NCV8184 Micropower 70 mA Low Dropout Tracking Regulator/Line Driver The NCV8184 is a monolithic integrated low dropout tracking voltage regulator designed to provide an adjustable buffered output voltage that closely tracks (±5.0 mV) the reference input. The part can be used in automotive applications with remote sensors, or any situation where it is necessary to isolate the output of your regulator. The NCV8184 also enables the user to bestow a quick upgrade to their module when added current is needed, and the existing regulator cannot provide. The versatility of this part also enables it to be used as a high−side driver. http://onsemi.com SO−8 D SUFFIX CASE 751 8 1 DPAK 5−LEAD DT SUFFIX CASE 175AA 1 5 Features • 70 mA Source Capability • Output Tracks within ±5.0 mV • Low Input Voltage Tracking Performance VOUT (Works Down to VREF = 2.1 V) Low Dropout (0.35 V Typ. @ 50 mA) Low Quiescent Current Thermal Shutdown Wide Operating Range Internally Fused Leads in SO−8 Package NCV Prefix, for Automotive and Other Applications Requiring Site and Change Control 1 8 8184 ALYW • • • • • • PIN CONNECTIONS AND MARKING DIAGRAM GND GND Adj VIN GND GND VREF/ENABLE Pin 1. VIN 2. VOUT Tab, 3. GND 4. Adj 5. VREF/ENABLE 8184 ALYWW 1 VIN VOUT Current Limit & Saturation Sense Adj − VREF/ENABLE + A L Y WW, W = Assembly Location = Wafer Lot = Year = Work Week ORDERING INFORMATION Package Shipping† NCV8184D SO−8 95 Units/Rail NCV8184DR2 SO−8 2500 Tape & Reel NCV8184DT DPAK 50 Units/Rail NCV8184DTRK DPAK 2500 Tape & Reel Device GND BIAS Thermal Shutdown †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Figure 1. Block Diagram Semiconductor Components Industries, LLC, 2004 August, 2004 − Rev. 15 1 Publication Order Number: NCV8184/D NCV8184 MAXIMUM RATINGS Rating Value Unit Storage Temperature −65 to 150 °C Supply Voltage Range (continuous) −15 to 42 V Supply Voltage Operating Range 4.0 to 42 V 42 V Voltage Range (VOUT, Adj) −3.0 to 42 V Voltage Range (VREF/ENABLE) −0.3 to 42 V Maximum Junction Temperature 150 °C 2.5 200 kV V 240 peak (Note 2) °C Peak Transient Voltage (VIN = 14 V, Load Dump Transient = 28 V) ESD Capability Human Body Model Machine Model Lead Temperature Soldering: Reflow: (SMD styles only) (Note 1) Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. 60 second maximum above 183°C. 2. −5°C / +0°C Allowable Conditions THERMAL CHARACTERISTICS See Package Thermal Data Section (Page 8) ELECTRICAL CHARACTERISTICS (VIN = 14 V; VREF/ENABLE > 2.1 V; −40°C < TJ < +125°C; COUT = 1.0 F; IOUT = 1.0 mA; Adj = VOUT; COUT−ESR = 1.0 , unless otherwise specified.) Parameter Test Conditions Min Typ Max Unit −10 − 10 mV −5.0 − 5.0 mV Regular Output VREF/ENABLE − VOUT VOUT Tracking Error 6.0 V ≤ VIN ≤ 26 V, 100 A ≤ IOUT ≤ 50 mA 2.1 V ≤ VREF/ENABLE ≤ (VIN − 600 mV) VIN = 12 V, IOUT = 5.0 mA, VREF/ENABLE = 5.0 V Dropout Voltage (VIN − VOUT) IOUT = 100 A IOUT = 5.0 mA IOUT = 50 mA − − − 100 250 350 150 500 600 mV mV mV Line Regulation 6.0 V ≤ VIN ≤ 26 V, VREF/ENABLE = 5.0 V − − 10 mV Load Regulation 100 A ≤ IOUT ≤ 50 mA, VREF/ENABLE = 5.0 V − − 10 mV Adj Input Bias Current VREF/ENABLE = 5.0 V − 0.2 1.0 A Current Limit VIN = 14 V, VREF/ENABLE = 5.0 V, VOUT = 90% of Adj 70 − 400 mA Quiescent Current (IIN − IOUT) VIN = 12 V, IOUT = 50 mA VIN = 12 V, IOUT = 100 A VIN = 12 V, VREF/ENABLE = 0 V − − − 5.0 50 − 7.0 70 20 mA A A Ripple Rejection f = 120 Hz, IOUT = 50 mA, 6.0 V ≤ VIN ≤ 26 V 60 − − dB Thermal Shutdown Guaranteed by Design 150 180 210 °C 0.8 − 2.1 V − 0.2 1.0 A VREF/ENABLE Enable Voltage Input Bias Current − VREF/ENABLE = 5.0 V http://onsemi.com 2 NCV8184 PACKAGE PIN DESCRIPTION Package Lead Number SO−8 DPAK, 5−LEAD Lead Symbol 8 1 VIN 1 2 VOUT Regulated output. 2, 3, 6, 7 Tab, 3 GND Ground. 4 4 Adj 5 5 VREF/ENABLE Function Battery supply input voltage. Adjust lead, noninverting input. Reference voltage and ENABLE input. http://onsemi.com 3 NCV8184 0.4 1.0 0.3 0.8 TRACKING ERROR (mV) TRACKING ERROR (mV) TYPICAL PERFORMANCE CHARACTERISTICS 0.2 0.1 0.0 −0.1 −0.2 0.6 0.4 −40°C 0.2 +25°C 0.0 −0.2 +125°C −0.4 −0.3 −40 −20 0 20 40 60 80 TEMPERATURE (°C) 100 −0.6 120 0 Figure 2. Tracking Error vs. Temperature 50 70 4.0 3.5 Stable Region 40 3.0 35 Unstable Region Unstable Region 30 ESR () ESR () 60 Figure 3. Tracking Error vs. Output Current VOUT = 5.0 V 45 20 30 40 50 OUTPUT CURRENT (mA) 10 25 20 2.5 2.0 1.5 15 Data is for 0.1 F only. Capacitor values 0.5 F and above do not exhibit instability with low ESR. 0.5 5 0 1.0 C2 = 10 F 10 C2 = 0.1 F 0 10 Stable Region 50 20 30 40 OUTPUT CURRENT (mA) 60 0.0 70 0 10 C2 = 0.1 F VOUT = 5.0 V 20 30 40 50 OUTPUT CURRENT (mA) 60 70 Figure 5. Output Stability with 0.1 F at Low ESR Figure 4. Output Stability with Capacitor Change 2.5 12 QUIESCENT CURRENT (mA) QUIESCENT CURRENT (mA) VREF / ENABLE = 5.0 V 10 +125°C 8 +25°C 6 −40°C 4 2 2 IOUT = 20 mA 1.5 1 0.5 IOUT = 1 mA 0 0 10 20 30 40 50 OUTPUT CURRENT (mA) 60 0 70 0 Figure 6. Quiescent Current vs. Output Current 5 10 15 INPUT VOLTAGE (V) 20 Figure 7. Quiescent Current vs. Input Voltage http://onsemi.com 4 25 NCV8184 TYPICAL PERFORMANCE CHARACTERISTICS 6 OUTPUT VOLTAGE VOUT (V) DROPOUT VOLTAGE (V) 0.5 +125°C 0.4 +25°C 0.3 0.2 −40°C 0.1 5 4 +25°C 3 +125°C 2 1 −40°C 0.0 0 10 20 30 40 50 OUTPUT CURRENT (mA) 60 0 70 0 Figure 8. Dropout Voltage vs. Output Current 25 30 0.7 REFERENCE CURRENT (A) 6 5 4 3 2 1 0 1 2 3 4 5 REFERENCE VOLTAGE (V) 6 0.6 0.5 0.4 0.3 0.2 0.1 0.0 7 0 1 2 3 4 5 REFERENCE VOLTAGE (V) 120 115 110 105 100 95 90 85 80 0 1 6 Figure 11. Reference Current vs. Reference Voltage Figure 10. Output Voltage vs. Reference Voltage THERMAL RESISTANCE, JUNCTION TO AMBIENT, RJA, (°C/W) OUTPUT VOLTAGE (V) 10 15 20 INPUT VOLTAGE VIN (V) Figure 9. Output Voltage vs. Input Voltage 7 0 5 VREF/ENABLE = 5.0 V 2 3 4 COPPER AREA (in2) 5 Figure 12. SO−8, JA as a Function of the Pad Copper Area (2.0 oz. Cu Thickness), Board Material = 0.0625 G−10/R−4 http://onsemi.com 5 6 7 NCV8184 CIRCUIT DESCRIPTION By pulling the VREF/ENABLE lead below 0.8 V, (see Figure 16 or Figure 17), the IC is disabled and enters a sleep state where the device draws less than 20 A from supply. When the VREF/ENABLE lead is greater than 2.1 V, VOUT tracks the VREF/ENABLE lead normally. The output is capable of supplying 70 mA to the load while configured as a similar (Figure 13), lower (Figure 15), or higher (Figure 14) voltage as the reference lead. The Adj lead acts