation
SSCtol
-5000.0
0.0
ppm
-
ps
-
Unit Interval
333.33
UI
Dri ver P a ra meters
Output dif f erential voltage
V dif f tx
400.0
700.0
mV
1,2
Dif f erential return loss (150 MHz-300 MHz)
RLOD
14.0
-
dB
-
Dif f erential return loss (300 MHz-600 MHz)
RLOD
8.0
-
dB
-
Dif f erential return loss (600 MHz-2.4 GHz)
RLOD
6.0
-
dB
-
Dif f erential return loss (2.4 GHz-3.0 GHz)
RLOD
3.0
-
dB
-
Dif f erential return loss (3.0 GHz-5.0 GHz)
RLOD
1.0
-
dB
-
Total jitter at connector clock-data
TJ10
-
0.30
UI
3
Deterministic jitter at connector clock-data
DJ10
-
0.17
UI
3
Total jitter at connector clock-data
TJ500
-
0.37
UI
4
Deterministic jitter at connector clock-data
DJ500
-
0.19
UI
4
Recei ver P a ra meters
Input dif f erential voltage
V dif f rx
275.0
750.0
mV
5
Dif f erential return loss (150 MHz-300 MHz)
RLID
18.0
-
dB
-
Dif f erential return loss (300 MHz-600 MHz)
RLID
14.0
-
dB
-
Dif f erential return loss (600 MHz-1.2 GHz)
RLID
10.0
-
dB
-
Dif f erential return loss (1.2 GHz-2.4 GHz)
RLID
8.0
-
dB
-
Dif f erential return loss (2.4 GHz-3.0 GHz)
RLID
3.0
-
dB
-
Dif f erential return loss (3.0 GHz-5.0 GHz)
RLID
1.0
-
dB
-
Total jitter at connector clock-data
TJ10
-
0.46
UI
3
Deterministic jitter at connector clock-data
DJ10
-
0.35
UI
3
Total jitter at connector clock-data
TJ500
-
0.60
UI
4
Deterministic jitter at connector clock-data
DJ500
-
0.42
UI
4
Note s :
General Comment: For more inf ormation, ref er to SA TA II Revision 2.6 Specif ication, February, 2007.
General Comment: The load is 100 ohm dif f erential f or these parameters, unless otherw ise specif ied.
General Comment: To comply w ith the values presented in this table, ref er to your local
Marvell representative f or register settings.
1. 0.45-0.55 UI is the range w here the signal meets the minimum level.
2. Output Dif f erential A mplitude and Pre-Emphasis are conf igurabile. See f unctional register description
f or more details.
3. Def ined f or BR/10.
4. Def ined f or BR/500.
5. 0.5 UI is the point w here the signal meets the minimum level.
MV-S105424-U0 Rev. B
Page 108
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
Table 55: SATA II Interface Gen2m Mode Driver and Receiver Characteristics
Description
Baud Rate
Sym bol
Min
Max
BR
3.0
Units
Notes
Gbps
-
Baud rate tolerance
Bppm
-350.0
350.0
ppm
Spread spectrum modulation frequency
Fssc
30.0
33.0
kHz
-
Spread spectrum modulation Deviation
SSCtol
-5000.0
0.0
ppm
-
ps
1,2
Unit Interval
UI
333.33
Driver Parameters
Output differential voltage
Vdifftx
400.0
700.0
mV
Differential return loss (150 MHz-300 MHz)
RLOD
14.0
-
dB
-
Differential return loss (300 MHz-600 MHz)
RLOD
8.0
-
dB
-
Differential return loss (600 MHz-2.4 GHz)
RLOD
6.0
-
dB
-
Differential return loss (2.4 GHz-3.0 GHz)
RLOD
3.0
-
dB
-
Total jitter at connector clock-data
TJ10
-
0.30
UI
3
Deterministic jitter at connector clock-data
DJ10
-
0.17
UI
3
Total jitter at connector clock-data
TJ500
-
0.37
UI
4
DJ500
-
0.19
UI
4
Vdiffrx
240.0
750.0
mV
5
Differential return loss (150 MHz-300 MHz)
RLID
18.0
-
dB
-
Differential return loss (300 MHz-600 MHz)
RLID
14.0
-
dB
-
Differential return loss (600 MHz-1.2 GHz)
RLID
10.0
-
dB
-
Differential return loss (1.2 GHz-2.4 GHz)
RLID
8.0
-
dB
-
Differential return loss (2.4 GHz-3.0 GHz)
RLID
3.0
-
dB
-
Deterministic jitter at connector clock-data
Receiver Parameters
Input differential voltage
Total jitter at connector clock-data
TJ10
-
0.46
UI
3
Deterministic jitter at connector clock-data
DJ10
-
0.35
UI
3
Total jitter at connector clock-data
TJ500
-
0.60
UI
4
Deterministic jitter at connector clock-data
DJ500
-
0.42
UI
4
Notes:
General Comment: For more information, refer to SATA II Revision 2.6 Specification, February, 2007.
