PHILIPS OM6206U

INTEGRATED CIRCUITS
DATA SHEET
OM6206
65 × 102 pixels matrix LCD driver
Product specification
File under Integrated Circuits, IC17
2001 Nov 14
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
CONTENTS
1
FEATURES
2
APPLICATIONS
3
GENERAL DESCRIPTION
4
ORDERING INFORMATION
5
BLOCK DIAGRAM
6
PINNING
6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9
6.1.10
6.1.11
6.1.12
6.1.13
6.1.14
Pin functions
R0 to R64: row driver outputs
C0 to C101: column driver outputs
VSS1 and VSS2: ground supply rails
VDD1, VDD2 and VDD3: supply voltage rails
VLCDIN: LCD supply voltage
VLCDOUT: voltage multiplier output
VLCDSENSE: voltage multiplier regulation input
T1 to T5: test pins
SDIN: serial data line
SCLK: serial clock line
D/C: mode select
SCE: chip enable
OSC: oscillator
RES: reset
7
FUNCTIONAL DESCRIPTION
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.7.1
Oscillator
Address counter
Display data RAM (DDRAM)
Timing generator
Display address counter
LCD row and column drivers
Addressing
Data structure
2001 Nov 14
2
8
INSTRUCTIONS
8.1
8.2
8.3
8.3.1
8.3.2
8.3.3
8.4
8.4.1
8.5
8.6
8.7
8.8
8.9
8.10
Initialization
Reset function
Function set
PD
V
H
Display control
D and E
Set Y-address of RAM
Set X-address of RAM
Set high-voltage generator stages
Bias system
Temperature control
Set VOP value
9
LIMITING VALUES
10
HANDLING
11
DC CHARACTERISTICS
12
AC CHARACTERISTICS
13
APPLICATION INFORMATION
13.1
13.2
13.3
13.4
Programming example for the OM6206
Application diagrams
Application for COG
Chip information
14
BONDING PAD INFORMATION
15
DEVICE PROTECTION CIRCUITS
16
TRAY INFORMATION
17
DATA SHEET STATUS
18
DEFINITIONS
19
DISCLAIMERS
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
1
OM6206
• Low power consumption, suitable for battery operated
systems
FEATURES
• Single-chip LCD controller and driver
• Temperature compensation of VLCD
• 65 row and 102 column outputs
• Temperature range from −40 to +85 °C
• Display data RAM 65 × 102 bits
• Slim chip layout, suited for Chip-On-Glass (COG)
applications.
• On-chip:
– Configurable 5 (4, 3 and 2) × voltage multiplier
generating VLCD (external VLCD also possible)
2
– Generation of intermediate LCD bias voltages
APPLICATIONS
• Telecom equipment.
– Oscillator requires no external components
(external clock also possible).
• External reset input pin RES
3
• Serial interface maximum 4.0 Mbits/s
• Logic supply voltage range from 2.5 to 5.5 V
(VDD1 to VSS)
The OM6206 is a low-power CMOS LCD controller and
driver, designed to drive a graphic display of 65 rows and
102 columns. All necessary functions for the display are
provided in a single chip, including on-chip generation of
LCD supply and bias voltages, resulting in a minimum of
external components and low power consumption.
• High-voltage generator supply voltage range from
2.5 to 4.5 V (VDD2 and VDD3 to VSS)
The OM6206 interfaces to microcontrollers via a serial bus
interface.
• CMOS compatible inputs
• Multiplex rate of 1 : 65
GENERAL DESCRIPTION
• Display supply voltage range from 4.5 to 9.0 V
(VLCD to VSS)
4
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
OM6206U/Z
2001 Nov 14
−
DESCRIPTION
VERSION
−
chip with bumps in tray
3
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
5
OM6206
BLOCK DIAGRAM
handbook, full pagewidth
VSS1
VSS2
214 to
217,
221,
222
VDD1
200 to
213
VDD2
174 to
179
VDD3
181 to
193
R0 to R64
C0 to C101
180
37 to 138
2 to 15, 18 to 36,
139 to 156,
159 to 172
ROW DRIVERS
COLUMN DRIVERS
VLCDIN
224 to 229
BIAS
VOLTAGE
GENERATOR
SHIFT REGISTER
DATA LATCHES
RESET
VLCDSENSE
VLCDOUT
T1
T2
T3
T4
T5
237
230 to 236
HIGH
VOLTAGE
GENERATOR
DISPLAY DATA RAM
(DDRAM)
65 × 102
OSCILLATOR
199
TIMING
GENERATOR
218
198
ADDRESS COUNTER
223
DISPLAY
ADDRESS
COUNTER
220
219
1
DATA
REGISTER
OM6206
I/O BUFFER
195
194
196
197
MGT859
SDIN
SCLK
D/C
Fig.1 Block diagram.
2001 Nov 14
4
SCE
RES
OSC
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
6
OM6206
6.1.3
PINNING
SYMBOL
PAD
18 to 36
LCD row driver outputs
R19 to R32
2 to 15
LCD row driver outputs
R33 to R50
156 to 139
LCD row driver outputs
R51 to R64
159 to 172
LCD row driver outputs
C0 to C101
37 to 138
LCD column driver outputs
VSS1
200 to 213
ground supply 2
VDD1
174 to 179
supply voltage 1
VDD2
181 to 193
supply voltage 2
VDD3
180
224 to 229
LCD supply voltage (VLCD)
VLCDOUT
230 to 236
voltage multiplier output
(VLCD)
VLCDSENSE
237
voltage multiplier
regulation input (VLCD)
T1
218
test 1 input
T2
198
test 2 output
T3
223
test 3 input/output
T4
220
test 4 input
T5
219
test 5 input
SCLK
194
serial clock input
SDIN
195
serial data input
D/C
196
data or command selection
input
SCE
197
chip enable (active LOW)
OSC
199
oscillator signal input
RES
1
VDD1, VDD2 AND VDD3: SUPPLY VOLTAGE RAILS
VDD2 and VDD3 are the supply voltage for the internal
voltage generator. Both have the same voltage and should
be connected together outside the chip. VDD1 is used as
supply voltage for the rest of the chip. VDD1 can be
connected together with VDD2 and VDD3 but in this case
care must be taken to respect the supply voltage range
(see Chapter 11).
