STE2004 102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER 1 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ FEATURES ■ 102 x 65 bits Display Data RAM Programmable MUX rate Programmable Frame Rate X,Y Programmable Carriage Return Dual Partial Display Mode Row by Row Scrolling N-Line Inversion Automatic data RAM Blanking procedure Selectable Input Interface: • I2C Bus Fast and Hs-mode (read and write) • 68000 & 8080 Parallel Interfaces (read and write) • 3-lines and 4-lines SPI Interface (read and write) • 3-lines 9 bit Serial Interface (read and write) Fully Integrated Oscillator requires no external components CMOS Compatible Inputs Fully Integrated Configurable LCD bias voltage generator with: • Selectable multiplication factor (up to 5X) • Effective sensing for High Precision Output • Eight selectable temperature compensation coefficients Designed for chip-on-glass (COG) applications. ■ ■ ■ ■ Low Power Consumption, suitable for battery operated systems Logic Supply Voltage range from 1.7 to 3.6V High Voltage Generator Supply Voltage range from 1.75 to 4.5V Display Supply Voltage range from 4.5 to 14.5V Backward Compatibility with STE2001/2 2 DESCRIPTION The STE2004 is a low power CMOS LCD controller driver. Designed to drive a 65 rows by 102 columns graphic display, it provides all necessary functions in a single chip, including on-chip LCD supply and bias voltages generators, resulting in a minimum of externals components and in a very low power consumption. STE2004 features six standard interfaces (3-lines Serial, 3-lines SPI, 4-lines SPI, 68000 Parallel, 8080 parallel & I2C) for ease of interfacing with the host micro-controller Table 1. Order Codes Part Numbers Type STE2004DIE1 Bumped Wafers STE2004DIE2 Bumped Dice on Waffle Pack Figure 1. Block Diagram OSC_IN TIMING GENERATOR OSC OSC_OUT FR_IN FR_OUT MASTER SLAVE SYNC CO to C101 R0 to R64 COLUMN DRIVERS ROW DRIVERS DATA LATCHES SHIFT REGISTER CLOCK BIAS VOLTAGE GENERATOR VSENSE SLAVE VLCD HIGH VOLTAGE GENERATOR 65 x 102 RAM VLCDSENSE RES RESET SCROLL LOGIC TEST VSSAUX VDD1,2 DATA REGISTER INSTRUCTION REGISTER VSS DISPLAY CONTROL LOGIC TEST_MODE TEST_VREF ICON_MODE EXT SEL1,2 SEL 0 I2C BUS 9 Bit SERIAL 3 & 4 Line SPI Parallel 8080 Parallel 68K SEL 1 SEL 2 SA1 SAO SDOUT SCLK/SCL SDIN/SDA_IN SDA_OUT DB0 E/WR R/W- RD to DB7 July 2004 D/C CS LR0047 Rev. 4 1/66 STE2004 Table 2. Pin Description N° Pad Type R0 to R64 1-6 109-141 O LCD Row Driver Output Function C0 to C101 6-107 O LCD Column Driver Output VSS 192-203 GND VDD1 156-163 Supply IC Positive Power Supply VDD2 164-171 Supply Internal Generator Supply Voltages. Ground pads. VLCD 205-209 Supply Voltage Multiplier Output VLCDSENSE 204 Supply Voltage Multiplier Regulation Input. VLCDOUT Sensing for Output Voltage Fine Tuning VSENSE_SLAVE 145 Supply Voltage reference for SLAVE CHARGE PUMP VSSAUX 190-177147 O Ground Reference for Pins Configuration VDD1AUX 142 O VDD1 Reference for Pins Configuration SEL1,2,3 152 153 154 I Interface Mode Selection - CANNOT BE LEFT FLOATING EXT_SET ICON_MODE 151 155 SDOUT 180 SDIN - SDAIN 179 SCLK - SCL 181 SEL3 I I SEL1 Interface GND / VSSAUX GND / VSSAUX SEL2 GND / VSSAUX I2C GND / VSSAUX GND / VSSAUX VDD1 SPI 4-Lines 8 bit GND / VSSAUX VDD1 GND / VSSAUX SPI 3-Lines 8 bit GND / VSSAUX VDD1 VDD1 Serial 3-Lines 9 bit VDD1 GND / VSSAUX GND / VSSAUX Parallel 8080-series VDD1 GND / VSSAUX VDD1 Parallel 68000-series Extended Instruction Set Selection - CANNOT BE LEFT FLOATING EXT PAD CONFIG INSTRUCTION SET SELECTED GND or VSSAUX BASIC VDD1 EXTENDED Extended Instruction Set Selection - CANNOT BE LEFT FLOATING ICON MODE PAD CONFIG ICON MODE STATUS GND or VSSAUX DISBLED VDD1 ENABLED O Serial & SPI Data Output - IF UNUSED MUST BE LEFT FLOATING I SDIN - Serial & SPI Interface Data Input - CANNOT BE LEFT FLOATING I SDAIN - I2C Bus Data In - CANNOT BE LEFT FLOATING I SCLK - Serial & SPI Interface Clock - CANNOT BE LEFT FLOATING I SCL - I2C bus Clock - CANNOT BE LEFT FLOATING SDA_OUT 178 O I2C Bus Data Out IF UNUSED MUST BE LEFT FLOATING SA0 149 I I2C Slave Address BIT 0 - CANNOT BE LEFT FLOATING SA1 148 I I2C Slave Address BIT 1- CANNOT BE LEFT FLOATING DB0 to DB7 182-189 I/O Parallel Interface 8 Bit Data Bus - CANNOT BE LEFT FLOATING R/W - RD 175 I R/W - 68000 Series Parallel Interface Read & Write Control Input - CANNOT BE LEFT FLOATING I RD - 8080 Series Parallel Interface Read enable Clock Input - CANNOT BE LEFT FLOATING I E - 68000 Series Parallel Interface Read & Write Clock Input - CANNOT BE LEFT FLOATING E / WR 2/66 176 STE2004 Table 2. Pin Description (continued) N° Pad Type E / WR 176 I WR - 8080 Series Parallel Interface - Write enable clock input - CANNOT BE LEFT FLOATING Function RES 172 I Reset Input. Active Low. D/C 174 I Interface Data/Command Selector- CANNOT BE LEFT FLOATING CS 173 I Serial & Parallel Interfaces ENABLE. When Low the Incoming Data are Clocked In. CANNOT BE LEFT FLOATING TEST_MODE 191 I Test Pad - 50 kohm internal Pull-down MUST BE CONNECTED TO VSS/VSSAUX TEST_VREF 146 O Test Pad - MUST BE LEFT FLOATING OSCIN 144 I Oscillator Input: OSC_IN Configuration High Internal Oscillator Enabled Low Internal Oscillator Disabled External Scillator Internal Oscillator Disabled OSCOUT 210 O Internal/External Oscillator Out - IF UNUSED MUST BE LEFT FLOATING FR_OUT 211 O Master Slave Frame Inversion Synchronization. IF UNUSED MUST BE LEFT FLOATING FR_IN 143 I Master Slave Frame Inversion Synchronization. CANNOT BE LEFT FLOATING M/S 100 I Master/Slave Configuration Bit:- CANNOT BE LEFT FLOATING M/S PIN OSC_OUT FR_OUT FR_IN Charge Pump High ENABLED Enabled Disabled AuxVsense Disabled Low ENABLED Enabled Enabled Charge Pump in Slave Mode or Ext Power 3/66 STE2004 ROW 6 ROW 27 Figure 2. Chip Mechanical Drawing MARK_1 ROW 5 ROW28 ROW31 ROW 0 COL 0 FR_OUT OSC_OUT MARK_3 STE2004 VLCD VLCDSENSE VSS TEST_MODE VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK - SCL SDOUT SDIN - SDAIN SDAOUT COL 50 VSSAUX E - WR (0,0) R/W - RD Y COL 51 D/C CS X RES MARK_4 VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX COL 101 ROW 32 ROW64/ICON ROW63 ROW 37 ROW60 MARK_2 4/66 ROW 59 ROW 38 LR0048 STE2004 Figure 3. Improved ALTH & PLESKO Driving Method VLCD V2 V3 ∆V1(t) ∆V2(t) ROW 0 R0 (t) V4 V5 VSS VLCD V2 V3 ROW 1 R1 (t) V4 V5 VSS VLCD V2 V3 COL 0 C0 (t) V4 V5 VSS VLCD V2 V3 COL 1 C1 (t) V4 V5 VSS VLCD - VSS V3 - VSS Vstate1(t) V4 - V5 0V VSS - V5 VLCD - V2 0V V3 - VSS V4 - VLCD VSS - VLCD VLCD - VSS V3 - VSS Vstate2(t) VLCD - V2 0V V3 - VSS V4 - V5 0V VSS - V5 V4 - VLCD VSS - VLCD ..... 64 0 1 2 3 4 5 6 7 8 9 ....... 0 1 2 3 4 5 6 7 8 9 ....... FRAME n ∆V1(t) = C1(t) - R0(t) ∆V2(t) = C1(t) - R1(t) ..... 64 FRAME n + 1 D00IN1154 5/66 STE2004 3 CIRCUIT DESCRIPTION 3.1 Supplies Voltages and Grounds VDD2 is supply voltages to the internal voltage generator (see below). If the internal voltage generator is not used, this should be connected to VDD1 pad. VDD1 supplies the rest of the IC. VDD1 supply voltage could be different form VDD2. 2 ⋅ VLCD V DD2 ≥ ------------------------- + 200mV (n + 4) 3.2 Internal Supply Voltage Generator The IC has a fully integrated (no external capacitors required) charge pump for the Liquid Crystal Display supply voltage generation. The multiplying factor can be programmed to be: Auto, X5, X4, X3, X2, using the ’set CP Multiplication’ Command. If Auto is set, the multiplying factor is automatically selected to have the lowest current consumption in every condition. This make possible to have an input voltage that changes over time and a constant VLCD voltage. The output voltage (VLCD) is tightly controlled through the VLCDSENSE pad. For this voltage, eight different temperature coefficients (TC, rate of change with temperature) can be programmed using TC1 & TC0 or T2, T1 and T0 bits. This will ensure no contrast degradation over the LCD operating range. An external supply could be connected to VLCD to supply the LCD without using the internal generator. In such event the internal voltage generator must be programmed to zero (PRS = [0;0], Vop = 0 - Reset condition) and the Charge pump (CP[0;0]) set to 5x or Auto Mode. 3.3 Oscillator A fully integrated oscillator (requires no external components) is present to provide the clock for the Display System. When used the OSC pad must be connected to VDD1 pad. An external oscillator could be used and fed into the OSC pin.If an external oscillator is used, it must be always present when STE2004 is not in power down mode. An oscillator out is provided on the OSCOUT Pad to cascade two or more drivers. 