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.
General Comment: To comply w ith the values presented in this table, refer to your local
Marvell representative for register settings.
1. 0.45-0.55 UI is the range w here the signal meets the minimum level.
2. Output Differential Amplitude and Pre-Emphasis are configurabile. See functional register description
for more details.
3. Defined for BR/10.
4. Defined for BR/500.
5. 0.5 UI is the point w here the signal meets the minimum level.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 109
MV76100
Hardware Specifications
9.7.4
USB Interface Electrical Characteristics
9.7.4.1
USB Driver and Receiver Characteristics
Table 56: USB Low Speed Driver and Receiver Characteristics
Low Speed
Description
Baud Rate
Baud rate tolerance
Ouput single ended high
Ouput single ended low
Output signal crossover voltage
Data fall time
Data rise time
Rise and fall time matching
Source jitter total: to next transition
Source jitter total: for paired transitions
Input single ended high
Input single ended low
Differential input sensitivity
Sym bol
BR
Bppm
Driver Parameters
VOH
VOL
VCRS
TLR
TLF
TLRFM
TUDJ1
TUDJ2
Receiver Parameters
VIH
VIL
VDI
Min
Max
1.5
-15000.0 15000.0
Units
Mbps
ppm
Notes
-
2.8
0.0
1.3
75.0
75.0
80.0
-95.0
-150.0
3.6
0.3
2.0
300.0
300.0
125.0
95.0
150.0
V
V
V
ns
ns
%
ns
ns
1
2
3
3, 4
3, 4
5
5
2.0
0.2
0.8
-
V
V
V
-
Notes:
General Comment: For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000.
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.
General Comment: To comply w ith the values presented in this table, refer to your local
Marvell representative for register settings.
1. Defined w ith 1.425 kilohm pull-up resistor to 3.6V.
2. Defined w ith 14.25 kilohm pull-dow n resistor to ground.
3. See "Data Signal Rise and Fall Time" w aveform.
4. Defined from 10% to 90% for rise time and 90% to 10% for fall time.
5. Including frequency tolerance. Timing difference betw een the differential data signals.
Defined at crossover point of differential data signals.
MV-S105424-U0 Rev. B
Page 110
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
Table 57: USB Full Speed Driver and Receiver Characteristics
Full Speed
Description
Sym bol
BR
Bppm
Driver Parameters
Ouput single ended high
VOH
Ouput single ended low
VOL
Output signal crossover voltage
VCRS
Output rise time
TFR
Output fall time
TFL
Source jitter total: to next transition
TDJ1
Source jitter total: for paired transitions
TDJ2
Source jitter for differential transition to SE0 transition
TFDEOP
Receiver Parameters
Input single ended high
VIH
Input single ended low
VIL
Differential input sensitivity
VDI
Receiver jitter : to next transition
tJR1
Receiver jitter: for paired transitions
tJR2
Baud Rate
Baud rate tolerance
Min
Max
12.0
-2500.0
2500.0
Units
Mbps
ppm
Notes
-
2.8
0.0
1.3
4.0
4.0
-3.5
-4.0
-2.0
3.6
0.3
2.0
20.0
20.0
3.5
4.0
5.0
V
V
V
ns
ns
ns
ns
ns
1
2
4
3, 4
3, 4
5, 6
5, 6
6
2.0
0.2
-18.5
-9.0
0.8
18.5
9.0
V
V
V
ns
ns
6
6
Notes:
General Comment: For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000.
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.
General Comment: To comply w ith the values presented in this table, refer to your local
Marvell representative for register settings.
1.. Defined w ith 1.425 kilohm pull-up resistor to 3.6V.