as the inverting terminal of the op amp and the VREF lead as the non−inverting. The device can also be configured as a high−side driver as displayed in Figure 18. GND C1* 1.0 F GND RF GND VREF/ ENABLE Adj VOUT, 70 mA Loads VOUT C2** GND 10 F B+ VIN GND RA Figure 13. Tracking Regulator at the Same Voltage Adj B+ VIN C2** 10 F C1* 1.0 F GND VOUT GND GND GND R1 VREF/ ENABLE GND GND VREF C3*** 10 nF Figure 14. Tracking Regulator at Higher Voltages VOUT, 70 mA NCV8184 GND C1* 1.0 F R VOUT VREF(1 E) RA VOUT VREF VOUT, 70 mA Loads VOUT C2** GND 10 F B+ VIN VREF/ ENABLE Adj 5.0 V C3*** 10 nF C3*** 10 nF Adj VREF R2 NCV8184 VOUT, 70 mA Loads VOUT C2** GND 10 F NCV8184 Output Voltage NCV8184 ENABLE Function B+ VIN C1* 1.0 F GND GND R VREF/ ENABLE C3*** 10 nF VREF from MCU VOUT VREF( R2 ) R1 R2 Figure 15. Tracking Regulator at Lower Voltages NCV8501 VREF (5.0 V) 70 mA 70 mA VOUT To Load 10 F (e.g. sensor) GND GND Adj NCV8184 100 nF GND VIN GND C C1* 1.0 F GND Adj GND VREF/ ENABLE VOUT I/O C3*** 10 nF NCV8184 VIN 6.0 V−40 V Figure 16. Tracking Regulator with ENABLE Circuit B+ VIN GND GND VREF/ ENABLE C3*** 10 nF VOUT B VSAT Figure 17. Alternative ENABLE Circuit Figure 18. High−Side Driver * C1 is required if the regulator is far from the power source filter. ** C2 is required for stability. *** C3 is recommended for EMC susceptibility http://onsemi.com 6 MCU NCV8184 APPLICATION NOTES VOUT Short to Battery Figure 20. In this case the NCV8184 supply input voltage is set at 7 V when a short to battery (14 V typical) occurs on VOUT which normally runs at 5 V. The current into the device (ammeter in Figure 20) will draw additional current as displayed in Figure 21. The NCV8184 will survive a short to battery when hooked up the conventional way as shown in Figure 19. No damage to the part will occur. The part also endures a short to battery when powered by an isolated supply at a lower voltage as in Short to battery C2** 10 F B+ VOUT VIN NCV8184 VOUT 70 mA Loads GND GND C1* 1.0 F GND GND VREF/ ENABLE Adj + Automotive Battery − typically 14 V 5.0 V + 5.0 V − C3*** 10 nF VOUT = VREF Figure 19. Short to battery A Loads VOUT B+ 70 mA VOUT C2** 10 F GND GND Adj * C1 is required if the regulator is far from the power source filter. ** C2 is required for stability. *** C3 is recommended for EMC susceptibility. VIN NCV8184 Automotive Battery typically 14 V C1* 7V 1.0 F GND + − GND VREF/ ENABLE VOUT = VREF C3*** 10 nF 5.0 V + 5.0 V − Figure 20. 18 Switched Application 16 The NCV8184 has been designed for use in systems where the reference voltage on the VREF/ENABLE pin is continuously on. Typically, the current into the VREF/ENABLE pin will be less than 1.0 A when the voltage on the VIN pin (usually the ignition line) has been switched out (VIN can be at high impedance or at ground.) Reference Figure 22. 12 10 8 6 Ignition Switch VOUT 4 VOUT 2 C2 10 F 0 5 6 7 8 9 10 1112 1314 15 1617 1819 20 2122 2324 25 26 VOUT VOLTAGE (V) GND GND Figure 21. VOUT Short to Battery Adj VIN NCV8184 CURRENT (mA) 14 GND 7 VBAT GND VREF/ ENABLE Figure 22. http://onsemi.com C1 1.0 F < 1.0 A VREF 5.0 V NCV8184 External Capacitors The value of RJA can then be compared with those in the Package Thermal Data Section of the data sheet. Those packages with RJA’s less than the calculated value in equation 2 will keep the die temperature below 150°C. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heat sink will be required. The output capacitor for the NCV8184 is required for stability. Without it, the regulator output will oscillate. Actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) is also a factor in the IC stability. Worst−case is determined at the minimum ambient temperature and maximum load expected. The output capacitor can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltage during brief conditions of negative input transients that might be characteristic of a particular system. The capacitor must also be rated at all ambient temperatures expected in the system. To maintain regulator stability down to −40°C, a capacitor rated at that temperature must be used. More information on capacitor selection for SMART REGULATORs is available in the SMART REGULATOR application note, “Compensation for Linear Regulators,” document number SR003AN/D, available through our website at http://www.onsemi.com. IIN VIN VOUT IQ Figure 23. Single Output Regulator with Key Performance Parameters Labeled Heatsinks A heatsink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air. Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of RJA: The maximum power dissipation for a single output regulator (Figure 23) is: PD(max) {VIN(max) VOUT(min)} IOUT(max) (eq. 1) RJA RJC RCS RSA where: VIN(max) is the maximum input voltage, VOUT(min) is the minimum output voltage, IOUT(max) is the maximum output current, for the application,and IQ is the quiescent current the regulator consumes at IOUT(max). Once the value of PD(max) is known, the maximum permissible value of RJA can be calculated: RJA 150°C TA PD IOUT Control Features Calculating Power Dissipation in a Single Output Linear Regulator VIN(max)IQ SMART REGULATOR (eq. 3) where: RJC = the junction−to−case thermal resistance, RCS = the case−to−heatsink thermal resistance, and RSA = the heatsink−to−ambient thermal resistance. RJC appears in the package section of the data sheet. Like RJA, it is a function of package type. RCS and RSA are functions of the package type, heatsink and the interface between them. These values appear in heat sink data sheets of heatsink manufacturers. (eq. 2) http://onsemi.com 8 NCV8184 PACKAGE THERMAL DATA Test Conditions Typical Value Parameter SO−8 Package Units Min−Pad Board (Figure 24) 1.0 in Pad Board (Figure 25) Junction−to−Case top (−JT, JT) 39 32 °C/W Junction−to−Pin 8 (−JL8, JL8) 63 58 °C/W 98 °C/W Junction−to−Ambient (RJA, JA) DPAK 5−Pin Package 121 0.5 in2 Spreader Board (Figure 26) 1.0 in2 Spreader Board (Figure 27) 15 15 °C/W Junction−to−Pin 3 (tab) (−JL3, JL3) 16 16 °C/W Junction−to−Ambient (RJA, JA) 100 69 °C/W Junction−to−Board (−JB, JB) Figure 24. 2.0 oz. copper, 40 mil traces Figure 25. 1.0 oz. copper, approx. 1/8 in2 per lead, 1.0 in2 total Figure 26. 1.0 oz. copper, 0.3 in2 drain pad, 0.5 in2 including traces Figure 27. 