NJU6657 Preliminary 88-common x 272-segment Bitmap LCD Driver GENERAL DESCRIPTION The NJU6657 is a bitmap LCD driver to display graphics or characters. It contains 23,936 bits display data RAM, microprocessor interface circuits, instruction decoder, 88-common and 272-segment drivers. The bit image display data is transferred to the display data RAM by serial or 8-bit parallel interface. 88 x 272 dots graphics or 17-character 5-line by 16 x 16 dots character with icon are displayed by NJU6657 itself. The NJU6657 contains a built-in OSC circuit for reducing external components. The wide operating voltage from 2.7 to 5.5V and low operating current are suitable for battery-powered applications. PACKAGE OUTLINE NJU6657CJ FEATURES Direct Correspondence between Display Data RAM and LCD Pixel Display Data RAM – 23,936 bits 225 LCD Drivers – 88-common and 272-segment Direct Microprocessor Interface for both of 68 and 80 type MPU Serial Interface (SDA, SCL, A0, CSB) Programmable Bias selection : 1/5,1/7,1/8,1/9,1/10 bias Useful Instruction Set Display On/Off Cont, Initial Display Line Set, Page Address Set, Column Address Set, Status Read, Display Data Read/Write, ADC Select, Common Direction Register Set, Inverse Display, Entire Display On/Off, Partial Select, n-line Inverse Drive Register Set, Dummy Period Set, Read Modify Write, End, Internal Oscillation Circuit ON/OFF, Oscillation Frequency Set, Bias Select, Power Control set, EVR Register Set, Voltage Booster Circuits Multiple Select, Voltage Booster Circuits Clock Select, Temperture Sensor ON/OFF, Soft Reset, Power Save. Power Supply Circuits for LCD Incorporated Voltage Booster Circuits (12-time Maximum), Voltage Adjust Circuits, Voltage Follower x 4 High Precision Voltage Regulator Incorporated (VREF=+3%, Ta=25OC ) Precision Electrical Variable Resistance (400-step) VLCD Temperature Coefficient :-0.00 to –0.15%/OC Low Power Consumption 130uA(Typ.). Operating Voltage (All the voltages are based on VSS=0V.) - Logic Operating Voltage : VDD=2.7V to 5.5V - Voltage Booster Operating Voltage : VEE=VDD to 5.5V - LCD Driving Voltage : VLCD= 4.8 to 28.8V(External Voltage: 36.0V) Rectangle outlook for COG Package Outline : Bump-chip C-MOS Technology (Substrate : P) Ver.2012-11-22 -1- NJU6657 Preliminary 163 192 PAD LOCATION ・・・・・・ Alignment mark2 193 Alignment mark3 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ X Y ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 162 ITEM Chip Size SIZE X Y 17.76 1.97 UNIT mm Chip Tchickness 625±30 um Bump Pich 50(min) um Bump Size Bump Height No. 1 to 162 79 86 um No. 163 to 192 122 30 um No. 193 to 514 30 122 um No. 515 to 544 122 30 um 17.5 um 1 514 Alignment mark3 Alignment mark1 -2- 544 515 ・・・・・・ Ver.2012-11-22 NJU6657 Preliminary Alignment Mark 1 (-8645µm, -854µm) 45µm Alignment Mark 2 (8645µm, 768µm) 45µm 18µm Alignment Mark 3 (8645µm, -854µm) (-8645µm, 768µm) 25µm 50µm 25µm 50µm Ver.2012-11-22 -3- NJU6657 Preliminary PAD COORDINATES Chip Size 17.76 x 1.97mm(Chip Center X=0um, Y=0um) PAD No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 -4- Terminal DUMMY0 DUMMY1 DUMMY2 DUMMY3 DUMMY4 DUMMY5 DUMMY6 BUSY DUMMY7 OSC1 DUMMY8 DUMMY9 CSB RSTB A0 VPDN WRB RDB VPUP D7/SDA D6/SCL D0 D1 D2 D3 D4 D5 D6/SCL D7/SDA VPDN CLS VPUP CSEL VPDN SEL68 VPUP PS VPDN VSS VSS VSS VSS VSS VSS VSS VSS VSSE VSSE VSSE VSSE X=µm -8050 -7950 -7850 -7750 -7650 -7550 -7450 -7350 -7250 -7150 -7050 -6950 -6850 -6750 -6650 -6550 -6450 -6350 -6250 -6150 -6050 -5950 -5850 -5750 -5650 -5550 -5450 -5350 -5250 -5150 -5050 -4950 -4850 -4750 -4650 -4550 -4450 -4350 -4250 -4150 -4050 -3950 -3850 -3750 -3650 -3550 -3450 -3350 -3250 -3150 Y=µm -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 PAD No. 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Terminal VSSE VSSE VSSE VSSE VSSA VSSA VSSA VSSA VSSA VSSA VDD VDD VDD VDD VDD VDD VDD VDD VEE VEE VEE VEE VEE VEE VEE VEE VST1 C1P C1P C1P C1P C1P C1P C1N C1N C1N C1N C1N C1N VST1 VST1 VST1 VST1 VST1R VST1R VST1R VST1R VDCIN VDCIN VDCIN X=µm -3050 -2950 -2850 -2750 -2650 -2550 -2450 -2350 -2250 -2150 -2050 -1950 -1850 -1750 -1650 -1550 -1450 -1350 -1250 -1150 -1050 -950 -850 -750 -650 -550 -450 -350 -250 -150 -50 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 1450 1550 1650 1750 1850 Y=µm -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 Ver.2012-11-22 NJU6657 Preliminary PAD No. 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 Ver.2012-11-22 Terminal VDCIN VDCOUT VDCOUT VDCOUT VDCOUT C2P C2P C2P C2N C2N C2N C4P C4P C4P C6P C6P C6P DUMMY10 C5P C5P C5P C3N C3N C3N C3P C3P C3P VDCOUT VDCOUT VDCIN VDCIN VLCD VLCD VLCD V1 V1 V1 V2 V2 V2 V3 V3 V3 V4 V4 V4 VSSA VSSA VSS VSS X=µm 1950 2050 2150 2250 2350 2450 2550 2650 2750 2850 2950 3050 3150 3250 3350 3450 3550 3650 3750 3850 3950 4050 4150 4250 4350 4450 4550 4650 4750 4850 4950 5050 5150 5250 5350 5450 5550 5650 5750 5850 5950 6050 6150 6250 6350 6450 6550 6650 6750 6850 Y=µm -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 PAD No. 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 Terminal TEST2 TEST1 TSV TEST3 TEST4 DUMMY11 DUMMY12 DUMMY13 DUMMY14 DUMMY15 DUMMY16 DUMMY17 DUMMY18 DUMMY19 COM43 COM42 COM41 COM40 COM39 COM38 COM37 COM36 COM35 COM34 COM33 COM32 COM31 COM30 COM29 COM28 COM27 COM26 COM25 COM24 COM23 COM22 COM21 COM20 COM19 DUMMY20 DUMMY21 DUMMY22 DUMMY23 DUMMY24 DUMMY25 DUMMY26 COM18 COM17 COM16 COM15 X=µm 6950 7050 7150 7250 7350 7450 7550 7650 7750 7850 7950 8050 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8596.1 8025 7975 7925 7875 7825 7775 7725 7675 Y=µm -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -853.8 -768.8 -718.8 -668.8 -618.8 -568.8 -518.8 -468.8 -418.8 -368.8 -318.8 -268.8 -218.8 -168.8 -118.8 -68.8 -18.8 31.2 81.2 131.2 181.2 231.2 281.2 331.2 381.2 431.2 481.2 531.2 581.2 631.2 681.2 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 -5- NJU6657 Preliminary PAD No. 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 -6- Terminal COM14 COM13 COM12 COM11 COM10 COM9 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 COM0 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 X=µm 7625 7575 7525 7475 7425 7375 7325 7275 7225 7175 7125 7075 7025 6975 6925 6875 6825 6775 6725 6675 6625 6575 6525 6475 6425 6375 6325 6275 6225 6175 6125 6075 6025 5975 5925 5875 5825 5775 5725 5675 5625 5575 5525 5475 5425 5375 5325 5275 5225 5175 Y=µm 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 PAD No. 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 Terminal SEG35 SEG36 SEG37 SEG38 SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SEG52 SEG53 SEG54 SEG55 SEG56 SEG57 SEG58 SEG59 SEG60 SEG61 SEG62 SEG63 SEG64 SEG65 SEG66 SEG67 SEG68 SEG69 SEG70 SEG71 SEG72 SEG73 SEG74 SEG75 SEG76 SEG77 SEG78 SEG79 SEG80 SEG81 SEG82 SEG83 SEG84 X=µm 5125 5075 5025 4975 4925 4875 4825 4775 4725 4675 4625 4575 4525 4475 4425 4375 4325 4275 4225 4175 4125 4075 4025 3975 3925 3875 3825 3775 3725 3675 3625 3575 3525 3475 3425 3375 3325 3275 3225 3175 3125 3075 3025 2975 2925 2875 2825 2775 2725 2675 Y=µm 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 Ver.2012-11-22 NJU6657 Preliminary PAD No. 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 Ver.2012-11-22 Terminal SEG85 SEG86 SEG87 SEG88 SEG89 SEG90 SEG91 SEG92 SEG93 SEG94 SEG95 SEG96 SEG97 SEG98 SEG99 SEG100 SEG101 SEG102 SEG103 SEG104 SEG105 SEG106 SEG107 SEG108 SEG109 SEG110 SEG111 SEG112 SEG113 SEG114 SEG115 SEG116 SEG117 SEG118 SEG119 SEG120 SEG121 SEG122 SEG123 SEG124 SEG125 SEG126 SEG127 SEG128 SEG129 SEG130 SEG131 SEG132 SEG133 SEG134 X=µm 2625 2575 2525 2475 2425 2375 2325 2275 2225 2175 2125 2075 2025 1975 1925 1875 1825 1775 1725 1675 1625 1575 1525 1475 1425 1375 1325 1275 1225 1175 1125 1075 1025 975 925 875 825 775 725 675 625 575 525 475 425 375 325 275 225 175 Y=µm 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 PAD No. 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 Terminal SEG135 DUMMY27 DUMMY28 DUMMY29 DUMMY30 SEG136 SEG137 SEG138 SEG139 SEG140 SEG141 SEG142 SEG143 SEG144 SEG145 SEG146 SEG147 SEG148 SEG149 SEG150 SEG151 SEG152 SEG153 SEG154 SEG155 SEG156 SEG157 SEG158 SEG159 SEG160 SEG161 SEG162 SEG163 SEG164 SEG165 SEG166 SEG167 SEG168 SEG169 SEG170 SEG171 SEG172 SEG173 SEG174 SEG175 SEG176 SEG177 SEG178 SEG179 SEG180 X=µm 125 75 25 -25 -75 -125 -175 -225 -275 -325 -375 -425 -475 -525 -575 -625 -675 -725 -775 -825 -875 -925 -975 -1025 -1075 -1125 -1175 -1225 -1275 -1325 -1375 -1425 -1475 -1525 -1575 -1625 -1675 -1725 -1775 -1825 -1875 -1925 -1975 -2025 -2075 -2125 -2175 -2225 -2275 -2325 Y=µm 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 -7- NJU6657 Preliminary PAD No. 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 -8- Terminal SEG181 SEG182 SEG183 SEG184 SEG185 SEG186 SEG187 SEG188 SEG189 SEG190 SEG191 SEG192 SEG193 SEG194 SEG195 SEG196 SEG197 SEG198 SEG199 SEG200 SEG201 SEG202 SEG203 SEG204 SEG205 SEG206 SEG207 SEG208 SEG209 SEG210 SEG211 SEG212 SEG213 SEG214 SEG215 SEG216 SEG217 SEG218 SEG219 SEG220 SEG221 SEG222 SEG223 SEG224 SEG225 SEG226 SEG227 SEG228 SEG229 SEG230 X=µm -2375 -2425 -2475 -2525 -2575 -2625 -2675 -2725 -2775 -2825 -2875 -2925 -2975 -3025 -3075 -3125 -3175 -3225 -3275 -3325 -3375 -3425 -3475 -3525 -3575 -3625 -3675 -3725 -3775 -3825 -3875 -3925 -3975 -4025 -4075 -4125 -4175 -4225 -4275 -4325 -4375 -4425 -4475 -4525 -4575 -4625 -4675 -4725 -4775 -4825 Y=µm 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 PAD No. 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 Terminal SEG231 SEG232 SEG233 SEG234 SEG235 SEG236 SEG237 SEG238 SEG239 SEG240 SEG241 SEG242 SEG243 SEG244 SEG245 SEG246 SEG247 SEG248 SEG249 SEG250 SEG251 SEG252 SEG253 SEG254 SEG255 SEG256 SEG257 SEG258 SEG259 SEG260 SEG261 SEG262 SEG263 SEG264 SEG265 SEG266 SEG267 SEG268 SEG269 SEG270 SEG271 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 X=µm -4875 -4925 -4975 -5025 -5075 -5125 -5175 -5225 -5275 -5325 -5375 -5425 -5475 -5525 -5575 -5625 -5675 -5725 -5775 -5825 -5875 -5925 -5975 -6025 -6075 -6125 -6175 -6225 -6275 -6325 -6375 -6425 -6475 -6525 -6575 -6625 -6675 -6725 -6775 -6825 -6875 -6925 -6975 -7025 -7075 -7125 -7175 -7225 -7275 -7325 Y=µm 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 Ver.2012-11-22 NJU6657 Preliminary PAD No. 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 Ver.2012-11-22 Terminal COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 DUMMY31 DUMMY32 DUMMY33 DUMMY34 DUMMY35 DUMMY36 DUMMY37 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 COM75 COM76 COM77 COM78 COM79 COM80 COM81 COM82 COM83 COM84 COM85 COM86 COM87 DUMMY38 DUMMY39 X=µm -7375 -7425 -7475 -7525 -7575 -7625 -7675 -7725 -7775 -7825 -7875 -7925 -7975 -8025 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 -8596.1 Y=µm 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 702.3 681.2 631.2 581.2 531.2 481.2 431.2 381.2 331.2 281.2 231.2 181.2 131.2 81.2 31.2 -18.8 -68.8 -118.8 -168.8 -218.8 -268.8 -318.8 -368.8 -418.8 -468.8 -518.8 -568.8 -618.8 -668.8 -718.8 -768.8 PAD No. 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 Terminal X=µm Y=µm -9- NJU6657 Preliminary BLOCK DIAGRAM VLCD V1 V2 V3 V4 VDCIN VEE VSSE C1+ C1VST1 VST1R C2+ C2C3+ C3C4+ C5+ C6+ VDCOUT V7 to D0 PS SEL68 A0 RDB/E WRB/RW RSTB SEG0 to SEG271 COM0 to COM87 SEG Driver COM Driver DD RAM Temp. Sensor TSV Oscilation Circuit CLS Power Supply Circuit OSC1 BUSY I/F Logic Circuit VDD VSS - 10 - Ver.2012-11-22 NJU6657 Preliminary TERMINAL DISCRIPTION(Power Supply) No. 61 to 68 39 to 46 149, 150 69 to 76 Symbol VDD VSS I/O Power GND VEE Power 47 to 54 VSSE Power 102 to 105, VDCOUT 128, 129 Power 98 to 101, 130,131 132 to 134 135 to 137 138 to 140 141 to 143 144 to 146 55 to 60, 147,148 78 to 83 84 to 89 77, 90 to 93 VDCIN Power VLCD V1 V2 V3 V4 VSSA Power/ Out C1P C1N VST1 Out 94 to 97 VST1R Ver.2012-11-22 Power/ Out Power/ Out FUNCTION Power supply Terminal GND Terminal Voltage booster input ・When the internal voltage booster is not used, This terminal connected VDD. Voltage booster input This terminal is internally connected to the VSS level. 