NCV4276 Low−Drop Voltage Regulator This industry standard linear regulator has the capability to drive loads up to 400 mA at 5.0, 3.3, 2.5 and 1.8 V. Package options include DPAK and D2PAK. This device is pin−for−pin compatible with the Infineon part number TLE4276. http://onsemi.com MARKING DIAGRAMS Features • • • • • • 5.0, 3.3, 2.5 and 1.8 V; ±4%; Output Voltage at 400 mA 500 mV (max) Dropout Voltage Inhibit Input Very Low Current Consumption Fault Protection ♦ +45 V Peak Transient Voltage ♦ −42 V Reverse Voltage ♦ Short Circuit ♦ Thermal Overload NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes 1 5 DPAK 5−PIN DT SUFFIX CASE 175AA 4276 ALYWW x 1 D2PAK 5−PIN DS SUFFIX CASE 936A 1 NCV4276 AWLYYWW 5 I Q Bandgap Reference Error Amplifier Pin 1. I 1 2. INH Tab, 3. GND* 4. NC 5. Q * Tab is connected to Pin 3 on all packages. Current Limit and Saturation Sense − + A WL, L YY, Y WW Thermal Shutdown = Assembly Location = Wafer Lot = Year = Work Week ORDERING INFORMATION See detailed ordering and shipping information in the ordering information section on page 9 of this data sheet. INH GND NC Figure 1. Block Diagram Semiconductor Components Industries, LLC, 2004 August, 2004 − Rev. 7 1 Publication Order Number: NCV4276/D NCV4276 PIN FUNCTION DESCRIPTION ÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑ ÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ Pin No. Symbol Description 1 I 2 INH Inhibit; Set low−to inhibit. 3 GND Ground; Pin 3 internally connected to heatsink. 4 NC 5 Q Input; Battery Supply Input Voltage. Not Connected for fixed voltage versions. Output; ±4.0%, 400 mA output. Use 22 F, ESR < 2.0 at 10 kHz to ground. See Figure 3. MAXIMUM RATINGS† Rating Min Max Unit −42 45 V − − V Inhibit INH −42 45 V Output (Q) −1.0 40 V − 100 mA Q + 0.5 40 V ESD Susceptibility (Human Body Model) (Machine Model) 4.0 200 − − kV V Junction Temperature −40 150 °C −50 150 °C − − 240 Peak (Note 3) 260 Peak °C Input [I (DC)] Input [I (Peak Transient Voltage)] Ground (GND) Operating Range (I) Storage Temperature Lead Temperature Soldering Reflow (SMD styles only) Note 1 Wave Solder (through hole styles only) Note 2 °C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. THERMAL CHARACTERISTICS Parameter Test Conditions (Typical Value) Unit DPAK 5−PIN PACKAGE Min Pad Board (Note 4) 1″ Pad Board (Note 5) Junction−to−Tab (psi−JLx, JLx) 4.2 4.7 C/W Junction−to−Ambient (RJA, JA) 100.9 46.8 C/W D2PAK 5−PIN PACKAGE 0.4 sq. in. Spreader Board (Note 6) 1.2 sq. in. Spreader Board (Note 7) Junction−to−Tab (psi−JLx, JLx) 3.8 4.0 C/W Junction−to−Ambient (RJA, JA) 74.8 41.6 C/W 1. 10 seconds max. 2. 60 seconds max above 183°C. 3. −5°C/+0°C allowable conditions. 4. 1 oz. copper, 0.26 inch2 (168 mm2) copper area, 0.62″ thick FR4. 5. 1 oz. copper, 1.14 inch2 (736 mm2) copper area, 0.62″ thick FR4. 6. 1 oz. copper, 0.373 inch2 (241 mm2) copper area, 0.62″ thick FR4. 