If the internal voltage generator is not used the pins
VDD2 and VDD3 must be connected to pin VDD1 or
connected to the supply voltage.
supply voltage 3
VLCDIN
6.1.1
6.1.4
214 to 217, ground supply 1
221 and 222
VSS2
6.1
The supply rails VSS1 and VSS2 must be connected
together.
DESCRIPTION
R0 to R18
VSS1 AND VSS2: GROUND SUPPLY RAILS
6.1.5
VLCDIN: LCD SUPPLY VOLTAGE
Positive supply voltage for the liquid crystal display. An
external LCD supply voltage can be supplied using
pin VLCDIN. In this case, VLCDOUT has to be left open and
the internal voltage generator has to be programmed to
zero. If the OM6206 is in Power-down mode, the external
LCD supply voltage has to be switched off.
6.1.6
VLCDOUT: VOLTAGE MULTIPLIER OUTPUT
Positive supply voltage for the liquid crystal display. If the
internal voltage generator is used, the two supply rails
VLCDIN and VLCDOUT must be connected together. If an
external supply is used this pin must be left open.
6.1.7
VLCDSENSE: VOLTAGE MULTIPLIER REGULATION
INPUT
VLCDSENSE is the input of the internal voltage multiplier
regulation.
external reset input (active
LOW)
If the internal voltage generator is used then VLCDSENSE
must be connected to VLCDOUT. If an external supply
voltage is used then VLCDSENSE can be left open or
connected to ground.
Pin functions
R0 TO R64: ROW DRIVER OUTPUTS
These pins output the row signals.
6.1.8
6.1.2
C0 TO C101: COLUMN DRIVER OUTPUTS
T1, T3, T4 and T5 must be connected to VSS, T2 must be
left open. Not accessible to user.
These pins output the column signals.
2001 Nov 14
T1 TO T5: TEST PINS
5
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
6.1.9
OM6206
7.2
SDIN: SERIAL DATA LINE
The address counter assigns addresses to the display
data RAM for writing. The X-address X6 to X0 and the
Y-address Y3 to Y0 are set separately. After a write
operation, the address counter is automatically
incremented by 1 according to bit V (see Section 7.7).
Input for the data line.
6.1.10
SCLK: SERIAL CLOCK LINE
Input for the clock signal: up to 4.0 Mbits/s.
6.1.11
D/C: MODE SELECT
7.3
Input to select either command or address data input.
6.1.12
SCE: CHIP ENABLE
OSC: OSCILLATOR
When the on-chip oscillator is used this input must be
connected to VDD. An external clock signal, if used, is
connected to this input. If the oscillator and external clock
are both inhibited by connecting pin OSC to VSS, the
display is not clocked and may be left in a DC state. To
avoid this the chip should always be put into
Power-down mode before stopping the clock.
6.1.14
7.4
7.1
Timing generator
The timing generator produces the various signals
required to drive the internal circuitry. Internal chip
operation is not affected by operations on the data bus.
7.5
Display address counter
The display is generated by continuously shifting rows of
RAM data to the dot matrix LCD via the column outputs.
RES: RESET
This signal will reset the device and must be applied to
properly initialize the chip. Signal is active LOW.
7
Display Data RAM (DDRAM)
The OM6206 contains a 65 × 102 bits static RAM which
stores the display data. The RAM is divided into
eight banks of 102 bytes (8 × 8 × 102 bits) and one bank
of 102 bits (1 × 102 bits). During RAM access, data is
transferred to the RAM via the serial interface. There is a
direct correspondence between X-address and column
output number.
The enable pin allows data to be clocked in. Signal is
active LOW.
6.1.13
Address counter
The display status (all dots on/off and normal/inverse
video) is set by bits E and D in the command ‘Display
control’ (see Table 2).
FUNCTIONAL DESCRIPTION
7.6
Oscillator
The OM6206 contains 65 rows and 102 column drivers,
which connect the appropriate LCD bias voltages in
sequence to the display in accordance with the data to be
displayed. Figure 2 shows typical waveforms. Unused
outputs should be left unconnected.
The on-chip oscillator provides the clock signal for the
display system. No external components are required and
the OSC input must be connected to VDD. An external
clock signal, if used, is connected to this input.
2001 Nov 14
LCD row and column drivers
6
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
frame n + 1
frame n
ROW0
R0(t)
ROW1
R1(t)
COL0
C0(t)
COL1
C1(t)
Vstate1(t)
VLCD
V2
V3
Vstate2 (t)
V4
V5
VSS
VLCD
V2
V3
V4
V5
VSS
VLCD
V2
V3
V4
V5
VSS
VLCD
V2
V3
V4
V5
VSS
VLCD
V3 − VSS
Vstate1(t)
VLCD − V2
0V
V3 − V2
V4 − V5
0V
VSS − V5
V4 − VLCD
− VLCD
VLCD
V3 − VSS
Vstate2 (t)
VLCD − V2
0V
V3 − V2
V4 − V5
0V
VSS − V5
V4 − VLCD
− VLCD
0 1 2 3 4 5 6 7 8...
... 64 0 1 2 3 4 5 6 7 8...
Vstate1(t) = C1(t) to R0(t).
Vstate2(t) = C1(t) to R1(t).
Fig.2 Typical LCD driver waveforms.
2001 Nov 14
7
... 64
MGT860
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
DDRAM
bank 0
top of LCD
bank 1
bank 2
LCD
bank 3
bank 7
bank 8
MGT861
Fig.3 DDRAM to display mapping.
2001 Nov 14
8
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
7.7
OM6206
Addressing
After the last Y-address (Y = 8) Y wraps
around to 0 and X increments to address the next column.
Data is downloaded in bytes into the RAM matrix of
OM6206 as indicated in Figs.3, 4, 5 and 6.
In horizontal addressing mode (bit V = 0) the X-address
increments after each byte (see Fig.5). After the last
X-address (X = 101) X wraps around to 0 and
Y increments to address the next row.
The display RAM has a matrix of 65 × 102 bits. The
columns are addressed by the address pointer. The
address ranges are: X from 0 to 101 (1100101)
and Y from 0 to 8 (1000). Addresses outside these ranges
are not allowed.
After the very last address (X = 101, Y = 8) the address
pointers wrap around to address X = 0, Y = 0.
In vertical addressing mode (bit V = 1) the Y-address
increments after each byte (see Fig.6).