3.4 Master/Slave Mode STE2004 support the Master Slave working Mode for Both Control Logic and Charge Pump. This function allows to drive matrix such as 204x65 or 102x130 using two synchronized STE2004 and the internal Charge Pump of both device. If M/S is connected to VDD1, the driver is configured to work in Master Mode. When STE2004 is in Master Mode the Vsense_Slave Pin is disabled and is possible to control the VLCD value using Vop Bits. The Master Time Generator outputs on FR_OUT and on OSC_OUT the relevant timing references. If M/S is connected to GND, the driver is configured to work in Slave Mode. When STE2004 is in Slave Mode, the VLCD configuration set by Vop registers and the thermal compensation slope set by TC register are neglected. The VLCD Value generated is equal to the Voltage value present on Vsense_Slave Pin so the slave configuration can follow the master configuration. The only recognized configuration is Vop=0 that forces the Charge Pump to be in off state whatever is the value of Vsense_aux. To Synchronize the Master & Slave timing circuits, the slave driver FR_IN pad must be connected to Master Driver FR_OUT pad and Slave Driver OSC_IN pad must be connected to the master driver OSC_OUT Pad (Fig. 4). This connection ensure a synchronization at both Frame level (R0 on the master is driven together with the Slave R0 driver) and at Oscillator Level (same Frame frequency on the master and on the slave). If the Synchronization at Frame level is not required, FR_IN pin must be connected toVDD1 or to VDD1_aux (Fig. 5). During Power Up Procesure, Master device must be forced to exit from power down before the slave device. To enter in PowerDown Mode, Slave Device must be forced in Power Down state before Master Device. 6/66 STE2004 Figure 4. Master Slave Logic Connection with frame Synchronization STE2004 VDD1AUX OSCIN FRIN OSCOUT STE2004 FROUT FRIN OSCIN OSCOUT FROUT LR0219 Figure 5. Master Slave Logic Connection without frame Synchronization STE2004 VDD1AUX OSCIN FRIN STE2004 OSCOUT OSCIN FROUT VDD1AUX OSCOUT FROUT FRIN LR0220 3.5 Bias Levels To properly drive the LCD, six (Including VLCD and VSS) different voltage (Bias) levels are generated. The ratios among these levels and VLCD, should be selected according to the MUX ratio (m). They are established to be (Fig. 6): n+2 2 1 n+3 V LCD, ------------- V LCD , ------------- V LCD , ------------- V LCD , ------------- V LCD ,V SS n+4 n+4 n+4 n+4 Figure 6. Bias level Generator VLCD R n+3 ·VLCD n+4 R n+2 ·VLCD n+4 nR 2 ·VLCD n+4 R 1 ·VLCD n+4 R VSS D00IN1150 thus providing an 1/(n+4) ratio, with n calculated from: n= m–3 For m = 65, n = 5 and an 1/9 ratio is set. For m = 49, n =4 and an 1/8 ratio is set. The STE2004 provides three bits (BS0, BS1, BS2) for programming the desired Bias Ratio as shown below: 7/66 STE2004 Table 3. BS2 BS1 BS0 n 0 0 0 7 0 0 1 6 0 1 0 5 0 1 1 4 1 0 0 3 1 0 1 2 1 1 0 1 1 1 1 0 The following table Bias Level for m = 65 and m = 49 are provided: Table 4. Symbol m = 65 (1/9) m = 49 (1/8) V1 VLCD VLCD V2 8/9*VLCD 7/8*VLCD V3 7/9*VLCD 6/8*VLCD V4 2/9*V VLCD 2/8*VLCD V5 1/9 *VLCD 1/8*VLCD V6 VSS VSS 3.6 LCD Voltage Generation The LCD Voltage at reference temperature (To = 27°C) can be set using the VOP register content according to the following formula: VLCD(T=To) = VLCDo = (Ai+VOP · B) (i=0,1,2) with the following values: Symbol Value Unit Note Ao 2.95 V PRS = [0;0] A1 6.83 V PRS = [0;1] A2 10.71 V PRS = [1;0] B 0.0303 V To 27 °C Note that the three PRS values produce three adjacent ranges for VLCD. If the VOP register and PRS bits are set to zero the internal voltage generator is switched off. The proper value for the VLCD is a function of the Liquid Crystal Threshold Voltage (Vth) and of the Multiplexing Rate. A general expression for this is: 1+ m V LCD = ------------------------------------ ⋅ V th 1 2 ⋅ 1 – --------- m For MUX Rate m = 65 the ideal VLCD is: VLCD(to) = 6.85 · Vth than: 8/66 ( 6.85 ⋅ V th – A i ) V op = ---------------------------------------0.03 STE2004 3.7 Temperature Coefficients As the viscosity, and therefore the contrast, of the LCD are subject to change with temperature, there's the need to vary the LCD Voltage with temperature. STE2004 provides the possibility to change the VLCD in a linear fashion against temperature with eight different Temperature Coefficient selectable through T2, T1 and T0 bits. Only four of them are available through basic instruction set. Table 5. NAME TC1 TC0 Value Unit TC0 0 0 -0.0· 10-3 1/ °C TC2 0 1 -0.7 · 10-3 1/°C TC3 1 0 -1.05· 10-3 1/°C TC6 1 1 -2.1 · 10-3 1/°C Table 6. NAME T2 T1 T0 TC0 0 0 0 Value TC1 0 0 1 -0.35 · 10-3 1/°C TC2 0 1 0 -0.7 · 10-3 1/°C TC3 0 1 1 -1.05· 10-3 1/°C TC4 1 0 0 -1.4 · 10-3 1/°C TC5 1 0 1 -1.75· 10-3 1/°C TC6 1 1 0 -2.1 · 10-3 1/°C TC7 1 1 1 -2.3· 10-3 1/°C -0.0· 10-3 Unit 1/ °C Figure 7. VLCD B A2 A0 + B A1 A1 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. PRS = [0;0] 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh PRS = [0;1] PRS = [1;0] VO Finally, the VLCD voltage at a given (T) temperature can be calculated as: VLCD(T) = VLCDo · [1 + (T-To) · TC] 9/66 STE2004 3.8 Display Data RAM The STE2004, provides an 102X65 bits Static RAM to store Display data. This is organized into 9 (Bank0 to Bank8) banks with 102 Bytes. One of these Banks can be used for Icons. RAM access is accomplished in either one of the Bus Interfaces provided (see below). Allowed addresses are X0 to X101 (Horizontal) and Y0 to Y8 (Vertical). When writing to RAM, four addressing mode are provided: • Normal Horizontal (MX=0 and V=0), having the column with address X= 0 located on the left of the memory map. The X pointer is increased after each byte written. After the last column address (X=X-Carriage), Y address pointer is set to jump to the following bank and X restarts from X=0. (Fig. 8) • Normal Vertical (MX=0 and V=1), having the column with address X= 0 located on the left of the memory map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Carriage), X address pointer is set to jump to next column and Y restarts from Y=0 (Fig. 9). • Mirrored Horizontal (MX=1 and V=0), having the column with address X= 0 located on the right of the memory map. The X pointer is increased after each byte written. After the last column address (X=XCarriage), Y address pointer is set to jump to the next bank and X restarts from X=0 (fig. 10). • Mirrored Vertical (MX=1 and V=1), having the column with address X= 0 located on the right of the memory map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Carriage), the X pointer is set to jump to next column and Y restarts from Y=0 (fig. 11). After the last allowed address (X;Y)=(X-Carriage; Y-Carriage), the address pointers always jump to the cell with address (X;Y) = (0;0) (Fig. 12,13,14 & 15). Data bytes in the memory could have the MSB either on top (D0 = 0, Fig.16) or on the bottom (D0=1, Fig. 17). The STE2004 provides also means to alter the normal output addressing. A mirroring of the Display along the X axis is enabled setting to a logic one MY bit.This function doesn't affect the content of the memory map. It is only related to the memory read process. When ICON MODE=1 the Icon Row is not mirrored with MY and is not scrolled. When ICON MODE=0 the Icon Row is like an other graphic line and is mirrored and scrolled. Three are the multiplex ratio available when the partial display mode is disabled (MUX 33, MUX 49 and MUX 65). Only a subset of writable rows are output on Row drivers in MUX 33,49 & 65 Mode. When Y-Carriage<MUX/8, if Mux 49 is selected only the first 49 memory rows are visualized; if Mux 33 is selected only the first 33 memory rows are visualized. The unused output row & column drivers must be left floating. When Y-Carriage<=MUX/8 the icon Bank is located