7. 1 oz. copper, 1.222 inch2 (788 mm2) copper area, 0.62″ thick FR4. †During the voltage range which exceeds the maximum tested voltage of I, operation is assured, but not specified. Wider limits may apply. Thermal dissipation must be observed closely. http://onsemi.com 2 NCV4276 ELECTRICAL CHARACTERISTICS (VI = 13.5 V; −40°C < TJ < 150°C; unless otherwise noted) Characteristic Test Conditions Min Typ Max Unit 4.8 5.0 5.2 V Output Output Voltage, 5.0 V Version 5.0 mA < IQ < 400 mA, 6.0 V < VI < 28 V Output Voltage, 5.0 V Version 5.0 mA < IQ < 200 mA, 6.0 V < VI < 40 V 4.8 5.0 5.2 V Output Voltage, 3.3 V Version 5.0 mA < IQ < 400 mA, 6.0 V < VI < 28 V 3.168 3.300 3.432 V Output Voltage, 3.3 V Version 5.0 mA < IQ < 200 mA, 6.0 V < VI < 40 V 3.168 3.300 3.432 V Output Voltage, 2.5 V Version 5.0 mA < IQ < 400 mA, 6.0 V < VI < 28 V 2.4 2.5 2.6 V Output Voltage, 2.5 V Version 5.0 mA < IQ < 200 mA, 6.0 V < VI < 40 V 2.4 2.5 2.6 V Output Voltage, 1.8 V Version 5.0 mA < IQ < 400 mA, 6.0 V < VI < 28 V 1.728 1.800 1.872 V Output Voltage, 1.8 V Version 5.0 mA < IQ < 200 mA, 6.0 V < VI < 40 V 1.728 1.800 1.872 V 400 630 1100 mA A Output Current Limitation − Output Current Limitation (Sleep Mode) Iq = II − IQ INH = 0 V, TJ < 100°C − 0.5 10 Quiescent Current, Iq = II − IQ IQ = 1.0 mA − 130 220 A Quiescent Current, Iq = II − IQ IQ = 250 mA − 10 15 mA Quiescent Current, Iq = II − IQ IQ = 400 mA − 20 35 mA IQ = 250 mA, Vdr = VI − VQ − − − − 250 − − − 500 1.2 2.0 2.7 mV V V V Dropout Voltage, 5.0 V Version 3.3 V Version 2.5 V Version 1.8 V Version Load Regulation IQ = 5.0 mA to 400 mA −35 10 35 mV Line Regulation ∆V = 12 V to 32 V, IQ = 5.0 mA −25 2.5 25 mV Power Supply Ripple Rejection fr = 100 Hz, Vr = 0.5 Vpp − 60 − dB − 0.5 − mV/K Temperature Output Voltage Drift − Inhibit Inhibit On Voltage VQ 4.8 V − 2.8 3.5 V Inhibit Off Voltage VQ 0.1 V 0.5 1.7 − V Input Current VINH = 5.0 V 5.0 10 20 A II Input CI1 100 F I 1 CI2 100 nF Output CQ NCV4276 INH IINH IQ 5 Q 2 4 3 NC GND Figure 2. Measuring Circuit http://onsemi.com 3 RL NCV4276 TYPICAL PERFORMANCE CHARACTERISTICS 1000 Unstable ESR Region for CVout = 1 F − 22 F ESR () 100 10 1 Maximum ESR for CVout = 1 F − 22 F 0.1 Stable ESR Region 0.01 0 50 100 150 200 250 300 350 400 450 OUTPUT CURRENT (mA) Figure 3. Output Stability with Output Capacitor ESR Circuit Description The error amplifier compares a temperature−stable reference voltage to a voltage that is proportional to the output voltage (Q) (generated from a resistor divider) and drives the base of a series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the output power device preventing excessive substrate current (quiescent current). VI Iq Figure 4. Single Output Regulator with Key Performance Parameters Labeled Heat Sinks A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air. Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of RJA: (1) is the maximum input voltage, is the minimum output voltage, is the maximum output current for the application, is the quiescent current the regulator consumes at IQ(max). RJA RJC RCS RSA (3) where RJC is the junction−to−case thermal resistance, RCS is the case−to−heatsink thermal resistance, RSA is the heatsink−to−ambient thermal resistance. Once the value of PD(max) is known, the maximum permissible value of RJA can be calculated: T RJA 150°C A PD VQ Iq VI(max)Iq where VI(max) VQ(min) IQ(max) SMART REGULATOR } Control Features Calculating Power Dissipation in a Single Output Linear Regulator The maximum power dissipation for a single output regulator (Figure 4) is: PD(max) [VI(max) VQ(min)] IQ(max) IQ II RJC appears in the package section of the data sheet. Like RJA, it too is a function of package type. RCS and RSA are functions of the package type, heatsink and the interface between them. These values appear in data sheets of heat sink manufacturers. Thermal, mounting, and heatsinking considerations are discussed in the ON Semiconductor application note AN1040/D. (2) The value of RJA can then be compared with those in the package section of the data sheet. Those packages with RJA less than the calculated value in Equation 2 will keep the die temperature below 150°C. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required. http://onsemi.com 4 NCV4276 Table 1. DPAK 5−Lead Thermal RC Network Models Drain Copper Area (1 oz thick) 168 mm2 (SPICE Deck Format) 736 mm2 168 mm2 Cauer Network 168 mm2 736 mm2 Foster Network 736 mm2 Units Tau Tau Units C_C1 Junction Gnd 1.00E−06 1.00E−06 W−s/C 1.36E−08 1.361E−08 sec C_C2 node1 Gnd 1.00E−05 1.00E−05 W−s/C 7.41E−07 7.411E−07 sec C_C3 node2 Gnd 6.00E−05 6.00E−05 W−s/C 1.04E−05 1.029E−05 sec C_C4 node3 Gnd 1.00E−04 1.00E−04 W−s/C 3.91E−05 3.737E−05 sec C_C5 node4 Gnd 4.36E−04 3.64E−04 W−s/C 1.80E−03 1.376E−03 sec C_C6 node5 Gnd 6.77E−02 1.92E−02 W−s/C 3.77E−01 2.851E−02 sec C_C7 node6 Gnd 1.51E−01 1.27E−01 W−s/C 3.79E+00 9.475E−01 sec C_C8 node7 Gnd 4.80E−01 1.018 W−s/C 2.65E+01 1.173E+01 sec C_C9 node8 Gnd 3.740 2.955 W−s/C 8.71E+01 8.59E+01 sec C_C10 node9 Gnd 10.322 0.438 W−s/C 168 mm2 736 mm2 sec R’s R’s R_R1 Junction node1 0.015 0.015 C/W 0.0123 0.0123 C/W R_R2 node1 node2 0.08 0.08 C/W 0.0585 0.0585 C/W R_R3 node2 node3 0.4 0.4 C/W 0.0304 0.0287 C/W R_R4 node3 node4 0.2 0.2 C/W 0.3997 0.3772 C/W R_R5 node4 node5 2.97519 2.6171 C/W 3.115 2.68 C/W R_R6 node5 node6 8.2971 1.6778 C/W 3.571 1.38 C/W R_R7 node6 node7 25.9805 7.4246 C/W 12.851 5.92 C/W R_R8 node7 node8 46.5192 14.9320 C/W 35.471 7.39 C/W R_R9 node8 node9 17.7808 19.2560 C/W 46.741 28.94 C/W node9 Gnd 0.1 0.1758 C/W R_R10 NOTE: Bold face items represent the package without the external thermal system. http://onsemi.com 5 C/W NCV4276 Table 2. D2PAK 5−Lead Thermal RC Network Models Drain Copper Area (1 oz thick) 241 mm2 (SPICE Deck Format) 788 mm2 