7.7.1
DATA STRUCTURE
LSB
handbook, full pagewidth
0
MSB
Y-address
LSB
8
0
X-address
MSB
MGT862
Fig.4 RAM format, addressing.
2001 Nov 14
101
9
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
handbook, full pagewidth
0
9
1
10
0
2
3
4
Y-address
5
6
7
8
917
0
X-address
101
8
MGT 863
Fig.5 Sequence of writing data bytes into RAM with vertical addressing (V = 1).
handbook, full pagewidth
0
1
2
102
103
104
204
205
206
306
307
308
408
409
410
510
511
512
612
613
614
714
715
716
816
817
818
0
0
Y-address
917
X-address
101
8
MGT864
Fig.6 Sequence of writing data bytes into RAM with horizontal addressing (V = 0).
8
INSTRUCTIONS
Every instruction can be sent in any order to the OM6206.
The MSB of a byte is transmitted first (see Fig.7). Figure 8
shows one possible command stream, used to set up the
LCD driver.
The instruction format is divided into two modes:
• If D/C (mode select) is set LOW, the current byte is
interpreted as command byte (see Table 1).
The serial interface is initialized when SCE is HIGH. In this
state SCLK clock pulses have no effect and no power is
consumed by the serial interface. A negative edge on SCE
enables the serial interface and indicates the start of a data
transmission.
• If D/C is set HIGH, the following bytes are stored in the
display data RAM. After every data byte the address
counter is incremented automatically.
The level of the D/C signal is read during the last bit of data
byte.
2001 Nov 14
10
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
MSB (DB7)
handbook, halfpage
OM6206
LSB (DB0)
data
data
MGT865
Fig.7 General format of data stream.
handbook, full pagewidth
function set (H = 1)
bias system
set VOP
temperature control
function set (H = 0)
display control
Y-address
X-address
MGT866
Fig.8 Serial data stream, example.
• If SCE stays LOW after the last bit of a
command/data byte, the serial interface expects bit 7 of
the next byte at the next positive edge of SCLK (see
Fig.11)
Figures 9 and 10 show the serial bus protocol:
• When SCE is HIGH, SCLK clock signals are ignored.
During the HIGH time of SCE, the serial interface is
initialized (see Fig.11)
• A reset pulse with RES interrupts the transmission.
No data are written into the RAM. The registers are
cleared. If SCE is LOW after the positive edge of RES,
the serial interface is ready to receive bit 7 of a
command/data byte (see Fig.11).
• SDIN is sampled at the positive edge of SCLK
• D/C indicates, whether the byte is a command
(D/C = LOW) or RAM data (D/C = HIGH); it is read with
the eighth SCLK pulse
handbook, full pagewidth
SCE
D/C
SCLK
SDIN
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
MGT867
Fig.9 Serial bus protocol for transmission of one byte.
2001 Nov 14
11
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
handbook, full pagewidth
SCE
D/C
SCLK
SDIN
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5
MGT868
Fig.10 Serial bus protocol for transmission of several bytes.
handbook, full pagewidth
SCE
D/C
RES
SCLK
SDIN
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5
MGT869
Fig.11 Serial bus reset function (SCE).
handbook, full pagewidth
SCE
RES
D/C
SCLK
SDIN
DB7 DB6 DB5 DB4 DB3
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4
MGT870
Fig.12 Serial bus interrupt function (RES).
2001 Nov 14
12
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
Table 1
OM6206
Instruction set
INSTRUCTION
DESCRIPTION
PIN
COMMAND BYTE
D/C
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
LOW
LOW
0
0
0
0
0
1
0
0
0
0
0
PD
0
V
0
H
(H = 0 or 1)
NOP
Function set
Write data
no operation
power down control; entry
mode; extended instruction set
control (H)
writes data to display RAM
HIGH
do not use
sets display configuration
VLCD programming range select
LOW
LOW
LOW
0
0
0
0
0
0
0
0
0
0
0
1
sets Y-address of RAM;
0≤Y≤8
sets X-address of RAM;
0 ≤ X ≤ 101
LOW
0
1
0
0
LOW
1
LOW
LOW
LOW
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LOW
0
0
0
0
1
LOW
LOW
LOW
0
0
1
0
1
0
X
1
X
0
X
D7
D6
D5
D4
D3
D2
D1
D0
(H = 0)
Reserved
Display control
Set HIGH or LOW
program range
VOP
Set Y-address of
RAM
Set X-address of
RAM
X6
X5
X4
0
1
0
1
D
0
X
0
0
X
E
PRS
Y3
Y2
Y1
Y0
X3
X2
X1
X0
0
0
1
0
1
TC1
1
X
TC0
0
S1
S0
(H = 1)
Reserved
Temperature
control
HVgen stages
Bias system
Reserved
Set VOP
Table 2
do not use
do not use
set Temperature Coefficient
(TCx)
multiplication of high-voltage
generator voltage (Sx)
set Bias System (BSx)
do not use (reserved for test)
write VOPx to register
VOP6 VOP5 VOP4 VOP3
BS2 BS1 BS0
X
X
X
VOP2 VOP1 VOP0
Explanations for symbols in Table 1
BIT
PD
V
H
D and E
PRS
2001 Nov 14
BIT VALUE
DESCRIPTION
0
chip is active
1
chip is in Power-down mode
0
horizontal addressing
1
vertical addressing
0
use basic instruction set
1
use extended instruction set
00
display blank
10
normal mode
01
all display segments on
11
inverse video mode
0
VLCD programming range LOW
1
VLCD programming range HIGH
RESET STATE
1
0
0
00
13
0
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
BIT
TC1 and TC0
BIT VALUE
OM6206
DESCRIPTION
00
VLCD temperature coefficient 0
01
VLCD temperature coefficient 1
10
VLCD temperature coefficient 2
11
VLCD temperature coefficient 3
00
2 × voltage multiplier
01
3 × voltage multiplier
10
4 × voltage multiplier
11
5 × voltage multiplier
BS2 to BS0
−
bias system
VOP6 to VOP0
−
VLCD programming
S1 and S0
8.1
RESET STATE
00
00
000
Initialization
0000000
8.3
Function set
Immediately following power-on, all internal registers as
well as the RAM content are undefined. A RES pulse must
be applied.
