NJU6655B Preliminary 64-common X 160-segment + 1-icon common Bitmap LCD Driver ! GENERAL DESCRIPTION The NJU6655B is a bitmap LCD driver to display graphics or characters. It contains 10,400 bits display data RAM, microprocessor interface circuits, instruction decoder, 64-common and 160-segment + 1-icon-common drivers. The bit image display data is transferred to the display data RAM by serial or 8-bit parallel interface. 65 x 160 dots graphics or 10-character 4-line by 16 x 16 dots character with icon are displayed by NJU6655B itself. The wide operating voltage from 2.4 to 5.5V and low operating current are suitable for battery-powered applications. The build-in Electrical Variable Resistance is very precision, furthermore the rectangle outlook is very applicable to COG or Slim TCP. ! PACKAGE OUTLINE NJU6655BCJ ! FEATURES # # # # # # # # # # # # # # # Direct Correspondence between Display Data RAM and LCD Pixel Display Data RAM - 10,400 bits 225 LCD Drivers - 64-common and 160-segment + 1-icon common Direct Microprocessor Interface for both of 68 and 80 type MPU Serial Interface (SI, SCL, A0, CS1b, CS2) Programmable Bias selection : 1/5,1/7,1/9 bias Useful Instruction Set Display On/Off Cont, Initial Display Line Set, Page Address Set, Column Address Set, Status Read, Display Data Read/Write, ADC Select, Inverse Display, Entire Display On/Off, Bias Select, Read Modify Write, End, Reset, Common Direction Register Set, Power control set, Feedback Resistor Ratio Set, EVR Mode Set, EVR Register Set, Static Indicator On/Off, Static Indicator Register Set, Power Save, Power Save Reset, n-line Inverse Drive Register Set, n-line Inverse Drive Reset, Partial Select, Internal Oscillation Circuit ON. Power Supply Circuits for LCD Incorporated Voltage Booster Circuits (4-time Maximum), Voltage Adjust Circuits, Voltage Follower x 4 Voltage Regulator Incorporated (VREF=+3%) Precision Electrical Variable Resistance (64-step) Low Power Consumption 130uA(Typ.). Operating Voltage (All the voltages are based on VDD=0V.) - Logic Operating Voltage : -2.4V to -5.5V - Voltage Booster Operating Voltage : -2.4V to -6.0V - LCD Driving Voltage : -4.5V to -18.0V Rectangle outlook for COG Package Outline : Bump-chip C-MOS Technology (Substrate : N) Ver.2009-12-02 -1- NJU6655B DUMMY19 DUMMY18 DUMMY17 S156 S155 DUMMY1 DUMMY2 TEST1 SYNC FRS FR CL DOFb SYNC VSS CS1b CS2 VDD RESb A0 VSS WRb RDb VDD D0 D1 D2 D3 D4 D5 D6(SCL) D7(SI) VDD VDD VDD VDD VDD VSS VSS VSS VSS2 VSS2 VSS2 VSS2 VSS2 VOUT VOUT C3C3+ C1 C1+ C1C1 C2C2+ C2 C2+ VSS VSS VRS VRS DUMMY3 DUMMY4 VDD VDD V1 V1 V2 V2 V3 V3 V4 V4 V5 V5 VR VDD M/S CLS VSS C86 P/S VDD TEST2 VSS IRS VDD DUMMY5 DUMMY6 Y X Chip Center : X=0um, Y=0um Chip Size : X=8.88mm,Y=2.77mm Chip Thickness : 675um ± 30um Bump Size : 130um x 31um Bump Pitch : 50um(Min.) Bump Height : 17.5um(Typ.) Bump Material : Au Voltage Boosting Polarity : Negative Voltage (VDD common) Substrate :N S4 S3 DUMMY16 DUMMY15 DUMMY14 DUMMY13 DUMMY12 DUMMY11 S2 S1 S0 COMM C0 C30 C31 DUMMY10 DUMMY9 DUMMY8 DUMMY7 -2- DUMMY20 DUMMY21 DUMMY22 S157 S158 S159 C32 C33 C63 COMM DUMMY23 DUMMY24 DUMMY25 DUMMY26 ! PAD LOCATION Ver.2009-12-02 NJU6655B Alignment Mark 1 16um Alignment Mark Coordinates (-4225um, -1168um) ( 4186um, -1168um) ( 4186um, 1158um) (-4225um, 1158um) 66um 16um 66um Alignment Mark 2 Alignment Mark Coordinates ( 4302um, 1230um) ( -4302um, 1230um) 110um 70um Alignment Mark 3 Alignment Mark Coordinates (-4302um, -1250um) ( 4302um, -1250um) 70um 70um Ver.2009-12-02 -3- NJU6655B ! PAD COORDINATES PAD No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 -4- Terminal DUMMY1 DUMMY2 TEST1 SYNC FRS FR CL DOFb SYNC VSS CS1b CS2 VDD RESb A0 VSS WRb RDb VDD D0 D1 D2 D3 D4 D5 D6(SCL) D7(SI) VDD VDD VDD VDD VDD VSS VSS VSS VSS2 VSS2 VSS2 VSS2 VSS2 VOUT VOUT C3C3C1+ C1+ C1C1C2C2- X= um -4092 -4042 -3919 -3796 -3637 -3417 -3197 -2976 -2756 -2598 -2474 -2317 -2194 -2071 -1914 -1790 -1667 -1510 -1387 -1229 -1008 -788 -567 -347 -127 94 314 472 522 572 622 672 722 772 822 872 922 972 1022 1072 1122 1172 1222 1272 1322 1372 1422 1472 1522 1572 Y= um -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 -1213 Chip Size 8.88 x 2.77mm(Chip Center X=0um, Y=0um) PAD No. Terminal X= um Y= um 51 C2+ 1622 -1213 52 C2+ 1672 -1213 53 VSS 1722 -1213 54 VSS 1772 -1213 55 VRS 1822 -1213 56 VRS 1872 -1213 57 DUMMY3 1922 -1213 58 DUMMY4 1972 -1213 59 VDD 2022 -1213 60 VDD 2072 -1213 61 V1 2122 -1213 62 V1 2172 -1213 63 V2 2222 -1213 64 V2 2272 -1213 65 V3 2322 -1213 66 V3 2372 -1213 67 V4 2422 -1213 68 V4 2472 -1213 69 V5 2522 -1213 70 V5 2572 -1213 71 VR 2622 -1213 72 VDD 2672 -1213 73 M/S 2796 -1213 74 CLS 2953 -1213 75 VSS 3076 -1213 76 C86 3199 -1213 77 P/S 3356 -1213 78 VDD 3480 -1213 79 TEST2 3603 -1213 80 VSS 3726 -1213 81 IRS 3849 -1213 82 VDD 3972 -1213 83 DUMMY5 4022 -1213 84 DUMMY6 4072 -1213 85 DUMMY7 4265 -1037 86 DUMMY8 4265 -987 87 DUMMY9 4265 -937 88 DUMMY10 4265 -887 89 C31 4265 -837 90 C30 4265 -787 91 C29 4265 -737 92 C28 4265 -687 93 C27 4265 -637 94 C26 4265 -587 95 C25 4265 -537 96 C24 4265 -487 97 C23 4265 -437 98 C22 4265 -387 99 C21 4265 -337 100 C20 4265 -287 Ver.2009-12-02 NJU6655B PAD No. 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 Ver.2009-12-02 Terminal C19 C18 C17 C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 COMM S0 S1 S2 DUMMY11 DUMMY12 DUMMY13 DUMMY14 DUMMY15 DUMMY16 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 X= um 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4265 4115 4065 4015 3965 3915 3865 3815 3765 3715 3665 3615 3565 3515 3465 3415 3365 3315 3265 3215 3165 3115 3065 3015 Y= um -237 -187 -137 -87 -37 13 63 113 163 213 263 313 363 413 463 513 563 613 663 713 763 813 863 913 963 1013 1063 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 PAD No. 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Terminal S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 S48 S49 S50 S51 S52 S53 S54 S55 S56 S57 S58 S59 S60 S61 S62 S63 S64 S65 S66 S67 S68 S69 S70 S71 S72 X= um 2965 2915 2865 2815 2765 2715 2665 2615 2565 2515 2465 2415 2365 2315 2265 2215 2165 2115 2065 2015 1965 1915 1865 1815 1765 1715 1665 1615 1565 1515 1465 1415 1365 1315 1265 1215 1165 1115 1065 1015 965 915 865 815 765 715 665 615 565 515 Y= um 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 -5- NJU6655B PAD No. 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 -6- Terminal S73 S74 S75 S76 S77 S78 S79 S80 S81 S82 S83 S84 S85 S86 S87 S88 S89 S90 S91 S92 S93 S94 S95 S96 S97 S98 S99 S100 S101 S102 S103 S104 S105 S106 S107 S108 S109 S110 S111 S112 S113 S114 S115 S116 S117 S118 S119 S120 S121 S122 X= um 465 415 365 315 265 215 165 115 65 15 -35 -85 -135 -185 -235 -285 -335 -385 -435 -485 -535 -585 -635 -685 -735 -785 -835 -885 -935 -985 -1035 -1085 -1135 -1185 -1235 -1285 -1335 -1385 -1435 -1485 -1535 -1585 -1635 -1685 -1735 -1785 -1835 -1885 -1935 -1985 Y= um 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 PAD No. 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 Terminal S123 S124 S125 S126 S127 S128 S129 S130 S131 S132 S133 S134 S135 S136 S137 S138 S139 S140 S141 S142 S143 S144 S145 S146 S147 S148 S149 S150 S151 S152 S153 S154 S155 S156 DUMMY17 DUMMY18 DUMMY19 DUMMY20 DUMMY21 DUMMY22 S157 S158 S159 C32 C33 C34 C35 C36 C37 C38 X= um -2035 -2085 -2135 -2185 -2235 -2285 -2335 -2385 -2435 -2485 -2535 -2585 -2635 -2685 -2735 -2785 -2835 -2885 -2935 -2985 -3035 -3085 -3135 -3185 -3235 -3285 -3335 -3385 -3435 -3485 -3535 -3585 -3635 -3685 -4015 -4065 -4115 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 Y= um 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1063 1013 963 913 863 813 763 713 663 613 563 513 463 Ver.2009-12-02 NJU6655B PAD No. 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 Ver.2009-12-02 Terminal C39 C40 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 COMM DUMMY23 DUMMY24 DUMMY25 DUMMY26 X= um -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 -4265 Y= um 413 363 313 263 213 163 113 63 13 -37 -87 -137 -187 -237 -287 -337 -387 -437 -487 -537 -587 -637 -687 -737 -787 -837 -887 -937 -987 -1037 -7- NJU6655B ! BLOCK DIAGRAM C31 - - - - C0 S0 - - - - - - - - - - - - - S159 C32 - - - C63 COMM VSS 5 V1 to V5 Internal Power Circuits VR VRS IRS Voltage Followers Shift Register Shift Register Voltage Display Data Latch Voltage Converter Common Direction VSS2 Display Data RAM 160 X 65 = 10,400-bit Column Address Decoder 160 Page Address Register M/S FR FRS CL CLS SYNC DOFb Display Timing Column Address Counter 8bit I/O Buffer Initial Display Line C3- Line Counter C2+/C2- Line Address Decoder - Low Address Decoder C1 /C1 Common Timing Regulator VOUT + Common Drivers Segment Drivers Common Drivers COMM VDD Column Address Register 8bit Oscillator Multiplexer Instruction Decoder Status Bus Holder Busy Flag Internal Bus Line Reset RESb -8- MPU Interface CS1b CS2 A0 RDb WRb C86 D7 (SI) D6 (SCL) P/S D0 to D5 Ver.2009-12-02 NJU6655B ! TERMINAL DISCRIPTION No. SYMBOL I/O FUNCTION 1,2,57,58, DUMMY1 Dummy terminals. 