2nd voltage booster output. This terminal must be connected VDCIN. When the internal voltage booster used, the capacitor between VSS terminal must be connected. Note: It recommends using 102 to 105 terminals, when the external power supply used. Voltage booster input, This terminal connected VDCIN Note: It recommends using 98 to 101 terminals, when the external power supply used. LCD driving voltage ・When the internal voltage booster is not used, external LCD driving voltages (V1 to V4, VSSA and VLCD) should be supplied onto these terminals. The external voltages should be maintained with the following relationship. VDCIN>V0>V1>V2>V3>V4>VSSA ・When the internal voltage booster is used, the capacitors between these terminals (VLCD and V1 to V4) and VSS terminal must be connected. Capacitor connection terminal for the 1st voltage booster 1st voltage booster output for high voltage circuits The capacitor between VSS terminal must be connected. 1st voltage booster used, 2nd voltage booster is not used: VST1=VST1R=VDCOUT=VDCIN 1st voltage booster is not used, 2nd voltage booster used: OPEN or VST1R=VST1 1st voltage booster is not used, In the case of use by a voltage regulating function of a 2nd voltage booster circuit: Please supply an external power supply from this terminal. Note: It recommends using 90 to 93 terminals, when the external power supply used. 1st and 2nd booster are not used: OPEN 2nd voltage booster output for high voltage circuits OPEN or The capacitor between VSS terminal must be connected. 1st voltage booster used, 2nd voltage booster is not used: VST1=VST1R=VDCOUT=VDCIN 1st voltage booster is not used, 2nd voltage booster used: Please supply an external power supply from this terminal. 1st voltage booster is not used, In the case of use by a voltage regulating function of a 2nd voltage booster circuit: The capacitor between VSS terminal must be used. 1st and 2nd booster are not used: The capacitor between VSS terminal must be connected or OPEN. - 11 - NJU6657 Preliminary No. 106∼108 109∼111 125∼127 122∼124 112∼114 119∼121 115∼117 Symbol C2P C2N C3P C3N C4P C5P C6P I/O O FUNCTION 2nd voltage boostor capacitor connection terminal TERMINAL DESCRIPTION(FIX) No. 19,32,36 Symbol VPUP I/O Power/ O 16,30,34, 38 VPDN Power/ O - 12 - FUNCTION This terminal is internally connected to VDD level. ・This terminal is used to fix the VDD level. When the not used normally open. This terminal is internally connected to VSS level. ・Thisterminal is used to fix the VSS level. When the not used normally open. Ver.2012-11-22 NJU6657 Preliminary TERMINAL DESCRIPTION(INTERFACE) No. 20,29 21,28 27 26 25 24 23 22 Symbol D7/SDA D6/SCL D5 D4 D3 D2 D1 D0 I/O I/O 37 PS I SEL68 I CSB I 35 13 15 A0 I 18 RDB (E) I 17 WRB (R/W) I 14 RESB I Ver.2012-11-22 FUNCTION Data I/O terminal In the parallel interface mode (P/S=“H”) D7 to D0: 8-bit bi-directional bus In the serial interface mode (P/S=”L”) D7: Serial data bi-directional bus(SDA) D6: Serial clk input terminal(SCL) D0 to D5: Hi-Z When CSB=”H” status, the D5 to D0 terminals are in the high impedance status therefore those terminals should be fixed to VDD or VSS. Parallel / Serial interface mode select P/S =”L”: Serial interface P/S =”H”: Parallel interface In the serial interface mode (P/S=”L”) RAM Data and status read operation do not work in mode of serial intrerface. MPU interface type select This teminal must be fixed VDD or VSS. SEL68 =L: 80 series parallel / 3 wire-serial H:68 series parallel / 5wire-serial Chip select Active “0” Data Input/Output are avaibal during CSB=”L” Resister select ・The data on the D0 to D7 is distinguished between Display data and Instruction data by status of A0. A0 L: Instruction command H: Display data <In case of 80 Type MPU> (PS=”H”,SEL68=”L”) RDb signal of 80 type MPU input terminal. Active “L” During this signal is “L”, D0 to D7 terminals output. <In case of 68 Type MPU> (PS=”H”,SEL68=”H”) Enable signal of 68 type MPU input terminal. Active “H” <In case of 80Type MPU> (PS=”H”,SEL68=”L”) Connect to the 80 type MPU WRb signal. Active “L” The data on the data bus input synchronizing the rise edge of this signal. <In case of 68 Type MPU>(PS=”H”,SEL68=”H”) The read/write control signal of 68 type MPU input terminal. RW L: Write H: Read Reset terminal. When the RESB terminal goes to “L”, the initialization is performed. - 13 - NJU6657 Preliminary TERMINAL DISCRIPTION(LCD DRIVER) No. SYMBOL 165∼189, C0∼C87 197∼215, 492∼510, 518∼542 I/O O FUNCTION LCD driving signal output terminals(Common) Common output terminals The following output voltages are selected by the combination of alternating (FR) signal and Common scanning data. Scan Data H L FR Output Voltage H L H L VLCD VSS V1 V4 216∼351, 356∼491 S0∼S271 O LCD driving signal output terminals(Segment) Segment output terminals The following output voltages are selected by the combination of alternating (FR) signal and display data in the RAM. Output Voltage RAM Data FR Normal Reverse H VLCD V2 H L VSS V3 H V2 VLCD L L V3 VSS 1∼7, 9,11,12, 118, 156∼164, 190∼196, 352∼355, 511∼517, 543,544 DUMMYx - Dummy Terminals. Normally Open. - 14 - Ver.2012-11-22 NJU6657 Preliminary TERMINAL DISCRIPTION(OTHER TERMINAL) No. 10 SYMBOL OSC1 I/O I 31 CLS I 33 CSEL I 153 TSV O 8 152 BUSY TEST1 O O 151 TEST2 O 154 TEST3 I 155 TEST4 I Ver.2012-11-22 FUNCTION External clock input terminal In internal oscillation operation, this terminal must connect to VDD or VSS. Terminal to select whether or enable or disable the display clock internal oscillation circuit. CLS=”H” : Internal oscillation circuit is enable. CLS=”L” : Internal oscillation circuit is disabled. (requires external clock) When CLS=”L”, input the display clock through the OSC1 terminal. Common driver output select terminal “L” : Both sides wiring mode “H”: Comb wiring mode Thermo sensor analog voltage output terminal In case of not used, this terminal is open. Busy flag terminal TEST terminal Normaly open TEST terminal Normaly open TEST terminal Normaly open TEST terminal Normaly open - 15 - NJU6657 Preliminary FUNCTIONAL DESCRIPTION (1) Discription for each blocks (1-1) Selection of Parallel or Serial interface NJU6657 interfaces with MPU by 8-bit bi-directional data bus (D7 to D0) or serial interface(SDA, SCL). The 8-bit parallel or serial interface is determined by a condition of the PS terminal connecting to “H” or “L” level. The PS terminal is used to select parallel or serial interface mode as shown in the following table. In the parallel interface mode, the SEL terminal is used to select 68- or 80-type MPU interface type. In the serial interface mode, the SEL terminal used to select 5 wire serial or 3 wire serial interfase type. In case of the serial interface, status and RAM data read out operation is impossible. PS H L SEL H L H L MPU type 68 type MPU 80 type MPU 5 wire serial 3 wire serial CSB CSB CSB CSB CSB A0 A0 A0 A0 - RDB E RDB - WRB WR WRB WR - D7 D6 D5 to D0 Data Data SDA SDA SCL SCL Note 1 Note 1 Note 1) “-“: Fix to “VDD” or “VSS”. (1-2) Data recognition In the parallel interface mode, the data from MPU is interpreted as display data or instruction according to the combination of the A0, RDB, and WRB(R/W) signals. A0 L L H H - 16 - 68 type RW 1 0 1 0 80 type RDB 0 1 0 1 WRB 1 0 1 0 Function Status read Write into the Register(Instruction) Read Display Data Write Display Data Ver.2012-11-22 NJU6657 Preliminary (1-3) Parallel interface While the chip select is active (CSB=”L”), the data from MPU can be written into the DDRAM or the instruction register. When the A0 is “L”, the data is interpreted as display data whitch is stored in the DDRAM. The display data is latched at the rising edge of the WRB signal in the 80-series MPU mode, or at the falling edge of the E signal in the 68-series MPU mode. A0 H L Data Display RAM data Internal command register In the DDRAM read sequence, be sure to execute a dummy read right after setting an address or right after writing display data or instruction. The data from MPU is temporarily held in the internal bus-holder, then released on the internal data-bus, therefore a dummy data is read out by the 1st “Display Data Read” instruction. After that, the display data is read out from a specified address by the 2nd instruction. Note that the “Display Data Read” instruction cannot be used in the serial inter face. 80-series parallel data transmission (PS=”H”, SEL68=”L”) <Write> RS (Note) When the DDRAM data writing, CSb should be changed to "H" once every 2-byte. CSb WRb D7 to D0 (Data bus direction) Input <Read> RS CSb RDb D7 to D0 1st reading out is dummy. (Data bus direction) Ver.2012-11-22 Input Outpu Input Outpu Input Outpu Input The data bus is output at CSB=”L” and RDB=”L”. - 17 - NJU6657 Preliminary 68-series parallel data transmission (PS=”H”, SEL68=”H”) <Write> RS (Note) When the DDRAM data writing, CSb should be changed to "H" once every 2-byte. RW CSb E D7 to D0 (Data bus Input <Read> RS RW CSb E D7~D0 1st (Data bus - 18 - reading out is Input Outpu Input Outpu Input Outpu Input The data bus is output at RW=”H”, CSb=”L” and E=”H”. Ver.2012-11-22 NJU6657 Preliminary (1-4) 5 wire serial Interface While the chip select is active (CSB=”L”), the SDA and SCL are enabled. While the chip select is inactive (CSB=”H”), the SDA and SCL are disabled, and the internal shift register and the internal counter are being initilized. 8-bit serial data on the SDA is latched at the rising edge of the SCL signal in order of D7, D6, …, and D0, and converted into 8-bit parallel data at the timing of the internal signal produced from the 8th SCL signal. The data on the SDA is interpreted as display data instruction according to the A0. A0 H L Data Display RAM data Internal command register Note that the SCL should be set to “L” right after data transmission or during non-access because the serial interface is susceptible to external noises which may cause malfunctions. For added safety, inactivate the chip select (CSB=”H”) temporary whenever 8-bit data transmission is completed. Serial data transmission (PS=”L”, SEL=”L”) <Write> RW (Data bus directio Input The data bus is Input at RW=”L”. RS CSb SCL DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 SDA <Read> RW (Data bus Output Input The data bus is output at RW=”H” and CSb=”L”. RS CSb SCL Ver.2012-11-22 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 SDA - 19 - NJU6657 Preliminary (1-5) 3 wire serial Interface While the chip select is active (CSB=”L”), the SDA and SCL are enabled. While the chip select is not active (CSB=”H”), the SDA and SCL are disabled, and the internal shift register and the internal counter are being initialized. 9-bit serial data on the SDA is lached at the rising edge of the SCL signal in order of A0, D7, D6, … , and then converted into 9-bit parallel data at the timing of the internal signal produced from the 9th SCL signal. The data on the SDA is interpreted as display data or instruction according to the combination of the A0 bit status. Note that the SCL should be set to “L” right after data transmission or during non-access because the serial interface is susceptible to external noises which may cause malfunctions. For added safety, inactivate the chip-select (CSB=”H”) temporary whwnever 9-bit data transmission is completed. 