8.3.1
Reset is accomplished by applying an external reset pulse
(active LOW) at pin RES. When reset occurs within the
specified time, all internal registers are reset however the
RAM is still undefined. The state after reset is described in
Section 8.2.
• Bias generator and VLCD generator off; VLCD can be
disconnected
When PD = 1 the chip is in Power-down mode:
• All LCD outputs at VSS (display off)
• Oscillator off (external clock possible)
• Serial bus: command, function etc.
RES input must be ≤0.3VDD when VDD reaches VDD(min)
(or higher) within a maximal time tVHRL after VDD going
HIGH (see Fig.16).
8.2
PD
• RAM contents not cleared; RAM data can be written
• VLCD discharged to VSS in Power-down mode.
8.3.2
Reset function
V
• Horizontal addressing (V = 0)
When V = 0, the horizontal addressing is selected. The
data is written into the DDRAM as shown in Fig.6.
When V = 1, the vertical addressing is selected. The data
is written into the DDRAM as shown in Fig.5.
• Normal instruction set (H = 0)
8.3.3
After reset the LCD driver has the following state:
• Power-down mode (PD = 1)
• Display blank (E and D = 0)
When H = 0 the commands ‘display control’, ‘set
Y-address’, ‘set X-address’ and ‘set the PRS bit’ (LOW or
HIGH range of the high-voltage generator) can be
performed; when H = 1 the others can be executed. The
commands ‘write data’ and ‘function set’ can be executed
in both cases.
• Address counter X6 to X0 = 0, Y3 to Y0 = 0
• Temperature control (TC1 and TC0 = 0)
• Bias system (BS2 to BS0 = 0)
• VLCD is equal to 0 V and the high-voltage generator is
switched off (VOP6 to VOP0 = 0 and PRS = 0)
• After power-on, RAM data are undefined, the reset
signal does not change the content of the RAM
8.4
8.4.1
• All LCD outputs at VSS (display off).
2001 Nov 14
H
Display control
D AND E
The bits D and E select the display mode (see Table 2).
14
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
8.5
OM6206
Set Y-address of RAM
Y3 to Y0 define the Y-address vector address of the display RAM.
Table 3
X/Y-address range
Y3
Y2
Y1
Y0
BANK(1)
ALLOWED X-RANGE
0
0
0
0
0
0 to 101
0
0
0
1
1
0 to 101
0
0
1
0
2
0 to 101
0
0
1
1
3
0 to 101
0
1
0
0
4
0 to 101
0
1
0
1
5
0 to 101
0
1
1
0
6
0 to 101
0
1
1
1
7
0 to 101
1
0
0
0
8; note 2
0 to 101
Notes
1. Display RAM.
2. Only the MSB is accessed.
8.6
Set X-address of RAM
8.8
The X-address points to the columns. The range of X is
0 to 101 (65H).
8.7
Bias system
The bias voltage levels are set in the ratio of
1
R - R - nR - R - R giving a ------------- bias system. Different
n+4
multiplex rates require different factors n (see Table 4).
This is programmed by BS2 to BS0. For multiplex rate
1 : 65 the optimum bias value n is given by:
Set high-voltage generator stages
The OM6206 incorporates a software configurable voltage
multiplier. After reset (RES) the voltage multiplier is set to
2 × VDD2. Other voltage multiplier factors are set via the
command ‘HVgen stages’ (see Tables 1 and 2).
n =
65 – 3 = 5.062 = 5
(1)
resulting in a 1/9 bias system.
Table 4
Programming the required bias system
BS2
BS1
BS0
n
RECOMMENDED MULTIPLEX RATE
0
0
0
7
1 : 100
0
0
1
6
1 : 80
0
1
0
5
1 : 65 or 1 : 65
0
1
1
4
1 : 48
1
0
0
3
1 : 40 or 1 : 34
1
0
1
2
1 : 24
1
1
0
1
1 : 18 or 1 : 16
1
1
1
0
1 : 10 or 1 : 9 or 1 : 8
2001 Nov 14
15
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
Table 5
LCD bias voltage
SYMBOL
V1
BIAS VOLTAGE FOR 1⁄9 BIAS
BIAS VOLTAGES
VLCD
VLCD
V2
n+3
------------n+4
V3
n+2
------------n+4
V4
2
------------n+4
V5
1
------------n+4
V6
8.9
OM6206
VSS
8⁄
9
× VLCD
7⁄
9
× VLCD
2⁄
9
× VLCD
1⁄
9
× VLCD
VSS
Temperature control
Due to the temperature dependency of the liquid crystals viscosity the LCD controlling voltage VLCD must be increased
with lower temperature to maintain optimal contrast. There are four temperature coefficients available in the OM6206
(see Fig.13). The coefficients are selected by the two bits TC1 and TC0. Table 6 shows the typical values of the
temperature coefficients. The coefficients are proportional to the programmed VLCD at reference temperature.
handbook, halfpage
MGT871
VLCD
(V)
(1)
(2)
(3)
(4)
(1) TC0.
(2) TC1.
Tcut
T (°C)
(3) TC2.
(4) TC3.
Fig.13 Temperature coefficients behaviour.
2001 Nov 14
16
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
8.10
OM6206
Set VOP value
Two overlapping VLCD ranges are selectable via the
command ‘set HIGH or LOW program range VOP’.
The operation voltage VLCD can be set by software. The
generated voltage is dependent on the programmed
voltage at reference temperature (Tcut), the programmed
Temperature Coefficient (TC) and the operating
temperature (T).
For the LOW range (bit PRS = 0) component a = a1 and
for the HIGH range (bit PRS = 1) component a = a2. The
steps in both ranges are equal to b.
It should be noted that the charge pump is turned off if
bits VOP6 to VOP0 and bit PRS are all set to zero (see
Fig.14).
The voltage at reference temperature can be calculated
as:
V LCD ( Tcut ) = a + b × V OP
(2)
For multiplexer rate 1 : 65 the optimum operation voltage
of the liquid can be calculated as:
The voltage at operating temperature can be calculated
as:
V LCD(T) = V LCD(Tcut) + ( T – T cut ) × TC
(3)
1 + 65
V LCD = --------------------------------------- × V th = 6.85 × V th
1
2 ×  1 – ----------

65
(4)
The parameters are explained in Table 6.
where Vth is the threshold voltage of the liquid crystal
material used.
The maximum voltage that can be generated is depending
on the VDD2 voltage and the display load current.