to BANK 8 in MUX 65 Mode, to BANK6 in MUX 49 Mode and to BANK 4 in MUX 33 Mode. In Mux 33 & 49 Mode, when Y-Carriage>MUX/8 lines only 33, 49 lines are visualized. It is possible to select which lines of DDRAM are connected on the output drivers using the scrolling function (Range: 0-Y-Carriage*8). When Y-Carriage>MUX/8 lines, the icon row is moved in DDRAM to the first row of the Bank correspondant to Y-CARRIAGE Return value, being always connected on the same output Driver. When MY=0, the icon Row is output on R64 in mux 65 mode, on R56 in MUX 49 and on R48 in MUX33. When MY=1, and ICON MODE=0, the icon Row is output on R0 whatever is the MUX Rate. 10/66 STE2004 Figure 8. Automatic data RAM writing sequence with V=0 and Data RAM Normal Format (MX=0)1 0 BANK BANK BANK BANK BANK BANK BANK BANK BANK 1 2 3 98 99 100 101 0 1 2 3 4 5 6 7 8 LR0049 Figure 9. Automatic data RAM writing sequence with V=1 and Data RAM Normal Format (MX=0)1 0 BANK BANK BANK BANK BANK BANK BANK BANK BANK 1 2 3 98 99 100 101 0 1 2 3 4 5 6 7 8 LR0050 Figure 10. Automatic data RAM writing sequence with V=0 and Data RAM Mirrored Format (MX=1)1 101 BANK BANK BANK BANK BANK BANK BANK BANK BANK 100 99 98 3 2 1 0 0 1 2 3 4 5 6 7 8 LR0051 Figure 11. Automatic data RAM writing sequence with V=1 and Data RAM Mirrored Format (MX=1)1 101 BANK BANK BANK BANK BANK BANK BANK BANK BANK 100 99 98 3 2 1 0 0 1 2 3 4 5 6 7 8 LR0052 1. X Carriage=101; Y-Carriage = 8 11/66 STE2004 Figure 12. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=0) 0 1 2 X CARR 3 98 99 100 101 BANK 0 BANK 1 BANK 2 Y CARR BANK 7 BANK 8 LR0053 Figure 13. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=0) X CARR 0 1 2 98 3 99 100 101 BANK 0 BANK 1 BANK 2 Y CARR BANK 7 BANK 8 LR0054 Figure 14. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=1) X CARR 101 100 99 98 3 2 1 0 BANK 0 BANK 1 BANK 2 Y CARR BANK 7 BANK 8 LR0055 Figure 15. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=1) X CARR 101 100 99 98 3 2 1 0 BANK 0 BANK 1 BANK 2 Y CARR BANK 7 BANK 8 LR0056 12/66 STE2004 Figure 16. Data RAM Byte organization with D0 = 0 MSB 0 LSB BANK BANK BANK BANK BANK BANK BANK BANK BANK 1 2 3 98 99 100 101 0 1 2 3 4 5 6 7 8 LR0057 Figure 17. Data RAM Byte organization with D0 = 1 LSB 0 MSB BANK BANK BANK BANK BANK BANK BANK BANK BANK 1 2 3 98 99 100 101 0 1 2 3 4 5 6 7 8 LR0058 13/66 STE2004 Figure 18. Memory Rows vs. Row Drivers Mapping ICON_MODE=1 and MUX 65 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 Y-CARRIAGE 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H Scrolling Pointer ROW Output Normal Reverse direction direction R0 R63 R1 R62 R2 R61 R3 R60 R4 R59 R5 R58 R6 R57 R7 R56 R8 R55 R9 R54 R10 R53 R11 R52 R12 R51 R13 R50 R14 R49 R15 R48 R16 R47 R17 R46 R18 R45 R19 R44 R20 R43 R21 R42 R22 R41 R23 R40 R24 R39 R25 R38 R26 R37 R27 R36 R28 R35 R29 R34 R30 R33 R31 R32 R32 R31 R33 R30 R34 R29 R35 R28 R36 R27 R37 R26 R38 R25 R39 R24 R40 R23 R41 R22 R42 R21 R43 R20 R44 R19 R45 R18 R46 R17 R47 R16 R48 R15 R49 R14 R50 R13 R51 R12 R52 R11 R53 R10 R54 R9 R55 R8 R56 R7 R57 R6 R58 R5 R59 R4 R60 R3 R61 R2 R62 R1 R63 R0 R64 R64 5FH 60H 61H 62H 63H 64H 65H lr0268 COL Output 14/66 Normal Direction Reverse Direction C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C O L 99 C O L 2 C O L 100 C O L 1 C O L 101 C O L 0 STE2004 Figure 19. Memory Rows vs. Row Drivers Mapping ICON_MODE=0 and MUX 65 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 Y-CARRIAGE 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 COL Output D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H Normal Direction Reverse Direction Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 1 0 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R64 R1 R63 R2 R62 R3 R61 R4 R60 R5 R59 R6 R58 R7 R57 R8 R56 R9 R55 R10 R54 R11 R53 R12 R52 R13 R51 R14 R50 R15 R49 R16 R48 R17 R47 R18 R46 R19 R45 R20 R44 R21 R43 R22 R42 R23 R41 R24 R40 R25 R39 R26 R38 R27 R37 R28 R36 R29 R35 R30 R34 R31 R33 R32 R32 R33 R31 R34 R30 R35 R29 R36 R28 R37 R27 R38 R26 R39 R25 R40 R24 R41 R23 R42 R22 R43 R21 R44 R20 R45 R19 R46 R18 R47 R17 R16 R48 R49 R15 R50 R14 R51 R13 R52 R12 R53 R11 R54 R10 R55 R9 R56 R8 R57 R7 R58 R6 R59 R5 R60 R4 R61 R3 R62 R2 R63 R1 R64 R0 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C O L 99 C O L 2 C O L 100 C O L 1 C O L 101 C O L 0 lr0269 15/66 STE2004 Figure 20. Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage<=6 and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output 16/66 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 1 0 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R55 R1 R54 R2 R53 R3 R52 R4 R51 R5 R50 R6 R49 R7 R48 R8 R47 R9 R46 R10 R45 R11 R44 R12 R43 R13 R42 R14 R41 R15 R40 R16 R39 R17 R38 R18 R37 R19 R36 R20 R35 R21 R34 R22 R33 R23 R32 R23 R32 R22 R33 R21 R34 R20 R35 R19 R36 R18 R37 R17 R38 R16 R39 R15 R40 R14 R41 R13 R42 R12 R43 R11 R44 R10 R45 R9 R46 R8 R47 R7 R48 R6 R49 R5 R50 R4 R51 R3 R52 R2 R53 R1 R54 R0 R55 R56 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C O L 99 C O L 2 C O L 100 C O L 1 C O L 101 C O L 0 lr0270 STE2004 Figure 21. Memory Rows vs. Row Drivers Mapping ICON_MODE=0, Y-Carriage<=6 and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R56 R1 R55 R2 R54 R3 R53 R4 R52 R5 R51 R6 R50 R7 R49 R8 R48 R9 R47 R10 R46 R11 R45 R12 R44 R13 R43 R14 R42 R15 R41 R16 R40 R17 R39 R18 R38 R19 R37 R20 R36 R21 R35 R22 R34 R23 R33 R32 R32 R23 R33 R22 R34 R21 R35 R20 R36 R19 R37 R18 R38 R17 R39 R16 R40 R15 R41 R14 R42 R13 R43 R12 R44 R11 R45 R10 R46 R9 R47 R8 R48 R7 R49 R6 R50 R5 R51 R4 R52 R3 R53 R2 R54 R1 R55 R0 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C O L 99 C O L 2 C O L 100 C O L 1 C O L 101 C O L 0 lr0271 17/66 STE2004 Figure 22. Memory Rows vs. Row Drivers Mapping ICON_MODE=0, Y-Carriage=7, Scrolling Pointer>07h and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output 18/66 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 1 0 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R56 R1 R55 R2 R54 R3 R53 R4 R52 R5 R51 R6 R50 R7 R49 R8 R48 R9 R47 R10 R46 R11 R45 R12 R44 R13 R43 R14 R42 R15 R41 R16 R40 R17 R39 R18 R38 R19 R37 R20 R36 R21 R35 R22 R34 R23 R33 R32 R32 R23 R33 R22 R34 R21 R35 R20 R36 R19 R37 R18 R38 R17 R39 R16 R40 R15 R41 R14 R42 R13 R43 R12 R44 R11 R45 R10 R46 R9 R47 R8 R48 R7 R49 R6 R50 R5 R51 R4 R52 R3 R53 R2 R54 R1 R55 R0 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 lr0275 STE2004 Figure 23. Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage=7, Scrolling Pointer>07h and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 1 0 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R55 R1 R54 R2 R53 R3 R52 R4 R51 R5 R50 R6 R49 R7 R48 R8 R47 R9 R46 R10 R45 R11 R44 R12 R43 R13 R42 R14 R41 R15 R40 R16 R39 R17 R38 R18 R37 R19 R36 R20 R35 R21 R34 R22 R33 R23 R32 R23 R32 R22 R33 R21 R34 R20 R35 R19 R36 R18 R37 R17 R38 R16 R39 R15 R40 R14 R41 R13 R42 R12 R43 R11 R44 R10 R45 R9 R46 R8 R47 R7 R48 R6 R49 R5 R50 R4 R51 R3 R52 R2 R53 R1 R54 R0 R55 R56 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 lr0276 19/66 STE2004 Figure 24. Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage=8, Scrolling Pointer<10h and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output 20/66 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 1 0 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R55 R1 R54 R2 R53 R3 R52 R4 R51 R5 R50 R6 R49 R7 R48 R8 R47 R9 R46 R10 R45 R11 R44 R12 R43 R13 R42 R14 R41 R15 R40 R16 R39 R17 R38 R18 R37 R19 R36 R20 R35 R21 R34 R22 R33 R23 R32 R23 R32 R22 R33 R21 R34 R20 R35 R19 R36 R18 R37 R17 R38 R16 R39 R15 R40 R14 R41 R13 R42 R12 R43 R11 R44 R10 R45 R9 R46 R8 R47 R7 R48 R6 R49 R5 R50 R4 R51 R3 R52 R2 R53 R1 R54 R0 R55 R56 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 LR0273 STE2004 Figure 25. Memory Rows vs. Row Drivers Mapping ICON_MODE=0, Y-Carriage=8, Scrolling Pointer<10h and MUX 49 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 1 0 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R56 R1 R55 R2 R54 R3 R53 R4 R52 R5 R51 R6 R50 R7 R49 R8 R48 R9 R47 R10 R46 R11 R45 R12 R44 R13 R43 R14 R42 R15 R41 R16 R40 R17 R39 R18 R38 R19 R37 R20 R36 R21 R35 R22 R34 R23 R33 R32 R32 R23 R33 R22 R34 R21 R35 R20 R36 R19 R37 R18 R38 R17 R39 R16 R40 R15 R41 R14 R42 R13 R43 R12 R44 R11 R45 R10 R46 R9 R47 R8 R48 R7 R49 R6 R50 R5 R51 R4 R52 R3 R53 R2 R54 R1 R55 R0 R56 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 LR0274 21/66 STE2004 Figure 26. Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage<=4 and MUX33 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output 22/66 D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 0 1 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R47 R1 R46 R2 R45 R3 R44 R4 R43 R5 R42 R6 R41 R7 R40 R8 R39 R9 R38 R10 R37 R11 R36 R12 R35 R13 R34 R14 R33 R15 R32 R15 R32 R14 R33 R13 R34 R12 R35 R11 R36 R10 R37 R9 R38 R8 R39 R7 R40 R6 R41 R5 R42 R4 R43 R3 R44 R2 R45 R1 R46 R0 R47 R48 R48 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 LR0272 STE2004 Figure 27. Memory Rows vs. Row Drivers Mapping ICON_MODE=0, Y-Carriage<=4 and MUX 33 Y Address D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 X address 0 Y-CARRIAGE COL Output D a t a Line Address D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 Normal Direction Reverse Direction 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 00H 01H 02H 03H 04H 05H 06H C C O O L L 1 0 C C O O L L 101 100 C O L 2 C O L 99 C O L 3 C O L 98 C O L 4 C O L 97 C O L 5 C O L 96 C O L 6 C O L 95 Scrolling Pointer ROW Output Normal Reverse direction direction R0 R48 R1 R47 R2 R46 R3 R45 R4 R44 R5 R43 R6 R42 R7 R41 R8 R40 R9 R39 R10 R38 R11 R37 R12 R36 R13 R35 R14 R34 R15 R33 R32 R32 R15 R33 R14 R34 R13 R35 R12 R36 R11 R37 R10 R38 R9 R39 R8 R40 R7 R41 R6 R42 R5 R43 R4 R44 R3 R45 R2 R46 R1 R47 R0 R48 5FH 60H 61H 62H 63H 64H 65H C O L 95 C O L 6 C O L 96 C O L 5 C O L 97 C O L 4 C O L 98 C O L 3 C C C O O O L L L 99 100 101 C C C O O O L L L 0 2 1 LR0272 23/66 STE2004 Figure 28. Row Drivers vs. LCD Panel Interconnection in MUX65 Mode ICON MUX 65 COLUMN DRIVERS ROW DRIVERS R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 STE2004 R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 ROW DRIVERS LR0109 Figure 29. Row Drivers vs. LCD Panel Interconnection in MUX49 Mode ICON MUX 49 COLUMN DRIVERS ROW DRIVERS 24/66 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 STE2004 R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 ROW DRIVERS LR0108 STE2004 Figure 30. Row Drivers vs. LCD Panel Interconnection in MUX33 Mode ICON MUX 33 COLUMN DRIVERS ROW DRIVERS R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 STE2004 R 0 R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 ROW DRIVERS LR0107 25/66 STE2004 4 BUS INTERFACES To provide the widest flexibility and ease of use the STE2004 features Six different methods for interfacing the host Controller. To select the desired interface the SEL1, SEL2 and SEL3 pads need to be connected to a logic LOW (connect to GND) or a logic HIGH (connect to VDD). All the I/O pins of the unused interfaces must be connected to GND. All interfaces are working while the STE2004 is in Power Down. Table 7. SEL3 SEL2 SEL1 0 0 0 I2 Interface Read and Write; Fast and High Speed Mode 0 0 1 SPI 4 lines 8 bit Read and Write 0 1 0 SPI 3 lines 8 bit Read and Write 0 1 1 Serial 3 lines 9 bit Read and Write 1 0 0 Parallel 8080-series Read and Write 1 0 1 Parallel 68000-series Read and Write C Note 4.1 I2C Interface The I2C interface is a fully complying I2C bus specification, selectable to work in both Fast (400kHz Clock) and High Speed Mode (3.4MHz). This bus is intended for communication between different Ics. It consists of two lines: one bi-directional for data signals (SDA) and one for clock signals (SCL). Both the SDA and SCL lines must be connected to a positive supply voltage via an active or passive pull-up. The following protocol has been defined: - Data transfer may be initiated only when the bus is not busy. - During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while the clock line is high will be interpreted as control signals. Accordingly, the following bus conditions have been defined: BUS not busy: Both data and clock lines remain High. Start Data Transfer: A change in the state of the data line, from High to Low, while the clock is High, define the START condition. Stop Data Transfer: A Change in the state of the data line, from low to High, while the clock signal is High, defines the STOP condition. Data Valid: The state of the data line represents valid data when after a start condition, the data line is stable for the duration of the High period of the clock signal. The data on the line may be changed during the Low period of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data bytes transferred between the start and the stop conditions is not limited. The information is transmitted byte-wide and each receiver acknowledges with the ninth bit. By definition, a device that gives out a message is called "transmitter", the receiving device that gets the signals is called "receiver". The device that controls the message is called "master". The devices that are controlled by the master are called "slaves" Acknowledge. Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the receiver, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also, a master receiver must generate an acknowledge after the reception of each byte that has been clocked 26/66 STE2004 out of the slave transmitter. The device that acknowledges has to pull down the SDA_IN line during the acknowledge clock pulse. Of course, setup and hold time must be taken into account. A master receiver must signal an end-of-data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case, the transmitter must leave the data line High to enable the master to generate the STOP condition. Connecting SDA_IN and SDA_OUT together the SDA line become the standard data line. Having the acknowledge output (SDAOUT) separated from the serial data line is advantageous in Chip-On-Glass (COG) applications. In COG applications where the track resistance from the SDAOUT pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the Indium Tin Oxide (ITO) track resistance. It is possible that during the acknowledge cycle the STE2004 will not be able to create a valid logic 0 level. By splitting the SDA input from the output the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDACK pad to the system SDA line to guarantee a valid LOW level. To be compliant with the I2C-bus Hs-mode specification the STE2004 is able to detect the special sequence "S00001xxx". After this sequence no acknowledge pulse is generated. Since no internal modification are applied to work in Hs-mode, the device is able to work in Hs-mode without detecting the master code. Figure 31. Bit transfer and START,STOP conditions definition DATA LINE STABLE DATA VALID CLOCK DATA START CONDITION CHANGE OF DATA ALLOWED STOP CONDITION LR0069 Figure 32. Acknowledgment on the I2C-bus CLOCK PULSE FOR ACKNOWLEDGEMENT START SCLK FROM MASTER 1 DATA OUTPUT BY TRANSMITTER MSB 2 8 9 LSB DATA OUTPUT BY RECEIVER LR0070 4.1.1 Communication Protocol The STE2004 is an I2C slave. The access to the device is bi-directional since data write and status read are allowed. Four are the device addresses available for the device. All have in common the first 5 bits (01111). The two least significant bit of the slave address are set by connecting the SA0 and SA1 inputs to a logic 0 or to a logic 1. To start the communication between the bus master and the slave LCD driver, the master must initiate a START condition. Following this, the master sends an 8-bit byte, on the SDA bus line (Most significant bit first). This consists of the 7-bit Device select Code, and the 1-bit Read/Write Designator (R/W). All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I2C-bus transfer. 