2.. Defined w ith 14.25 kilohm pull-dow n resistor to ground.
3. Defined from 10% to 90% for rise time and 90% to 10% for fall time.
4. See "Data Signal Rise and Fall Time" w aveform.
5. Including frequency tolerance. Timing difference betw een the differential data signals.
6. Defined at crossover point of differential data signals.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 111
MV76100
Hardware Specifications
Table 58: USB High Speed Driver and Receiver Characteristics
High Speed
Description
Baud Rate
Baud rate tolerance
Data signaling high
Data signaling low
Data rise time
Data fall time
Data source jitter
Sym bol
BR
Bppm
Driver Parameters
VHSOH
VHSOL
THSR
THSF
Min
Max
480.0
-500.0
500.0
Units
Mbps
ppm
Notes
-
360.0
440.0
-10.0
10.0
500.0
500.0
See note 2
mV
mV
ps
ps
1
1
2
Receiver Parameters
Differential input signaling levels
Data signaling common mode voltage range
Receiver jitter tolerance
VHSCM
See note 3
-50.0
500.0
See note 3
3
3
mV
Notes:
General Comment: For more information, refer to Universal Serial Bus Specification, Revision 2.0, April 2000.
General Comment: The load is 100 ohm differential for these parameters, unless otherw ise specified.
General Comment: To comply w ith the values presented in this table, refer to your local
Marvell representative for register settings.
1. Defined from 10% to 90% for rise time and 90% to 10% for fall time.
2. Source jitter specified by the "TX eye diagram pattern template" figure.
3. Receiver jitter specified by the "RX eye diagram pattern template" figure.
9.7.4.2
USB Interface Driver Waveforms
Figure 39: Low/Full Speed Data Signal Rise and Fall Time
Rise Time
Fall Time
90%
90%
VCRS
10%
Differential
Data Lines
10%
TR
MV-S105424-U0 Rev. B
Page 112
TF
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Electrical Specifications
Figure 40: High Speed TX Eye Diagram Pattern Template
+525mV
+475mV
+400mV
Differential
+300mV
0 Volts
Differential
-300mV
- 400mV
Differential
-475mV
-525mV
7.5%
37.5%
92.5%
62.5%
0%
100%
Figure 41: High Speed RX Eye Diagram Pattern Template
+525mV
+475mV
+400mV
Differential
+175mV
0 Volts
Differential
-175mV
- 400mV
Differential
-475mV
-525mV
12.5%
35
65
0%
Copyright © 2008 Marvell
December 6, 2008, Preliminary
87.5%
100%
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 113
MV76100
Hardware Specifications
10
Thermal Data (Preliminary)
Table 59 provides the package thermal data for the MV76100. This data is derived from simulations
that were run according to the JEDEC standard.
The thermal parameters are preliminary and subject to change.
Note
The documents listed below provide a basic understanding of thermal management of integrated
circuits (ICs) and guidelines to ensure optimal operating conditions for Marvell® products. Before
designing a system it is recommended to refer to these documents:
„
Application Note, AN-63 Thermal Management for Selected Marvell® Products (Doc. No.
MV-S300281-00)
„
White Paper, ThetaJC, ThetaJA, and Temperature Calculations(Doc. No. MV-S700019-00)
Table 59: Thermal Data for the MV76100 in FCBGA Package
Sy m b o l
D e f in i tio n
Ai rf lo w Va lu e ( C / W )
0 [ m /s ]
1[m/s]
2 [ m /s ]
θJA
Thermal resistance: junction to ambient
17.4
15.6
14.8
ψJT
Thermal characterization parameter: junction to top center
0.8
0.8
0.8
ψJB
Thermal characterization parameter: junction to board
10.2
9.9
9.7
θJC
Thermal resistance: junction to case
(not air-flow dependent)
0.4
θJB
Thermal resistance: junction to board
(not air-flow dependent)
14.5
MV-S105424-U0 Rev. B
Page 114
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Package Mechanical Dimensions
11
Package Mechanical Dimensions
The MV76100 uses a 655-pin 27 mm x 27 mm FCBGA package with 1 mm pitch.