Table 6
Typical values for parameters for the high-voltage generator programming
SYMBOL
VALUE
UNIT
a1
2.94 (PRS = 0)
V
a2
6.75 (PRS = 1)
V
b
0.03
V
Tcut
27
°C
Table 7
Temperature coefficients
BIT
NAME
TC0
TC1
VALUE
TC1
TC0
0
0
0
1
−0.00 × 10−3 × VLCD(Tcut)
UNIT
V/°C
−0.76 ×
10−3
× VLCD(Tcut)
V/°C
10−3
TC2
1
0
−1.05 ×
× VLCD(Tcut)
V/°C
TC3
1
1
−2.10 × 10−3 × VLCD(Tcut)
V/°C
2001 Nov 14
17
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
handbook, full pagewidth
VLCD
(V)
a1
charge pump off
b
a2
a1 + b
00
01
02
03
04
05
06
. . . 5F
6F
7F
00
01
LOW (PRS = 0)
02
03
04
05
06
. . . 5F
6F
7F
HIGH (PRS = 1)
MGT878
VOP6 to VOP0 to be programmed (00H to 7FH), programming ranges LOW and HIGH.
Fig.14 VOP programming at T = Tcut.
As the programming range for the internally generated VLCD allows values above the maximum allowed VLCD (9.0 V) the
user has to ensure while setting the VOP value and selecting the Temperature Coefficient (TC), that under all conditions
and including all tolerances the VLCD remains below 9.0 V.
9 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134); notes 1 and 2.
SYMBOL
PARAMETER
MIN.
MAX.
UNIT
VDD1
supply voltage 1
−0.5
+6.5
V
VDD2,, VDD3
supply voltages 2 and 3
−0.5
+4.5
V
VLCD
supply voltage LCD
−0.5
+9.0
V
Vi
all input voltages
−0.5
VDD + 0.5
V
ISS
ground supply current
−50
+50
mA
II, IO
DC input or output current
−10
+10
mA
Ptot
total power dissipation
−
300
mW
P/out
power dissipation per output
−
30
mW
Tstg
storage temperature
−65
+150
°C
Notes
1. Stresses above those listed under limiting values may cause permanent damage to the device.
2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to
VSS unless otherwise specified.
2001 Nov 14
18
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
10 HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS devices”).
11 DC CHARACTERISTICS
VDD = 2.5 to 5.5 V; VSS = 0 V; VLCD = 4.5 to 9.0 V; Tamb = −40 to +85 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
2.5
−
5.5
V
2.5
−
4.5
V
input supply voltage LCD
LCD voltage externally supplied 4.5
(voltage generator disabled)
−
9.0
V
VLCDOUT
output supply voltage LCD
LCD voltage internally
generated (voltage generator
enabled); note 1
4.5
−
9.0
V
IDD(tot)
total supply current
normal mode; VDD = 2.8 V;
VLCD = 7.6 V; no serial clock;
Tamb = 25 °C; no display load;
4 × charge pump; note 2
−
200
300
µA
Power-down mode; with internal −
or external VLCD; note 3
1.5
−
µA
−
30
−
µA
VSS
−
0.3VDD V
VDD1
supply voltage 1
VDD2,
VDD3
supply voltages 2 and 3
LCD voltage internally
generated (voltage generator
enabled)
VLCDIN
ILCDIN
supply current from
external VLCD
VDD = 2.8 V; VLCD = 7.6 V; no
serial clock; Tamb = 25 °C; no
display load; notes 2 and 4
Logic
VIL
LOW-level input voltage
VIH
HIGH-level input voltage
IL
leakage current
0.7VDD −
VDD
V
VI = VDD or VSS
−1
−
+1
µA
Column and row outputs
Rcol
output resistance of
columns C0 to C101
VLCD = 7.6 V
−
12
20
kΩ
Rrow
output resistance of
rows R0 to R64
VLCD = 7.6 V
−
12
20
kΩ
Vcol
bias tolerance voltage of
columns C0 to C101
−100
0
+100
mV
Vrow
bias tolerance voltage of
rows R0 to R64
−100
0
+100
mV
LCD supply voltage generator
∆VLCD
tolerance of internally
generated VLCD
VDD = 2.8 V; VLCD = 7.6 V; no
serial clock; Tamb = 25 °C;
display load is 10 µA; notes 5
and 6
−300
0
+300
mV
TC0
VLCD temperature
coefficient 0
note 7
−
0 × 10−3VLCD
−
V/°C
2001 Nov 14
19
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
SYMBOL
PARAMETER
OM6206
CONDITIONS
MIN.
TYP.
10−3V
MAX.
UNIT
TC1
VLCD temperature
coefficient 1
note 7
−
−0.76 ×
−
V/°C
TC2
VLCD temperature
coefficient 2
note 7
−
−1.05 × 10−3VLCD −
V/°C
TC3
VLCD temperature
coefficient 3
note 7
−
−2.10 × 10−3VLCD −
V/°C
LCD
Notes
1. The maximum possible VLCD voltage that may be generated is dependent on voltage, temperature and (display) load.
2. Internal clock.
3. During Power-down mode, all static currents are switched off.
4. If external VLCD, the display load current is not transmitted to IDD.
5. Tolerance depends on the temperature; typical null at Tamb = 27 °C; maximum tolerance values are measured at the
temperate range limit; maximum tolerance is proportional to VLCD.
6. For TC1 to TC3.
7. VDD = 2.8 V; no serial clock; Tamb = −20 to +70 °C; display load = 10 µA.
12 AC CHARACTERISTICS
VDD = 2.5 to 5.5 V; VSS = 0 V; VLCD = 4.5 to 9.0 V; Tamb = −40 to +85 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
VDD = 2.8 V; Tamb = −20 to +70 °C 22
TYP.
MAX.