27/66 STE2004 4.1.2 Writing Mode. If the R/W bit is set to logic 0 the STE2004 is set to be a receiver. After the slaves acknowledge one or more command word follows to define the status of the device. A command word is composed by three bytes. The first is a control byte which defines the Co and D/C values, the second and third are data bytes. The Co bit is the command MSB and defines if after this command will follow two data bytes and an other command word or if will follow a stream of data (Co = 1 Command word, Co = 0 Stream of data). The D/C bit defines whether the data byte is a command or RAM data (D/C = 1 RAM Data, D/C = 0 Command). If Co =1 and D/C = 0 the incoming data byte is decoded as a command, and if Co =1 and D/C =1, the following data byte will be stored in the data RAM at the location specified by the data pointer. Every byte of a command word must be acknowledged by all addressed units. After the last control byte, if D/C is set to a logic 1 the incoming data bytes are stored inside the STE2004 Display RAM starting at the address specified by the data pointer. The data pointer is automatically updated after every byte written and in the end points to the last RAM location written. Every byte must be acknowledged by all addressed units. 4.1.3 Reading Mode. If the R/W bit is set to logic 1 the chip will output data immediately after the slave address. If the D/C bit during the last write access, is set to a logic 0, the byte read is the status byte. Figure 33. Communication Protocol WRITE MODE DRIVER ACK DRIVER ACK S S S 0 1 1 1 1 A A 0 A 1 DC Control Byte A 1 0 R/W Co SLAVE ADDRESS DRIVER ACK DATA Byte A 0 DC Control Byte A Co COMMAND WORD DRIVER ACK LAST CONTROL BYTE DRIVER ACK DATA Byte A P N> 0 BYTE MSB........LSB READ MODE DRIVER ACK S S S 0 1 1 1 1 A A 1 A 1 0 R/W MASTER ACK P S S R 0 1 1 1 1 A A / 1 0 W DRIVER SLAVE ADDRESS H H H C D 0 0 0 A E [1] [0] o C CONTROL BYTE LR0008 4.2 SERIAL INTERFACES STE2004 can feature three different serial synchronized interfaces with the host controller. It is possible to select a 3-lines SPI, a 4-lines SPI or 3-line 9 bits Serial Interface. 4.2.1 4-lines SPI interface STE2004 4-lines serial interface is a bidirectional link between the display driver and the application supervisor. It consists of four lines: one/two for data signals (SDIN, SOUT), one for clock signals (SCLK), one for the peripheral enable (CS) and one for mode selection (SD/C). The serial interface is active only if the CS line is set to a logic 0. When CS line is high the serial peripheral power consumption is zero. While CS pin is high the serial interface is kept in reset. The STE2004 is always a slave on the bus and receive the communication clock on the SCLK pin from the master. Information are exchanged byte-wide. During data transfer, the data line is sampled on the positive SCLK edge. SD/C line status indicates whether the byte is a command (SD/C =0) or a data (SD/C =1); SD/C line is read on 28/66 STE2004 the eighth SCLK clock pulse during every byte transfer. If CS stays low after the last bit of a command/data byte, the serial interface expects the MSB of the next byte at the next SCLK positive edge. A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all the internal registers are cleared. If CS is low after the positive edge of RES, the serial interface is ready to receive data. Throughout SDOUT can be read the driver I2C slave address or the status byte. The Command sequence that allows to read I2C slave address or Status byte is reported in Fig. 34 & 35. SDOUT is in High impedance in steady state and during data write. It is possible to short circuit SDOUT and SDIN and read I2C address or status Byte without any additional lines. Figure 34. 4-lines serial bus protocol - one byte transmission CS D/C SCLK SDIN MSB LSB LR0071 Figure 35. 4-lines serial bus protocol - several byte transmission CS D/C SCLK DB7 SDIN DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DB7 DB6 DB5 LR0072 Figure 36. 4-lines serial bus protocol - I2C Address or Status Byte Read CS SCLK SDIN DB7 DB6 DB5 Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care High-Z DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 High-Z High-Z DB7 DB6 DB5 DB2 DB1 DB0 High-Z DB4 DB3 DB2 DB1 DB0 D/C ID Number SDOUT DB4 DB3 STATUS BYTE Command Write DATA Read LR00076 29/66 STE2004 Figure 37. 4-lines SPI Reading Sequence READING SEQUENCE Write a "00000000" Instruction SDOUT Buffer becomes active (Low Impedence) Source 8 pulses on SCLK and 1 Read the ID Number or the Status Byte On SDOUT SDOUT Buffer Configured in High Impedence END OF READING SEQUENCE note: 1) these data are not read by the display Diver 2) SDIN and SDOUT can be short circuited if the processor can configure serial output buffers in high impedence during data read. LR0078 4.2.2 3-lines SPI Interface The STE2004 3-lines serial Interface is a bidirectional link between the display driver and the application supervisor. It consists of three lines: one/two for data signals (SDIN,SDOUT), one for clock signals (SCLK) and one for peripheral enable (CS). If the R/W bit is set to logic 0 the STE2004 is set to be a receiver. One or more command word follows to define the status of the device. A command word is composed by two bytes. The first is a control byte which defines Co, D/C, R/W H[1;0] and HE values, the second is a data byte (fig 39). The Co bit is the command MSB and defines if after this command will follow one data byte and an other command word or if will follow a stream of Commands or a Steam of DDRAM Data (Co = 1 Command word, Co = 0 Stream of data). The D/C bit defines whether the data byte is a command or DDRAM data (D/C = 1 RAM Data, D/C = 0 Command). The H[1;0] bits define the instruction Set Page if HE bit =1. If HE bit is set to 0 H[1;0] values are neglected and it is possible to update the instruction set page number using only the related instruction in the instruction Set. If Co =1 and D/C = 0 the incoming data byte is decoded as a command, and if Co =1 and D/C =1, the following data byte will be stored in the data RAM at the location specified by the data pointer. After the last control byte, if D/C is set to a logic 1 the incoming data bytes are stored inside the STE2004 Display Data RAM starting at the address specified by the data pointer. The data pointer is automatically updated after every byte written and in the end points to the last RAM location written. Throughout SDOUT can be read the driver I2C slave address or the status Byte. The Command sequence that allows to read I2C slave address or the Status byte is reported in Fig. 39 & 40. If the R bit is set to logic 0 and D/C=0, the I2C slave address is read; If the R bit is set to logic 1 and D/ C=0, the the I2C slave address is read SDOUT is in High impedance in steady state and during data write. It is possible to short circuit SDOUT and SDIN and read I2C address or status byte without any additional line. 30/66 STE2004 Figure 38. 3-lines serial interface protocol in Writing Mode WRITE MODE 1 Control Byte Co DATA Byte 0 Control Byte Co LAST CONTROL BYTE COMMAND WORD R H H H C D / 0 0 E [1] [0] o CW DATA Byte CONTROL BYTE N> 0 BYTE MSB........LSB Control Byte 0 0 DATA Byte LAST CONTROL BYTE TRANSFERRED ONLY COMMANDS DATA Byte DATA Byte = Command N> 0 BYTE MSB........LSB if D/C=0 DATA Byte = DDRAM Data if D/C=1 Control Byte 0 1 DATA Byte LAST CONTROL BYTE TRANSFERRED ONLY DDRAM DATA DATA Byte N> 0 BYTE MSB........LSB LR0002 Figure 39. 3-lines SPI interface protocol in Reading Mode CS SCLK SDIN DB7 Co=1 DB6 DB5 D/C=0 R/W=1 "Command" "Read" Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care High-Z DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 High-Z High-Z DB7 DB6 DB5 DB2 DB1 DB0 High-Z DB4 DB3 DB2 DB1 DB0 ID-Number SDOUT DB4 DB3 STATUS BYTE Command Write DATA Read LR0077 31/66 STE2004 Figure 40. 