83 to 88, to These are open terminals electrically. 125 to 130, DUMMY26 285 to 290, 327 to 330 13,19, Power Power supply terminal. VDD 28 to 32 59,60,72, 78,82 10,16, VSS GND Ground terminal. 33 to 35 53,54,75, 80 36 to 40 VSS2 Power Reference voltage for voltage booster. 55,56 VRS Power External reference voltage input terminal. Normally open. V1 Power LCD driving voltage supplying terminal. 61,62 63,64 V2 When the internal voltage booster is not used, supply each level of LCD driving 65,66 voltage from outside with following relation. V3 67,68 V4 VDD≥V1≥V2≥V3≥V4≥V5≥VOUT 69,70 V5 When the internal power supply is on, the internal circuits generate and supply following LCD bias voltage from V1 to V4 terminal. Bias V1 V2 V3 V4 1/5 Bias V5+4/5VLCD V5+3/5VLCD V5+2/5VLCD V5+1/5VLCD 1/7 Bias V5+6/7VLCD V5+5/7VLCD V5+2/7VLCD V5+1/7VLCD 1/9 Bias V5+8/9VLCD V5+7/9VLCD V5+2/9VLCD V5+1/9VLCD (VLCD=VDD-V5) C1+ O Boosted capacitor connecting terminals used for voltage booster. 45,46 C147,48 51,52 C2+ C249,50 43,44 C341,42 VOUT O Voltage booster output terminal. Connect the boosted capacitor between this terminal and VSS2. 71 VR I Voltage adjustment terminal Connect external feedback resistor to control the LCD driving voltage V5. This terminal is effective when IRS=”L”. 20 to 27 D0 to D7 I/O Data input/output terminals. (26, 27) (SCL, SI) P/S="H" : Tri-state bi-directional Data I/O terminal in 8-bit parallel operation. P/S="L" : D7=Serial data input terminal. D6=Serial data clock signal input terminal. D0 to D5 terminals are Hi-impedance. Data from SI is loaded at the rising edge of SCL and latched as the parallel data at 8th rising edge of SCL. When CS1b="H", D0 to D7 terminals are Hi-impedance. 15 A0 I Data discrimination signal input terminal. Connect to the Address bus of MPU. The data on the D0 to D7 is distinguished between Display data and Instruction by status of A0. A0 H L Distinction Display Data Instruction 14 Ver.2009-12-02 RESb I Reset terminal. When the RESb terminal goes to “L”, the initialization is performed. Reset operation is executing during “L” state of RESb. -9- NJU6655B No. SYMBOL CS1b CS2 RDb (E) I/O I 17 WRb (R/W) I 76 C86 I MPU interface type selection terminal. This terminal must connect to VDD or VSS. C86 H L State 68 Type 80 Type 77 P/S I Serial or parallel interface selection terminal. 11 12 18 I FUNCTION Chip select terminal. Data Input/Output are available during CS1b=”L” and CS2=”H”. <In case of 80 Type MPU> RDb signal of 80 type MPU input terminal. Active "L" During this signal is "L" , D0 to D7 terminals are output. <In case of 68 Type MPU> Enable signal of 68 type MPU input terminal. Active "H" <In case of 80 Type MPU> Connect to the 80 type MPU WRb signal. Active "L". The data on the data bus input synchronizing the rise edge of this signal. <In case of 68 Type MPU> The read/write control signal of 68 type MPU input terminal. R/W H L State Read Write P/S 74 CLS I 73 M/S I 7 CL I/O - 10 - Chip Select Data/Instruction Data Read/Write Serial Clock SCL(D6) “H” CS1b,CS2 A0 D0toD7 RDb,WRb A0 SI(D7) “L” CS1b,CS2 In case of the serial interface (P/S="L") RAM data and status read operation do not work in mode of the serial interface. RDb and WRb must be fixed "H" or "L", and D0 to D5 are high impedance. Terminal to select whether or enable or disable the display clock internal oscillator circuit. CLS=”H” : Internal oscillator circuit is enable CLS=”L” : Internal oscillator circuit is disabled (requires external input) When CLS=”L”, input the display clock through the CL terminal. This terminal selects the master/slave operation for the NJU6655. Master operation outputs the timing signals that are required for the LCD display, while slave operation inputs the timing signals required for the LCD, synchronizing the LCD system. M/S = ”H” : Master operation M/S = ”L” : Slave operation The following is true depending on the M/S and CLS status: Power CL FR FRS DOFb M/S CLS OSC. Supply Circuit “H” Available Available Output Output Output Output “H” “L” Not Avail. Available Input Output Output Output “L” * Not Avail. Not Avail. Input Input Output Input *:Don’t Care Display clock input/output terminal. The following is true depending on the M/S and CLS status. M/S CLS CL “H” Output “H” “L” Input “L” * Input *:Don’t Care Ver.2009-12-02 NJU6655B No. SYMBOL FR I/O I/O 4,9 SYNC I/O 8 DOFb I/O 81 IRS I 5 FRS O C31 to C0 O 6 89 to 120 FUNCTION LCD alternating current signal I/O terminal. M/S=”H” : Output M/S=”L” : Input LCD synchronizing current signal I/O terminal. M/S=”H” : Output M/S=”L” : Input LCD Display blanking control terminal. M/S=”H” : Output terminal. Display “On” = “H”, Display “Off” = “L” M/S=”L” : Input terminal. External control. Refer to the following table. DOFb Instruction H L Display On On Off Display Off Off Off Internal Feedback Resistor Select IRS=“H” : Internal feedback IRS=“L” : External feedback resistor This setting is effective in the master operation. It is ineffective in the slave operation but should be fixed to “H” or “L”. The output terminal for the static drive. This terminal is used in conjunction with the SYNC terminal. LCD driving signal output terminals. -Common output terminals : C0 to C63 -Segment output terminals : S0 to S159 Common output terminals The following output voltages are selected by the combination of alternating (FR) signal and Common scanning data. 122 to 124, S0 to S159 131 to 284, 291 to 293 O Scan Data H L 294 to 325 C32 to C63 O H L COMM O 3 TEST1 O 79 TEST2 I Ver.2009-12-02 Output Voltage H L H L V5 VDD V1 V4 Segment output terminals The following output voltages are selected by the combination of alternating (FR) signal and display data in the RAM. RAM Data 121,326 FR FR H L H L Output Voltage Normal Reverse VDD V2 V5 V3 V2 VDD V5 V3 COM output terminals for the indicator. Both terminals output the same signal. Leave these open if they are not used. Maker test only. Normally open. Maker test only. This terminal must connect to VSS. - 11 - NJU6655B ! FUNCTIONAL DESCRIPTION (1) Description for each blocks (1-1) Busy Flag (BF) During internal operation, the LSI is being busy and can’t accept any instructions except “status read”. The BF data is output through D7 terminal by the “status read” instruction. When the cycle time (tcyc) mentioned in the “AC characteristics” is satisfied, the BF check isn’t required after each instruction, so that MPU processing performance can be improved. (1-2) Initial display line register The initial display line register assigns a DDRAM line address, which corresponds to COM0 by “initial display line set” instruction. It is used for not only normal display but also vertical display scrolling and page switching without changing the contents of the DDRAM. However, the 65th address for icon display can’t be assigned for initial display line address. (1-3) Line counter The line counter provides a DDRAM line address. It initializes its contents at the switching of frame timing signal (FR), and also counts-up in synchronization with common timing signal. (1-4) Column address counter The column address counter is an 8-bit preset counter, which provides a DDRAM column address, and it is independent of below-mentioned page address register. It will increment (+1) the column address whenever “display data read” or “display data write” instructions are issued. However, the counter will be locked when no-existing address above A0H are addressed. The count-lock will be able to be released by the “column address set” instruction again. The counter can invert the correspondence between the column address and segment driver direction by means of “ADC set” instruction. (1-5) Page address register The page address register provides a DDRAM page address. The last page address “8” should be used for icon display because the only D0 is valid. (1-6) Display data RAM (DDRAM) The DDRAM contains 10,400-bit, and stores display data, which are 1-to-1 