3wire Serial data transmission (PS=”L”, SEL=”H”) RW (Data bus directio Input The data bus is Input at RW=”L”. CSb SCL DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 SDA (1-6) Write to Internal Register The writing internal register, therre are two byte and 1byte instruction. In two byte instruction, 1st byte specifies “Mode Set”. The relation of CSB and Data is shown in below. And then Moreover, it is also possible to write in the instruction of plurality with CSB=L continuously, in order to judge automatically distinction of a 1-byte instruction or a 2-byte instruction inside. Note) 2 Byte instruction: Between byte data CSB="L". Note) It is possible for data continuously at the CSB=”L” condition. CSB A0 WRB D7~0 RAM RAM Data Mode data 2 Byte Instruction Mode Mode data Mode Mode data 1 Byte Instruction st Note) The 1 byte is knowledge of “mode set” at falling edge of the CSB condition. - 20 - Ver.2012-11-22 NJU6657 Preliminary (1-7) Busy Flag (BF) While the internal circuits are operating, the busy flag(BF) is “1”, and any instruction excepting for the status read are inhibited. The busy flag goes to “1” from D7 terminal when status read instruction is executed. When enough cycle time over than Tcyc indicated in “AC CHARACTERISTICS” is ensured, no need to check the busy flag for reduction of the MPU loads. (1-8) Initial display line register The initial display line register assigns a DDRAM line address, which corresponds to COM0 by “initial display line set” instruction. It is used for not only normal display but also vertical display scrolling and page swiching without changing the contents of the DDRAM. (1-9) Line counter The line counter generates the line address of display data RAM by the count up operation synchronizing the common cycle after the reset operation at the status change of internal FR signal. (1-10) Column address counter The coulumn address counter is 8-bit pre-settable counter addressing the column address of display data RAM as shown in Fig. 1. It is incremented (+1) by the display data read / write instruction execution. The column address counter is independent of the page register. By the address inverse instruction, the column address decoder inverse the column address of display data RAM corresponding to the segment driver. (1-11) Page register The page register gives a page address of display data RAM as shown in Fig. 1. When the MPU accesses the data with the page change, the page address set instruction is required. Page address “8”(D4 to D0 = “0100”) is Icon RAM area, the data only for the D0 is valid. (1-12) Display data RAM Display data RAM is the bit map RAM consisting of 23,936 bits to memorize the display data corresponding to each pixel of LCD panel. The each bit in the display data RAM corresponds to the each pixel of the LCD panel and controls the display by following bit data. When normal display : On=”1”, Off=”0” When inverse display : On=”0”, Off=”1” The display data RAM outputs 272-bit parallel data in the area addressed by the line counter, and these data are set into the display data latch. The access operation from MPU to the display data RAM and the data output from the display data RAM are so controlled to operate independently that the data rewriting does not influence with any malufunctions to the display. Ver.2012-11-22 - 21 - NJU6657 Preliminary Page Address Line Address Display Pattern Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH D0 D1 D2 P3,P2,P1,P0 (0,0,0,0) D3 PAGE 0 D4 D5 D6 D7 P3,P2,P1,P0 (0,0,0,1) D0 ■ ■ D1 ■ ■ D2 ■ D3 ■ D4 ■ D5 ■ ■ D6 ■ ■ ■ ■ ■ ■ ■ PAGE 1 ■ D7 D0 D1 D2 P3,P2,P1,P0 (0,0,1,0) D3 PAGE 2 D4 D5 D6 D7 D0 D1 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H D6 D7 D0 D1 D2 P3,P2,P1,P0 (1,0,1,0) D3 PAGE 10 D4 D5 D6 D7 Column Address ADC D0="0" 000 001 002 003 004 005 006 D0="1" 10F 10E 10D 10C 10B 10A 109 Segment Drivers 0 1 2 3 4 5 6 --------------- 10E 001 10F 000 270 271 Common Driver C80 C81 C82 C83 C84 C85 C86 C87 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 ・ ・ ・ ・ C69 C70 C71 C72 C73 C74 C75 C76 C77 C78 C79 For example the Initial display is 08H. Fig.1 Display data RAM (DDRAM) Map - 22 - Ver.2012-11-22 NJU6657 Preliminary (1-13) COMMON DRIVER OUTPUT SWITCHING The common output order of NJU6657 is selected by CSEL terminal (Both sides wiring or Comb wiring). When the CSEL="L", the COM0 to 43 connects on the lower half of the panel and the COM44 to 87 connects on the upper half. When the CSEL="H", the COM is divided by 4, that is connected to the panel by the comb pattern. < Wiring image > (i) CSEL=”L” Both sides wiring mode COM87 Panel (CSEL="L") COM44 COM43 COM0 COM44 COM0 NJU6657 COM87 COM43 (ii) CSEL=”H” Comb wiring mode COM84∼COM87 COM76∼COM79 COM68∼COM71 COM60∼COM63 COM52∼COM55 COM44∼COM47 COM36∼COM39 COM28∼COM31 COM20∼COM23 COM12∼COM15 COM4∼COM7 Panel (CSEL="H") COM44 COM80∼COM83 COM72∼COM75 COM64∼COM67 COM56∼COM59 COM48∼COM51 COM40∼COM43 COM32∼COM35 COM24∼COM27 COM16∼COM19 COM8∼COM11 COM0∼COM3 COM0 NJU6657 COM87 COM43 The common direction register is selected by the “Common direction register set” is shown in Table. INV 0 1 Table. Common direction Status Normal Inverse Common direction COM0 -> COM87 COM87 -> COM0 (1-14) Display scroll function NJU6657 is executed to the vertical smooth scroll display of 1-dot. The Start line display set the line address shown Fig 1. Ver.2012-11-22 - 23 - NJU6657 Preliminary (1-15) Partial display function The partial display is executed by Partial select instruction. This function reduces the LCD driving voltage and the power consumption when the duty set low like the clock display of stand-by. Page Address data Line Address D0 00h D1 01h D2 02h D3 03h page0 D4 04h D5 05h D6 06h D7 07h D0 08h D1 09h D2 0Ah D3 0Bh page1 D4 0Ch D5 0Dh D6 0Eh D7 0Fh D0 10h D1 11h D2 12h D3 13h page2 D4 14h D5 15h D6 16h D7 17h D0 18h D1 19h D2 1Ah D3 1Bh page3 D4 1Ch D5 1Dh D6 1Eh D7 1Fh D0 20h D1 21h ・ ・ ・ ・ ・ ・ ・ ・ D6 4Eh D7 4Fh D0 50h D1 51h D2 52h D3 53h page10 D4 54h D5 55h D6 56h D7 57h SEG0 SEG25 Initialize Status: 1/88 Duty COM0 COM10 COM29 COM87 COM Start COM Out 00h COM0 01h COM1 02h COM2 03h COM3 04h COM4 05h COM5 06h COM6 07h COM7 08h COM8 09h COM9 0Ah COM10 0Bh COM11 0Ch COM12 0Dh COM13 0Eh COM14 0Fh COM15 10h COM16 11h COM17 COM18 12h 13h COM19 COM20 14h 15h COM21 16h COM22 17h COM23 18h COM24 19h COM25 1Ah COM26 1Bh COM27 1Ch COM28 1Dh COM29 1Eh COM30 1Fh COM31 20h COM32 21h COM33 ・ ・ ・ ・ ・ ・ ・ ・ 4Eh COM78 4Fh COM79 50h COM80 51h COM81 52h COM82 53h COM83 54h COM84 55h COM85 56h COM86 57h COM87 1/88 Duty Display Display Area (Example1) Partial Select Command (Display line count=”04H”, COM Start position =”AH”) SEG25 SEG0 Partial Select Command Display line: 04H(20-line) COM start position 0AH(COM10) Setting. COM0 Non Active Area COM10 Active Area COM29 Non Active Area COM87 Ver.2012-11-22 Page Addres data Line Address 00h D0 01h D1 02h D2 03h D3 page0 04h D4 05h D5 06h D6 07h D7 08h D0 09h D1 0Ah D2 0Bh D3 page1 0Ch D4 0Dh D5 0Eh D6 0Fh D7 10h D0 11h D1 12h D2 13h D3 page2 14h D4 15h D5 16h D6 17h D7 18h D0 19h D1 1Ah D2 1Bh D3 page3 1Ch D4 1Dh D5 1Eh D6 1Fh D7 20h D0 21h D1 ・ ・ ・ ・ ・ ・ ・ ・ 4Eh D6 4Fh D7 50h D0 51h D1 52h D2 53h D3 page10 54h D4 55h D5 D6 56h D7 57h COM Start Address COM Out COM0 00h COM1 01h COM2 02h COM3 03h 04h COM4 05h COM5 06h COM6 07h COM7 08h COM8 09h COM9 0Ah COM10 0Bh COM11 COM12 0Ch COM13 0Dh COM14 0Eh COM15 0Fh COM16 10h COM17 11h COM18 12h COM19 13h COM20 14h COM21 15h COM22 16h 17h COM23 COM24 18h COM25 19h COM26 1Ah COM27 1Bh COM28 1Ch COM29 1Dh COM30 1Eh COM31 1Fh COM32 20h COM33 21h ・ ・ ・ ・ ・ ・ ・ ・ COM78 4Eh COM79 4Fh COM80 50h COM81 51h COM82 52h COM83 53h COM84 54h COM85 55h COM86 56h COM87 57h 1/20 Duty Display Active Area - 24 - NJU6657 (Example 2) When both of Partial Select and Initial Display line set instruction are executed, the smmoth scroll for vertical direction in partial display area. SEG0 SEG25 Partial Select Command Display line: 04H(20-line) COM start position 0AH(COM10) Initial Display Start Line Command Line Address: 0AH Setting. COM0 Active Area COM11 Non Active Area COM80 Active Area COM87 Page Addres data Line Address D0 00h D1 01h D2 02h D3 03h page0 D4 04h D5 05h D6 06h D7 07h D0 08h D1 09h D2 0Ah D3 0Bh page1 D4 0Ch D5 0Dh D6 0Eh D7 0Fh D0 10h D1 11h D2 12h D3 13h page2 D4 14h D5 15h D6 16h D7 17h D0 18h D1 19h D2 1Ah D3 1Bh page3 D4 1Ch D5 1Dh D6 1Eh D7 1Fh D0 20h D1 21h ・ ・ ・ ・ ・ ・ ・ ・ D6 4Eh D7 4Fh D0 50h D1 51h D2 52h D3 53h page10 D4 54h D5 55h D6 56h D7 57h Start Line Address Set COM Start Address COM Out 00h COM0 COM1 01h COM2 02h COM3 03h 04h COM4 05h COM5 06h COM6 COM7 07h COM8 08h COM9 09h COM10 0Ah 0Bh COM11 0Ch COM12 0Dh COM13 0Eh COM14 0Fh COM15 COM16 10h COM17 11h COM18 12h COM19 13h 14h COM20 15h COM21 16h COM22 COM23 17h COM24 18h COM25 19h COM26 1Ah 1Bh COM27 1Ch COM28 1Dh COM29 1Eh COM30 1Fh COM31 20h COM32 21h COM33 ・ ・ ・ ・ ・ ・ ・ ・ 4Eh COM78 4Fh COM79 COM80 50h COM81 51h COM82 52h COM83 53h 54h COM84 55h COM85 COM86 56h COM87 57h 1/20 Duty Display Active Area (Example 3) Partial Select Command (Display line count=”50H”, COM Start position=”AH”) SEG25 SEG0 Partial Select Command Display line: 04H(20-line) COM start position 50H(COM80) Initial Display Start Line Command Line Address: 0AH Setting. COM0 Active Area COM11 Non Active Area COM80 Active Area COM87 - 25 - Page Address data Line Address D0 00h D1 01h D2 02h D3 03h page0 D4 04h D5 05h D6 06h D7 07h D0 08h D1 09h D2 0Ah D3 0Bh page1 D4 0Ch D5 0Dh D6 0Eh D7 0Fh D0 10h D1 11h D2 12h D3 13h page2 D4 14h D5 15h D6 16h D7 17h D0 18h D1 19h D2 1Ah D3 1Bh page3 D4 1Ch D5 1Dh D6 1Eh D7 1Fh D0 20h D1 21h ・ ・ ・ ・ ・ ・ ・ ・ D6 4Eh D7 4Fh D0 50h D1 51h D2 52h D3 53h page10 D4 54h D5 55h D6 56h D7 57h COM Start Address COM Out 00h COM0 01h COM1 02h COM2 03h COM3 04h COM4 05h COM5 06h COM6 07h COM7 08h COM8 09h COM9 0Ah COM10 0Bh COM11 0Ch COM12 0Dh COM13 0Eh COM14 0Fh COM15 10h COM16 11h COM17 12h COM18 13h COM19 14h COM20 15h COM21 16h COM22 17h COM23 18h COM24 19h COM25 1Ah COM26 1Bh COM27 COM28 1Ch 1Dh COM29 1Eh COM30 1Fh COM31 20h COM32 21h COM33 ・ ・ ・ ・ ・ ・ ・ ・ 4Eh COM78 4Fh COM79 50h COM80 51h COM81 COM82 52h 53h COM83 COM84 54h 55h COM85 56h COM86 57h COM87 1/20 Duty Display Display Area 1/20 Duty Display Display Area Ver.2012-11-22 NJU6657 Preliminary * Duty is changed automatically when Partial Display execution, but LCD Driving Voltage , Bias ratio, EVR register are not changed. The optimum conditions should fix refering the result of actual display. * The Dummy period Insertion position of Partial Display executed. (Example 1) <display line count: 20-line, COM Start Position: COM10> COM10→COM29→Dummy Time (The dummy period is inserted in front of a COM display starting position.) * The Dummy period Insertion position of when the overlap display and Partial Display executed. (Example 2) <Display line count: 20-line, COM start Position: COM80> COM80→COM87→COM0→COM11→Dummy Time (When straddling the end of display position, the Dummy period is inserted in front of a COM display starting position.) Ver.2012-11-22 - 26 - Confidential NJU6657 Preliminary (1-16) Reset circuit The reset circuit initializes the LSI to the following status by using of the reset signal into the RESB terminal. -Reset status using the RESB terminal: 1 2 3 4 5 6 7 8 9 PARAMETER Display ON/OFF: OFF Start display line set: Set to COM0 Page address set: Set to 0 page Culumn address set: Set to ADC select: Normal Common direction: Normal Display normal/inverse: normal All display ON/OFF: OFF Partial select 10 11 N-line inverse ON/OFF: OFF N-line inverse register set 12 13 14 15 16 17 18 Dummy time set Read modyfy write: OFF Oscilator ON/OFF : ON Internal oscillator frequency set: 43.1kHz Bias ratio set: 1/10 Temperature coefficient: 0%/OC Power controll: DC/DC, VREG, VF 19 20 21 22 23 24 E.V.R set : Min. Boost. Voltage controll function set Boost. Clock set Temp. sensor ON/OFF : OFF Discharge ON/OFF : OFF Power save : OFF Register name D SL6 to 0 PA3 to 0 AC7 to 0 ADC SCAN REV ALLON DN6 to 0 DST6 to 0 NLS MIX NL6 to 0 ST, DUM RESET status 0 00H 0H 00H 0 0 0 0 48H 00H 0 0 00H 0,0 INTCK SH1 to 0 OS4 to 0 BS2 to 0 TC2 to 0 DC1 to 0 VRG VF ER8 to 0 VU2 to 0 DCC2 to 0 TSON DIS 1 10 10000 000 000 00 0 0 000H 0H 101 0 0 Int. No. (1) (2) (3) (4) (8) (9) (10) (11) (12) (13) (14) (15) (16) (18) (19) (20) (21) (22) (23)(24) (27) (28) (29) (30) (33) The RESB terminal should be connected to MPU’s reset terminal, and the reset operation should be executed at the same timing of the MPU reset. As described in the “BUS TIMING CHARACTERISTICS”, it is necessary to input 1.0us(min.) or over “L” level signal into the RES terminal in order to carry out the reset operation. The LSI will return to normal operation after about 1.5us(max.) from the rising edge of the reset signal. The reset operation by RESb="L" initializes each register setting as above reset status, but the internal oscillation circuit and output terminals (D0 to D7) are not affected. The reset operation is necessary to avoid malfunctions. Note 1) The “Reset” instruction in Table.4 can’t be substituted for the reset operation by using of the RESBterminal. It executes above-mentioned only 11 to 20 items. Note 2) The reset terminal is susceptible to external noise, so design PCB layout in consideration for the noise. Note 3) In case of using external power supply for LCD driving voltage, the RESb terminal is required to be being “L” level when the external power supply is turned-on. Ver.2012-11-22 - 27 - NJU6657 Preliminary (1-17) LCD driving circuits LCD drivers consist of 88-common drivers, 272-segment divers. As shown in “ LCD driving waveform”, LCD driving waveforms are generated by the combination of display data, common timing signal and internal FR timing signal. (1-18) Display data latch circuit The display data latch circuit temporally stores 272-bit display data transferred from the DDRAM in the synchronization with the common timing signal, and then it transfers these stored data to the segment drivers. “Display on/off”, “inverse display on/off” and “entire display on/off” instructions control only the contents of this latch circuit, they can’t change the contents of the DDRAM. In addition, the LCD display isn’t affected by the DDRAM accuses during its displaying because the data read-out timing from this latch circuit to the segment drivers is independent of accessing timing to the DDRAM. (1-19) Line counter and latch signal or latch Circuits The clock line counter and latch signal to the latch circuits are generated from the internal display clock (CL). The line address of display data RAM is renewed synchronizing with display clock (CL). 