3-lines SPI Reading Sequence READING SEQUENCE Set Co bit =1, D/C Bit =0 R/W Bit =1 SDOUT Buffer become active (Low Impedence) Source 8 pulses on SCLK and 1 Read the ID-Number or the Status Byte On SDOUT SDOUT Buffer Configured in High Impedence END OF READING SEQUENCE note: 1) these data are not read by the display Diver 2) SDIN and SDOUT can be short circuited if the processor can configure serial output buffers in high impedence during data read. LR0079 4.2.3 3-lines 9 bits Serial Interface The STE2004 3-lines serial Interface is a bidirectional link between the display driver and the application supervisor. It consists of three lines: one/two for data signals (SDIN, SDOUT), one for clock signals (SCLK) and one for peripheral enable (CS). The serial interface is active only if the CS line is set to a logic 0. When CS line is high the serial peripheral power consumption is zero. While CS pin is high the serial interface is kept in reset. The STE2004 is always a slave on the bus and receive the communication clock on the SCLK pin from the master. Information are exchanged word-wide. The word is composed by 9 bit. The first bit is named SD/C and indicates whether the following byte is a command (SD/C =0) or Data Byte (SD/C =1). During data transfer, the data line is sampled on the positive SCLK edge. If CS stays low after the last bit of a command/data byte, the serial interface expects the SD/C Bit of the next word at the next SCLK positive edge. A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all the internal registers are cleared. If CS is low after the positive edge of RES, the serial interface is ready to receive data. Throughout SDOUT can be read only the driver I2C slave address or the status byte. The Command sequence that allows to read I2C slave address or Status byte is reported in Fig. 43 & 44. SDOUT is in High impedance in steady state and during data write. It is possible to short circuit SDOUT and SDIN and read I2C address or status byte without any additional line. 32/66 STE2004 Figure 41. 3-lines serial bus protocol - one byte transmission CS SCLK SDIN SD/C MSB LSB LR0073 Figure 42. 3-lines serial bus protocol - several byte transmission CS SCLK SDIN D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 D/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 D/C DB7 DB6 LR0074 Figure 43. 3-lines serial interface protocol in Reading Mode CS SCLK SDIN SD/C DB7 DB6 DB5 Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care Don't Care High-Z DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 High-Z High-Z DB7 DB6 DB5 DB2 DB1 DB0 High-Z DB4 DB3 DB2 DB1 DB0 ID-Number SDOUT DB4 DB3 STATUS BYTE DATA Read Command Write LR0075 Figure 44. 3-lines Serial Reading Sequence READING SEQUENCE Write a "00000000" Instruction SDOUT Buffer becomes active (Low Impedence) Source 9 pulses on SCLK and 1 Read the ID Number or the Status Byte On SDOUT SDOUT Buffer Configured in High Impedence END OF READING SEQUENCE note: 1) these data are not read by the display Diver 2) SDIN and SDOUT can be short circuited if the processor can configure serial output buffers in high impedence during data read. LR0080 33/66 STE2004 4.3 Parallel Interface The STE2004 selectable parallel Interfaces are 68000-series and 8080-series. They are both an 8-bits bidirectional link between the display driver and the application supervisor. Throughout both parallel interfaces can be read the I2C driver slave address or the Status Byte. 4.3.1 68000-series parallel interface If CS is low after the positive edge of RES, the 68000 parallel interface is ready to receive or transmit data. While CS pin is high the 68000 Parallel interface is kept in reset. 4.3.2 Write Mode If R/W line is set to 0 Data are latched on E falling edge. 4.3.3 Read Mode When R/W line is set to 1, data are output on D0-D7 bus on E rising edge. Data Bus is set in high impedance mode when E is set to logic 0. Accordingly to R bit value I2C Address or Status Byte is output on D0-D7 bus. Figure 45. 68000-series Parallel interface protocol - one byte transmission CS R/W D/C E D0 to D7 LR0004 Figure 46. 68000-series Parallel interface bus protocol - Several bytes transmission CS R/W D/C E D0 to D7 LR0081 34/66 STE2004 Figure 47. 68000-series Parallel interface protocol in Reading Mode CS D/C R/W E D0 to D7 LR0082 Figure 48. 68000-series Parallel interface protocol in Reading Mode (Several Bytes) CS D/C R/W E D0 to D7 Note 1) Data Bus is configured in high impedence mode after evry RD rising edge 2) Always the same data is output on D0-D7 LR0046 4.3.4 8080-series parallel interface If CS is low after the positive edge of RES, the 8080 parallel interface is ready to receive or transmit data. While CS pin is high the 8080 Parallel interface is kept in reset. Write Mode Data are latched on WR rising edge. Read Mode Data are output on D0-D7 bus on RD rising edge. Data Bus is set in high impedance mode when RD is set to logic 1. Accordingly to R bit value I2C Address or Status Byte is output on D0-D7 bus. Figure 49. 8080-series parallel bus protocol - one byte transmission CS D/C RD WR D0 to D7 LR0083 35/66 STE2004 Figure 50. 8080-series parallel bus protocol - several bytes transmission CS D/C RD WR D0 to D7 LR0084 Figure 51. 8080-series Parallel interface protocol in Reading Mode CS D/C RD WR D0 to D7 LR0085 Figure 52. 8080-series Parallel interface protocol in Reading Mode (Several Bytes) CS D/C RD WR D0 to D7 LR0045 Note 1) Data Bus is configured in high impedence mode after every RD rising edge 2) Always the same data is output on D0-D7 36/66 STE2004 5 INSTRUCTION SET Two different instructions formats are provided: - With D/C set to LOW : commands are sent to the Control circuitry. - With D/C set to HIGH : the Data RAM is addressed. Two different instruction set are embedded: the STE2001-like instruction set and the extended instruction set. To select the STE2001-like instruction set the EXT pad has to be connected to a logic LOW (connect to GND). To select the he extended instruction the EXT pad has to be connected to a logic HIGH (connect to VDD1). The instructions have the syntax summarized in Table 1 (basic-set) and Table 2 (extended set) 5.1 Reset (RES) At power-on, all internal registers are configured with the default value. The RAM content is not defined. A Reset pulse on RES pad (active low) re-initialize the internal registers content (see Tables 3,4,5,&6). Every on-going communication with the host controller is interrupted, applying a reset pulse. After the power-on, the Software Reset instruction can be used to re-load the reset configuration into the internal registers. The Default configurations is: - Horizontal addressing (V = 0) - Frame Rate (FR[1:0]=”75Hz”) - Normal instruction set (H[1:0] = 0) - Power Down (PD = 1) - Normal display (MX = MY = 0) - Dual Partial Display Disabled (PE=0) - Display blank (E = D = 0) - VOP=0 - Address counter X[6: 0] = 0 and Y[4: 0] = 0 - Y-CARRIAGE=8 - Temperature coefficient (TC[1: 0] = 0) - X-CARRIAGE=101 - Bias system (BS[2: 0] = 0) - Multiplexing Ratio (M[1:0]=0 - MUX 65) A MEMORY BLANK instruction can be executed to clear the DDRAM content. 5.2 Power Down (PD = 1) When at Power Down, all LCD outputs are kept at VSS (display off). Bias generator and VLCD generator are OFF (VLCDOUT output is discharged to VSS, and then is possible to disconnect VLCDOUT). The internal Oscillator is in off state. An external clock can be provided. The RAM contents is not cleared. 5.3 Memory Blanking Procedure This instruction allows to fill the memory with "blank" patterns, in order to delete patterns randomly generated in memory when starting up the device. This instruction substitutes (102X8) single "write" instructions. It is possible to program "Memory Blanking Procedure" only under the following conditions: - PD bit =0 No instruction can be programmed for a period equivalent to 102X8 internal write cycles (102X8X1/fclock). The start of Memory blanking procedure will be between one and two fclock cycles from the last active edge (E fallig edge for the parallel interface, last SCLK rising edge for the Serial & SPI interfaces, last SCL rising edge for the I2C interface). 5.4 Checker Board Procedure This instruction allows to fill the memory with "checker-board" pattern. It is mainly intended to developers, who can now simply obtain complex module test configuration by means of a single instruction. It is possible to program "Checker Board Procedure" only under the following conditions: - PD bit =0 37/66 STE2004 No instruction can be programmed for a period equivalent to 102X8 internal write cycles (102X8X1/fclock). The start of Checker-board procedure will be between one and two fclock cycles from the last active edge (E falling edge for the parallel interface, last SCLK rising edge for the Serial & SPI interfaces, last SCL rising edge for the I2C interface). 