correspondents to LCD panel pixels. When normal display mode, the display data “1” turns on and “0” turns off LCD pixels. When inverse display mode, “1” turns off and “0” turns on. - 12 - Ver.2009-12-02 NJU6655B Page Address Line Address Display Pattern Data 00H 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A D0 D1 D2 D3,D2,D1,D0 (0,0,0,0) D3 PAGE 0 D4 D5 D6 D7 D0 D1 D2 D3,D2,D1,D0 (0,0,0,1) D3 PAGE 1 D4 D5 D6 D7 D0 D1 D2 D3,D2,D1,D0 (0,0,1,0) D3 PAGE 2 D4 D5 D6 D7 D0 D1 : : : : : : : : : : : : : : : : 36 37 38 39 3A 3B 3C 3D 3E 3F D6 D7 D0 D1 D3,D2,D1,D0 (0,1,1,1) D2 PAGE 7 D3 D4 D6 D7 (1,0,0,0) Column Address ADC PAGE 8 D0 D0="0" 00 01 02 03 04 05 06 D0="1" 9F 9E 9D 9C 9B 9A 99 Segment Drivers 0 1 2 3 4 5 6 C57 C58 C59 C60 C61 C62 C63 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 : : : : C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 COMM* 9E 01 ---------------- Common Driver C56 9F 00 158 159 For example the Initial display is 08H. Fig.1 Display data RAM (DDRAM) Map * : COMM is independent of the “Initial display line set” instruction and always corresponds to the 65th line. Ver.2009-12-02 - 13 - NJU6655B (1-7) Common direction register The common direction register is selected by the "Partial Select" and "Common Direction instructions as shown in Table 1. When using the partial display function, the COM0 - COM15 COM63 terminals cannot be used. Table 1. Common direction Common drivers Partial Common Select Direction Register Set D3 PAD No. 114 83 309 D0 Pin name C0 C31 C63 0 0 COM0 COM31 COM63 0 1 COM63 COM32 COM0 PAD No. 98 83 293 Pin name C16 C31 C47 1 0 COM16 COM31 COM47 1 1 COM47 COM32 COM16 Register Set" and COM48 - 278 C32 COM32 COM31 278 C32 COM32 COM31 (1-8) Reset circuit The reset circuit initializes the LSI to the following status by using of the reset signal into the RESb terminal. -Reset status using the RESb terminal: 1. Display off 2. Normal display (Non-inverse display) 3. ADC select : Normal mode (D0="0") 4. Power control register clear : D2,D1,D0=”0,0,0” 5. Serial interface register clear 6. LCD bias select : D1,D0=”0,0”(1/9 bias) 7. Power save reset 8. Entire display off : Normal mode 9. Internal oscillation circuit stop 10.Partial select : D0=”0”(1/65 duty) 11.Static indicator off Static indicator register : D1,D2=”0,0” 12.Read modify write off 13.Initial display line address : 00H 14.Column address : 00H 15.Page address : 0 page 16.Common direction register : D3=”0”(Normal) 17.Feedback resistors ratio : D2,D1,D0=”0,0,0” 18.EVR mode off and EVR register: D5,D4,D3,D2,D1,D0=”1,0,0,0,0,0” 19.n-line inverse drive register : D3,D2,D1,D0=”0,0,0,0”(n-line inverse reset) 20.Test mode reset (Test mode 1 and Test mode 2) The RES terminal should be connected to MPU’s reset terminal, and the reset operation should be executed at the same timing of the MPU reset. As described in the “BUS TIMING CHARACTERISTICS”, it is necessary to input 1.5us(min.) or over “L” level signal into the RES terminal in order to carry out the reset operation. The LSI will return to normal operation after about 1.5us(max.) from the rising edge of the reset signal. The reset operation by RESb="L" initializes each register setting as above reset status, but the internal oscillation circuit and output terminals (D0 to D7) are not affected. The reset operation is necessary to avoid malfunctions. Note 1) The “Reset” instruction in Table.4 can’t be substituted for the reset operation by using of the RES terminal. It executes above-mentioned only 11 to 20 items. Note 2) The reset terminal is susceptible to external noise, so design PCB layout in consideration for the noise. Note 3) In case of using external power supply for LCD driving voltage, the RESb terminal is required to be being “L” level when the external power supply is turned-on. - 14 - Ver.2009-12-02 NJU6655B (1-9) LCD driving circuits (a) Common and segment drivers LCD drivers consist of 64-common drivers, 160-segment divers and 1-icon-common driver. As shown in “■ LCD driving waveform”, LCD driving waveforms are generated by the combination of display data, common timing signal and internal FR timing signal. (b) Display data latch circuit The display data latch circuit temporally stores 160-bit display data transferred from the DDRAM in the synchronization with the common timing signal, and then it transfers these stored data to the segment drivers. “Display on/off”, “inverse display on/off” and “entire display on/off” instructions control only the contents of this latch circuit, they can’t change the contents of the DDRAM. In addition, the LCD display isn’t affected by the DDRAM accuses during its displaying because the data read-out timing from this latch circuit to the segment drivers is independent of accessing timing to the DDRAM. (c) Line counter and latch signal or latch Circuits The clock line counter and latch signal to the latch circuits are generated from the internal display clock (CL). The line address of display data RAM is renewed synchronizing with display clock (CL). 160bits display data are latched in display latch circuits synchronizing with display clock, and then output to the LCD driving circuits. The display data transfer to the LCD driving circuits is executed independently with RAM access by the MPU. (d) Display timing generator The display timing generates the timing signal for the display system by combination of the master clock CL and driving signal FR ( refer to Fig.2 ) The frame signal FR and LCD alternative signal generate LCD driving waveform on the 2-frame alternative driving method or the n-line inverse driving method. Ver.2009-12-02 - 15 - NJU6655B (e) Common timing generation The common timing is generated by display clock CL (refer to Fig.2) 64 65 1 2 3 4 5 6 7 8 62 63 64 65 1 2 3 4 5 CL FR VDD V1 C0 V4 V5 VDD V1 C1 V4 V5 RAM DATA VDD V2 Sn V3 V5 Fig.2-1 2-frame alternating drive mode 64 65 1 2 3 4 5 6 7 8 62 63 64 65 1 2 3 4 5 CL FR VDD V1 C0 V4 V5 VDD V1 C1 V4 V5 RAM DATA VDD V2 Sn V3 V5 Fig.2-2 n-line inverse drive mode (n=7, line inverting register sets to 6) - 16 - Ver.2009-12-02 NJU6655B (f) Oscillator This is the low power consumption CR oscillator which provides the display clock and voltage converter timing clock. (g) Internal power circuits The internal power circuits are composed of x4 boost voltage converter, output voltage regulator including 64-step EVR and voltage followers. The optimum values of the external passive components for the internal power circuits, such as capacitors for V1 to V5 terminals and feed back resistors for VR terminal, depend on LCD panel size. Therefore, it is necessary to evaluate the actual LCD module with these external components in order to determine the optimum values. Each portion of the internal power circuits is controlled by “power control set” instruction as shown in Table.2. In addition, the combination of power supply circuits is described in Table.3. Table.2 Power control set Status Portions D2 D1 D0 “1” ON ON ON Voltage converter Voltage regulator Voltage followers “0” OFF OFF OFF Table.3 Power supply combinations Status D2 D1 D0 Voltage converter Voltage regulator Voltage followers External voltage 1) Using all internal power circuits 2) Using voltage regulator and Voltage 1 1 1 ON ON ON VSS2 Capacitor terminals Use 0 1 1 OFF ON ON VOUT,VSS2 Open 3) Using voltage followers 0 0 1 OFF 4) Using only external power supply 0 0 0 OFF * Capacitor input terminals: C1+, C1-, C2+, C2-, C3* Do not use other combinations except examples in Table.3. OFF OFF ON OFF VOUT,V5,VSS2 VOUT,V1~V5 Open Open followers The internal LCD power supply is designed to drive small LCD panels such as cellular phones. Thus, if the IC is used to drive a large panel, make sure whether it works with the internal power supply or needs an external power supply. The selections of external components for the LCD bias circuit, the voltage booster and the feedback loop depend on panel sizes, so make sure what are the best values in the particular application. Ver.2009-12-02 - 17 - NJU6655B ○Power Supply applications Power Control Instruction D2 : Boost Circuit D1 : Voltage Regulator D0 : Voltage Follower (1) Internal power supply Example. All of the Internal Booster, Voltage Regulator, Voltage Follower using (D2,D1,D0) = (1,1,1) (2) Only VOUT Supply from outside Example. Internal Voltage Regulator, Voltage Follower using. (D2,D1,D0) = (0,1,1) VDD + + + + + + VDD C1- V1 C1+ V2 V4 V5 C2 + C2 - VOUT + + + + + + + + V1 V2 V3 V4 V5 VOUT VR V5 (3) VOUT and V5 Supply from outside Example. Internal Voltage Follower using. (D2,D1,D0) = (0,0,1) + + C3- V3 VSS2 VDD + VSS2 VDD VR V5 (4) External Power Supply Example. All of V1 to V5 and VOUT supply from outside (D2,D1,D0) = (0,0,0) VDD VDD V1 V1 V2 V2 V3 V3 V4 V4 V5 V5 VOUT VOUT VSS2 VSS2 : These switches should be open during the power save mode. Note) : When using the voltage follower circuit, external resistors may be necessary to stabilize V1,V2,V3 and V4 voltages. - 18 - Ver.2009-12-02 NJU6655B (2) Instruction set The NJU6655B distinguishes the signal on the data bus D0 to D7 as an Instruction by combination of A0 , RDb and WRb(R/W). The decode of the instruction and execution performs with only high speed Internal timing without relation to the external clock. Therefore no busy flag check required normally. In case of serial interface, the data input as MSB(D7) first serially. The Table. 