2.0 oz. copper, 0.5 in2 drain pad, 1.0 in2 including traces http://onsemi.com 9 NCV8184 Table 1. SO−8 Thermal RC Network Models* Board Type Min−Pad (SPICE Deck Format) 1.0 inch Pad Min−Pad Cauer Network 1.0 inch Pad Foster Network Min 1.0 inch Units Tau Tau Units C_C1 Junction Gnd 7.06879E−7 7.06879E−7 W−s/C 2.99E−7 2.99E−7 sec C_C2 node1 Gnd 3.34499E−6 3.34499E−6 W−s/C 4.40E−6 4.40E−6 sec C_C3 node2 Gnd 1.00350E−5 1.00350E−5 W−s/C 4.48E−5 4.48E−5 sec C_C4 node3 Gnd 3.68358E−5 3.68358E−5 W−s/C 2.46E−4 2.46E−4 sec C_C5 node4 Gnd 4.29554E−4 4.29554E−4 W−s/C 4.72E−3 4.72E−3 sec C_C6 node5 Gnd 7.20791E−3 7.20791E−3 W−s/C 7.18E−2 7.25E−2 sec C_C7 node6 Gnd 3.52182E−2 3.76156E−2 W−s/C 1.61E+0 1.31E+0 sec C_C8 node7 Gnd 7.16622E−1 1.33747E+0 W−s/C 2.08E+1 1.62E+1 sec C_C9 node8 Gnd 6.57830E+0 3.97588E+0 W−s/C 1.33E+2 1.08E+2 sec Min 1.0 inch R’s R’s R_R1 Junction node1 5.17805E−1 5.1780E−1 °C/W 0.34137 0.34137 °C/W R_R2 node1 node2 1.55341E+0 1.5534E+0 °C/W 0.83581 0.83581 °C/W R_R3 node2 node3 4.66024E+0 4.6602E+0 °C/W 2.36526 2.36526 °C/W R_R4 node3 node4 4.98386E+0 4.9838E+0 °C/W 6.76959 6.76960 °C/W R_R5 node4 node5 1.04570E+1 1.0457E+1 °C/W 10.39190 10.39200 °C/W R_R6 node5 node6 1.14509E+1 1.1450E+1 °C/W 8.68648 8.81855 °C/W R_R7 node6 node7 3.94880E+1 2.9500E+1 °C/W 38.62760 31.37390 °C/W R_R8 node7 node8 3.10554E+1 1.6877E+1 °C/W 27.65780 8.93175 °C/W R_R9 node8 node9 1.77562E+1 1.8812E+1 °C/W 26.24690 28.98470 °C/W 100 mm2 653 mm2 Table 2. DPAK 5−Lead Thermal RC Network Models* Drain Copper Area (1 oz thick) (SPICE Deck Format) 100 mm2 653 mm2 Cauer Network 100 mm2 653 mm2 Foster Network Units Tau Tau Units C_C1 Junction Gnd 1.51E−06 1.51E−06 W−s/C 1.00E−06 1.00E−06 sec C_C2 node1 Gnd 6.00E−06 5.91E−06 W−s/C 1.00E−05 1.00E−05 sec C_C3 node2 Gnd 1.90E−05 1.81E−05 W−s/C 1.00E−04 1.00E−04 sec C_C4 node3 Gnd 1.05E−04 9.59E−05 W−s/C 7.00E−04 6.00E−04 sec C_C5 node4 Gnd 2.98E−03 3.21E−03 W−s/C 1.03E−02 1.03E−02 sec C_C6 node5 Gnd 2.37E−02 7.87E−02 W−s/C 1.71E−01 1.71E−01 sec C_C7 node6 Gnd 4.95E−02 7.88E−02 W−s/C 1.17E+00 1.17E+00 sec C_C8 node7 Gnd 2.32E−01 1.03E+00 W−s/C 7.63E+00 7.63E+00 sec C_C9 node8 Gnd 6.95E−01 1.58E+00 W−s/C 3.93E+01 3.93E+01 sec C_C10 node9 Gnd 6.91E+00 1.16E+01 W−s/C 1.42E+02 1.42E+02 sec 100 mm2 653 mm2 R’s R’s R_R1 Junction node1 0.845 0.850 °C/W 0.507 0.507 °C/W R_R2 node1 node2 1.886 1.933 °C/W 1.096 1.096 °C/W R_R3 node2 node3 4.758 5.070 °C/W 3.467 3.467 °C/W R_R4 node3 node4 5.336 4.862 °C/W 7.168 7.168 °C/W R_R5 node4 node5 3.735 3.201 °C/W 3.394 3.394 °C/W R_R6 node5 node6 10.537 5.293 °C/W 4.000 0.720 °C/W R_R7 node6 node7 19.583 6.828 °C/W 15.000 8.912 °C/W R_R8 node7 node8 38.068 13.172 °C/W 20.000 3.636 °C/W R_R9 node8 node9 43.000 16.466 °C/W 50.000 15.161 °C/W R_R10 node9 gnd 16.884 8.868 °C/W 40.000 22.480 °C/W *Bold face items in the tables above represent the package without the external thermal system. http://onsemi.com 10 NCV8184 tools, whereas Foster networks may be more easily implemented using mathematical tools (for instance, in a spreadsheet program), according to the following formula: The Cauer networks generally have physical significance and may be divided between nodes to separate thermal behavior due to one portion of the network from another. The Foster networks, though when sorted by time constant (as above) bear a rough correlation