5.5 Scrolling Function The STE2004 can scroll the graphics display in units of raster-rows. The scrolling function is achieved changing the correspondence between the rows of the logical memory map and the output row drivers. The scroll function doesn't affect the data ram content. It is only related to the visualization process. The information output on the drivers is related to the row reading sequence (the 1st row read is output on R0, the 2nd on R1 and so on). Scrolling means reading the matrix starting from a row that is sequentially increased or decreased. After every scrolling command the offset between the memory address and the memory scanning pointer is increased or decreased by one. The offset range changes in accordance with MUX Rate. After 64th/65th scrolling commands in MUX 65 mode, or after the 48th/49th scrolling commands in mux 49 mode, or after 32nd/33rd scrolling command in MUX 33 mode, the offset between the memory address and the memory scanning pointer is again zero (Cyclic Scrolling). A Reset Scrolling Pointer instruction can be executed to force to zero the offset between the memory address and the memory scanning pointer If ICON MODE =1, the Icon Row is not scrolled. If ICON MODE=0 the last row is like a general purpose row and it is scrolled as other lines. If the DIR Bit is set to a logic zero the offset register is increased by one and the raster is scrolled from top down. If the DIR Bit is set to a logic one the offset register is decreased by one and the raster is scrolled from bottom-up. Table 8. MUX RATE ICON MODE DESCRIPTION ICON Row Driver with MY=0 MUX 33 1 ICON ROW NOT SCROOLED R48 MUX 33 0 33 LINE GRAPHIC MATRIX R48 MUX 49 1 ICON ROW NOT SCROOLED R56 MUX 49 0 49 LINE GRAPHIC MATRIX R56 MUX 65 1 ICON ROW NOT SCROOLED R64 MUX 65 0 65 LINE GRAPHIC MATRIX R64 5.6 Dual Partial Display If the PE Bit is set to a logic one the dual partial display mode is enabled. Eight partial display modes are available. The offset of the two partial display zones is row by row programmable. The Icon row is accessed last in each partial display frame. Two sets of register for the HV-generator parameters are provided (PRS[1:0], Vop[6:0], BS[2:0], CP[2:0].). This allows switching from normal mode to partial display mode only with one instruction. The HV generator is automatically re configured using the parameters related to the enabled mode. The parameters of the two sets of registers with the same function are located in the same position of the instruction set. The registers related to the normal mode are accessible when normal mode (PE=0) is selected, the others are accessible when the partial display mode is enabled (PE=1). To Setup PRS[1:0], Vop[6:0], BS[2:0], CP[2:0] values the instruction flow proposed in Fig. 54 must be followed. To setup Partial Display Sectors Start Address and Partial Display Mode no particular instruction flow has to be followed. 38/66 STE2004 Figure 53. Dual Partial Display Enabling Instruction Flow ENABLE DUAL PARTIAL DISPLAY SET 1st Sector Start Address SET 2nd Sector Start Address OPTIONAL1 SET PE=1 END OF ENABLING DUAL PARTIAL DISPLAY Figure 54. Dual Partial Display Mode configuration or Duty Change SETUP PARTIAL DISPLAY CONFIGURATION SET Driver in Power Down(PD=1) SET Driver in Partial Display Mode (PE=1) SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0] for Partial Display Operation SET Partial Display Configuration (PDC[2:0]) SET 1st Sector Start Address SET 2nd Sector Start Address OPTIONAL SET Driver in Normal Mode (PE=0) END OF PARTIAL DISPLAY CONFIG. Table 9. Partial Display Configurations PDC 2 0 0 0 0 1 1 1 1 PDC 1 0 0 1 1 0 0 1 1 PDC 0 0 1 0 1 0 1 0 1 SECTION 1 SECTION2 0 8 8 0 16 8 16 16 8 + Icon Row 0 + Icon Row 8 + Icon Row 16 + Icon Row 0 + Icon Row 16 + Icon Row 8 + Icon Row 16 + Icon Row RESET STATE 000 39/66 STE2004 6 ID-NUMBER The STE2004 allows to program a Driver Identification Number (ID-Number). This make possible to easily manage on one platform more than one LCD module with different configuration parameters. Four are the device ID-Numbers programmable: 00111100, 00111101, 0011110 & 0011111. All have in common the first 6 bits (001111). The two least significant bit could be set connecting the SA0 and SA1 inputs to a VSS or VDD1. The driver ID-number can be read through all communication interfaces. The way to read-out the ID-Number changes according the interface selected. The readout protocol for each interface is described in the Bus interfaces paragraph. Table 10. STE2001/2-like instruction Set Instruction D/C R/W Description B7 B6 B5 B4 B3 B2 B1 B0 0 H=0 or H=1 Read Commnad 0 0 0 0 0 0 0 0 0 Function Set 0 0 0 0 1 MX MY PD V Status Byte 0 1 PD BSY 0 D E MX MY DO ID Code 0 1 0 0 1 1 1 1 ID1 ID0 Write Data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Writes data to RAM Memory Blank 0 0 0 0 0 0 0 0 0 1 Starts Memory Blank Procedure Scrolls by one Row UP or DOWN Read I2C Address or Status Byte (with 3-Lines Serial & 4-lines SPI only) H[0] Power Down Management; Entry Mode; (I2C interface only) H=0 Scroll 0 0 0 0 0 0 0 0 1 DIR VLCD Range Setting 0 0 0 0 0 0 0 1 0 PRS VLDC programming range selection [0] Display Control 0 0 0 0 0 0 1 D 0 E Select Display Configuration Set CP Factor 0 0 0 0 0 1 0 S2 S1 S0 Charge Pump Multiplication factor Set RAM Y 0 0 0 1 0 0 Y3 Y2 Y1 Y0 Set Horizontal (Y) RAM Address Set RAM X 0 0 1 X6 X5 X4 X3 X2 X1 X0 Set Vertical (X) RAM Address H=1 Checker Board 0 0 0 0 0 0 0 0 0 1 Starts Checker Board Procedure Duty 0 0 0 0 0 0 0 0 1 MUX Selects Duty factor TC Select 0 0 0 0 0 0 0 1 Data Order 0 0 0 0 0 0 1 DO BS2 BS1 BS0 Bias Ratios 0 0 0 0 0 1 0 Reserved 0 0 0 1 X X X Set VOP 0 0 1 40/66 X TC1 TC0 Set Temperature Coefficient for VLDC 0 X 0 X OP6 OP5 OP4 OP3 OP2 OP1 OP0 Set desired Bias Ratios Not to be used VOP register Write instruction STE2004 Table 11. Extended Instruction Set Instruction D/C R/W Description B7 B6 B5 B4 B3 B2 B1 B0 H Independent Instructions Read Command 0 0 0 0 0 0 0 0 0 0 0 0 1 MX MY PD 0 0 H[1] H[0] Status Byte 0 1 PD BSY 0 D E MX MY DO ID Code 0 1 0 0 1 1 1 1 ID1 ID0 Write Data 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Read I2C Address or Status Byte (with 3-Lines Serial & 4-lines SPI only) Page selector, Power Down Management; Entry Mode Writes data to RAM H=[0;0] RAM Commands Memory Blank 0 0 0 0 0 0 0 0 0 1 Starts Memory Blank Procedure Scroll 0 0 0 0 0 0 0 0 1 DIR Scrolls by one Row UP or DOWN VLCD Range Setting 0 0 0 0 0 0 0 1 PRS PRS [1] [0] VLDC programming range selection Display Control 0 0 0 0 0 0 1 D 0 E Select Display Configuration Set CP Factor 0 0 0 0 0 1 0 S2 S1 S0 Charge Pump Multiplication factor Set RAM Y 0 0 0 1 0 0 Y3 Y2 Y1 Y0 Set Horizontal (Y) RAM Address Set RAM X 0 0 1 X6 X5 X4 X3 X2 X1 X0 Set Vertical (X) RAM Address H=[0;1] Checker Board 0 0 0 0 0 0 0 0 0 1 Starts Checker Board Procedure 0 0 0 0 0 0 0 0 1 V Vertical Addressing Mode TC Select 0 0 0 0 0 0 0 1 Data Order 0 0 0 0 0 0 1 DO BS2 BS1 BS0 Bias Ratios 0 0 0 0 0 1 0 Read Mode, 0 0 0 1 0 0 R Set VOP 0 0 1 0 TC1 TC0 Set Temperature Coefficient for VLDC 0 0 0 MSB Position Set desired Bias Ratios 0 OP6 OP5 OP4 OP3 OP2 OP1 OP0 VOP register Write instruction H=[1;0] Driver Control 0 0 0 0 0 0 0 0 0 1 Display Control 0 0 0 0 0 0 0 0 1 PE 0 0 0 0 0 0 0 1 FR1 FR0 0 0 0 0 0 0 1 0 M[1] M[0] 0 0 0 0 0 1 0 0 0 0 1 PD Y5 PD Y4 PD Y3 PD Y2 PD Y1 PD Y0 1st Sector Start Address 0 0 1 PD Y6 PD Y5 PD Y4 PD Y3 PD Y2 PD Y1 PD Y0 2nd Sector Start Address Partial Mode PDC PDC PDC 2 1 0 Software RESET Partial Enable Frame rate Control Mux Ratio Partial Display Config H=[1;1] 0 0 0 0 0 0 0 0 0 1 Scrolling Pointer Reset 0 0 0 0 0 0 0 0 1 X Not Used 0 0 0 0 0 0 0 1 X X Not Used 0 0 0 0 0 0 1 T2 T1 T0 Set Temperature Coefficient for VLDC 0 0 0 0 0 1 NW3 NW2 NW1 NW0 N-Line Inversion 0 0 0 1 0 0 YC-3 YC-2 YC-1 YC-0 Y-CARRIAGE RETURN 0 0 1 XC-6 XC-5 XC-4 XC-3 XC-2 XC-1 XC-0 X CARRIAGE RETURN 41/66 STE2004 Table 12. Explanations of Table 3 & 4 symbols RESET STATE BIT 0 1 DIR Scroll by one down Scroll by one up H[0] Select page 0 Select page 1 PD Device fully working Device in power down 0 1 V Horizontal addressing Vertical addressing 0 MX Normal X axis addressing X axis address is mirrored. 