272bits display data are latched in display latch circuits synchronizing with display clock, and then output to the LCD driving circuits. The display data transfer to the LCD driving circuits is executed independently with RAM access by the MPU. (1-20) Display timing generator The display timing generates the timing signal for the display system by combination of the master clock CL and driving signal FR ( refer to Fig.2 ) The frame signal FR and LCD alternative signal generate LCD driving waveform on the 2-frame alternative driving method or the n-line inverse driving method. (1-21) Dummy selection period Immediately after COM88 has been selected, the selection period equivalent to Display 1 line is provided as dummy. Therefore, The relation between Display Lline count and Display Duty by setting of Partial Display. The formula is shown below. 1 Duty= 1 = (CL+Dummy) (CL+1) CL: Display line unit - 28 - Ver.2012-11-22 Ver.2012-11-22 n-line CLK 10Line n-line CLK 10Line n-line CLK FR Signal 20 Line 1 Line 2 Line 20 Line dummy Line 17 Line 16 Line 15 Line 14 Line 13 Line 12 Line 11 Line 10 Line 9 Line 8 Line 7 Line 6 Line 5 Line 19 Line 1/20duty, n-line inverse: 10, Dum m y Period: O N 19 Line n-line CLK 18 Line 10Line 18 Line FR Signal 17 Line 16 Line 15 Line 14 Line n-line CLK 13 Line 12 Line 11 Line 10 Line 9 Line 10Line 8 Line 7 Line 6 Line 5 Line 4 Line n-line CLK 4 Line COM end line 3 Line 3 Line 2 Line 1 Line 20 Line 19 Line 18 Line 17 Line 16 Line 15 Line 14 Line 13 Line 12 Line 11 Line 10 Line 9 Line 8 Line 7 Line 6 Line 5 Line 4 Line 3 Line 20 Line COM end line 1 Line dummy Line 20 Line 19 Line 18 Line COM end line 17 Line 16 Line 15 Line 14 Line 13 Line 12 Line 11 Line 10 Line 9 Line 8 Line 7 Line 6 Line 5 Line 4 Line 3 Line 2 Line 1 Line dummy Line 20 Line 19 Line 18 Line 17 Line 16 Line 15 Line 14 Line 13 Line 12 Line 11 Line 10 Line 9 Line 8 Line 7 Line 6 Line 5 Line 4 Line 3 Line 2 Line 1 Line dummy Line COM end line 2 Line 1 Line dummy Line 20 Line 10Line 19 Line 18 Line 17 Line 16 Line 15 Line n-line CLK 14 Line 13 Line 12 Line 11 Line 10 Line 9 Line 8 Line 7 Line 6 Line 5 Line 4 Line 3 Line 2 Line 1 Line 20 Line 19 Line 18 Line 17 Line 16 Line 15 Line 14 Line 13 Line 12 Line 11 Line 10 Line 9 Line 8 Line 7 Line 6 Line 5 Line 4 Line 3 Line 2 Line 1 Line 20 Line 19 Line 18 Line 17 Line 16 Line 15 Line 14 Line 13 Line 12 Line 11 Line 10 Line 9 Line 8 Line 7 Line 6 Line 5 Line 4 Line 3 Line 2 Line 1 Line 20 Line Confidential NJU6657 Preliminary (1-22) n-line inversion NJU6657 sets the number of inversion line of the alternating signal for LCD to the optional values from 2 to 88. The relation of the alternating signal, n-line inversion and dummy period are shown in below. 1/20duty, n-line inverse: OFF, Dum m y period O FF FR Signal COM end line 1/20duty, n-line inverse: OFF, Dum m y period: ON FR Signal 1/20duty, n-line inverse: 10CLK, Dum m y period: OFF COM end line … 10Line n-line CLK - 29 - NJU6657 Preliminary (1-23) Common timing generation The common timing is generated by display clock CL (refer to Fig.2) 87 88 1 2 3 4 5 6 7 8 85 86 87 88 1 2 3 4 5 CL FR VLCD V1 C0 V4 VSS VLCD V1 C1 V4 VSS RAM DATA VLCD V2 Sn V3 VSS Fig.2-1 2-frame alternating drive mode( N-line inverse set OFF) 87 88 1 2 3 4 5 6 7 8 85 86 87 88 1 2 3 4 5 CL FR VLCD V1 C0 V4 VSS VLCD V1 C1 V4 VSS RAM DATA VLCD V2 Sn V3 Vss Fig.2-2 n-line inverse drive mode (n=7, line inverting register set to 6 ) - 30 - Ver.2012-11-22 Confidential NJU6657 Preliminary (1-24) OSCILLATION CIRCUIT NJU6657 is equipped with the CR oscllation circuit, and generates internal clocks used for the display timing. The generating method of the clock selects by the internal oscillation or external clock. When the internal oscillation circuit is used, Oscillator starts after input of the Internal Oscillator ON/OFF command input. (INTCK=“H”) In addition, oscillation frequency can be selected by programming the “Internal oscillation frequency control” instruction So that is possible to optimize the Display duty. When CLS=”L”, oscillation stops, and display clock is input from the OSC1 terminal. When external oscillation circuit is operating by setting CLS terminal gives priority more than the operation of the internal oscillation circuit. CLS Terminal L L H H INTCK 0 1 0 1 Ext. Input Status Available Available (Priority) Not available Not available Internal Oscillator Inactive Active Inactive Active When external clock input, the divide value is reflection setting by “Interanal oscillation circuit frequency set” instruction. The divide set is normally using select by the 1 divide (“SH1 to 0 = “00”) When partial display function used, the divide value changing by divide set instruction. When frame frequency changes by partial display etc by external clock used. You shuld be changing external clock frequency and also possible to have you change or to change oscillating frequency using a divide setup. The set to each of frequency value is shown in below. ( also in case of External CLK operation.) Selllect of frame frequency Boost Divide OSC1 ( Ext. CLK Input ) Boost CLK Sellect of display line Divide Caluculate of Boost clock frequency Use to OS4 to OS0 register value. "Refer to P.60" DCC2 to 0 register sellect to divide value SH1 to 0 sellect to divide value CLS OS4 to 0 register sellect to frequency Fix to OSC frequency (Fix to OS4 to OS0 and SH1 to SH0 register value.) OSC Frequency (I t CLK) CR OSC INTCK Caluculate of frequency * refer P56 BLOCK DIAGRAM End Ver.2012-11-22 - 31 - NJU6657 Preliminary (1-25) Thermal Sensor Circuit The NJU6657 has the built-in thermal sensor circuit equipped with the pin to output the analog voltage, which represents the –4.19[mV/℃](typ) temprature gradient. When the TSON=”1” ,from Thermal Sensor command ON/OFF. The suitable tone LCD display is enabled in a wide temprature range by inputting the electronic control resister value sent from the MPU for the thermal sensor output value to control the LCD drive voltage. * Note When the resistance component R exists between the system GND and the IC’s VSS terminal, the IC’s substrate potential VSS viewed from the system GND drops as follows: ⊿V=IR ( I: Supply Current by the NJU6657) VDD VDDL2 VDDL2 I/F DD RAM Analog Sensor TSV TSVBS VSS ∆V=IR - 32 - System GND Ver.2012-11-22 Confidential NJU6657 Preliminary (1-26)Power supply circuit The internal power circuits are composed of boost voltage converter, adjust voltage circuit and voltage followers. Each portion of the internal power circuits is controlled by “Power Control Set” instruction as shown in Table below. In addition, the combination of power supply circuits is described as shown in Table. When the External power supply used, the bias voltage of V1 to V4 and VLCD for the LCD should be supplied from outside, terminals C1+, C1-, C2+, C2-, C3+, C3-, C4+, C5+ and C6+ should be open. When the Internal power supply used, the stabilize capacitor of V1 to V4 and VLCD should be connection. A0 0 RDB WRB 1 0 D7 0 * D6 0 * D5 1 * D4 0 * Power supply combinations Status DC1 DC0 VRG 1) All internal power supply circuit VF D3 0 D2 1 D1 0 D0 1 DC1 DC0 VRG VF 2nd Boost 1st Boost Adjust V COMMAND Mode Set Internal Power Cont. VF Ext. Power 1 1 1 1 ON ON ON ON VEE 0 1 1 1 OFF ON ON ON VEE 1 0 1 1 ON OFF ON ON VST1R 0 0 1 1 OFF OFF ON ON VDCIN 5) Voltage followers only 0 0 0 1 OFF OFF OFF OFF VLCD 6) External power supply only 0 0 0 0 OFF OFF OFF OFF VLCD to V4 2) 1st Boostor, Adjust voltage circuit and Voltage followers only 3) 2nd Boostor , Adjust voltage circuit and Voltage followers only 4) Voltage Reg. and Voltage followers only * Capacitor input terminals: C1+,C1-,C2+,C2-,C3+,C3-,C4+,C5+,C6+ * Do not use other combinations except examples in table Power supply combinations. The internal LCD power supply is designed to drive small LCD panels. Thus, if the IC is used to drive a large panel, make sure whether it works with the internal power supply or needs an external power supply. The selections of external components for the LCD bias circuit, the voltage booster and the feedback loop depend on panel sizes, so make sure what are the best values in the particular application. Ver.2012-11-22 - 33 - NJU6657 Preliminary C4+ C5+ C6+ C3+ C3‐ C1+ C1‐ C2+ C2‐ ■BLOCK DIAGRAM (Power Supply) VEE VST1 VST1R 1st Boostor 2nd Boostor VDCOUT Boost Voltage Adjust Circuit Boost Circuit VDCIN Adjust Voltage Circuit VLCD EVR V1 Vref. V2 V3 V4 VF Circuit - 34 - Ver.2012-11-22 Confidential NJU6657 Preliminary (1-27-1) Voltage Regulator Circuit VLCD voltage genetator produces the VDCIN voltage. The NJU6657 has consist of voltage regulator and EVR circuit. The EVR, variable with 400-step, is used to fine-tune the LCD driving voltage (VLCD) by setting the “EVR Control Instruction”. (a) EVR The “EVR Control Instruction” sets 9-bit data into the EVR register to determine the output voltage. The relation of EVR register and EVR value is shown in table. ER8 0 0 : : 1 ER7 0 0 : : 1 ER6 0 0 : : 0 ER5 0 0 : : 0 ER4 0 0 : : 1 ER3 0 0 : : 0 ER2 0 0 : : 0 ER1 0 0 : : 0 ER0 0 1 : : 0 EVR 0 1 : : 400 VLCD Min.(4.8[V]) ( Default ) : : : Max.(28.8[V]) VLCD = Va+(EVR×ΔVb) Va = 4.8[V] ΔVb = 60[mV] Default EVR Step * Example: EVR=250 VLCD = 4.8+(250×0.06) = 19.8[V] The relation of EVR value and LCD driving voltage is shown in graph. 