241 mm2 Cauer Network 241 mm2 788 mm2 Foster Network 653 mm2 Units Tau Tau Units C_C1 Junction Gnd 1.00E−06 1.00E−06 W−s/C 1.361E−08 1.361E−08 sec C_C2 node1 Gnd 1.00E−05 1.00E−05 W−s/C 7.411E−07 7.411E−07 sec C_C3 node2 Gnd 6.00E−05 6.00E−05 W−s/C 1.005E−05 1.007E−05 sec C_C4 node3 Gnd 1.00E−04 1.00E−04 W−s/C 3.460E−05 3.480E−05 sec C_C5 node4 Gnd 2.82E−04 2.87E−04 W−s/C 7.868E−04 8.107E−04 sec C_C6 node5 Gnd 5.58E−03 5.95E−03 W−s/C 7.431E−03 7.830E−03 sec C_C7 node6 Gnd 4.25E−01 4.61E−01 W−s/C 2.786E+00 2.012E+00 sec C_C8 node7 Gnd 9.22E−01 2.05 W−s/C 2.014E+01 2.601E+01 sec C_C9 node8 Gnd 1.73 4.88 W−s/C 1.134E+02 1.218E+02 sec C_C10 node9 Gnd 7.12 1.31 W−s/C 241 mm2 653 mm2 sec R’s R’s R_R1 Junction node1 0.015 0.0150 C/W 0.0123 0.0123 C/W R_R2 node1 node2 0.08 0.0800 C/W 0.0585 0.0585 C/W R_R3 node2 node3 0.4 0.4000 C/W 0.0257 0.0260 C/W R_R4 node3 node4 0.2 0.2000 C/W 0.3413 0.3438 C/W R_R5 node4 node5 1.85638 1.8839 C/W 1.77 1.81 C/W R_R6 node5 node6 1.23672 1.2272 C/W 1.54 1.52 C/W R_R7 node6 node7 9.81541 5.3383 C/W 4.13 3.46 C/W R_R8 node7 node8 33.1868 18.9591 C/W 6.27 5.03 C/W R_R9 node8 node9 27.0263 13.3369 C/W 60.80 29.30 C/W node9 gnd 1.13944 0.1191 C/W R_R10 NOTE: C/W Bold face items represent the package without the external thermal system. The Cauer networks generally have physical significance and may be divided between nodes to separate thermal behavior due to one portion of the network from another. The Foster networks, though when sorted by time constant (as above) bear a rough correlation with the Cauer networks, are really only convenient mathematical models. Cauer networks can be easily implemented using circuit simulating tools, whereas Foster networks may be more easily implemented using mathematical tools (for instance, in a spreadsheet program), according to the following formula: n R(t) Ri 1−e−ttaui i1 http://onsemi.com 6 110 110 100 100 90 90 80 80 70 JA (C°/W) JA (C°/W) NCV4276 1 oz 60 2 oz 70 60 1 oz 2 oz 50 50 40 40 30 150 200 250 300 350 400 450 500 550 600 650 700 750 30 150 200 250 300 350 400 450 500 550 600 650 700 750 COPPER AREA (mm2) COPPER AREA (mm2) Figure 5. JA vs. Copper Spreader Area, DPAK 5−Lead Figure 6. JA vs. Copper Spreader Area, D2PAK 5−Lead 100 Cu Area 167 mm2 Cu Area 736 mm2 R(t) C°/W 10 1.0 sqrt(t) 0.1 0.01 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 10 100 1000 TIME (sec) Figure 7. Single−Pulse Heating Curves, DPAK 5−Lead 100 Cu Area 167 mm2 Cu Area 736 mm2 R(t) C°/W 10 1.0 0.1 0.01 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 TIME (sec) Figure 8. Single−Pulse Heating Curves, D2PAK 5−Lead http://onsemi.com 7 10 100 1000 NCV4276 100 50% Duty Cycle RJA 736 mm2 C°/W 20% 10 1.0 10% 5% 2% 1% 0.1 Non−normalized Response 0.01 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 10 100 1000 10 100 1000 PULSE WIDTH (sec) Figure 9. Duty Cycle for 1” Spreader Boards, DPAK 5−Lead 