4-1,4-2 shows the instruction codes of the NJU6655B. Table. 4-1 Instruction Instruction table (*: Don’t Care) Instruction code A0 RDb WRb D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 1 1 0/1 Description (a) Display On/Off 0 1 0 1 0 (b) Initial Display Line Set 0 1 0 0 1 (c) Page Address Set 0 1 0 1 0 1 1 Page Address Set the page of DD RAM to the Page Address Register (d) Column Address Set Upper Order 4bits 0 1 0 0 0 0 1 Upper Order Column Address Set the Upper order 4 bits Column Address to the Register Column Address Set Lower Order 4bits 0 1 0 0 0 0 0 Lower Order Column Address Set the Lower order 4 bits Column Address to the Register (e) Status Read 0 0 1 (f) Write Display Data 1 1 0 Write Data Write the data into the Display Data RAM (g) Read Display Data 1 0 1 Read Data Read the data from the Display Data RAM (h) ADC Select 0 1 0 1 0 1 0 0 0 0 0/1 Set the DD RAM vs Segment D0=0 :Normal D0= 1:Inverse (i) Normal or Inverse of On/Off Set 0 1 0 1 0 1 0 0 1 1 0/1 0 1 0 1 0 1 0 0 1 0 0/1 Inverse the On and Off Display D0=0 :Normal D0= 1:Inverse Whole Display Turns On D0=0: Normal D0=1: Whole Disp. On (j) Whole Display On/Off Line Address Status 0 0 LCD Display On/Off D0=0:Off D0=1:On Determine the Display Line of RAM to COM0 0 0 (k) LCD Bias Select 0 1 0 1 0 0 1 0 0 (l) Read Modify Write 0 1 0 1 1 1 0 0 0 0 0 Increment the Column Address Register when writing but no-change when reading (m) End 0 1 0 1 1 1 0 1 1 1 0 Release from the Read Modify write Mode (n) Reset 0 1 0 1 1 1 0 0 0 1 0 Initialize the Internal Circuits (o) Common Direction Select 0 1 0 1 1 0 0 0/1 * * * Set the scanning order of common drivers to the Register D3=0 : Normal, D3=1 : Inverse (p) Power Control Set 0 1 0 0 0 1 0 1 Operating Mode (q) Feedback Resistor Ratio Set 0 1 0 0 0 1 0 0 Resistor Ratio Ver.2009-12-02 Bias Read out the internal Status Select the Bias Set the status of internal power circuits Set the status of internal resistors ratio (Rb/Ra) - 19 - NJU6655B Table. 4-2 Instruction (r) (s) (t) Instruction table (*: Don’t Care) Instruction code A0 RDb WRb D7 D6 D5 D4 0 0 EVR Mode Set 0 1 0 1 0 EVR Register Set 0 1 0 * * D3 D2 D1 D0 0 0 0 1 Setting Data Set EVR mode Set the V5 output level to the EVR register Static Indicator On/Off 0 1 0 1 0 1 0 1 1 Static Indicator Register Set 0 1 0 * * * * * * 0 0/1 Pawer Save 0 1 0 1 0 1 0 1 0 0 0/1 0 0 0 1 Mode (u) Pawer Save Reset 0 1 0 1 1 1 0 (v) n-line Inverse Drive Register Set 0 1 0 0 0 1 1 (w) n-line Inverse Drive Reset 0 1 0 1 1 1 0 0 1 0 0 (x) Partial Select 0 1 0 1 0 1 0 0 0 1 0/1 (y) Internal Oscillation Circuit On 0 1 0 1 0 1 0 1 0 1 1 (z) NOP 0 1 0 1 1 1 0 0 0 1 1 - 20 - Description Number of Inverse Lines D0=0 : Off, D0=1 : On Set static indicator register D0=0 : Standby mode D0=1 : Sleep mode Release from the Pawer Save Mode Set the number of inverse drive line Release the line inverse drive D0=0 : Off (1/65 Duty) D0=1 : On (1/33 Duty) Start the operation of the Internal Oscillation circuit Ver.2009-12-02 NJU6655B (2-1) Explanation of Instruction Code (a) Display On/Off This instruction selects display turn-on or turn-off regardless of the contents of the DDRAM. A0 0 D RDb WRb 1 0 D7 1 D6 0 D5 1 D4 0 D3 1 D2 1 D1 1 D0 D 0: Display Off 1: Display On (b) Initial Display Line Set This instruction specifies the DDRAM line address which corresponds to the COM0 position. By means of repeating this instruction, the initial display line address will be dynamically changed; it means smooth display scrolling will be enabled. A0 0 RDb WRb 1 0 A5 0 0 : : 1 A4 0 0 : : 1 D7 0 A3 0 0 : : 1 D6 1 A2 0 0 : : 1 D5 A5 A1 0 0 : : 1 D4 A4 D3 A3 A0 0 1 : : 1 D2 A2 D1 A1 D0 A0 Line Address (HEX) 00 01 : : 3F (c) Page Address Set In order to access to the DDRAM for writing or reading display data, both “page address set” and “column address set” instructions are required before accessing. The last page address “8” should be used for icon display because the only D0 is valid. A0 0 RDb WRb 1 0 A3 0 0 : : 1 Ver.2009-12-02 A2 0 0 : : 0 D7 1 D6 0 A1 0 0 : : 0 D5 1 D4 1 A0 0 1 : : 0 D3 A3 D2 A2 D1 A1 D0 A0 Page 0 1 : : 8 - 21 - NJU6655B (d) Column Address Set As above-mentioned, in order to access to the DDRAM for writing or reading display data, it is necessary to execute both “page address set” and “column address set” before accessing. The 8-bit column address data will be valid when both upper 4-bit and lower 4-bit data are set into the column address register. Once the column address is set, it will automatically increment (+1) whenever the DDRAM will be accessed, so that the DDRAM will be able to be continuously accessed without “column address set” instruction. The column address will stop increment and the page address will not be changed when the last address 9FH is addressed. A0 0 RDb WRb 1 0 D7 0 D6 0 D5 0 D4 1 D3 A7 D2 A6 D1 A5 D0 A4 Upper 4-bit A2 A1 A0 Lower 4-bit 0 1 0 0 0 0 0 A3 A7 0 0 : : 1 A6 0 0 : : 0 A5 0 0 : : 0 A4 0 0 : : 1 A3 0 0 : : 1 A2 0 0 : : 1 A1 0 0 : : 1 A0 0 1 : : 1 Column Address (HEX) 00 01 : : 9F (e) Status Read This instruction reads out the internal status regarding “busy flag”, “ADC select”, “display on/off” and “reset”. A0 0 RDb WRb D7 D6 0 1 BUSY ADC D5 D4 ON/OFF RESET D3 0 D2 0 D1 0 D0 0 BUSY : When D7 is “1”, the LSI is being busy and can’t accept any instructions. ADC : It shows the correspondence between the column address and segment drivers. When D6 is “0”, the column address (159-n) corresponds to segment driver n. When D6 is “1”, the column address (n) corresponds to segment driver n. Please be careful that read out data is opposite of “ADC select” instruction data. ON/OFF : It shows display on or off status. When D5 is “0”, the LSI is in display-on status. When D5 is “1”, the LSI is in display-off status. Please be careful that read out data is opposite of “Display On/Off” instruction data. RESET : It shows reset status. When D4 is “0”, the LSI is in normal operation. When D4 is “1”, the LSI is during reset operation. (f) Display Data Write This instruction writes display data into the selected column address on the DDRAM. The column address automatically increments (+1) whenever the display data is written by this instruction, so that this instruction can be continuously issued without “column address set” instruction. A0 1 - 22 - RDb WRb 1 0 D7 D6 D5 D4 D3 Write Data D2 D1 D0 Ver.2009-12-02 NJU6655B (g) Display Data Read This instruction reads out the display data stored in the selected column address on the DDRAM. The column address automatically increments (+1) whenever the display data is read out by this instruction, so that this instruction can be continuously issued without “column address set” instruction. After the ”column address set” instruction, a dummy read will be required, please refer to the (4-4). In case of using serial interface mode, this instruction can’t be used. A0 1 RDb WRb 0 1 D7 D6 D5 D4 D3 Read Data D2 D1 D0 (h) ADC Select This instruction selects segment driver direction. The correspondence between the column address and segment driver direction is shown in Fig.1. This function reduces the restrictions on the IC position of an LCD module. A0 0 RDb WRb 1 0 D7 1 D6 0 D5 1 D4 0 D3 0 D2 0 D1 0 D0 D 0: Clockwise Output (Normal) Segment Driver S0 to S159 1: Counterclockwise Output (Inverse) Segment Driver S159 to S0 D (i) Inverse Display On/Off This instruction inverses the status of turn-on or turn-off of entire LCD pixels. It doesn’t change the contents of the DDRAM. A0 0 D RDb WRb 1 0 0: Normal 1: Inverse D7 1 D6 0 