with the Cauer networks, are really only convenient mathematical models. Cauer networks can be easily implemented using circuit simulating R(t) n Ri 1−e−ttaui i1 Copper Area (in2) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 160 150 140 JA (°C/W) 130 120 110 1.0 oz. Cu 100 90 2.0 oz. Cu 80 70 60 50 0 100 200 300 400 Copper Area 500 600 700 (mm2) Figure 28. DPAK 5−Lead, JA as a Function of the Pad Copper Area Including Traces, Board Material 0.62” Thick FR4 100 RJA 1.0 in. pad (°C/W) 50% Duty Cycle 20% 10 10% 5% 2% 1% 1 0.000001 Non−Normalized Response 0.00001 0.0001 0.001 0.1 0.01 Pulse Width (s) 1 10 Figure 29. SO−8 Thermal Duty Cycle Curves on 1.0 in. Spreader Test Board http://onsemi.com 11 100 1000 NCV8184 R (°C/W) EFFECTIVE THERMAL RESISTANCE 100 50% Duty Cycle 20% 10 10% 5% 2% Notes: PDM 1 1% t1 Single Pulse t2 t1 Duty Cycle, D = t 2 (1.0 in pad PCB) Die Size = 2.08 x 1.55 x 0.40 5.0% Active Area 0.1 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 t1 (s) Figure 30. DPAK 5−Lead Thermal Duty Cycle Curves on 1.0 in. Spreader Test Board 1000 Die Size = 2.08 x 1.55 x 0.40 5.0% Active Area min pad (Cu Area = 100 mm2) R (°C/W) 100 1.0 in pad (Cu Area = 653 mm2) 10 1 0.1 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Time (s) Figure 31. DPAK 5−Lead Thermal Transient Response on Typical Test Boards R1 Junction C1 R2 C2 R3 Rn Cn C3 Time constants are not simple RC products. Amplitudes of mathematical solution are not the resistance values. Ambient (thermal ground) Figure 32. Grounded Capacitor Thermal Network (“Cauer” Ladder) Junction R1 R2 R3 Rn C1 C2 C3 Cn Each rung is exactly characterized by its RC−product time constant; Amplitudes are the resistances Figure 33. Non−Grounded Capacitor Thermal Ladder (“Foster” Ladder) http://onsemi.com 12 Ambient (thermal ground) 1000 NCV8184 PACKAGE DIMENSIONS SO−8 D SUFFIX CASE 751−07 ISSUE AB −X− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDAARD IS 751−07 A 8 5 0.25 (0.010) S B 1 M Y M 4 K −Y− G C N X 45 DIM A B C D G H J K M N S SEATING PLANE −Z− 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S SOLDERING FOOTPRINT 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 http://onsemi.com 13 mm inches MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 8 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 8 0.010 0.020 0.228 0.244 NCV8184 PACKAGE DIMENSIONS DPAK 5−LEAD CENTER LEAD CROP DT SUFFIX CASE 175AA−01 ISSUE O C B V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. SEATING PLANE −T− E R R1 Z A S 1 2 3 4 5 U K F J L H D G 5 PL 0.13 (0.005) M T DIM A B C D E F G H J K L R R1 S U V Z INCHES MIN MAX 0.235 0.245 0.250 0.265 0.086 0.094 0.020 0.028 0.018 0.023 0.024 0.032 0.180 BSC 0.034 0.040 0.018 0.023 0.102 0.114 0.045 BSC 0.170 0.190 0.185 0.210 0.025 0.040 0.020 −−− 0.035 0.050 0.155 0.170 MILLIMETERS MIN MAX 5.97 6.22 6.35 6.73 2.19 2.38 0.51 0.71 0.46 0.58 0.61 0.81 4.56 BSC 0.87 1.01 0.46 0.58 2.60 2.89 1.14 BSC 4.32 4.83 4.70 5.33 0.63 1.01 0.51 −−− 0.89 1.27 3.93 4.32 Note: Pin 3 and the tab are internally connected SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 14 For additional information, please contact your local Sales Representative. NCV8184/D