100 RJA 788 mm2 C°/W 50% Duty Cycle 10 20% 10% 5% 1.0 2% 1% 0.1 Non−normalized Response 0.01 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 PULSE WIDTH (sec) Figure 10. Duty Cycle for 1” Spreader Boards, D2PAK 5−Lead R1 Junction C1 R2 C2 R3 C3 Rn Cn Time constants are not simple RC products. Amplitudes of mathematical solution are not the resistance values. Ambient (thermal ground) Figure 11. Grounded Capacitor Thermal Network (“Cauer” Ladder) Junction R1 C1 R2 C2 R3 C3 Rn Cn Each rung is exactly characterized by its RC−product time constant; amplitudes are the resistances. Ambient (thermal ground) Figure 12. Non−Grounded Capacitor Thermal Ladder (“Foster” Ladder) http://onsemi.com 8 NCV4276 ORDERING INFORMATION Device Output Voltage NCV4276DT50RK NCV4276DS50 5.0 V NCV4276DT33RK 3.3 V 2500 Tape & Reel D2PAK, PAK 5 5−Pin Pin NCV4276DT25RK DPAK, 5−Pin 2.5 V D2PAK, PAK 5 5−Pin Pin NCV4276DS25R4 NCV4276DT18RK NCV4276DS18 DPAK, 5−Pin DPAK, 5−Pin NCV4276DS33R4 NCV4276DS25 Shipping D2PAK, PAK 5 5−Pin Pin NCV4276DS50R4 NCV4276DS33 Package DPAK, 5−Pin 1.8 V D2PAK, PAK 5 5−Pin Pin NCV4276DS18R4 http://onsemi.com 9 50 Units / Rail 800 Tape & Reel 2500 Tape & Reel 50 Units / Rail 800 Tape & Reel 2500 Tape & Reel 50 Units / Rail 800 Tape & Reel 2500 Tape & Reel 50 Units / Rail 800 Tape & Reel NCV4276 PACKAGE DIMENSIONS DPAK 5 CENTER LEAD CROP DT SUFFIX CASE 175AA−01 ISSUE O −T− SEATING PLANE C B V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. E R R1 Z A S 1 2 3 4 5 U K F J L H D G 5 PL 0.13 (0.005) M T http://onsemi.com 10 DIM A B C D E F G H J K L R R1 S U V Z INCHES MIN MAX 0.235 0.245 0.250 0.265 0.086 0.094 0.020 0.028 0.018 0.023 0.024 0.032 0.180 BSC 0.034 0.040 0.018 0.023 0.102 0.114 0.045 BSC 0.170 0.190 0.185 0.210 0.025 0.040 0.020 −−− 0.035 0.050 0.155 0.170 MILLIMETERS MIN MAX 5.97 6.22 6.35 6.73 2.19 2.38 0.51 0.71 0.46 0.58 0.61 0.81 4.56 BSC 0.87 1.01 0.46 0.58 2.60 2.89 1.14 BSC 4.32 4.83 4.70 5.33 0.63 1.01 0.51 −−− 0.89 1.27 3.93 4.32 NCV4276 PACKAGE DIMENSIONS D2PAK 5 LEAD DS SUFFIX CASE 936A−02 ISSUE B −T− OPTIONAL CHAMFER A B V H 1 2 3 4 5 M D M U S K 0.010 (0.254) TERMINAL 6 E T L P N G R C http://onsemi.com 11 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K. 4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 6. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM. DIM A B C D E G H K L M N P R S U V INCHES MIN MAX 0.386 0.403 0.356 0.368 0.170 0.180 0.026 0.036 0.045 0.055 0.067 BSC 0.539 0.579 0.050 REF 0.000 0.010 0.088 0.102 0.018 0.026 0.058 0.078 5 REF 0.116 REF 0.200 MIN 0.250 MIN MILLIMETERS MIN MAX 9.804 10.236 9.042 9.347 4.318 4.572 0.660 0.914 1.143 1.397 1.702 BSC 13.691 14.707 1.270 REF 0.000 0.254 2.235 2.591 0.457 0.660 1.473 1.981 5 REF 2.946 REF 5.080 MIN 6.350 MIN NCV4276 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 12 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. NCV4276/D