UNIT
fosc
oscillator frequency
fext
external clock frequency
20
38
67
kHz
fframe
frame frequency
fosc or fext = 38 kHz; note 1
−
73
−
Hz
tVHRL
VDD HIGH to RES LOW time
see Fig.16
0 (2)
−
1
µs
tRW
RES LOW pulse width
see Fig.16
100
−
−
ns
0
−
4
MHz
38
67
kHz
Serial bus timing characteristics; see Fig.15
fSCLK
clock frequency
VDD = 3.0 V ±10%; note 3
tCYC
SCLK clock cycle time
250
−
−
ns
tPWH1
SCLK pulse width HIGH
100
−
−
ns
tPWL1
SCLK pulse width LOW
100
−
−
ns
tS2
SCE setup time
60
−
−
ns
tH2
SCE hold time
100
−
−
ns
tPWH2
SCE HIGH time
100
−
−
ns
tH5
SCE start hold time
100
−
−
ns
tS3
D/C setup time
100
−
−
ns
tH3
D/C hold time
100
−
−
ns
tS4
SDIN setup time
100
−
−
ns
tH4
SDIN hold time
100
−
−
ns
note 4
Notes
1.
f ext
f frame = --------520
2001 Nov 14
20
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
2. RES may be LOW before VDD goes HIGH.
3. All signal timing is based on 20% to 80% of VDD and a maximum rise and fall time of 10 ns.
4. tH5 is the time from the previous SCLK positive edge (irrespective of the state of SCE) to the negative edge of SCE.
t S2
handbook, full pagewidth
t H2
t PWH2
SCE
t S3
t H3
t H5
(t H5 )
D/C
t CYC
t PWL1
t S2
t PWH1
SCLK
t S4
t H4
SDIN
MGT872
Fig.15 Serial interface timing.
handbook, full pagewidth
VDD
t RW
t RW
RES
VDD
t VHRL
t RW
t RW
RES
MGT873
Fig.16 Reset timing.
2001 Nov 14
21
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
13 APPLICATION INFORMATION
13.1
Programming example for the OM6206
Table 8
Programming example
SERIAL BUS BYTE
STEP
DISPLAY
D/C
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
OPERATION
SCE is going LOW
1
start
2
0
0
0
1
0
0
0
0
1
function set:
PD = 0 and V = 0; select
extended instruction set
(H = 1)
3
0
1
0
0
1
0
0
0
0
set VOP: VOP is set to
a +16 × b [V]
4
0
0
0
1
0
0
0
0
0
function set:
PD = 0 and V = 0; select
normal instruction set
(H = 0)
5
0
0
0
0
0
1
1
0
0
display control: set
normal mode
(D = 1 and E = 0)
6
1
0
0
0
1
1
1
1
1
data write: Y and X are
initialized to 0 by default,
so they are not set here
MGT144
7
1
0
0
0
0
0
1
0
1
data write
MGT145
8
1
0
0
0
0
0
1
1
1
data write
MGT146
9
1
0
0
0
0
0
0
0
0
data write
MGT146
10
1
0
0
0
1
1
1
1
1
data write
MGT148
11
1
0
0
0
0
0
1
0
0
data write
MGT149
2001 Nov 14
22
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
SERIAL BUS BYTE
STEP
12
DISPLAY
D/C
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
1
0
0
0
1
1
1
1
1
OPERATION
data write
MGT151
13
0
0
0
0
0
1
1
0
1
display control: set
inverse video mode
(D = 1 and E = 1)
MGT152
14
0
1
0
0
0
0
0
0
0
set X-address of RAM:
set address to ‘0000000’
MGT152
15
1
0
0
0
0
0
0
0
0
data write
MGT874
13.2
Application diagrams
handbook, full pagewidth
LCD
(65 × 102 pixels)
102 column drivers
VSS1
VSS2
VDD2
VDD1
VDD3
OM6206
32 row drivers
VLCDSENSE
VLCDOUT
VLCDIN
33 row drivers
5 (1)
CVDD
I/O
VDD
CVLCD
VSS
MGT875
(1) 6 if external oscillator is used.
Fig.17 Application diagram: internal charge pump is used and a single supply VDD.
2001 Nov 14
23
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
handbook, full pagewidth
LCD
(65 × 102 pixels)
102 column drivers
VSS1
VSS2
VDD1
VDD2
VDD3
OM6206
32 row drivers
VLCDSENSE
VLCDOUT
VLCDIN
33 row drivers
5 (1)
C
VDD1 VDD1
I/O
CVLCD
CVDD2
MGT876
VSS
VDD2
(1) 6 if external oscillator is used.
Fig.18 Application diagram: internal charge pump is used and two separate supplies VDD1 and VDD2.
handbook, full pagewidth
LCD
(65 × 102 pixels)
32 row drivers
VLCDIN
VSS1
VSS2
VDD1
VDD2
VDD3
OM6206
VLCDOUT
102 column drivers
VLCDSENSE
33 row drivers
5 (1)
CVDD
I/O
VDD
VSS
VLCDIN
MGT877
(1) 6 if external oscillator is used.
Fig.19 Application diagram: external supply VLCDIN is used.
2001 Nov 14
24
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
• CVDD, CVDD1 and CVDD2 > 1 µF
To reduce the sensitivity of a reset to ESD/EMC
disturbances for a chip-on-glass application, it is strongly
recommended to implement on the glass (indium track
resistance) a series input resistance in the reset line
(recommended minimum value of 8 kΩ).
Higher capacitor values are recommended for ripple
reduction.
13.4
13.3
The OM6206 is manufactured in n-well CMOS technology.
The substrate is on VSS potential.
The required minimum value for the external capacitors in
an application with the OM6206 are:
• CVLCD > 100 µF
Application for COG
Chip information
The pinning of the OM6206 is optimized for single plane
wiring e.g. for Chip-On-Glass (COG) display modules with
display size of 65 × 102 pixels.