D5 1 D4 0 D3 0 D2 1 D1 1 D0 D RAM data "1" correspond to "On" RAM data "0" correspond to "On" (j) Whole Display On/Off This instruction turns on entire LCD pixels regardless the contents of the DDRAM. It doesn’t change the contents of DDRAM. This instruction should be performed prior to the "Inverse display On/Off" instruction. A0 0 RDb WRb 1 0 D7 1 D6 0 D 0: Normal Display 1: Whole Display Turns On (k) Bias Select D5 1 D4 0 D3 0 D2 1 D1 0 D0 D D2 0 D1 A1 D0 A0 (Whole Display Off) (Whole Display On) This instruction selects LCD bias value. A0 0 RDb WRb 1 0 D7 1 D6 0 D5 0 D4 1 D3 0 A1 A0 LCD Bias 1/9 0 0 1/7 1 0 1/5 0 1 Prohibited* 1 1 * : Because it may malfunction-operate, do not set (D1,D0) = (1,1). Ver.2009-12-02 - 23 - NJU6655B (l) Read Modify Write This instruction controls column address increment. By using of this instruction, the column address can’t increment when read operation but it can increment when write operation. This status will be continued until the below-mentioned “end” instruction will be issued. This instruction can reduce the load of MPU, during the display data in specific DDRAM area is repeatedly changed for cursor blink or others. A0 0 RDb WRb 1 0 D7 1 D6 1 D5 1 D4 0 D3 0 D2 0 D1 0 D0 0 Note) In this "Read Modify Write" mode, out of display data "Read" / "Write", any instructions except "Column Address Set" can be executed. - The Sequence of Cursor Blink Display Page Address Set Set to the Start Address of Cursor Display Column Address Set Read Modify Write Dummy Read Start the Read Modify Write The data is ignored Column Counter doesn’t increase Data Read Data inverse by MPU Data Write Column Counter increase Dummy Read Column Counter doesn’t increase Data Read Column Counter doesn’t increase Data Write Column Counter increase Dummy Read Column Counter doesn’t increase Data Read Column Counter doesn’t increase Data Write Column Counter increase Repeating End No End the Read Modify Write Finish? Yes - 24 - Ver.2009-12-02 NJU6655B (m) End The “end” instruction cancels the read modify write mode and makes the column address return to the initial value just before “read modify write” is started. A0 0 RDb WRb 1 0 D7 1 D6 1 D5 1 D4 0 D3 1 D2 1 D1 1 D0 0 Return Column Address N N+1 N+2 N+3 ---- N+m Read modify write N End (n) Reset This instruction reset the LSI to the following status, however it doesn’t change the contents of the DDRAM. Please be careful that it can’t be substituted for the reset operation by using of the RESb terminal. Reset status by “reset” instruction: 1: Static indicator register : D1,D0 = “0,0” 2: Read modify write off 3: Initial display line address : 00H 4: Column address : 00H 5: Page address : 0 page 6: Common direction register : D3=”0”(Normal mode) 7: Feedback resistors ratio : D2,D1,D0 = “0,0,0” 8: EVR mode off and EVR register : D5,D4,D3,D2,D1,D0 = “1,0,0,0,0,0” 9: n-line inverse drive register : D3,D2,D1,D0 = “0,0,0,0” 10: Test mode reset (Test mode 1 and Test mode 2) The DD RAM is not affected of this initialization. A0 0 RDb WRb 1 0 D7 1 D6 1 D5 1 D4 0 D3 0 D2 0 D1 1 D0 0 D3 D3 D2 * D1 * D0 * (o) Common Driver Direction Select This instruction selects common driver direction. Please refer to (1-7) common driver direction for more detail. A0 0 D3 Ver.2009-12-02 RDb WRb 1 0 0: Normal 1: Inverse D7 1 D6 1 D5 0 D4 0 (*: Don’t Care) Common driver direction (C0 to C63) or (C16 to C47) Common driver direction (C63 to C0) or (C47 to C16) - 25 - NJU6655B (p) Power Control Set This instruction controls the status of internal power circuits. Please refer to the (1-9) LCD Driving Circuits (g) internal power circuits for more detail. A0 0 RDb WRb 1 0 D7 0 D6 0 D5 1 D4 0 D3 1 D2 A2 D1 A1 D0 A0 0: Voltage Converter Off 1: Voltage Converter On 0: Voltage Regulator Off 1: Voltage Regulator On 0: Voltage Followers Off 1: Voltage Followers On A2 A1 A0 Note) The internal power supply must be Off when external power supply using. * The wait time depends on the C4 to C8, COUT capacitors, and VDD and VLCD Voltage. Therefore it requires the actual evaluation using the LCD module to get the correct time. (q) Feedback Resistor Ratio Set This instruction is used to determine the internal feedback resistor ratio. Please refer to the (3-2) Voltage Adjust Circuits for more detail. A0 0 - 26 - RDb WRb 1 0 D7 0 D6 0 A2 A1 A1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 D5 1 D4 0 D3 0 D2 A2 Internal resistor ratio 1+(Rb/Ra) 4.5 5.0 5.5 6.0 6.5 7.0 7.6 8.1 D1 A1 D0 A0 VLCD 1+(Rb/Ra) Minimum : : : : : : Maximum Ver.2009-12-02 NJU6655B (r) EVR Set 1) EVR mode set This instruction sets the LSI into the EVR mode, and it is always used by the combination with “EVR register set”. The LSI can’t accept any instructions except the “EVR register set” during the EVR set mode. This mode will be released after the “EVR register set” instruction. A0 0 RDb WRb 1 0 D7 1 D6 0 D5 0 D4 0 D3 0 D2 0 D1 0 D0 1 2) EVR Register Set This instruction sets 6-bit data into the EVR register to determine the output voltage “V5” of the internal voltage regulator. A0 0 RDb WRb 1 0 A5 0 0 : : 1 A4 0 0 : : 1 D7 * A3 0 0 : : 1 D6 * A2 0 0 : : 1 D5 A5 A1 0 0 : : 1 D4 A4 D3 A3 A0 0 1 : : 1 D2 A2 D1 A1 D0 A0 (*: Don’t Care) VLCD Minimum : : : Maximum (s) Static Indicator 1) Static Indicator On/Off This instruction selects static indicator turn-on or turn-off, and it is always used by the combination with the “ static indicator register set”. A0 0 D RDb WRb 1 0 D7 1 D6 0 D5 1 D4 0 D3 1 D2 1 D1 0 D0 D D6 * D5 * D4 * D3 * D2 * D1 A1 D0 A0 0: Static Indicator Off 1: Static Indicator On 2) Static Indicator Register Set A0 0 RDb WRb 1 0 A1 0 0 1 1 Ver.2009-12-02 D7 * A0 0 1 0 1 (*: Don’t Care) Indicator display Status Off On (Blink at 1.0s intervals) On (Blink at 0.5s intervals) On (Turn on at all time) - 27 - NJU6655B (t) Power Save This instruction sets the LSI into the power save mode. This instruction is reducing operating current as well as static operations. The internal status and the contents of the DDRAM will be remained just before the “Power save” instruction. In addition, the DDRAM can be accessed during the power save mode. There are two power save modes, sleep mode and standby mode. A0 0 D RDb WRb 1 0 D7 1 D6 0 D5 1 D4 0 D3 1 D2 0 D1 0 D0 D 0: Standby Mode 1: Sleep Mode <Sleep Mode> All functions are halted so that its operating current is reduced as low as standby current. All LCD system stops as follows, 1) Oscillator and internal power circuits stop. 2) All common and segment drivers output VDD level. <Standby Mode> A part of functions are halted. The only static drive system as the indicator operates. The LCD system except the static indicator stops as follows, 1) Internal power circuits stop. (Oscillator is operating.) 2) LCD driving is stopped. All common and segment drivers output VDD level. 3) The only static indicator is working. (u) Pawer Save Reset This instruction releases the power save mode. A0 0 - 28 - RDb WRb 1 0 D7 1 D6 1 D5 1 D4 0 D3 0 D2 0 D1 0 D0 1 Ver.2009-12-02 NJU6655B (v) n-line Inverse Drive Register Set This instruction specifies the number of n-line. Please refer to the (1-9)LCD Driving Circuits (e)Common timing generation Fig.2-1, Fig.2-2 for more detail. A0 0 RDb WRb 1 0 A3 0 0 0 : 1 1 D7 0 A2 0 0 0 : 1 1 D6 0 D5 1 A1 0 0 1 : 1 1 D4 1 D3 A3 A0 0 1 0 : 0 1 D2 A2 D1 A1 D0 A0 Inverse Lines -(*) 2 3 : 15 16 (*) 2-frame mode. alternating drive (w) n-line Inverse Drive Reset This instruction releases n-line inversion, but does not change the contents of the n-line register. A0 0 RDb WRb 1 0 D7 1 D6 1 D5 1 D4 0 D3 0 D2 1 D1 0 D0 0 D5 1 D4 0 D3 0 D2 0 D1 1 D0 D (x) Patial Select This instruction starts the partial mode operation. A0 0 D RDb WRb 1 0 D7 1 D6 0 0: 1/65 Duty (Partial Select Off) 1: 1/33 Duty (Partial Select On) Display structure by Partial Select On / Off Partial Select Off (1/65 Duty) COM0~COM7 COM8~COM15 COM16~COM23 COM24~COM31 COM32~COM39 COM40~COM47 COM48~COM55 COM56~COM63 COMM 160seg 64com+1 Partial Select On (1/33 Duty) COM0~COM7 COM8~COM15 COM16~COM23 COM24~COM31 COM32~COM39 COM40~COM47 COM48~COM55 COM56~COM63 COMM 160seg 32com+1 Active Display-block Ver.2009-12-02 - 29 - NJU6655B (y) Internal Oscillation Circuit On This setting is effective when M/S=”1” and CLS=”1”. A0 0 RDb WRb 1 0 D7 1 D6 0 D5 1 D4 0 D3 1 D2 0 D1 1 D0 1 RDb WRb 1 0 D7 1 D6 1 D5 1 D4 0 D3 0 D2 0 D1 1 D0 1 (z)NOP Non Operation. A0 0 - 30 - Ver.2009-12-02 NJU6655B - Example for Instruction Setting (Reference) <Conditions> VDD=3V, 