35 30 VLCD [V] 25 20 15 10 5 0 0 50 100 150 200 250 300 350 400 EVR Set Value Note1) When using voltage follower circuit, you should be bigger than set to EVR=20(ER=”000010100”,VLCD=6[V]) Ver.2012-11-22 - 35 - NJU6657 Preliminary (b) Temperature Gradient Selection Circuit The circuit is used for selecting the temperature gradient characteristics of the LCD driving voltage. The set “Temperature Gradient Slect” instruction allows selection of temperature gradient characteristics from 6 stetes. The Teprature gradient value is refer to shown in table. Selecting temperature gradient characteristics matching temperature characteristics to be used enables you to configure the system without an external add-on device for correcting temperature characteristics. A0 0 RDB WRB 1 0 D7 0 * D6 1 * D5 0 * D4 0 * D3 1 * D2 1 TC2 D1 1 TC1 D0 0 TC0 Command Mode Set Temprature Gradient Select TC2 TC1 TC0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 Temperature Gradient Value [%/℃] -0.000 ( Default ) -0.050 -0.075 -0.100 -0.125 -0.150 When using this function, you should be reviced LCD driving voltage at Ta=25OC. * Example) EVR=250, Ta=25OC, Temperature Gradient Value=0,0,0 In case of changing temperature to +40OC. VLCD = [Va+(EVR×ΔVb)]×[1+(temp-25)×(incline/100)] = [4.8+(250×0.06)]×[1+(40-25)×(-0.1/100)] = 19.503 [V] (1-27-2) Voltage Follower Circuit Each LCD driving voltage (V1, V2, V3, V4) is generated by the high impedance bleeder resistance buffered by voltage follower OP-AMP. The bias voltage is selected by the instruction. A0 0 RDB WRB 1 0 D7 1 * D6 0 * D5 1 * D4 0 * D3 0 * D2 0 BS2 D1 1 BS1 D0 0 BS0 BS2 0 0 0 0 1 1 1 BS1 0 0 1 1 0 0 1 BS0 0 1 0 1 0 1 0 Bias Ratio 1/10 (Default) 1/9 1/8 1/7 1/6 1/5 1/4 Command Mode Set Bias Ratio Set The external capacitor connected each of bias terminals needed for stabilizing bias voltage. And the value of capactors are determined depending on the actual LCD panel display evaluation. - 36 - Ver.2012-11-22 NJU6657 Preliminary (1-27-3) Voltage boost Circuit (a) 1st Boost Circuit (2-time Boost) The 1st Boost circuit outputs the positive Voltage(VSS Common) boosted 2 times of VEE-VSS from the VST1 terminal with connecting the two capacitors between C1+ and C1-, VST1 and VSS. The purpose of 1st Boost circuit is two reason, 1st is input voltage less than 5V or Using 2nd Boost circuit depends on voltage shortage. The 1st Boost circuit only used, the VST1 terminal with connecting VDCOUT and VDCIN outside. -External Capacitor Connection of 1st Voltage Booster VST1=10V C1+ C1VST1 + VEE=5V VSS=0V 1st Booster VDCOUT VDCIN + VSS Ver.2012-11-22 - 37 - NJU6657 Preliminary (b) 2nd Booster Circuit ( 6-time Boost) The 2nd Boost circuit outputs the positive Voltage(VSS Common) boosted 6 times of VST1-VSS from the VDCOUT terminal with connecting the six capacitors between C2+ and C2-, C3+ and C3-, C4+ and C2-, C5+ and C3-, C6+ and C2-, and VSS and VDCOUT. The boosting time is selected out of 2 times to 6 by changing the external capacitors connection. The VDCOUT and VDCIN terminal should be connecting outside. When the input voltage of voltage boost circuit is over than 5.5V, the 2nd boost circuit should be using only. The boosted voltage of VSS-VDCOUT must be 36V less. Please adjust the input voltage. VDCOUT=36V VDCOUT=24V VST1R=6 VSS=0V VST1R=6 2nd Booster (4-time Boost) VSS=0V 2nd Booster (6-time Boost) - External Capacitor Connection of 2nd Voltage Booster (Power Supply = VST1R) 3-time Boost 2-time Boost C4+ C2+ C2C6+ C3+ C3C5+ VDCOUT VDCIN C4+ C2+ C2C6+ + C3+ C3C5+ OPEN VDCOUT VDCIN + C4+ C2C2+ C6+ + + C3+ C3C5+ VDCOUT VDCIN + VSS VSS 5-time Boost C4+ C2C2+ C6+ C3+ C3C5+ VDCOUT VDCIN VSS - 38 - 4-time Boost + + + + VSS 6-time Boost + + + C4+ C2C2+ C6+ + C3+ C3C5+ + VDCOUT VDCIN + + + + + + VSS Ver.2012-11-22 NJU6657 Preliminary (c) Combination using of 1st boost and 2nd boost circuit The combination of 1st boost and 2nd boost circuits the positive voltage(VSS common) boosted 4 to 12 times of VEE-VSS from the VDCOUT terminal with connecting outside the VST1 and VST1R , VDCOUT and VDCIN terminals. The relation of 1st boost circuit, 2nd boost circuit and Voltage adjust circuit is shown in below. Connecting Outside The boosted voltage of VSS-VDCOUT must be 36V less. Please adjust the input voltage. VDCOUT VDCIN 2 to 6 x Boost VLCD VST1 Ext. Connect VST1R 2 x Boost VEE VSS 1st Booster Adjust Voltage 2nd Booster -External Capacitor Connection of Voltage Booster 4-time Boost 6-time Boost + C1+ C1VST1 VST1R VSS C4+ C2+ C2C6+ C3+ C3C5+ VDCOUT VDCIN + + OPEN VSS + C3+ C3C5+ + + + C1+ C1VST1 VST1R VSS C4+ C2C2+ C6+ + C3+ C3C5+ + VDCOUT VDCIN + VSS C1+ C1VST1 VST1R VSS C4+ C2C2+ C6+ + C3+ C3C5+ + VDCOUT VDCIN VSS + + + + VSS 12-time Boost 10-time Boost Ver.2012-11-22 C1+ C1VST1 VST1R VSS C4+ C2+ C2C6+ VDCOUT VDCIN + 8-time Boost + + + + + C1+ C1VST1 VST1R VSS C4+ C2C2+ C6+ + C3+ C3C5+ + VDCOUT VDCIN + + + + + + VSS - 39 - NJU6657 Preliminary (d) Adjust voltage boost function The Adjust voltage boost circuit generates VST1R voltage by Adjust voltage boost set instruction. Register value(VU2 to VU0) should be setting of according to use 2nd Booster condition. When the this function used, using of 2nd Boost circuit and combination of 1st and 2nd Boost circuits. The combination of the auto control function can’t used. In using 2nd boost circuit only, the input voltage input to VST1 terminal. In using combination of 1st boost and 2nd boost circuit used, the input voltage input to VEE terminal. In this time , each of the connect to capacitor between VST1, VST1R and VSS terminals. This function controls 2nd booster output voltage less than Maxmum voltage (36V) If this function is used, it can set up VEE and VST1 voltage without considering Maxmum voltage. This function is control by set to command “Adjust voltage boost instruction”. The register value (VU2 to 0) set are before starting of 2nd boost circuit. A0 0 RDB WRB 1 0 VU2 0 0 0 0 1 1 D7 1 * D6 0 * VU1 0 0 1 1 0 0 D5 0 * VU0 0 1 0 1 0 1 D4 0 * D3 1 * D2 1 D1 0 D0 1 VU2 VU1 VU0 Instruction Mode Set Adjust Boost Voltage 2nd Booster OFF ( Default ) 2-time 3-time 4-time 5-time 6-time The relation of 1st boost circuit, 2nd boost circuit and Voltage adjust circuit is shown in below. Connecting Outside VDCOUT VDCIN 2 to 6 time Boost VLCD voltage VST1 Int. REG VST1R VEE VSS 2-time Boost 1st Booster 2nd Booster Adjust voltage The output voltage of a VST1R terminal generates voltage according to the number of stages of 2nd-Boost circuit. The 2nd-Boost circuit controls less than maximum voltage. Therefore, in case of VEE=5.5V or VST1=15V condition, VDCOUT voltage is less than 36V. - 40 - Ver.2012-11-22 NJU6657 Preliminary - External Capacitor Connection of Voltage Booster 4-time Boost 6-time Boost + C1+ C1VST1 VSS VST1R C4+ C2+ C2C6+ C3+ C3C5+ VDCOUT VDCIN + + + OPEN VSS + C3+ C3C5+ + + + + C1+ C1VST1 VSS VST1R C4+ C2C2+ C6+ + C3+ C3C5+ + VDCOUT VDCIN + VSS C1+ C1VST1 VSS VST1R C4+ C2C2+ C6+ + C3+ C3C5+ + VDCOUT VDCIN VSS + + + + + VSS 12-time Boost 10-time Boost Ver.2012-11-22 C1+ C1VST1 VSS VST1R C4+ C2+ C2C6+ VDCOUT VDCIN + 8-time Boost C1+ C1VST1 VSS VST1R C4+ C2C2+ C6+ + + + C3+ C3C5+ + VDCOUT VDCIN + + + + + + + + + + + VSS - 41 - NJU6657 Preliminary (1-27-4)Discharge circuit The NJU6657 incorporates a discharge circuit. Discharge circuit is used to discharge out of the stabilizing capacitors placed on the VDCOUT, VDCIN, VLCD, V1 to V4, VST1 and VST1R. This instruction prevents the unknown display at the power supply off. (refer to shown below) VDCIN VDCOUT VDCIN External C t Adjust Voltage VLCD VST1 Adjust Booster VST1R 1st Boost V1 VF VEE 1st Boost V2 V3 V4 VSSE VSS (1-27-5)Attention of Power ON/OFF To protect the LSI from overcurrent, the following sequences must be maintained to turn on and off the power supply. (ⅰ) Power ON/OFF in using external LCD supply ・Power ON First “VDD and VDDL ON”, next “Reset by RESb”, then “External LCD power supply ON”. When using only internal voltage converter, first “VDD and VDDL ON”, next “Reset”, then “VDCIN ON”. ・Power OFF First “Reset by RESb” or “Power save” instruction” to isolate external LCD bias voltage, next “VDD OFF”. For more safety, placing a resistor in series on the VLCD or VDCIN line are recommended. That resistance is usually between 50Ω and 100Ω. The value of resistance is fixed with the result of actual LCD display evaluation. (ⅱ) Power ON/OFF in using internal LCD supply ・Power ON First “VDD, VDDL and VEE ON”, next “Reset by RESb”, then “Internal LCD Power supply ON”. Be sure to excute the “Display ON” instruction later than the completion of this power ON sequence. Otherwise, unexpected pixels may be turned on instantly. ・Power OFF First “Reset by RESb or “Power save” instruction, next “Dispcharge ON” next “VEE OFF” then “VDD OFF”. If using different power sources for the VDD and the VEE individually, the VEE must be turned off after that, the VDD can be turned off, waiting until the LCD bias voltgae (VLCD, V1, V2, V3 and V4) drop below the threshold level of LCD pixels. - 42 - Ver.2012-11-22 NJU6657 Preliminary -External Components for LCD Power Supply 1) Using Only Internal LCD Power Supply (VEE=VDD, 12-time Boost) C1+ + CA2 2) Using Only Internal LCD Power Supply (VEE=VDD, 12-time Boost, Adjust Boost circuit.) C1VST1 VDD VDCOUT CA1 + VDCOUT CA1×2 + C4+ + C6+ VSS VSSE VSSA C2- CA2×3 + C4+ + C6+ C3+ + CA2×2 C3- C2+ + VSSE NJU6657 C2- CA2×3 + VST1R + NJU6657 C2+ VEE VDCIN + VSS + CA1×2 VDD + VST1R + VST1 + VEE VDCIN + C1- CA1×2 + CA1×2 C1+ + CA2 VSSA C3+ + CA2×2 C3- + + C5+ CA3×5 C5+ CA3×5 VLCD + V1 + V2 + V3 + + V4 VLCD + V1 + V2 + V3 + + V4 Reference Values CA1 1.0 ~ 4.7µF CA2 1.0 ~ 4.7µF CA3 0.47 ~ 1µF Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the particular application. Note 2) Parasitic resistance on the power supply lines (VSS, VDD, VSSE, VEE, VDCIN, VLCD, V1 to V4) reduces step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. Note 3) When using 1st and 2nd boost circuits, the capactor value (connect between C1+/C1- and VST1 terminals) should be bigger than capacitor value of 2nd boost circuit. ( Recommendation is 3-times. ) Ver.2012-11-22 - 43 - NJU6657 Preliminary -External Components for LCD Power Supply 3) Using Internal LCD Power Supply within 1st Boost, Adjust Voltage Circuit, VF Circuit (VEE=VDD) C1+ + CA2 4) Using Internal LCD Power Supply within 2nd Boost, Adjust Voltage Circuit, VF Circuit. (6-time Boost) C1+ C1VDD VST1 C1- CA1×2 VDD VST1 + VDCOUT VEE + + External Power Circuit CA1×2 VDCOUT VDCIN VST1R VSS C4+ C6+ VSSA C2- CA2×3 + C4+ + C6+ C3+ C3- C2+ + VSSE NJU6657 C2- VSS VSSE NJU6657 C2+ VEE VDCIN + VST1R + CA1 CA1 VSSA C3+ + CA2×2 C3+ C5+ CA3×5 C5+ CA3×5 VLCD + V1 + V2 + V3 + + V4 VLCD + V1 + V2 + V3 + + V4 Reference Values CA1 1.0 ~ 4.7µF CA2 1.0 ~ 4.7µF CA3 0.47 ~ 1µF Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the particular application. Note 2) Parasitic resistance on the power supply lines (VSS, VDD, VSSE, VEE, VDCIN, VLCD, V1 to V4) reduces step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. - 44 - Ver.2012-11-22 NJU6657 Preliminary -External Components for LCD Power Supply 5) Using Internal LCD Power Supply within 2nd Boost, Adjust Voltage Circuit, VF Circuit (6-time Boost, Adjust Boost Voltage circuit) 6) Using Internal LCD Power Supply within Adjust Voltagae Circuit, VF Circuit (VDCIN Ext. Input) C1+ + External CA2 Power Circuit C1+ C1VDD VST1 C1- CA1 VDD VST1 + VDCOUT VEE + VDCIN + CA1×2 + External Power Circuit VDCOUT VST1R C2- CA2×3 + C4+ + C6+ + CA2×2 VSS VSSE C2+ VSSA C2C4+ C6+ C3+ C3+ C3- C3- VSSE NJU6657 C2+ NJU6657 VSS + VEE VDCIN VST1R + CA1 VSSA + C5+ C5+ CA3×5 CA3×5 VLCD + V1 + V2 + V3 + + V4 VLCD + V1 + V2 + V3 + + V4 Reference Values CA1 1.0 ~ 4.7µF CA2 1.0 ~ 4.7µF CA3 0.47 ~ 1µF Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the particular application. Note 2) Parasitic resistance on the power supply lines (VSS, VDD, VSSE, VEE, VDCIN, VLCD, V1 to V4) reduces step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. Ver.2012-11-22 - 45 - NJU6657 Preliminary 7. Using Only Internal Voltage follower Circuit. 8. Using Only External LCD Power Supply C1+ C1+ C1VDD VST1 C1- CA1 CA1 VDD VST1 + VDCOUT + VEE VDCOUT VDCIN VDCIN VST1R VST1R VSS C4+ C6+ VSSA C2C4+ C6+ C3+ C3+ C3- C3- C5+ C5+ VLCD CA3×4 External Power Circuit C2+ V2 + V3 + + V4 VSSA VLCD V1 + VSSE NJU6657 C2- VSS VSSE NJU6657 C2+ VEE External Power Circuit V1 V2 V3 V4 Reference Values CA1 1.0 ~ 4.7µF CA2 1.0 ~ 4.7µF CA3 0.47 ~ 1µF Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the particular application. Note 2) Parasitic resistance on the power supply lines (VSS, VDD, VSSE, VEE, VDCIN, VLCD, V1 to V4) reduces step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality. - 46 - Ver.2012-11-22 NJU6657 Preliminary (1) Instruction SetThe NJU6657 distinguishes the signal on the data bus D0 to D7 as an instruction by combination of A0, RDB and WRB(R/W). The decode of the instruction and execution performs with only high speed Internal timing without relation to the external clock. In case of serial interface, the data input as MSB(D7) first serially. The Table. 4-1, 4-2 shows the instruction codes of the NJU6657. Table. 