14 BONDING PAD INFORMATION
COORDINATES(1)
SYMBOL
COORDINATES(1)
SYMBOL
PAD
PAD
x
y
x
y
row10
28
−4305
−935
row11
29
−4235
−935
RES_B
1
−3870
+935
row32
2
−4270
+935
row12
30
−4165
−935
row31
3
−4340
+935
row13
31
−4095
−935
row30
4
−4410
+935
row14
32
−4025
−935
row29
5
−4480
+935
row15
33
−3955
−935
row28
6
−4550
+935
row16
34
−3885
−935
row27
7
−4620
+935
row17
35
−3815
−935
row26
8
−4690
+935
row18
36
−3745
−935
row25
9
−4760
+935
col0
37
−3605
−935
row24
10
−4830
+935
col1
38
−3535
−935
row23
11
−4900
+935
col2
39
−3465
−935
row22
12
−4970
+935
col3
40
−3395
−935
row21
13
−5040
+935
col4
41
−3325
−935
row20
14
−5110
+935
col5
42
−3255
−935
row19
15
−5180
+935
col6
43
−3185
−935
dummy pad
16
−5320
+935
col7
44
−3115
−935
dummy pad
17
−5355
−935
col8
45
−3045
−935
row0
18
−5005
−935
col9
46
−2975
−935
row1
19
−4935
−935
col10
47
−2905
−935
row2
20
−4865
−935
col11
48
−2835
−935
row3
21
−4795
−935
col12
49
−2765
−935
row4
22
−4725
−935
col13
50
−2695
−935
row5
23
−4655
−935
col14
51
−2625
−935
row6
24
−4585
−935
col15
52
−2555
−935
row7
25
−4515
−935
col16
53
−2485
−935
row8
26
−4445
−935
col17
54
−2415
−935
row9
27
−4375
−935
col18
55
−2345
−935
2001 Nov 14
25
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
COORDINATES(1)
SYMBOL
COORDINATES(1)
PAD
SYMBOL
x
y
PAD
x
y
col19
56
−2275
−935
col58
95
+595
−935
col20
57
−2205
−935
col59
96
+665
−935
col21
58
−2135
−935
col60
97
+735
−935
col22
59
−2065
−935
col61
98
+805
−935
col23
60
−1995
−935
col62
99
+875
−935
col24
61
−1925
−935
col63
100
+945
−935
col25
62
−1785
−935
col64
101
+1015
−935
col26
63
−1715
−935
col65
102
+1085
−935
col27
64
−1645
−935
col66
103
+1155
−935
col28
65
−1575
−935
col67
104
+1225
−935
col29
66
−1505
−935
col68
105
+1295
−935
col30
67
−1435
−935
col69
106
+1365
−935
col31
68
−1365
−935
col70
107
+1435
−935
col32
69
−1295
−935
col71
108
+1505
−935
col33
70
−1225
−935
col72
109
+1575
−935
col34
71
−1155
−935
col73
110
+1645
−935
col35
72
−1085
−935
col74
111
+1715
−935
col36
73
−1015
−935
col75
112
+1785
−935
col37
74
−945
−935
col76
113
+1925
−935
col38
75
−875
−935
col77
114
+1995
−935
col39
76
−805
−935
col78
115
+2065
−935
col40
77
−735
−935
col79
116
+2135
−935
col41
78
−665
−935
col80
117
+2205
−935
col42
79
−595
−935
col81
118
+2275
−935
col43
80
−525
−935
col82
119
+2345
−935
col44
81
−455
−935
col83
120
+2415
−935
col45
82
−385
−935
col84
121
+2485
−935
col46
83
−315
−935
col85
122
+2555
−935
col47
84
−245
−935
col86
123
+2625
−935
col48
85
−175
−935
col87
124
+2695
−935
col49
86
−105
−935
col88
125
+2765
−935
col50
87
+35
−935
col89
126
+2835
−935
col51
88
+105
−935
col90
127
+2905
−935
col52
89
+175
−935
col91
128
+2975
−935
col53
90
+245
−935
col92
129
+3045
−935
col54
91
+315
−935
col93
130
+3115
−935
col55
92
+385
−935
col94
131
+3185
−935
col56
93
+455
−935
col95
132
+3255
−935
col57
94
+525
−935
col96
133
+3325
−935
2001 Nov 14
26
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
COORDINATES(1)
SYMBOL
COORDINATES(1)
PAD
SYMBOL
x
y
PAD
x
y
col97
134
+3395
−935
dummy pad
173
+4050
+935
col98
135
+3465
−935
VDD1
174
+3890
+935
col99
136
+3535
−935
VDD1
175
+3810
+935
col100
137
+3605
−935
VDD1
176
+3730
+935
col101
138
+3675
−935
VDD1
177
+3650
+935
row50
139
+3815
−935
VDD1
178
+3570
+935
row49
140
+3885
−935
VDD1
179
+3490
+935
row48
141
+3955
−935
VDD3
180
+3250
+935
row47
142
+4025
−935
VDD2
181
+3090
+935
row46
143
+4095
−935
VDD2
182
+3010
+935
row45
144
+4165
−935
VDD2
183
+2930
+935
row44
145
+4235
−935
VDD2
184
+2850
+935
row43
146
+4305
−935
VDD2
185
+2770
+935
row42
147
+4375
−935
VDD2
186
+2690
+935
row41
148
+4445
−935
VDD2
187
+2610
+935
row40
149
+4515
−935
VDD2
188
+2530
+935
row39
150
+4585
−935
VDD2
189
+2450
+935
row38
151
+4655
−935
VDD2
190
+2370
+935
row37
152
+4725
−935
VDD2
191
+2290
+935
row36
153
+4795
−935
VDD2
192
+2210
+935
row35
154
+4865
−935
VDD2
193
+2130
+935
row34
155
+4935
−935
SCLK
194
+1890
+935
row33
156
+5005
−935
SDIN
195
+1650
+935
dummy pad
157
+5355
−935
DC_B
196
+1410
+935
dummy pad
158
+5320
+935
SCE_B
197
+1170
+935
row51
159
+5180
+935
T2
198
+930
+935
row52
160
+5110
+935
OSC
199
+690
+935
row53
161
+5040
+935
VSS2
200
+530
+935
row54
162
+4970
+935
VSS2
201
+450
+935
row55
163
+4900
+935
VSS2
202
+370
+935
row56
164
+4830
+935
VSS2
203
+290
+935
row57
165
+4760
+935
VSS2
204
+210
+935
row58
166
+4690
+935
VSS2
205
+130
+935
row59
167
+4620
+935
VSS2
206
+50
+935
row60
168
+4550
+935
VSS2
207
−30
+935
row61
169
+4480
+935
VSS2
208
−110
+935
row62
170
+4410
+935
VSS2
209
−190
+935
row63
171
+4340
+935
VSS2
210
−270
+935
row64
172
+4270
+935
VSS2
211
−350
+935
2001 Nov 14
27
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
Table 9
COORDINATES(1)
SYMBOL
x
y
VSS2
212
−430
+935
VSS2
213
−510
+935
VSS1
214
−670
+935
VSS1
215
−750
+935
VSS1
216
−830
+935
VSS1
217
−910
+935
T1
218
−1150
+935
T5
219
−1630
+935
T4
220
−2030
+935
VSS1
221
−2110
+935
VSS1
222
−2190
+935
T3
223
−2270
+935
VLCDIN
224
−2510
+935
VLCDIN
225
−2590
+935
VLCDIN
226
−2670
+935
VLCDIN
227
−2750
+935
VLCDIN
228
−2830
+935
VLCDIN
229
−2910
+935
VLCDOUT
230
−3070
+935
VLCDOUT
231
−3150
+935
VLCDOUT
232
−3230
+935
VLCDOUT
233
−3310
+935
VLCDOUT
234
−3390
+935
VLCDOUT
235
−3470
+935
VLCDOUT
236
−3550
+935
VLCDSENSE
237
−3630
+935
Circle 1
−5185
−910
Circle 2
+5185
−910
Circle 3
+4160
+910
Circle 4
−4160
+910
NAME
Alignment marks
Note
1. All x/y coordinates (in µm) are referenced to the centre
of the chip (see Fig.20).