4-time booster, Using the internal feedback resistor, Using the internal oscillator, Using the n-line inverse drive, Using the 80-type I/F. Example for Initialize Sequence VDD-VSS Power ON VDD=3V, VSS=0V input Stabilizing the Power Supply Reset Input ← Refer to (1-8) Reset circuit. WAIT ← Wait 1.5[us] or more. Instruction Setting A0 D6 D5 D4 D3 D2 D1 D0 ADC Select 0 1 0 1 0 1 0 0 0 0 0 Segment driver : S0 → S159 Normal or Inverse display 0 1 0 1 0 1 0 0 1 1 0 Normal display LCD Bias Select 0 1 0 1 0 0 1 0 0 0 0 1/9 Bias Common Direction Select 0 1 0 1 1 0 0 0 * * * Common direction : C0 → C63 Feedback Resistor Ratio 0 1 0 0 0 1 0 0 1 1 1 Resistor Ratio : 8.1 EVR Mode Set 0 1 0 1 0 0 0 0 0 0 1 EVR Mode ON EVR Register Set 0 1 0 * * 1 0 0 0 0 0 EVR Register : ”1.0.0.0.0.0” Static Indicator ON/OFF 0 1 0 1 0 1 0 1 1 0 0 Static indicator OFF Static Indicator Register Set 0 1 0 * * * * * * 0 0 Static indicator OFF n-line Inverse Drive Register Set 0 1 0 0 0 1 1 0 1 1 0 n-line inverse : 7 Partial Select 0 1 0 1 0 1 0 0 0 1 0 1/65 Duty Internal Oscillation Circuit ON 0 1 0 1 0 1 0 1 0 1 1 Oscillation circuit ON Power Control Set 0 1 0 0 0 1 0 1 1 0 0 Voltage converter ”ON”, Voltage Regulator ”OFF, Voltage Follower ”OFF” 0 1 0 0 0 1 0 1 1 1 0 Voltage converter ”ON”, Voltage Regulator ”ON, Voltage Follower ”OFF” 0 1 0 0 0 1 0 1 1 1 1 Voltage converter ”ON”, Voltage Regulator ”ON, Voltage Follower ”ON” WAIT Note) Power Control Set WAIT Note) Power Control Set WAIT RDb WRb D7 Note) END *:Don’t Care Note) Wait time for stabilizing internal power supply differs by external components (Cout, C1~C8), VDD, and VLCD. Make sure what is the wait time in the particular application. Ver.2009-12-02 - 31 - NJU6655B Example for Display Data Write Sequence Optional Status Instruction Setting A0 D6 D5 D4 D3 D2 D1 D0 Initial Display Line Set 0 1 0 0 1 0 0 0 0 0 0 Line address : 00H Page Address Set 0 1 0 1 0 1 1 0 0 0 0 Page address : 0 page Column Address Set 0 1 0 0 0 0 1 0 0 0 0 Column address (upper) : 0H 0 1 0 0 0 0 0 0 0 0 0 Column address (lower) : 0H 1 1 0 1 0 1 0 1 0 1 0 Writing display data : Checker flag pattern 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 Write Display Data 1 1 0 0 1 0 1 0 1 0 1 (Other page requires to set from “Page Address Set”) Display ON/OFF 0 1 0 1 0 1 0 1 1 1 1 Display ON Write Display Data RDb WRb D7 Example for Power Supply OFF Sequence Optional Status A0 D6 D5 D4 D3 D2 D1 D0 Display ON/OFF 0 1 0 1 0 1 0 1 1 1 0 Display OFF Power Save 0 1 0 1 0 1 0 1 0 0 1 Sleep mode Power Control Set 0 1 0 0 0 1 0 1 0 0 0 Voltage converter ”OFF”, Voltage Regulator ”OFF, Voltage Follower ”OFF” RDb WRb D7 VDD-VSS OFF - 32 - Ver.2009-12-02 NJU6655B (3) Internal power circuits (3-1) Voltage converter The voltage converter generates maximum 4x boosted negative-voltage from the voltage between VDD and VSS2. The boosted voltage is output from the VOUT terminal. The internal oscillator is required to be operating when using this converter, because the divided signal provided from the oscillator is used for the internal timing of this circuit. The boosted voltage between VDD and VOUT must not exceed 18.0V. The voltage converter requires external capacitors for boosting as shown in below. # The boosted voltage and VDD, VSS2 VDD=+3V VSS2=0V VOUT=-3V VOUT=-6V VOUT=-9V 2x boost 3x boost # Example for connecting the capacitors 4x boost 3x boost 2x boost VSS2 VSS2 VSS2 C1- C1- C1- C1+ C1+ C3C2+ Ver.2009-12-02 4x boost + + C3 + - C2+ + C2- C2- VOUT VOUT C1+ + + + + - C3 C2+ C2- VOUT - 33 - NJU6655B (3-2) Voltage Adjust Circuits The voltage adjust circuits is composed of the reference voltage circuit, 64-step E.V.R. and feedback resistors. The adjust circuits produces the LCD driving voltage V5 on the V5 terminal, using the VOUT voltage supplied from the internal booster. (a) Using Internal Feedback Resistors LCD contrast can be fine-tuned by adjusting the V5 voltage through setting the internal feedback resistors and the E.V.R. And the V5 voltage is calculated from the foemula (1), where |V5| < |VOUT|. VLCD = VDD-V5 - - - - - (1) = (1+(Rb/Ra)) x VCON [VCON = (EVR) x (VREG)] = (1+(Rb/Ra)) x (EVR) x VREG [EVR = (n+99) / 162] VLCD : LCD Driving Voltage Ra,Rb : Feedback Resistors VCON : Contrast Control Voltage n : E.V.R. Setting Value VREG : Reference Voltage VDD VCON (VREG x EVR) Internal Ra VLCD + V5 VOUT Internal Rb Fig.3-1 Voltage adjust circuits (Using internal feedback resistors) The VREG is the regulated voltage with temperature coefficient, as follows. Internal Power Supply Temperature Coefficient 0.05[%/°C] (Typ.) VREG 2.15[V] (Typ.) *: The temperature coefficient has dispersion. The V5 is adjusted in 64-step by setting 6-bit data into the E.V.R. register, as follows. 00H 01H 02H : : : 3DH 3EH 3FH - 34 - E.V.R. Register (0,0,0,0,0,0) (0,0,0,0,0,1) (0,0,0,0,1,0) : : : (1,1,1,1,0,1) (1,1,1,1,1,0) (1,1,1,1,1,1) E.V.R. Value (99/162) (100/162) (101/162) : : : (160/162) (161/162) (162/162) VLCD Minimum : : : : : : : Maximum Ver.2009-12-02 NJU6655B The ratio of the Ra and Rb (Ra/Rb) is selected out of 8 options by the "Feedback Resistor set" instruction. The Register of Feedback Resistor 00H (0,0,0) 01H (0,0,1) 02H (0,1,0) 03H (0,1,1) 04H (1,0,0) 05H (1,0,1) 06H (1,1,0) 07H (1,1,1) 1+(Rb/Ra) 4.5 5.0 5.5 6.0 6.5 7.0 7.6 8.1 VLCD Minimum : : : : : : Maximum * : The resistance of the feedback resistors has a certain amount of error. If it may impact on the LCD contrast external feedback resistors should be considered. (b) Using External Feedback Resistors When IRS="L", the V5 voltage can be adjusted by the external feedback resistors. And the E.V.R. function is applied in combination, and fine-tunes the LCD contrast through software. The V5 voltage is calculated from the formula (2), where |V5| < |VOUT|. VLCD = VDD-V5 - - - - - (2) = (1+(Rb/Ra)) x VCON [VCON = (EVR) x (VREG)] = (1+(Rb/Ra)) x (EVR) x VREG [EVR = (n+99) / 162] VLCD : LCD Driving Voltage Ra,Rb : Feedback Resistors VCON : Contrast Control Voltage n : E.V.R. Setting Value VREG : Reference Voltage VDD VCON (VREG x EVR) External Ra VR + - VLCD V5 VOUT External Rb Fig.3-2 Voltage adjust circuits (Using external feedback resistors) * : When using either the internal feedback resistors or E.V.R. or both, the LCD voltage generator and the buffer amplifiers must be activated. * : The VR terminal is only used for the external feedback resistors. This must be open when using the internal feedback resistors. Ver.2009-12-02 - 35 - NJU6655B <Design example for the adjustable range / Reference> Using external resistors(Not using variable resistor), VLCD=7V Power supply VDD=3.0V, VSS=0V E.V.R. register = (D5,D4,D3,D2,D1,D0) : (1,0,0,0,0,0) By formula (2) VLCD = VDD-V5 = (1+(Rb/Ra)) x (EVR) x VREG 7[V] = (1+(Rb/Ra)) x (131/162) x 2.15 Rb/Ra = 3.03 - - - - - (3) In case of the current value sets 5uA, which flows to Ra and Rb Ra+Rb = 1.4MΩ - - - - - (4) By formula (3), (4) Ra+3.03Ra= 1.4MΩ Ra = 347kΩ - - - - - (5) Therefore, Rb = 1.4MΩ - 347kΩ = 1053kΩ - - - - - (6) The adjustable range and the step voltage are calculated as follows in the formula (2). - In case of setting 00H in the E.V.R. register, VLCD =(1+(Rb/Ra)) x (EVR) x VREG =(1+3.03) x [(99/162) x 2.15] =5.29V - In case of setting 3FH in the E.V.R. register, VLCD =(1+(Rb/Ra)) x (EVR) x VREG =(1+3.03) x [(162/162) x 2.15] =8.66V VLCD Adjustable Range VLCD Step Voltage - 36 - (min.) 00H (max.) 3FH 5.29 ---------------------------------------- 8.66[V] 53 [mV] *: In case of VDD=3V Ver.2009-12-02 NJU6655B (3-3) LCD Driving Voltage Generation Circuits The LCD driving bias voltage of V1,V2,V3,V4 are generated internally by dividing the VLCD (VLCD=VDD-V5) voltage with the internal bleeder resistance. And it is supplied to the LCD driving circuits after the impedance conversion with voltage follower circuit. As shown in Fig 4, Five capacitors are required to connect to each LCD driving voltage terminal for voltage stabilizing. And the value of capacitors C4, C5, C6, C7, and C8 are determined depending on the actual LCD panel display evaluation. Using the internal Power Supply Using the external Power Supply VSS VSS VSS2 C1 + + C1- C1- C1+ C1+ C3- C3- C3 COUT + (2) C2+ C2 C2+ C2- C2- *2 VOUT R3 V5 VOUT NJU6655B V5 (1) NJU6655B *1 R2 VR VR VDD VDD V1 V1 R1 + C4 + C5 + C6 + C7 + C8 V2 V2 External Voltage Generator V3 V4 V4 V5 V5 Fig.4 LCD Driving Voltage Generation Circuits *1 Short wiring or sealed wiring to the VR terminal is required due to the high impedance of VR terminal. *2 Following connection of VOUT is required when external power supply using. (1): When VSS > V5 --- VOUT=V5 (2): When VSS < V5 --- VOUT=VSS Ver.2009-12-02 V3 Reference set up value VLCD=VDD-V5=7.0 to 10.5V COUT C1~C3, C8 C4~C7 R1 R2 R3 ~1.0uF ~1.0uF 0.1 ~ 0.47uF 232kΩ 115kΩ 1.053MΩ - 37 - NJU6655B (4) MPU interface (4-1) Interface type selection NJU6655B interfaces with MPU by 8-bit bidirectional data bus (D7 to D0) or serial (SI:D7). The 8 bit parallel or serial interface is determined by a condition of the P/S terminal connecting to "H" or "L" level as shown in Table 5. In case of the serial interface, status and RAM data read out operation is impossible. Table.5 P/S H L Type Parallel Serial Relation between P/S terminal and each I/O terminal CS1b A0 RDb WRb C86 SI(D7) SCL(D6) D0 ~ D5 A0 RDb WRb C86 D7 D6 D0 ~ D5 CS1b A0 SI SCL Hi-Z CS1b “Hi-Z” : Hi-impedance “-“ : They should be fixed to “H” or “L”. Parallel Interface The NJU6655B interfaces to 68 or 80 type MPU directly when the parallel interface (P/S="H") is selected. 