4-1 Instruction table (1/2) (*: Don’t Care) Instruction code Instruction A0 RDb WRb (1) Display ON/OFF 0 1 0 (2) Initial Display Line Set 0 1 0 (3) Page Address Set 0 0 (4) 1 1 Defoult D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 1 1 D 1 0 0 0 1 0 1 0 * SL6 SL5 SL4 SL3 SL2 SL1 SL0 1 0 1 1 0 0 0 1 * * * * PA3 PA2 PA1 PA0 0 0 0 1 0 0 1 1 * * * * CA3 CA2 CA1 CA0 0 0 0 1 0 1 0 0 * * * CA8 CA7 CA6 CA5 CA4 0 0 0 Description D0=0:OFF, D0=1:ON 00H SL6 to 0: Initial Display Line Address 0H PA3 to 0: Page Address of DDRAM 00H Column Address Set CA8 to 0: Column Address of DDRAM 0 1 00H 0 (5) Status Read 0 0 1 Status - (6) Write Display Data 1 0 0 Write Data - Write the data into the Display Data RAM (7) Read Display Data 1 0 1 Read Data - Read the data from the Display Data RAM (8) ADC Select 0 1 0 1 0 1 0 0 0 0 ADC 0 ADC: Set the DDRAM vs Segment (9) Common Direction Select 0 1 0 1 1 0 0 0 0 0 INV 000 0 1 0 1 0 1 0 0 1 1 REV 0 REV: Inverse the ON and OFF Display 0 ALLON: Whole Display Turns ON (10) Normal or Inverse of ON/OFF Set (11) Whole Display ON/OFF LCD Duty Ratio Set 0 1 0 0 1 0 1 0 1 0 0 1 0 ALL ON 1 0 1 1 1 1 0 1 * DN6 DN5 DN4 DN3 DN2 DN1 DN0 1 0 1 1 1 1 1 0 * DS6 DS5 DS4 DS3 DS2 DS1 DS0 1 1 1 0 0 1 0 NLS 0 0 1 1 0 1 1 0 48H Partial Select Function DN5 to 0: LCD Duty Ratio DS5 to 0: COM Start Position (12) Common Start Position Set 0 1 00H 0 (13) n-line Inverse Drive Set 0 1 0 (14) n-line Inverse Drive Register Set 0 1 0 (15) Dummiy width Set INV: Common Direction 0 NLS: n-line Inverse Drive Set - NL6 to 0: Set the number of inverse drive line. MIX: n-line inverse + 2-frame MIX NL6 NL5 NL4 NL3 NL2 NL1 NL0 0 0 1 1 0 0 ST DUM 00 DUM: Dummy Width ON/OFF ST: Segment Output Status (16) Read Modify Write Set 0 1 0 1 1 1 0 0 0 0 0 - Read Modify Write Set (17) End 0 1 0 1 1 1 0 1 1 1 0 - Read Modify Write Reset Ver.2012-11-22 - 47 - NJU6657 Preliminary table. 4-2 Instruction table (2/2) (*: Don’t Care) Instruction Code Instruction A0 (18) Internal Oscillation Circuit On/Off 0 1 0 (19) Oscillation Circuit Frequency Set 0 1 0 (20) LCD Bias Ratio Set (21) Temprature Gradient Set (22) Power Control Set (23) EVR Register Set (Upper Bit) (24) EVR Register Set (Lower Bit) Default RDb WRb D7 D6 D5 D4 D3 D2 D1 D0 1 0 1 0 1 0 1 INT CK 0 0 0 0 0 0 1 1 1 1 1 INTCK: Oscillation Circuit ON/OFF SH1 to 0: Divide Set 101000 OS3 to 0: Oscillation Circuit 0 SH1 SH0 OS4 OS3 OS2 OS1 OS0 Frequency ON/OFF 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 * * * * * 0 1 0 0 1 * * * * * 0 0 1 0 0 * 1 Description 0 1 1 * * 1 0 0 0 * * * 1 0 0 000 TC2 to 0: Temprature Gradient of LCD Drive Voltgae 0000 DC1 to 0: Boost ON/OFF VRG: Adjust Voltage ON/OFF VF: VF ON/OFF 00h ER8 to 4: EVR Register Set (Upper-4bit) 0H ER3 to 0: EVR Register Set (Lower-4bit) TC2 TC1 TC0 1 0 1 0 * BS2 to 0: LCD Bias Ratio Set 0 0 * 000 BS2 BS1 BS0 DC1 DC0 VRG VF 0 0 0 1 0 ER8 ER7 ER6 ER5 ER4 0 0 0 1 0 0 * * * * ER3 ER2 ER1 ER0 (25) EVR Step Up 0 1 0 1 0 0 0 0 0 1 1 - EVR Step Up (26) EVR Step Down 0 1 0 1 0 0 0 0 1 0 0 - EVR Step Down 1 0 0 0 1 1 0 1 0h * * * * * 1 0 0 0 0 * * * * * (27) Boost Voltage Control Set (28) Boost Clock Set 0 1 VU2 to 0: 2nd Boost Set VU2 VU1 VU0 1 1 0 0 101 DCC2 to 0: Boost Clock Set DCC2 DCC1 DCC0 (29) Thermo Sensor ON/OFF 0 1 0 0 0 1 0 1 0 0 TS ON 0 TSON: Thermo Sensor ON/OFF (30) Discharge ON/OFF 0 1 0 1 1 1 0 1 0 1 DIS 0 DIS: Discharge ON/OFF (31) Address Home 0 1 0 1 1 1 0 0 0 1 0 - Initialize of PA and CA value (32) Power Save 0 1 0 1 1 1 1 1 0 0 0 - Set to Power Save (33) Power Save Reset 0 1 0 1 1 1 1 0 0 0 1 - Power Save Reset (34) Low Voltage Operation Mode 0 1 0 0 1 1 0 0 1 1 0 0 * * * * * * * LVM LVM: Set to Low Voltage Operation - 48 - Ver.2012-11-22 NJU6657 Preliminary (1-1) Explanation of Instruction Code 1. Display ON/OFF This instruction selects display turn-on or turn-off regardless of the contents of the DDRAM. A0 0 RDB WRB 1 0 D D7 1 D6 0 D5 1 D4 0 D3 1 D2 1 D1 1 D0 D COMMAND Display ON/OFF 0: Display OFF 1: Display ON 2. Initial Display Line Set ( refer to ■FUNCTIONAL DESCRIPTION Fig.1 Display data RAM (DDRAM) Map ) This instruction specifies the DDRAM line address which correponds to the COM0 position. By means of repeating this instruction, the initial display line address will be dynamically changed; it means smooth display scrolling will be enabled. In this time, DDRAM data are unchanged. A0 0 RDB WRB 1 0 SL6 0 1 : : 1 D7 1 * SL5 0 0 : : 0 D6 0 SL6 SL4 0 0 : : 1 D5 0 SL5 SL3 0 0 : : 0 D4 0 SL4 D3 1 SL3 SL2 0 0 : : 1 D2 0 SL2 SL1 0 0 : : 1 D1 1 SL1 SL0 0 1 : : 1 D0 0 SL0 COMMAND Mode Set Initial Display Line Set Line Address (HEX) 00H ( Default ) 01H : : 57H 3. Page Address Set ( refer to ■FUNCTIONAL DESCRIPTION Fig.1 Display data RAM (DDRAM) Map ) In order to access to the DDRAM for writing or reading display data, both “page address set” and “column address set” instructions are required before accessing. The change of page address is not affected to the display. A0 0 RDB WRB 1 0 P3 0 0 : : 1 Ver.2012-11-22 D7 1 * D6 0 * P2 0 0 : : 0 D5 1 * D4 1 * P1 0 0 : : 1 D3 0 P3 D2 0 P2 P0 0 1 : : 0 D1 0 P1 D0 1 P0 COMMAND Mode Set Page Address Set Page 0 ( Default ) 1 : : 10 - 49 - NJU6657 Preliminary 4. Column Address Set ( refer to ■FUNCTIONAL DESCRIPTION Fig.1 Display data RAM (DDRAM) Map ) As abobe-mentioned, in order to access to the DDRAM for writing or reading display data, it is necessary to execute both “page address set” and “column address set” before accessing. Once the column address is set, it will automatically increment (+1) whenever the DDRAM will be accessed, so that the DDRAM will be able to be continuously accessed without “column address set” instruction. A0 0 RDB WRB 1 0 D7 0 * D6 0 * D5 0 * D4 1 * D3 0 CA3 D2 0 CA2 D1 1 CA1 D0 1 CA0 COMMAND Mode Set Column Address Set 1 A0 0 RDB WRB 1 0 D7 0 * D6 0 * D5 0 * D4 1 CA8 D3 0 CA7 D2 1 CA6 D1 0 CA5 D0 0 CA4 COMMAND Mode Set Column Address Set 2 CA8 0 0 : : 1 CA7 0 0 : : 0 CA6 0 0 : : 0 CA5 0 0 : : 0 CA4 0 0 : : 0 CA3 0 0 : : 1 CA2 0 0 : : 1 CA1 0 0 : : 1 CA0 0 1 : : 1 Column Address (HEX) 00H ( Default ) 01H : : 10FH 5. Status Read This instruction reads out the internal status regarding “busy flag”, “ADC select”, “Display on/off”, “Power save” “2nd Booster on/off”, “1st Booster on/off.”, “Voltage regulator on/off” and “Voltage follower on/off” < Status Read Command > A0 RDB WRB 0 0 1 D7 D6 D5 D4 D3 D2 D1 D0 BF ADC D PO DC1 DC0 VRG VF BF 0: The instruction can be input. 1: operating status ADC 0: Clockwise Output (Normal) 1: Counterclockwise Output (Inverse) D 0: Display OFF 1: Display ON PO 0: Normal 1: Power Seve DC1 0: 2nd Boost Circuit OFF 1: 2nd Boost Circuit ON DC0 0: 1st Boost Circuit OFF 1: 1st Boost Circuit ON VRG 0: Adjust Voltage Circuit OFF 1: Adjust Voltage Circuit ON VF 0: VF Circuit OFF 1: VF Circuit ON - 50 - COMMAND Status Read Ver.2012-11-22 NJU6657 Preliminary 6. Display Data Write This instruction writes display data into the selected column address on the DDRAM. The column address automatically increments (+1) whenever the display data is written by this instruction, so that this instruction can be continuously issued without “column address set” instruction. A0 1 RDB WRB 1 0 D7 D6 D5 D4 D3 Write Data D2 D1 D0 COMMAND Display Data Write 7. Display Data Read This instruction reads out the display data stored in the selected column address on the DDRAM. The column address automatically increments (+1) whenever the display data is read out by this instruction, so that this instruction can be continuously issued without “column address set” instruction. After the “column address set” instruction, adummy read will be required, please refer to the (*-*). In case of using serial interface mode, this instruction can’t be used. A0 1 RDB WRB 0 1 D7 D6 D5 D4 D3 Read Data D2 D1 D0 COMMAND Display Data Read 8. ADC Select This instruction selects segment driver direction. The correspondence between the column address and segment driver direction is shown in Fig.1. This function reduces the restrictions on the IC position of an LCD module. A0 0 RDB WRB 1 0 ADC D7 1 D6 0 D5 1 D4 0 D3 0 0: Clockwise Output (Normal) 1: Counterclockwise Output (Inverse) D2 0 D1 0 D0 COMMAND ADC select ADC Segment Driver S0 to S271 ( Default ) Segment Driver S271 to S0 9. Common Driver Direction Select This instruction selects common driver direction. A0 0 RDB WRB 1 0 INV Ver.2012-11-22 D7 1 0: Normal 1: Inverse D6 1 D5 0 D4 0 D3 0 D2 0 D1 0 D0 INV COMMAND Common Driver Direction Common driver direction C0 to C88 (Default ) Common driver direction C88 to C0 - 51 - NJU6657 Preliminary 10. Inverse Display ON/OFF This instruction inverses the status of turn-on or turn-off of entire LCD pixels. It doesn’t change the contents of the DDRAM. A0 0 RDB WRB 1 0 REV D7 1 D6 0 D5 1 0: Normal 1: Inverse D4 0 D3 0 D2 1 D1 1 D0 REV COMMAND Normal / Inverse RAM data “1” correspond to “ON” ( Default ) RAM data “0” correspond to “ON” 11. Whole Display ON/OFF This instruction turns on entire LCD pixels regardless the contents of the DDRAM. It doesn’t change the contents of DDRAM. This instruction should be performed prior to the “Inverse display ON/OFF” instruction. A0 0 RDB WRB 1 0 ALLON D7 1 D6 0 D5 1 D4 0 D3 0 D2 1 D1 0 D0 ALL ON COMMAND Whole Display ON/OFF 0: Normal Display (Whole Display OFF) ( Default ) 1: Whole Display Turns ON (Whole Display ON) 12. Partial Select The partial display is executed by combining the Display Duty Ratio with the Display Start Position instruction. A0 0 RDB WRB 1 0 D7 D6 D5 D4 D3 D2 D1 D0 1 * 0 DN6 1 DN5 1 DN4 1 DN3 1 DN2 0 DN1 1 DN0 A0 0 RDB WRB 1 0 D7 D6 D5 D4 D3 D2 D1 D0 1 * 0 DS6 1 DS5 1 DS4 1 DS3 1 DS2 1 DS1 0 DS0 DN6 DN5 DN4 DN3 DN2 DN1 DN0 0 0 : : 1 0 0 : : 0 0 0 : : 0 0 0 : : 1 0 0 : : 0 0 0 : : 0 0 1 : : 0 COMMAND Mode Set Duty Ratio COMMAND Mode Set COM Start Potision Duty Ratio 1/16 1/17 : : 1/88 ( Default ) DS5 DS4 DS3 DS2 DS1 DS0 COM Start Position 0 0 0 0 0 0 0 COM0(COM87) ( Default ) 0 0 0 0 0 0 1 COM1(COM86) : : : : : : : : : : : : : : : : 1 0 1 0 1 1 1 COM87(COM0) ( ): INV=”1” set by “Common Direction Select” instruction Duty is changed automatically when Partial Display execution. But VLCD voltage and frame frequency are not changed. The optimum conditions should fix refering the result of actual display. DS6 - 52 - Ver.2012-11-22 NJU6657 Preliminary 13. n-line Inverse ON/OFF This instruction sets n-line inversion. A0 0 RDB WRB 1 0 D7 1 D6 1 NLS D5 1 D4 0 D3 0 D2 1 D1 0 D0 NLS COMMAND n-line Inverse ON/OFF 0: 2-frame alternating drive mode. ( Default ) 1: N-line inverse drive mode. 14. n-line Inverse Drive Register Set This instruction specifies the number of n-line. The line count to be set is 2 to 88. In case of Mix=”1”, the driving wave form is Mixed. (n-line Inverse + 2-frame alternating drive mode.) A0 0 RDB WRB 1 0 D7 0 0 D6 0 NL6 D5 1 NL5 D4 1 NL4 D3 0 NL3 D2 1 NL2 NL6 NL5 NL4 NL3 NL2 NL1 NL0 0 0 : : 1 1 0 0 : : 0 0 0 0 : : 1 1 0 0 : : 0 0 0 0 : : 1 1 0 0 : : 0 1 0 1 : : 1 0 D1 1 NL1 D0 0 NL0 COMMAND Mode Set n-line Inverse Register Set Inverse Lines 2 ( Default ) 3 : : 87 88 15. Dummy period This instruction specifies the insert position of dummy period. In addition, SEG outputs of dummy period are made by ST register A0 0 RDB WRB 1 0 D7 0 D6 0 D5 1 D4 1 D3 0 D2 0 D1 ST D0 DUM COMMAND Dummy Period Set DUM 0: 1/CL Duty ( Default ) 1: 1/ (CL+1dummy) Duty ST 0: All segment drivers output non-active.. ( Default ) 1: All segment drivers output active. CL: Display line count Ver.2012-11-22 - 53 - NJU6657 Preliminary 16. Read Modify Write This instruction controls column address increment. By using of this instruction, the column address can’t increment when read operation but it can increment when write operation. This status will be continued until the below-mentioned “end” instruction will be issued. This instruction can reduce the load of MPU, during the display data in specific DDRAM area is repeatedly changed for cursor blink or others. A0 0 RDB WRB 1 0 D7 1 D6 1 D5 1 D4 0 D3 0 D2 0 D1 0 D0 0 COMMAND Read Modify Write Note) In this “Read Modify Write” mode, out of display data “Read” / “Write”, any instructions except “Column Address Set” can be executed - The Sequence of Cursor Blink Display Page Address Set Set to the Start Address of cursor Display Column Address Set Read Modify Write Dummy Read Start the Read Modify Write The data is igonored Column Counter doesn’t increase Dummy Read Data inverse by MPU Data Write Column Counter increase Dummy Read Column Counter doesn’t increase Data Read Column Counter doesn’t increase Data Write Column Counter increase Dummy Read Column Counter doesn’t increase Data Read Column Counter doesn’t increase Data Write Column Counter increase Repeating End No End the Read Modify Write Finish? Yes - 54 - Ver.2012-11-22 NJU6657 Preliminary 17. End The “end” instruction cancels the read modify write mode and makes the coulumn address return to the initial value just before “read modify write” is atarted A0 0 RDB WRB 1 0 D7 1 D6 1 D5 1 D4 0 D3 1 D2 1 D1 1 D0 0 COMMAND End Return Column Address N N+1 N+2 ・ ・ ・ ・ N+3 N+m Read modify write N End 