Figure 42: 655 Pin FCBGA Package and Dimensions
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 115
MV76100
Hardware Specifications
12
Part Order Numbering/Package Marking
Figure 43 is an example of the part order numbering scheme for the MV76100. Refer to Marvell®
Field Application Engineers (FAEs) or representatives for further information on die revisions when
ordering parts.
Figure 43: Sample Part Number
MV76100 –xx–BHO–C000–xxxx
Part Number
MV76100
Custom Code (optional)
Custom Code
Temperature Code
C = Commercial
Die Revision
Environmental Code
– = RoHS 5/6
1 = RoHS 6/6
Package Code
BHO = 655-pin FCBGA
Table 60: MV76100 Part Order Options
P a c k a g e Ty p e
Part Order Number
655-pin FCBGA
MV76100-A0-BHO-C060 (RoHS 5/6 compliant package; 600 MHz)
655-pin FCBGA
MV76100-A0-BHO1C060 (RoHS 6/6 compliant package; 600 MHz)
655-pin FCBGA
MV76100-A0-BHO-C080 (RoHS 5/6 compliant package; 800 MHz)
655-pin FCBGA
MV76100-A0-BHO1C080 (RoHS 6/6 compliant package; 800 MHz)
MV-S105424-U0 Rev. B
Page 116
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Part Order Numbering/Package Marking
Figure 44 shows a sample Commercial package marking and pin 1 location for the MV76100.
Figure 44: MV76100 Commercial Package Marking and Pin 1 Location
Marvell logo
Country of origin
(Contained in the mold
ID or marked as the
last line on the
package.)
Part number and
custom code
MV7-BHOe
Lot Number
YYWW xx@
Country of Origin
MV76100-xx
xxxx
Pin 1 location
Package code, environmental code
Environmental code = e
(No code = RoHS 5/6, 1 = RoHS 6/6, 2 = Green)
Date code, custom code, assembly plant code
Date code (YY = Year, WW = Work week)
Custom code = xx
Assembly plant code = @
Temperature code
(C = Commercial, I = Industrial)
(060/080 = Custom)
Note: The above drawing is not drawn to scale. The location of markings is approximate.
Copyright © 2008 Marvell
December 6, 2008, Preliminary
MV-S105424-U0 Rev. B
Document Classification: Proprietary Information
Page 117
MV76100
Hardware Specifications
13
Revision History
Table 61: Revision History
D o c u m e n t Ty p e
R e v is i o n
Date
Release
B
December 6, 2008
Section 2, Pin Information:
• Added the SYSRST_OUTn pin to Table 4, Miscellaneous Pin Assignments, on page 24. This signal is multiplexed
on the MPP pins.
• Added the M_BB pin to Table 5, DDR SDRAM Interface Pin Assignments, on page 26. The SDRAM battery
backup signal trigger is multiplexed on the MPP pins.
• Changed the value to from 5 kilohm to 4.99 kilohm for PEXn_ISET in Table 7, PCI Express Port 0/1 Interface Pin
Assignments, on page 30.
• Added the SATA_PRESENTn and SATA_ACTn pins to Table 11, SATA II Port Interface Pin Assignments, on
page 35. These signals are multiplexed on the MPP pins.
Section 3, Unused Interface Strapping:
• Updated pull up and pull down resistor values in Table 17, Unused Interface Strapping, on page 39.
Section 7, System Power Up and Reset Settings, on page 49.
• Added power rail information to Table 21, Reset Configuration, on page 52.
• Corrected the configuration settings for DEV_AD[30] (NAND Flash Initialization Command) in Table 21 .
Section 9.6.7, Serial Peripheral Interface (SPI) AC Timing
• Added AC timing information for this interface.
Section 9.6.9, Device Bus Interface AC Timing
• Changed the minimum values for tAOAB from 5.0 ns to 7.5 ns and tAOAA from 5.0 ns to 3.5 ns in Table 46, Device
Bus Interface AC Timing Table (when using TCLK_OUT as the reference clock), on page 97.
Initial Release
A
MV-S105424-U0 Rev. B
Page 118
July 7, 2008
Copyright © 2008 Marvell
Document Classification: Proprietary Information
December 6, 2008, Preliminary
Contact Information
Marvell Semiconductor, Inc.
5488 Marvell Lane
Santa Clara, CA 95054, USA
Tel: 1.408.222.2500
Fax: 1.408.752.9028
www.marvell.com
Marvell. Moving Forward Faster