68 type MPU or 80 is determined by the condition of C86 terminal connecting to "H" or "L" as shown in Table 6. C86 H L Table.6 Type 68 type MPU 80 type MPU Relation between C86 terminal and each I/O terminal CS1b A0 RDb WRb D0 ~ D7 CS1b A0 E R/W D0 ~ D7 CS1b A0 RDb WRb D0 ~ D7 (4-2) Discrimination of Data Bus Signal The NJU6655B discriminates the mean of signal on the data bus by the combination of A0, E, R/W, and (RDb,WRb) signals as shown in Table 7. Common A0 H H L L - 38 - 68 type R/W H L H L Table.7 Relation between A0 terminal and 68/80 type terminal 80 type Function RDb WRb L H Read Display Data H L Write Display Data L H Status Read H L Write into the Register(Instruction) Ver.2009-12-02 NJU6655B (4-3) Serial Interface (P/S="L") Serial interface circuits consist of 8 bits shift register and 3 bits counter. SI and SCL input are activated when the chip select terminal CS1b set to "L", CS2 set to "H"and P/S terminal set to "L". The 8 bits shift register and 3 bits counter are reset to the initial condition when the chip is not selected. The data input from SI terminal is MSB first like as the order of D7,D6,- - - - D0, and the data are entered into the shift register synchronizing with the rise edge of the serial clock SCL. The data in the shift register are converted to parallel data at the 8th serial clock rise edge input. Discrimination of the display data or instruction of the serial input data is executed by the condition of A0 at the 8th serial clock rise edge. A0="H" is display data and A0="L" is instruction. When RESb terminal becomes "L" or CS1b terminal becomes "H" (CS2 terminal becomes "L") before 8th serial clock rise edge, NJU6655A recognizes them as a instruction data incorrectly. Therefore a unit of serial data must be structured by 8-bit. The time chart for the serial interface is shown in Fig. 5. To avoid the noise trouble, the short wiring is required for the SCL input. Note) The read out function, such as the status or RAM data read out, is not supported in this serial interface. CS1b CS2 SI SCL D7 1 D6 2 D5 3 D4 4 D3 5 D2 6 D1 7 D0 8 D7 9 10 A0 Fig.5 Ver.2009-12-02 Signal chart of serial interface - 39 - NJU6655B (4-4) Access to the Display Data RAM and Internal Register The NJU6655B is operating as one of pipe-line processor by the bus-holder connecting to the internal data bus to adjust the operation frequency between MPU and the Display Data RAM or Internal Register. For example, when the MPU reads out the data from the Display Data RAM, the read out data in the data read cycle (dummy read) is held in the bus-holder, then it is read out from the bus-holder to the system bus at the next data read cycle. When the MPU writes the data into the Display Data RAM, the data is held in the bus-holder, then it is written into the Display Data RAM by the next data write cycle. Therefore high speed data transmission between MPU and NJU6655B is available because of it is not limited by the tACC and tDS as display data RAM access time and is limited by the system cycle time (R) or (W). If the cycle time is not be kept in the MPU operation, NOP should be inserted to the system instead of the waiting operation. The read out operation does not read out the data in the pointed address just after the address set operation. And second read out operation can read out the data correctly from the pointed address. Therefore, one dummy read operation is required after address setting or write cycle as shown in Fig. 6. The example of Read Modify Write operation is mentioned in (2-1) Instruction (l)The sequence of inverse display. # Write Operation CPU WRb N DATA Internal Timing Bus holder N+1 N N+2 N+1 N+3 N+2 N+3 WRb # Read Operation CPU WRb RDb DATA Internal Timing N N n n+1 Address Set N Dummy read Data read n Data read n+1 WRb RDb Column address N Bus holder Fig.6 N N+1 n N+2 n+1 n+2 Relation between display data write/read and internal timing (4-5) Chip select CS1b, CS2 are Chip Select terminals. In case of CS1b="L" and CS2=”H”, the interface with MPU is available. In case of CS1b=”H” or CS2=”L”, the D0 to D7 are high impedance and A0, RDb, WRb, D7(SI) and D6(SCL) inputs are ignored. If the serial interface is selected when CS1b=”H” or CS2=”L”, the shift register and the counter are reset. However, the reset is always operated in any conditions of CS1b and CS2. - 40 - Ver.2009-12-02 NJU6655B ! ABSOLUTE MAXIMUMN RATINGS PARAMETER Supply Voltage (1) Supply Voltage (2) (When using 3x voltage converter) (When using 4x voltage converter) Supply Voltage (3) Supply Voltage (4) Input Voltage Output Voltage Operating Temperature Storage Temperature (Chip) VDD VSS SYMBOL VDD Vss2 V5,VOUT V1,V2,V3,V4 VIN VOUT Topr Tstg RATINGS -0.3 to +7.0 -7.0 to +0.3 -6.0 to +0.3 -4.5 to +0.3 -18.0 to +0.3 V5 to +0.3 -0.3 to VDD + 0.3 -0.3 to VDD + 0.3 -40 to +85 -55 to +125 (Ta=25°C) UNIT V V V V V V °C °C VDD VSS2, V1 to V4 V5 Note 1) VSS2, V1 to V5, VOUT voltage values are specified as VDD = 0V. Note 2) The relation of VDD>V1>V2>V3>V4>V5>VOUT ; VDD>VSS>VOUT must be maintained. In case of inputting external LCD driving voltage, LCD drive voltage should start supplying to NJU6655B at the mean time of turning on VDD power supply or after turned on VDD. In use of the voltage boost circuit, the condition that the supply voltage : 18V >VDD-VOUT is necessary. Note 3) If the LSI are used on condition beyond the absolute maximum rating, the LSI may be destroyed. Using LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electric characteristics conditions will cause malfunction and poor reliability. Note 4) Decoupling capacitor should be connected between VDD and VSS due to the stabilized operation for the voltage converter. Ver.2009-12-02 - 41 - NJU6655B ! DC Electrical Characteristics PARAMETER Power Supply (1) Power Supply (2) Power Supply (3) SYMBOL VDD Oscillation Frequency VSS2 V5 V1,V2 V3,V4 VIHC1 VILC1 VOHC1 VOLC1 ILI ILO RON1 RON2 ISSQ I5Q CIN fOSC Display Clock Frequency fCL “H” Level Input Voltage “L” Level Input Voltage “H” Level Output Voltage “L” Level Output Voltage Leakage Current Driver On-resistance Stand-by Current Output Leakage Current Input Terminal Capacitance CONDITIONS Recommend→ Possible→ VDD common VDD common VDD common IOH=-0.5mA IOL= 0.5mA All input terminals D0 to D7 terminals, Hi-Z state Ta=25°C V5=-14.0V V5=-8.0V V5=-18.0V (VDD common) Ta=25°C VDD=3V,Ta=25°C External input (VDD=2.4 to 3.6V, VSS=0V, Ta= -40 to 85°C) MIN TYP MAX UNIT NOTE 2.4 3.6 V 5 2.4 5.5 V -6.0 -2.4 V -18 -4.5 V 0.4V5 VDD V5 0.6V5 0.8VDD VDD V VSS 0.2VDD V 0.8VDD VDD V VSS 0.2VDD V -1.0 1.0 uA -3.0 3.0 uA 2.0 3.5 kΩ 6 3.2 5.4 kΩ 0.01 5 uA 0.01 15 uA 5 8 pF 7 17.0 20.8 24.6 kHz 4.25 5.20 6.15 kHz Note 5) Although the NJU6655B can operate in wide range of the operating voltage, it shall not be guaranteed in a sudden voltage fluctuation during the access with MPU. Note 6) RON is the resistance values in supplying 0.1V voltage-difference between power supply terminals (V1,V2,V3,V4) and each output terminals (common / segment). This is specified within the range of Operating Voltage (2). Note 7) Apply to A0, D7 to D0, RDb, WRb, CS1b, CS2, RESb, C86 and P/S terminals. - 42 - Ver.2009-12-02 NJU6655B Input Voltage VSS2 Output Voltage On-resistance VOUT RQUAD Adjustment Range LCD Driving Voltage Voltage Follower Operating Voltage Operating current VOUT2 V5 IDDQ1 Voltage Booster IDDQ2 IDD1 