18. Internal Oscillator Circuit ON/OFF This command starts the internal oscillator circuit operation. (INTCLK = “1”) This setting is effective when CLS=”1”. A0 0 RDB WRB 1 0 D7 1 D6 0 D5 1 INTCLK Ver.2012-11-22 D4 0 D3 1 D2 0 D1 1 D0 INT CLK COMMAND Oscillator Control 0: Internal OSC OFF ( Default ) 1: Internal OSC ON - 55 - NJU6657 Preliminary 19. Internal Oscillator Circuit Frequency Select This instruction sets the internal oscillator circuit frequency. A0 0 OS4 RDB WRB 1 0 OS3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 OS2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 OS1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 0 * 1 SH1 0 SH0 1 OS4 1 OS3 1 OS2 1 OS1 1 OS0 OS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 SH1 SH0 0 0 1 1 0 1 0 1 COMMAND Mode Set OSC Frequency Control Divide Frequency Select fOSC fOSC/2 fOSC/4 ( Default ) fOSC/8 OS4~0 (HEX) 0h 1h 2h 3h 4h 5h 6h 7h 8h 9h Ah Bh Ch Dh Eh Fh 10h 11h 12h 13h fOSC 82.4 88.0 93.4 99.2 104.7 110.3 115.2 120.8 126.0 131.6 137.0 142.3 147.5 153.1 158.5 163.9 169.0 174.4 179.4 184.9 Internal Frequency fOSC [kHz] fOSC/2 fOSC/4 41.2 20.6 22.0 44.0 23.4 46.7 24.8 49.6 26.2 52.4 27.6 55.1 28.8 57.6 30.2 60.4 31.5 63.0 32.9 65.8 34.2 68.5 35.6 71.2 36.9 73.8 38.3 76.5 39.6 79.2 41.0 81.9 42.2 (Default) 84.5 43.6 87.2 44.9 89.7 46.2 92.4 fOSC/8 10.3 11.0 11.7 12.4 13.1 13.8 14.4 15.1 15.8 16.4 17.1 17.8 18.4 19.1 19.8 20.5 21.1 21.8 22.4 23.1 * The table above showns the values at 25OC and without of manufacturing variations in the internal oscillation circuit frequency. * The frame frequency changed automatically when Partial Display execution. The optimum conditions should be select refer to formula is shown below. ◆ Formula of OSC Frequency When using internal OSC Circuit. Dummy Period Set: DUM=’0’ OSC frequency fOSC = fFR× (CL ×6) fFR: frame frequency CL: Display line count Dummy Period Set: DUM=’1’ OSC Frequency fOSC = fFR× { (CL+1dummy) ×6 } fFR: frame frequency CL: Display line count - 56 - Ver.2012-11-22 NJU6657 Preliminary In External clock operation, the external clock input to OSC1 terminal. The formula is shown below. Condition: DUM=’0’ External clock frequency fOSC = n×fFR× (CL ×6) n: Divide count fFR: Frame frequency CL: Display line Condition: External clock Input, DUM=”1” External Clock Frequency fOSC = n×fFR× { (CL+1dummy) ×6 } n: Divide count fFR: Frame frequency CL: Display line The relationship between OSC register (OS4 to OS0) and OSC frequency are shownbelow. 200 180 OSC frequency [kHz] 160 140 120 100 80 60 40 20 13h 12h 11h 10h Fh Eh Dh Ch Bh Ah 9h 8h 7h 6h 5h 4h 3h 2h 1h 0h 0 OS4 to OS0 Ver.2012-11-22 - 57 - NJU6657 Preliminary 20. Bias Select This instruction selects LCD bias value. A0 0 RDB WRB 1 0 D7 1 * D6 0 * D5 1 * D4 0 * NL2 0 0 0 0 1 1 1 D3 0 * D2 0 BS2 D1 1 BS1 NL1 NL0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 Bias Ratio 1/10 ( Default ) 1/9 1/8 1/7 1/6 1/5 1/4 D0 0 BS0 COMMAND Mode Set Bias Select 21. Temperature Gradient Set This instruction is used to set the temperature gradient characteristics of the VLCD voltage output from the internal power supply circuit. A0 0 RDB WRB 1 0 D7 0 * D6 1 * D5 0 * D4 0 * Temperature Gradient [%/℃] -0.000 ( Default ) -0.050 -0.075 -0.100 -0.125 -0.150 TC2 TC1 TC0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 D3 1 * D2 1 TC2 D1 1 TC1 D0 0 TC0 COMMAND Mode Set Temperature Gradient Set 22. Power Control Set This instruction controls the status of internal power circuits. Please refer to the (1-24) internal power circuit more detail. A0 0 RDB WRB 1 0 D7 D6 D5 D4 D3 D2 D1 D0 0 * 0 * 1 * 0 * 0 DC1 1 DC0 0 VRG 1 VF DC1 0: 2nd Boost OFF ( Default ) 1: 2nd Boost ON DC0 0: 1st Boost OFF ( Default ) 1: 1st Boost ON VRG 0: Adjust Voltage Circuit OFF ( Default ) 1: Adjust Voltage Circuit ON VF 0: V/F Circuit OFF ( Default ) 1: V/F Circuit ON COMMAND Mode Set Internal Power Supply Control The internal power supply must be Off when external power supply using. *The wait time depends on the C4 to C8, COUT capacitors, and VDD and VLCD Voltage. Therefore it requires the actual evaluation using the LCD module to get the correct time. - 58 - Ver.2012-11-22 NJU6657 Preliminary 23. EVR Register Set (Upper bit) The EVR values is controled in 400 steps by setting the combination of “EVR register set” instruction.. A0 0 RDB WRB 1 0 D7 1 * D6 0 * D5 0 * D4 0 ER8 D3 0 ER7 D2 0 ER6 D1 0 ER5 D0 1 ER4 COMMAND Mode Set EVR Register Set 2 24. EVR Register Set (Lower bit) The EVR values is controled in 400 steps by setting the combination of “EVR register set” instruction.. A0 0 RDB WRB 1 0 D7 1 * D6 0 * D5 0 * D4 0 * D3 0 ER3 D2 0 ER2 D1 0 ER1 D0 1 ER0 COMMAND Mode Set EVR Register Set 1 The combination of EVR register at shown in below. ER8 0 0 : : 1 ER7 0 0 : : 1 ER6 0 0 : : 0 ER5 0 0 : : 0 ER4 0 0 : : 1 ER3 0 0 : : 0 ER2 0 0 : : 0 ER1 0 0 : : 0 ER0 0 1 : : 0 EVR 0 1 : : 400 VLCD Min. ( Default ) : : : Max. 25. EVR register Step Up The “EVR register Step Up” instruction controls +1 step of EVR register value. A0 0 RDB WRB 1 0 D7 1 D6 0 D5 0 D4 0 D3 0 D2 0 D1 1 D0 1 COMMAND EVR Register Step Up 26. EVR register Step Down The “EVR Register Step Down” instruction controls – 1 step of EVR register value A0 0 RDB WRB 1 0 D7 1 D6 0 D5 0 D4 0 D3 0 D2 1 D1 0 D0 0 COMMAND EVR Register Step Down 27. Adjust Boost Voltage Set The “Adjust Boost Voltage Set” instruction controls 2nd Voltage Booster at Vlcd = 36(V). A0 0 RDB WRB 1 0 VU2 0 0 0 0 1 1 Ver.2012-11-22 D7 1 * VU1 0 0 1 1 0 0 D6 0 * D5 0 * VU0 0 1 0 1 0 1 D4 0 * D3 1 * D2 1 D1 0 D0 1 VU2 VU1 VU0 COMMAND Mode Set Adjust Boost Voltage Set 2nd Boost Circuit OFF ( Default ) 2-Time 3-Time 4-Time 5-Time 6-Time - 59 - NJU6657 Preliminary 28. Boost Clock Set The “Boost Clock Set” instruction controls Boost Clock Frequency of 1st Vand 2nd Voltage Booster. A0 0 RDB WRB 1 0 D7 D6 D5 D4 D3 D2 D1 D0 1 * 0 * 0 * 0 * 0 * 1 1 0 COMMAND Mode Set DCC DCC DCC Boost CLK Set 2 1 0 DCC2 DCC1 DCC0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 2 Divide 4 Divide 8 Divide 16 Divide 32 Divide 64 Divide 128 Divide 256 Divide Boost CLK 84.5[kHz] 42.2[kHz] 21.1[kHz] 10.6[kHz] 5.28[kHz] 2.64[kHz] (Default ) 1.33[kHz] 0.66[kHz] * The Boost clock frequency is changes by register (OS4 to 0 ) of Internal Oscillator frequency select instruction. Upper table value is Boost clock when set to reset condition. (OS4 to 0 =’10000 ) When fix to Internal Frequency, the boost clock frequency caluculate is shown in below. Boost Clock Frequency: fDCC = fDOSC / n n: Fix to divide fDOSC: Basis Frequency (Internal Oscillator : ) * In case of using external clock, Basis frequency interchange External clock frequency. 100 90 80 2-Divide 70 60 50 4-Divide 40 8-Divide 30 16-Divide 20 10 13h 12h 11h Fh 10h Eh Dh Bh Ch 0 9h 82.4 88.0 93.4 99.2 104.7 110.3 115.2 120.8 126.0 131.6 137.0 142.3 147.5 153.1 158.5 163.9 169.0 (Default) 174.4 179.4 184.9 Ah 0h 1h 2h 3h 4h 5h 6h 7h 8h 9h Ah Bh Ch Dh Eh Fh 10h 11h 12h 13h 8h 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 7h 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 6h 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 5h 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 4h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 Boost CLK 3h OS4~ 0(HEX) 2h OS 0 1h OS 1 0h OS 2 Boost CLK frequency [kHz] OS 3 OS4 to OS0 7 6 Boost CLK frequency [kHz] OS 4 5 32-Divide 4 3 64-Divide 128-Divide 2 256-Divide 1 13h 12h 11h 10h Fh Eh Dh Bh Ch Ah 9h 8h 7h 6h 5h 4h 3h 2h 1h 0h 0 OS4 to OS0 Fundamental frequency (it corresponds to OS4 to 0 of a built-in oscillating frequency setting command) - 60 - Ver.2012-11-22 NJU6657 Preliminary 29. Thermal Sensor ON/OFF The ON/OFF of the thermal sensor is set by this instruction. A0 0 RDB WRB 1 0 D7 0 D6 0 TSON D5 1 D4 0 D3 1 D2 0 D1 0 D0 TSON COMMAND Thermal Sensor ON/OFF 0: Thermal Sensor OFF ( Default ) 1: Thermal Sensor ON 30. Discharge ON/OFF Discharge circuits is used discharge out the stabilizing capacitors placed on the VLCD, V1, V2, V3, V4 and VSS.. This instruction prevents the unknown display at the power supply OFF. A0 0 RDB WRB 1 0 D7 1 DIS Ver.2012-11-22 D6 1 D5 1 D4 0 D3 1 D2 0 D1 1 D0 DIS COMMAND Discharge ON/OFF 0: Discharge OFF ( Default ) 1: Discharge ON - 61 - NJU6657 Preliminary 31. Address Home This instruction sets the initialization of Page Address and Coulumn Address. A0 0 • RDB WRB 1 0 D7 1 D6 1 D5 1 D4 0 D3 0 D2 0 D1 1 D0 COMMAND Address Home 0 Initialize Status 1 2 PARAMETER Page Address: Set to “0” page. Coulumn Address: St to “0”. Resistor PA3∼0 AC7∼0 Default 0H 00H 32. Power Save This instruction sets the LSI into the power save mode. This instruction is reducing operating current. A0 0 RDB WRB 1 0 D7 1 D6 1 D5 1 D4 1 D3 1 D2 0 D1 0 D0 COMMAND Power Save 0 <Power Save Status> PARAMETER Internal Oscillator Adjust Voltage Circuit VF Circuit Voltage Boost Circuit Thermo Sensor All COM/SEG output terminals Status Stop Stop Stop Stop Stop VSS * When the external clock operation, it can not be accessed. * The DDRAM can be accessed during the power save mode. 33. Power Save Reset This instruction releases the power save mode. A0 0 RDB WRB 1 0 D7 1 D6 1 D5 1 D4 1 D3 0 D2 0 D1 0 D0 COMMAND Power Save Reset 1 34. Low Voltage Operation Mode When using to the Low VDD condition (VDD=2.7 to 3.3V), Please set up to “Low Voltage Operation Mode ON”. A0 0 RDB WRB 1 0 LVM - 62 - D7 0 * D6 1 * D5 1 * D4 0 * D3 0 * D2 1 * D1 1 * D0 COMMAND 0 LVM Low Voltage Operation Mode 0: Low Voltage Operation Mode OFF (Default) 1: Low Voltage Operation Mode ON Ver.2012-11-22 NJU6657 Preliminary TYPICAL INSTRUCTION SEDUENCE Initialization Sequence in Using Internal LCD Power Supply Power ON (VDD, VEE) (*1) WAIT *2 Reset (RESB terminal) WAIT *3 Command initialization (18) Oscillator ON/OFF (19) Int. (20) Set to Bias ratio (21) Set to Temperature Gradient (23),(24) Set to E.V.R Volume (27) Boost Circuit Controll function (28) Set to Boost Clock (29) Thermo Sensor ON/OFF (34) Low Voltage Operation Mode (VDD=3V) (22) Internal Power Control Voltage Boost ON WAIT *4 Initialization Sequence in Using Ext. LCD Power Supply Power ON (VDD) WAIT *2 Reset (RESB terminal) WAIT *3 Command initialization (18) OSC ON/OFF (19) Set to internal OSC Frequency (21) Set to Temperature Gradient (23),(24) Set to E.V.R Volume (30) Thermo Sensor ON/OFF (34) Low Voltage Operation Mode (VDD=3V) External Power Supply From VDCOUT terminal. WAIT *5 End of Initialize setting (22) Internal Power Control Adjust Voltage Circuit ON V/F Circuit ON WAIT *5 End of Initialize setting *1 If different power sources are applied to the VDD and the VEE, turn ON the VDD first. *2 Wait until the VDD and VEE are stabilized *3 Reset wait time. ( Over than 2mS ) *4 Wait until the VDCOUT and VDCIN are stabilized *5 Wait until the VLCD and V1 to V4 are stabilized Note) Wait time for stabilizing internal power supply differs by external components, VDD, and VLCD. Make sure what is the eait time in the particular application. Ver.2012-11-22 - 63 - NJU6657 Preliminary Example for Display Data Write Sequence Set of Initialize Example for Power OFF Sequence in using Internal Power Supply. (1) Display OFF (34) Power Save (2) Initial Display Line Address Set (3) Page Address Set (22) Internal Power Control Voltage Boost OFF Voltage Regualator OFF Voltage Follower OFF (30) Discharge ON (4) Culumn Address Set WAIT (*6) (6) Display Data write VEE Power OFF (6) Diplay Data Write (different Page) Set to from Page AddressSet VDD Power OFF (1) Display ON Example for Power OFF Sequence in using Ext. Power Supply (1) Display OFF (34) Power Save Ext. Power Supply OFF (30) Discharge ON WAIT (*6) VEE Power OFF VDD Power OFF *6 Wait until the discharge stabilized . Wait time for End of discharge differs by external components, VDD, and VLCD.Make sure what is the eait time in the particular application. - 64 - Ver.2012-11-22 NJU6657 Preliminary ABSOLUTE MAXIMUMN RATINGS (Ta=25℃) PARAMETER Supply Voltage (1) RATING -0.3 to +6.0 UNIT VDD Supply Voltage (2) VEE -0.3 to +6.0 V -0.3 to +40.0 V -0.3 to VLCD -0.3 to VDD + 0.3 -0.3 to VDD + 0.3 -40 to +105 -55 to +125 V V V ℃ ℃ SYMBOL Supply Voltagae (3) VST1,VST1R VDCOUT,VDCIN,VLCD Supply Voltage (4) V1,V2,V3,V4 Input Voltage VIN Output Voltgae VOUT Operation Temperature Topr