2001 Nov 14
Bonding pad dimensions
PAD
28
DIMENSION
Pad pitch
70 µm
Pad size, aluminium
62 × 100 µm
Bump dimensions
50 × 90 × 17.5 (±5) µm
Wafer thickness (including
bumps)
maximum 430 µm
Wafer thickness (without
bumps)
typical 380 µm
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
R51
dummy bump
R64
dummy bump
alignment mark (1)
alignment mark (1)
VDD1
VDD3
VDD2
SCLK
SDIN
D/C
SCE
T2
OSC
VSS2
VSS1
T1
T5
T3
VSS1
T4
VLCDIN
VLCDOUT
RES
VLCDSENSE
pad 237
alignment mark (1)
pad 1
row 32
dummy bump
row 19
R33
C101
R50
C75
C76
C49
C50
C24
C25
.
..
.
..
.
..
.
..
dummy bump
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
R18
C0
OM6206
R0
29
alignment mark (1)
x
Philips Semiconductors
...
.
..
.
..
.
..
0, 0
65 × 102 pixels matrix LCD driver
andbook, full pagewidth
2001 Nov 14
2.14
mm
y
dummy bump
10.94 mm
MGT887
Product specification
Fig.20 Bonding pad locations.
OM6206
(1) The alignment marks are circles with a diameter of 100 µm.
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
15 DEVICE PROTECTION CIRCUITS
SYMBOL
VDD1
PAD
INTERNAL CIRCUIT
174 to 179
VSS1
MGT879
VDD2
181 to 193
lfpage
VSS1
VSS2
MGT880
VDD3
180
VSS1
MGT879
VSS1
214 to 217, 221, 222
VSS2
200 to 213
VSS2
MGT883
VLCDIN
224 to 229
VLCDSENSE
237
VLCDOUT
230 to 236
MGT879
T2
198
T3
223
VSS1
VDD1
MGT882
2001 Nov 14
VSS1
30
VSS1
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
SYMBOL
PAD
SDIN
195
SCLK
194
SCE
197
D/C
196
OSC
199
RES
1
T1
217
T4
218
T5
220
R0 to R64
2 to 15, 18 to 36, 139 to 156,
159 to 172
C0 to C101
OM6206
INTERNAL CIRCUIT
VDD1
MGT884
VSS1
halfpage
37 to 138
VLCDIN
1 per block
VSS1
MGT881
2001 Nov 14
31
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
16 TRAY INFORMATION
x
handbook, full pagewidth
y
G
A
C
H
D
B
F
E
MGT885
Fig.21 Tray details.
handbook, halfpage
OM6206
MGT886
The orientation of the IC in a pocket is indicated by the position of the IC type name on the die surface with respect to the chamfer on the upper left
corner of the tray. Refer to the bonding pad location diagram for the orientating and position of the type name on the die surface.
Fig.22 Tray alignment.
2001 Nov 14
32
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
Table 10 Tray dimensions
DIMENSIONS
2001 Nov 14
DESCRIPTION
VALUE
A
pocket pitch; in the x direction
13.77 mm
B
pocket pitch; in the y direction
4.45 mm
C
pocket width; in the x direction
11.04 mm
D
pocket width; in the y direction
2.24 mm
E
tray width; in the x direction
50.8 mm
F
tray width; in the y direction
50.8 mm
G
distance from cut corner to pocket centre
11.63 mm
H
distance from cut corner to pocket centre
5.41 mm
x
number of pockets in the x direction
3
y
number of pockets in the y direction
10
33
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
17 DATA SHEET STATUS
DATA SHEET STATUS(1)
PRODUCT
STATUS(2)
DEFINITIONS
Objective data
Development
This data sheet contains data from the objective specification for product
development. Philips Semiconductors reserves the right to change the
specification in any manner without notice.
Preliminary data
Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product.
Product data
Production
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in order
to improve the design, manufacturing and supply. Changes will be
communicated according to the Customer Product/Process Change
Notification (CPCN) procedure SNW-SQ-650A.
Notes
1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
18 DEFINITIONS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Right to make changes  Philips Semiconductors
reserves the right to make changes, without notice, in the
products, including circuits, standard cells, and/or
software, described or contained herein in order to
improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for
the use of any of these products, conveys no licence or title
under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that
these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Bare die  All die are tested and are guaranteed to
comply with all data sheet limits up to the point of wafer
sawing for a period of ninety (90) days from the date of
Philips' delivery. If there are data sheet limits not
guaranteed, these will be separately indicated in the data
sheet. There are no post packing tests performed on
individual die or wafer. Philips Semiconductors has no
control of third party procedures in the sawing, handling,
packing or assembly of the die. Accordingly, Philips
Semiconductors assumes no liability for device
functionality or performance of the die or systems after
third party sawing, handling, packing or assembly of the
die. It is the responsibility of the customer to test and
qualify their application in which the die is used.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
19 DISCLAIMERS
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
2001 Nov 14
34
Philips Semiconductors
Product specification
65 × 102 pixels matrix LCD driver
OM6206
NOTES
2001 Nov 14
35
Philips Semiconductors – a worldwide company
Contact information
For additional information please visit http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to: [email protected].
SCA73
© Koninklijke Philips Electronics N.V. 2001
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
403506/01/pp36
Date of release: 2001
Nov 14
Document order number:
9397 750 07746