IDD2 LCD driving Voltage Reference Voltage Temperature Coefficient VLCD VREF TC VDD common, 3-times boost VDD common, 4-times boost VDD common 4-times boost, C1-C3, COUT=1uF VDD=3V, VSS=VSS2 Voltage boost operation off External power supply Voltage adjustment circuit off External power supply Power save mode (Sleep mode) Power save mode (Standby mode) VDD=3V, V5=-11V All COM/SEG open, Without MPU access, Checker flag display Ext. Resistance Ra=Rb=910kΩ (EVR=3FH) 1+(Rb/Ra)=4.5 Int. Resistance (EVR=3FH) 1+(Rb/Ra)=5 1+(Rb/Ra)=5.5 1+(Rb/Ra)=6 1+(Rb/Ra)=6.5 1+(Rb/Ra)=7 1+(Rb/Ra)=7.6 1+(Rb/Ra)=8.1 Ta=25°C VDD=3V (VDD=2.4 to 3.6V, VSS=0V, Ta= -40 to 85°C) -6.0 -2.4 V -4.5 -2.4 -18.0 V 2.5 3.5 kΩ 8 -18.0 - -6.0 -18.0 - -4.5 0.01 5.0 4 10 130 20 200 50 uA 9 -4.43 -4.30 -4.17 V 10 -10.16 -11.29 -12.42 -13.55 -14.67 -15.80 -17.16 -18.29 -9.68 -10.75 -11.83 -12.90 -13.98 -15.05 -16.34 -17.42 2.150 -0.05 -9.19 -10.21 -11.23 -12.26 -13.28 -14.30 -15.52 -16.54 V V uA V %/°C Note 8) The voltage adjustment circuit controls V5 within the range of the voltage follower operating voltage. Note 9) Each operating current shall be defined as being measured in the following condition. Note10) The LCD driving voltage spec: VLCD+ 3% (Using to External resistance) / VLCD+ 5 % (Using to Internal resisutance). Ver.2009-12-02 - 43 - NJU6655B Symbol IDD1 IDD2 Power Control D2 D1 D0 1 0 1 0 Voltage converter Operating Condition Voltage regulator On Off On Off 1 0 Voltage followers On Off External Voltage Supply (Input Terminal) Use(VSS2) Use(VOUT,V1∼V5) IDD 1,2 measurement circuits: :IDD1 VDD V5 VR NJU6655B A C1+ VSS C1- C2+ C2- C3- VOUT + + + + V1 V2 V3 V4 :IDD2 VDD V1 V2 V3 V4 V5 VR A NJU6655B VSS - 44 - C1+ C1- C2+ C2- C3- VOUT Ver.2009-12-02 NJU6655B ! BUS TIMING CHARACTERISTICS - Read and Write characteristics (80 type MPU) CS2=H * tCYC8 A0 (1)CS1b (2)WRb,RDb tAW8 * (1)WRb,RDb (2)CS1b tAH8 tCCL tCCH tDS8 D0 to D7 (Write) tf tDH8 tr tACC8 tOH8 D0 to D7 (Read) PARAMETER Address Hold Time Address Set Up Time System Cycle Time Control “L” Pulse Width (WRb) Control “L” Pulse Width (RDb) Control “H” Pulse Width (WRb) Control “H” Pulse Width (RDb) Data Set Up Time Data Hold Time RDb Access Time Output Disable Time Input Signal Rising, Falling Edge Ver.2009-12-02 (VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C) TERMINAL SYMBOL CONDITION MIN MAX UNIT A0,CS1b tAH8 0 ns CS2 0 ns tAW8 tCYC8 800 ns tCCLW 120 ns WRb tCCLR 240 ns RDb tCCHW 120 ns tCCHR 120 ns tDS8 80 ns tDH8 30 ns D0 to D7 tACC8 280 ns CL=100pF 10 200 ns tOH8 CS1b,CS2, WRb,RDb, tr, tf 15 ns A0,D0 to D7 - 45 - NJU6655B PARAMETER Address Hold Time Address Set Up Time System Cycle Time Control “L” Pulse Width (WRb) Control “L” Pulse Width (RDb) Control “H” Pulse Width (WRb) Control “H” Pulse Width (RDb) Data Set Up Time Data Hold Time RDb Access Time Output Disable Time Input Signal Rising, Falling Edge (VSS=0V, VDD=4.5 to 5.5V, Ta=-40 to 85°C) TERMINAL SYMBOL CONDITION MIN MAX UNIT tAH8 0 ns A0,CS1b CS2 0 ns tAW8 tCYC8 250 ns tCCLW 30 ns WRb tCCLR 70 ns RDb tCCHW 30 ns tCCHR 30 ns tDS8 30 ns tDH8 10 ns D0 to D7 tACC8 70 ns CL=100pF tOH8 5 50 ns CS1b,CS2, WRb,RDb, tr, tf 15 ns A0,D0 to D7 Note 10) Each timing is specified based on 0.2xVDD and 0.8xVDD. * : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L". - 46 - Ver.2009-12-02 NJU6655B - Read and Write characteristics (68 type MPU) tCYC6 CS2=H * * (1)E (2)CS1b tEWL (1)CS1b (2)E tAW6 tEWH tr tf tAH6 A0,R/W tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) PARAMETER Address Hold Time Address Set Up Time System Cycle Time Enable “H” Pulse Width (Read) Enable “H” Pulse Width (Write) Enable “L” Pulse Width (Read) Enable “L” Pulse Width (Write) Data Set Up Time Data Hold Time RDb Access Time Output Disable Time Input Signal Rising, Falling Edge Ver.2009-12-02 (VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C) TERMINAL SYMBOL CONDITION MIN MAX UNIT A0,CS1b tAH6 0 ns CS2 0 ns tAW6 tCYC6 800 ns tEWHR 240 ns E(RDb) tEWHW 120 ns tEWLR 120 ns tEWLW 120 ns tDS6 80 ns tDH6 30 ns D0 to D7 tACC6 280 ns CL=100pF 10 200 ns tOH6 E(RDb), R/W(WRb), tr, tf 15 ns A0,D0 to D7 - 47 - NJU6655B PARAMETER Address Hold Time Address Set Up Time System Cycle Time Enable “H” Pulse Width (Read) Enable “H” Pulse Width (Write) Enable “L” Pulse Width (Read) Enable “L” Pulse Width (Write) Data Set Up Time Data Hold Time RDb Access Time Output Disable Time Input Signal Rising, Falling Edge (VSS=0V, VDD=4.5 to 5.5V, Ta=-40 to 85°C) TERMINAL SYMBOL CONDITION MIN MAX UNIT tAH6 0 ns A0,CS1b CS2 0 ns tAW6 tCYC6 250 ns tEWHR 70 ns E(RDb) tEWHW 30 ns tEWLR 30 ns tEWLW 30 ns tDS6 30 ns tDH6 10 ns D0 to D7 tACC6 70 ns CL=100pF tOH6 5 50 ns E(RDb), R/W(WRb), tr, tf 15 ns A0,D0 to D7 Note 11) Each timing is specified based on 0.2xVDD and 0.8xVDD. * : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L". - 48 - Ver.2009-12-02 NJU6655B - Write characteristics (Serial interface) CS2=H tCSH tCSS CS1b tSAS tSAH A0 tSCYC tSLW SCL tSHW tSDS SI tf PARAMETER Serial Clock Cycle SCL “H” Pulse Width SCL “L” Pulse Width Address Set Up Time Address Hold Time Data Set Up Time Data Hold Time CS1b-SCL Time Input Signal Rising, Falling Edge Ver.2009-12-02 tSDH tr (VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C) MAX UNIT TERMINAL SYMBOL CONDITION MIN tSCYC 400 ns SCL(D6) tSHW 150 ns tSLW 150 ns tSAS 250 ns A0 tSAH 250 ns tSDS 150 ns SI(D7) 150 ns tSDH tCSS 250 ns CS1b,CS2 250 ns tCSH SCL(D6),A0, CS1b,CS2, tr,, tf 15 ns SI(D7) - 49 - NJU6655B PARAMETER Serial Clock Cycle SCL “H” Pulse Width SCL “L” Pulse Width Address Set Up Time Address Hold Time Data Set Up Time Data Hold Time CS1b-SCL Time Input Signal Rising, Falling Edge (VSS=0V, VDD=4.5 to 5.5V, Ta=-40 to 85°C) TERMINAL SYMBOL CONDITION MIN MAX UNIT tSCYC 200 ns SCL(D6) tSHW 75 ns 75 ns tSLW tSAS 50 ns A0 tSAH 100 ns tSDS 50 ns SI(D7) 50 ns tSDH tCSS 100 ns CS1b,CS2 100 ns tCSH SCL(D6),A0, CS1b,CS2, tr,, tf 15 ns SI(D7) Note 12) Each timing is specified based on 0.2xVDD and 0.8xVDD. - 50 - Ver.2009-12-02 NJU6655B - Display control timing characteristics CL (OUT) tDFR FR tDSNC SYNC PARAMETER FR Delay Time SYNC Delay Time (VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C) TERMINAL SYMBOL CONDITION MIN TYP MAX UNIT FR tDFR CL=50pF 50 200 ns SYNC tDSNC CL=50pF 50 200 ns (VSS=0V, VDD=4.5 to 5.5V, Ta=-40 to 85°C) PARAMETER MIN TYP MAX UNIT FR Delay Time FR tDFR CL=50pF 10 40 ns SYNC Delay Time SYNC tDSNC CL=50pF 10 40 ns Note 13) Each timing is specified based on 0.2xVDD and 0.8xVDD. (The delay time is applied to the master operation only.) TERMINAL SYMBOL CONDITION - Reset input timing tRW RESb tR Internal circuit status During reset End of reset (VSS=0V, VDD=2.4 to 3.6V, Ta=-40 to 85°C) TERMINAL SYMBOL CONDITION MIN TYP MAX UNIT PARAMETER Reset Time tR 1.5 us Reset ”L” Level Pulse RESb tRW 1.5 us Width (VSS=0V, VDD=4.5 to 5.5V, Ta=-40 to 85°C) TERMINAL SYMBOL CONDITION MIN TYP MAX UNIT PARAMETER Reset Time tR 0.5 us Reset ”L” Level Pulse RESb tRW 0.5 us Width Note 14) Each timing is specified based on 0.2xVDD and 0.8xVDD. Ver.2009-12-02 - 51 - NJU6655B ! LCD DRIVING WAVEFORM 0 FR COM0 COM1 VDD V1 V2 V3 V4 V5 COM2 VDD V1 V2 V3 V4 V5 SEG0 VDD V1 V2 V3 V4 V5 SEG1 VDD V1 V2 V3 V4 V5 COM0-SEG0 V5 V4 V3 V2 V1 VDD -V1 -V2 -V3 -V4 -V5 COM0-SEG1 V5 V4 V3 V2 V1 VDD -V1 -V2 -V3 -V4 -V5 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 S S S S S E E E E E G G G G G 0 - 52 - 1 2 3 4 2 3 4 64 65 0 1 2 3 4 5 64 65 VDD VSS VDD V1 V2 V3 V4 V5 COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 1 Ver.2009-12-02 NJU6655B ! APPLICATION CIRCUIT (1) Microprocessor Interface Example The NJU6655B interfaces to 80 type or 68 type MPU directly. And the serial interface also communicate with MPU. * : C86 terminal must be fixed VDD or VSS. # 80 Type MPU VCC A0 A0 VDD C86 A1~A7 CPU Decoder IORQ D0~D7 GND CS1b CS2 NJU6655B D0~D7 RD RDb WR WRb RES RESb P/S VSS RESET # 68 Type MPU VCC A0 A0 VDD C86 A1~A15 CPU VMA Decoder NJU6655B D0~D7 D0~D7 E E GND CS1b CS2 R/W R/W RES RESb P/S VSS RESET # Serial Interface VCC A0 A0 VDD C86 A1~A7 Decoder CPU GND CS1b CS2 Port 1 SI Port 2 RES SCL RESb VDD OR GND NJU6655B VSS P/S RESET Ver.2009-12-02 - 53 - NJU6655B (2) 65 x 320 dots Driving Application Circuits Example (Common and Segment Drivers Extension by using two of NJU6655B) LCD Panel : 65 x 320 SEG SEG M/S M/S COM COM NJU6655B Master CL CL FR FR SYNC SYNC DOFb DOFb NJU6655B Slave [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 54 - Ver.2009-12-02