Storage Temperature (Chip) Tstg V VDCOUT VDCIN VLCD VEE VDD V1 to V4 VDDL VSS Note 1) VDD, VLCD to V4, VDCOUT, VDCIN voltage values are specified as VSS = 0V. Note 2) The relation of VDCOUT >VLCD>V1>V2>V3>V4>Vss ; VOUT>VDD>VSS must be maintained. In case of inputting external LCD driving voltage, LCD drive voltage should start supplying to NJU6657 at the mean time of turning on VDD power supply or after turned on VDD. In use of the voltage boost circuit, the condition that the supply voltage : 40V >VOUT –VSS is necessary. Note 3) If the LSI are used on condition beyond the absolute maximum rating, the LSI may be destroyed. Using LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electric characteristics conditions will cause malfunction and poor reliability. Note 4) Decoupling capacitor should be connected between VDD and VSS due to the stabilized operation for the voltage converter. Ver.2012-11-22 - 65 - NJU6657 Preliminary DC Electrical Characteristics PARAMETER Power Supply (1) Power Supply (2) Power Supply (3) SYMBOL VDD VEE VST1 VST1R Power Supply (4) VDCOUT VDCIN VLCD V1,V2 V3,V4 “H” Level Input Voltage VIHC1 “L” Level Input Voltage VILC1 “H” Level Output Voltage VOHC1 “L” Level Output Voltage VOLC1 Leakage Current ILI ILO Driver On-resistance RON1 RON2 Stand-by Current Oscillation Frequency External Clock Frequency IDDQ IEEQ ILCDQ fOSC fCL CONDITION 1st Boost Input Voltage VDD=2.7 to 5.5V VDD=2.7 IOH=-25uA to 5.5V IOL= 25uA VIN=VDD or VSS Ta=25℃ VLCD=20V VLCD=10V VDD=3V,Ta=25℃ VEE=3V, Ta=25℃ VLCD=20V, Ta=25℃ Ta=25℃, Initialize Status (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) MIN TYP MAX 単位 NOTE 2.7 5.5 V 5 2.7 5.5 V 15 V 6 VDD VEE 6 6 0.4VLCD VSS 0.8VDD VSS 0.8VDD VSS -1.0 -3.0 - 1 2.5 36 36 36 VLCD 0.6VLCD VDD 0.2VDD VDD 0.2VDD 1.0 3.0 1.7 4.2 38.0 - 0.3 0.3 2 42.2 42.2 5 5 10 46.5 200 V 6 V V V V uA uA kΩ kΩ uA 7 kHz kHz 8 9 10 11 12 Note 5) Although the NJU6657 can operate in wide range of the operating voltage, it shall not be guaranteed in a suddeen voltage flucuation during the access with MPU. Note 6) Apply to using of external power supply. Note 7) Apply to A0,D0 to D7, RDB, WRB, CSB, RESB, CEL68, PS, VDLS, CLS terminals. Note 8) Apply to D0 to D7, BUSY terminals. Note 9) Aplly to All Input terminals. Note 10) Apply to D0 to D7, All output terminals. Note 11) RON is the resistance values in supplying 0.1V voltage-difference between power supply terminals (V1, V2, V3, V4) and each output terminals (common/segment) of 1/7 bias setting. Note 12) Internal osillation frequency when the reset status. SH1∼0 = ’10’ OS4∼0 = ’10000’ Note 13) The divide of internal oscillation frequency. SH1 to 0 = ‘00’ - 66 - Ver.2012-11-22 NJU6657 Preliminary (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) SYMBOL PARAMETER CONDITION 4-times boost 6-times boost 8-times boost 10-times boost 12-times boost 2-times boost 3-times boost 4-times boost 5-times boost 6-times boost VSS common VEE st 1 Boost Input Voltgae VST1R 2nd Boost Input Voltage 1st Boost output Voltgae 2nd Boost output Voltage Adjustment Range LCD Driving Voltage Voltage Follower Operating Voltage Operating current VST1 MIN 2.7 2.7 2.7 2.7 2.7 VDD VDD VDD VDD VDD - TYP - MAX 5.5 5.5 5.0 4.0 3.3 15.0 13.3 10.0 8.0 6.6 11.0 VDOUT VSS common - - 36 VLCD Voltage boost operation off External power supply 6 - 36 6 - 36 1 1.7 220 40 3 500 VLCD ISSQ1 ISS1 ISS2 Power save mode VDD=3V, VLCD=20V, All COM/SEG open, without MPU access, checker flag display UNIT NOTE V 14 V V V V 15 V uA mA uA 16 Note 14) Applies to the condition when using the internal voltage booster, VST1 and VST1R terminals are connected. The adjust boost voltage and boost autocontroled function are not used. Note 15) The voltage adjustment circuit controls VLCD within the range of the E.V.R circuit. Note 16) Each operating current shall be defined as being measured in the following condition. ( fFR=80[Hz], 1/10Bias, 1/88Duty, Low voltage operation mode, Driver terminals are open ) SYMBOL ISS1 ISS2 Power Control Operating Condition DCC1 DCC0 VRG VF 1 0 1 0 1 0 1 0 1st Booster On Off 2nd Booster On Off Voltage regulator On Off Voltage followers On Off External Voltage Supply (Input Terminal) 12-Time Boost VDCIN, VLCD~V4 ISS 1,2 measurement circuit: + C1+ C1- + VST1 VDCOUT VDD VDD VDCIN VDCOUT VEE VEE VDCIN + + VST1R NJU6657 + C2+ C2- + + C4+ C6+ NJU6657 VLCD VSS V1 External Voltage Generator VSSE VSSA VSS V2 VSSE V3 VSSA V4 + C3+ A A C3+ C5+ ISS1 Ver.2012-11-22 ISS2 - 67 - NJU6657 Preliminary Temperature Sensor Characteristics (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) PARAMETER Operating Temperature Range Temperature Gradient Output Voltage Output Voltage Temperature gradient Temperature sensor Setup time Operating Current SYMBOL Ta T TSV CONDITION Ta=-40 to 105℃ Ta=-40℃ Ta=25℃ Ta=105℃ VINC TTSV MIN -40 TYP - MAX 105 UNIT ℃ -5.0 1.412 1.144 0.807 - 1.433 1.165 0.828 -4.19 5.0 1.454 1.186 0.849 - ℃ 20 - - ms - 20 50 uA ITS NOTE V mV/℃ 18 Note 17) The typ. Value of the sensor analog output voltage TSV when ambient temperature is Ta [OC] is approximated by the following expression. VTSV = -0.0006 x Ta2 –4.1386 x Ta +1269mV [mV] The sensor analog output voltage is output with accuracy of + 5OC. The output voltage temperature gradient VINC. Since it is -4.19 [mV/OC], variation voltage [ of TSV ] ΔTSV is denoted by the following formula. ΔVTSV = ±(4.19 x 5OC) = 21 [mV] VOUT TSV [OC] The relationship of between VOUT and Temperature as shown in below. TSV max TSV TSV min 21[mV] 21[mV] 5OC Ta min 5OC Ta Ta max Temperrature [OC] Note 18) The setup time is possible of Read-out from after input a temperature sensor ON/OFF instruction. The TSV terminal is OPEN. - 68 - Ver.2012-11-22 NJU6657 Preliminary BUS TIMING CHARACTERISTICS - Read and Write characteristics (80 type MPU) A0 tAS6 tAH6 tWCS6 CSB tCSH6 tCSS6 tEHR6 WRB tELR6 tCYC6 D7 to D0 Out Put tRDD6 tRDH6 A0 tAS6 tAH6 tELR6 CSB tEHR6 tCYC6 WRB D7 to D0 PARAMETER A0 Hold Time A0 Set Up Time CSB Hold Time CSB Set Up Time CSB ”H” Level Width System Cycle Time Write ”L” Pulse Time Write ”H” Pulse Time Data Set Up Time Data Hold Time tCSH6 tCSS6 tWCS6 tRDD6 SYMBOL tAS8 tAH8 tCSH8 tCSS8 tWCS8 tCYC8 tWRLW8 tWRHW8 tDS8 tDH8 CONDITION Out Put tRDH6 (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) MIN. MAX. UNIT TERMINAL 50 ns A0 0 ns 100 ns CSB 100 ns 500 ns 1350 ns WRB 550 ns 700 ns 250 ns D7 to D0 300 ns Note) Each timing is specified based on 0.2xVDD and 0.8xVDD. * : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L". Ver.2012-11-22 - 69 - NJU6657 Preliminary - System bus read timing (80 type MPU) A0 tAS6 tAH6 tWCS6 CSB tCSH6 tCSS6 tEHR6 E(RDB) tELR6 tCYC6 D7 to D0 Out Put tRDD6 tRDH6 A0 tAS6 tAH6 tELR6 CSB tEHR6 tCYC6 E(RDB) D7 to D0 PARAMETER A0 Hold Time A0 Set Up Time CSB Hold Time CSB Set Up Time CSB ”H” Level Width System Cycle Time Read ”L” Pulse Width Read ”H” Pulse Width Read Data Out Delay Time Read Data Hold Time tCSH6 tCSS6 tWCS6 tRDD6 SYMBOL tAS8 tAH8 tCSH8 tCSS8 tWCS8 tCYC8 tWRLR8 tWRHR8 tRDD8 tRDH8 CONDITION CL=100pF Out Put tRDH6 (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) MIN. MAX. UNIT TERMINAL 50 ns A0 0 ns 100 ns CSB 100 ns 500 ns 2100 ns RDB 1150 ns 700 ns 1150 ns D7 to D0 0 ns Note) Each timing is specified based on 0.2xVDD and 0.8xVDD. * : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L". - 70 - Ver.2012-11-22 NJU6657 Preliminary - System bus write timing (68 type MPU) A0 tAS6 tAH6 RW(WRB) tWCS6 CSB tCSH6 tCSS6 tELR6 tEHR6 E(RDB) tCYC6 D7 to D0 Out Put tRDD6 tRDH6 A0 tAS6 tAH6 RW(WRB) tCYC6 tELR6 CSB tEHR6 tCSH6 tCSS6 E(RDB) tWCS6 D7 to D0 PARAMETER A0 Hold Time A0 Set Up Time CSB Hold Time CSB Set Up Time CSB ”H” Level Pulse Width System Cycle Time Enable “L” Pulse Time Enable “H” Pulse Time Data Set Up Time Data Hold Time tRDD6 SYMBOL tAS6 tAH6 tCSH6 tCSS6 tWCS6 tCYC6 tELW6 tEHW6 tDS6 tDH6 CONDITION Out Put tRDH6 (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) MIN. MAX. UNIT TERMINAL 50 ns A0 0 ns 100 ns CSB 100 ns 500 ns 1350 ns E 700 ns 550 ns 250 ns D7 to D0 300 ns Note) Each timing is specified based on 0.2xVDD and 0.8xVDD. * : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L". Ver.2012-11-22 - 71 - NJU6657 Preliminary - System bus read timing (68 Type MPU) A0 tAS6 tAH6 RW(WRB) tWCS6 CSB tCSH6 tCSS6 tELR6 tEHR6 E(RDB) tCYC6 D7 to D0 Out Put tRDD6 tRDH6 A0 tAS6 tAH6 RW(WRB) tCYC6 tELR6 CSB tEHR6 tCSH6 tCSS6 E(RDB) tWCS6 D7 to D0 PARAMETER A0 Hold Time A0 Set Up Time CSB Hold Time CSB Set Up Time CSB ”H” Level Pulse Width System Cycle Time Enable “L” Pulse Width Enable “H” Pulse Width Read Data Out Daley Time Read Data Hold Time tRDD6 SYMBOL tAS6 tAH6 tCSH6 tCSS6 tWCS6 tCYC6 tELR6 tEHR6 tRDD6 tRDH6 CONDITION CL=100pF Out Put tRDH6 (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) MIN. MAX. UNIT TERMINAL 50 ns A0 0 ns 100 ns CSB 100 ns 500 ns 2100 ns E 700 ns 1150 ns 1150 ns D7 to D0 0 ns Note ) Each timing is specified based on 0.2xVDD and 0.8xVDD. * : (1) Accessed by WRb and RDb signal when CS1b="L". (2) Accessed by CS1b signal when WRb and RDb ="L". - 72 - Ver.2012-11-22 NJU6657 Preliminary - Serial interface timing (5-wire/3-wire) A0 RW(WRB) tWCSS CSB tCSS tCSH tSLW tSHW SCL(D6) tCYCS tDSS SDA Input tSOD SDA Output PARAMETER SYMBOL Serial Clock Cycle tCYCS SCL “H” Pulse Width tSHW SCL ”L” Pulse Width tSLW Data Set Up Time tDSS Data Hold Time tDHS Serial Data Output Delay Time tSOD CSB – SCL Time tCSS CSB Hold Time tCSH CSB "H” Level Pulse Width tWCSS tDHS Input tSOD Output CONDITION CL=50pF Output Output (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) MIN. MAX. UNIT TERMINAL 650 ns 300 ns SCL 300 ns 200 ns SDA 200 ns 250 ns SDA 400 ns 200 ns CSB 200 ns Note 13) Each timing is specified based on 0.2xVDD and 0.8xVDD. Ver.2012-11-22 - 73 - NJU6657 Preliminary - External clock input timing OSC1 FCP PARAMETER External clock frequency External clock duty SYMBOL fCP duty (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) MAX. CONDITION UNIT 200 OSC1 kHz 65 % MIN. 35 - Reset input timing tRW RESb tR Internal circuit status PARAMETER Reset Time Reset “L” Puls width - 74 - During reset SYMBOL tR tRW MIN. 1 End of reset (VSS=0V, VDD=2.7 to 5.5V, Ta=-40 to 105°C) MAX. CONDITION UNIT 1 µs ms Ver.2012-11-22 NJU6657 Preliminary LCD DRIVING WAVEFORM 0 FR COM0 COM1 VLCD V1 V2 V3 V4 VSS COM2 VLCD V1 V2 V3 V4 VSS SEG0 VLCD V1 V2 V3 V4 VSS SEG1 VLCD V1 V2 V3 V4 VSS COM0-SEG0 VSS V4 V3 V2 V1 VLCD -V1 -V2 -V3 -V4 -VSS COM0-SEG1 VSS V4 V3 V2 V1 VLCD -V1 -V2 -V3 -V4 -VSS COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 S S S S S E E E E E G G G G G 0 1 Ver.2012-11-22 2 3 2 3 4 86 87 0 1 2 3 4 5 86 87 VDD VSS VLCD V1 V2 V3 V4 VSS COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 1 4 - 75 - NJU6657 Preliminary Precautions In Mounting COG Power supply voltage may drop instantaneously in synchronization with the timing of generating instantaneous current as in the time when the display clock is switched. If the ITO wiring resistance of the power supply pin is high at this time, power supply voltge in the IC chip may greatly, leading to malfunction. To supply stable power to the IC, decrease the wiring impedance of the power line as low as possible. The ITO layout suggestion is shown as below; (i) VSS, VSSA, VSSE. ( Connects to system GND. ) PAD PAD PAD PAD VSSA VSSA VSSE VSSE VSS VSS NJU6657 PAD PAD Separate by ITO FPC-PIN FPC-PIN (ⅱ) VDD,VEE. ( Connects to system VDD. ) NJU6657 PAD PAD PAD PAD Separate by ITO FPC-PIN - 76 - FPC-PIN Ver.2012-11-22 NJU6657 Preliminary APPLICATION CIRCUIT (1) Microprocessor Interface Example The NJU6657 interfaces to 80 type or 68 type MPU directly. And the serial interface also communicate with MPU. * : C86 terminal must be fixed VDD or VSS. 80 Type MPU 2.4 to 3.6V VCC (80 系 CPU) A0 A1~A7 IORQb D0~D7 RDb WRb RESb 7 Decoder 8 GND A0 D0~D7 VDD NJU6657 CSB RDB WRB RSTB VSS Reset input 68 Type MPU 2.4 to 3.6V VCC A0 A1~A15 15 VMA (68 系 CPU) D0~D7 E R/W RESb GND Decoder 8 Reset input A0 D0~D7 VDD NJU6657 CSB RDB(E) WRB(R/W) RSTB VSS Serial Interface 2.4 to 3.6V VCC A0 A1~A7 (CPU) 7 Decoder PORT1 PORT2 RESb GND Ver.2012-11-22 A0 SDA VDD NJU6657 CSB SCL RSTB Reset input VSS - 77 - NJU6657 Preliminary [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 78 - Ver.2012-11-22