0 MY Image is displayed not vertically mirrored Image is displayed vertically mirrored 0 DO MSB on TOP MSB on BOTTOM 0 PE Partial Display disabled Partial Display enabled 0 MUX MUx 65 Mode MUX 33 Mode 0 R Read ID-Number / I2C Address Read Status Byte 0 Table 13. PAGE SELECTION H[1] H[0] 0 0 Page 0 DESCRIPTION 0 1 Page 1 1 0 Page 2 1 1 Page 3 RESET STATE Page 0 Table 14. DISPLAY MODE D E 0 0 display blank DESCRIPTION RESET STATE 0 1 all display segments on E=0 1 0 normal mode D=0 1 1 inverse video mode Table 15. FRAME RATE CONTROL FR[1] FR[0] DESCRIPTION 0 0 65Hz 0 1 70Hz 1 0 75Hz 1 1 80Hz RESET STATE 75Hz Table 16. VLCD RANGE SELECTION PRS[1] PRS[0] DESCRIPTION 0 0 2.94 0 1 6.78 1 0 10.62 1 1 10.62 42/66 RESET STATE STE2004 Table 17. MULTIPLEXING RATIO M[1] M[0] DESCRIPTION 0 0 49 0 1 65 1 0 33 1 1 Not Allowed RESET STATE 01 Table 18. TEMPERATURE COEFFICIENT T2 T1 T0 DESCRIPTION 0 0 0 VLCD temperature Coefficient 0 0 0 1 VLCD temperature Coefficient 1 0 1 0 VLCD temperature Coefficient 2 0 1 1 VLCD temperature Coefficient 3 1 0 0 VLCD temperature Coefficient 4 1 0 1 VLCD temperature Coefficient 5 1 1 0 VLCD temperature Coefficient 6 1 1 1 VLCD temperature Coefficient 7 RESET STATE 000 Table 19. TC1 TC0 DESCRIPTION 0 0 VLCD temperature Coefficient 0 0 1 VLCD temperature Coefficient 2 0 1 VLCD temperature Coefficient 3 1 1 VLCD temperature Coefficient 6 RESET STATE 00 Table 20. CHARGE PUMP MULTIPLICATION FACTOR CP2 CP1 CP0 DESCRIPTION 0 0 0 Multiplication Factor X2 0 0 1 Multiplication Factor X3 0 1 0 Multiplication Factor X4 0 1 1 Multiplication Factor X5 1 0 0 NOT USED 1 0 1 NOT USED 1 1 0 NOT USED 1 1 1 AUTOMATIC RESET STATE 000 43/66 STE2004 Table 21. BIAS RATIO BS2 BS1 BS0 DESCRIPTION 0 0 0 Bias Ratio equal to 7 0 0 1 Bias Ratio equal to 6 0 1 0 Bias Ratio equal to 5 0 1 1 Bias Ratio equal to 4 1 0 0 Bias Ratio equal to 3 1 0 1 Bias Ratio equal to 2 1 1 0 Bias Ratio equal to 1 1 1 1 Bias Ratio equal to 0 RESET STATE 000 Table 22. Y CARRIAGE RETURN REGISTER Y-C[3] Y-C[2] Y-C[1] Y-C[0] DESCRIPTION RESET STATE 0 0 0 0 Y-CARRIAGE =0 0 0 0 1 Y-CARRIAGE =1 0 0 1 0 Y-CARRIAGE =2 0 0 1 1 Y-CARRIAGE =3 0 1 0 0 Y-CARRIAGE =4 . . . . 0 1 1 0 Y-CARRIAGE =6 0 1 1 1 Y-CARRIAGE =7 1 0 0 0 Y-CARRIAGE =8 1000 Table 23. PARTIAL DISPLAY CONFIGURATION PD2 PD1 PD0 SECTION 1 SECTION2 0 0 0 0 8 + Icon Row 0 0 1 8 0 + Icon Row 0 1 0 8 8 + Icon Row 0 1 1 0 16 + Icon Row 1 0 0 16 0 + Icon Row 1 0 1 8 16 + Icon Row 1 1 0 16 8 + Icon Row 1 1 1 16 16 + Icon Row RESET STATE 000 Table 24. N-LINE INVERSION NW3 NW2 NW1 NW0 DESCRIPTION 0 0 0 0 0-Line Inversion (Frame Inversion) 0 0 0 1 2-Line Inversion 0 0 1 0 3-Line Inversion 0 0 1 1 4-Line Inversion : : : : : 1 1 1 0 15-Line Inversion 1 1 1 1 16-Line Inversion 44/66 RESET STATE 0000 STE2004 Figure 55. I2C Interface Interconnection in Master/ Slave Mode STE2004 RES SCL STE2004 SDAOUT SDAIN RES SCL SDAOUT SDAIN LR0214 NOTE: MASTER and SLAVE I2C AADDRESS MUST BE DIFFERENT RES SCL SDA Figure 56. I3-lines SPI & 3-lines Serial Interfaces Interconnection in Master Slave Mode STE2004 RES CS SCLK SDIN SDOUT STE2004 RES CS SCLK SDIN SDOUT LR0215 RES MASTER SCLK CS SD SLAVE CS Figure 57. 4-lines SPI Interface Interconnection in Master Slave Mode STE2004 RES CS D/C SCLK SDIN STE2004 SDOUT RES D/C CS SCLK SDIN SDOUT LR0216 RES MASTER D/C CS SCLK SD SLAVE CS 45/66 STE2004 Figure 58. 8080-series & 68000-series Interface Interconnection in Master Slave Mode STE2004 RES CS D/C RW-RD E-WR STE2004 D7-D0 RES D/C CS RW-RD E-WR D7-D0 LR0217 8 LINES 8 LINES RES MASTER D/C CS RW-RD E-WR D7-D0 SLAVE CS Figure 59. Host Processor Interconnection with I2C Interface VSS TEST_MODE STE2004 µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK -SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX 46/66 ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VSSAUX VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX LR0110 STE2004 Figure 60. Host Processor Interconnection with 4-line SPI Interface VSS TEST_MODE STE2004 µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VDD1 VSSAUX VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0111 Figure 61. Host Processor Interconnection with 3-line SPI Interface VSS TEST_MODE STE2004 µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VSSAUX VDD1 VSSAUX VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0112 47/66 STE2004 Figure 62. Host Processor Interconnection with 3-line Serial Interface VSS TEST_MODE STE2004 µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VDD1 VDD1 VSSAUX VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0113 Figure 63. Host Processor Interconnection with 8080-series Parallel Interface VSS TEST_MODE STE2004 µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VSSAUX VSSAUX VDD1 VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0114 48/66 STE2004 Figure 64. Host Processor Interconnection with 6800 VSS TEST_MODE STE2004 µP VSSAUX D0 D1 D2 D3 D4 D5 D6 D7 SCLK-SCL SDOUT SDIN-SDAIN SDAOUT VSSAUX E - WR R/W - RD D/C CS RES VDD2 VDD1 ICON SEL1 SEL2 SEL3 EXT_SET M/S SA0 SA1 VSSAUX TEST VREF ANALOG VDD DIGITAL VDD VDD1 / VSSAUX VDD1 VSSAUX VDD1 VDD1 / VSSAUX VDD1 VDD1 / VSSAUX VDD1 / VSSAUX VSENSE_SLAVE OSC_IN FR_IN VDD1_AUX LR0115 49/66 STE2004 Figure 65. Application Schematic using the Internal LCD Voltage Generator and two separate supplies I/O VDD2 VDD2 VDD1 1µF VSS VDD1 32 1µF VSS 102 VLCDSENSE 33 65 x 102 DISPLAY 1µF VLCD Figure 66. Application Schematic using the Internal LCD Voltage Generator and a single supply I/O VDD VDD2 32 VDD1 1µF VSS VSS 102 VLCDSENSE 33 1µF VLCD 50/66 65 x 102 DISPLAY STE2004 Figure 67. Power-ON timing diagram Tvdd Tw(res) Tlogic(res) VDD2 VDD1 RES CS SCLK SDIN D/C E R/W D0 - D7 HOST D0 - D7 DRIVER Hi-Z SCL- SDAIN SDOUT SDA OUT Hi-Z OSCIN, FR_IN (HOST) OSC OUT, FR_OUT (DRIVER) RESET POWER ON BOOSTER Acceptance INTERNAL OFF RESET Time LR0208 51/66 STE2004 Figure 68. Power-OFF timing diagram TVDD VDD2 VDD1 RES CLK-SCL SDIN-SDAIN D/C E CS R/W D0 - D7 HOST D0 - D7 DRIVER Hi-Z SDOUT SDA-OUT Hi-Z OSCIN (HOST) OSC OUT FR_OUT (DRIVER) FR_IN RESET TABLE LOADED LR0207 52/66 STE2004 Figure 69. Initialization with built-in Booster SETUP NORMAL DISPLAY MODE CONFIGURATION SET Driver in Power Down(PD=1) SET Driver in Normal Display Mode (PE=0) SET Operative Voltage for Normal Display Operation ( Vop[6:0] - PRS[1;0]) SET Bias Raio for Normal Display Operation (BS[2:0]) SET Temperature Compensation for Normal Display Operation (T[2:0] or TC[1:0]) SET Multiplexing Rate M[1:0) SET Charge Pump for Normal Display Operation (CP[1:0]) Switch "ON" Booster and Display Control Logic (PD=0) END OF NORMAL DISPLAY MODE CONFIG. LR0218 53/66 STE2004 Figure 70. DATA RAM to display Mapping DISPLAY DATA RAM GLASS TOP VIEW bank 0 bank 1 DISPLAY DATA RAM = "1" DISPLAY DATA RAM = "0" bank 2 LCD bank 3 bank 7 bank 8 ICOR ROW D00IN1155 Table 25. Test Pin Configuration 54/66 Test Pin Pin Configuration TEST_VREF OPEN TEST_MODE GND STE2004 Table 26. Absolute Maximum Ratings Symbol Parameter Value Unit - 0.5 to + 5 V VDD1 Supply Voltage Range VDD2 Supply Voltage Range - 0.5 to + 7 V VLCD LCD Supply Voltage Range - 0.5 to + 15 V ISS Supply Current Vi Input Voltage (all input pads) - 50 to +50 mA -0.5 to VDD1 + 0.5 V Iin DC Input Current - 10 to + 10 mA Iout DC Output Current - 10 to + 10 mA Ptot Total Power Dissipation (Tj = 85°C) 300 mW Po Power Dissipation per Output 30 mW Tj Operating Junction Temperature -40 to + 85 °C Storage Temperature - 65 to 150 °C Tstg Table 27. Electrical Characteristics DC OPERATION (VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit Supply Voltages VDD1 Supply Voltage VDD2 Supply Voltage VLCD I(VDD1) I(VDD2) I(VDD1,2) I(VLDCIN) Note 9 1.7 3.6 V VDD2 V LCD Voltage Internally generated 1.75 4.5 V LCD Supply Voltage LCD Voltage Supplied externally 4.5 14.5 V LCD Supply Voltage Internally generated; note 1 4.5 14.5 V Supply Current VDD1 = 2.8V; VLCD = 10V; fsclk = 0;Tamb = 25°C; Parallel Port; note 3,8. 15 20 30 µA Supply Current Write Mode VDD2 = 2.8V; VLCD = 10V; fsclk = 1Mhz;Tamb = 25°C; OSC_IN=GND; Note8. 100 120 µA Voltage Generator Supply Current with VOP = 0 and PRS = [0:0] with external VLCD 1 µA Total Supply Current External LCD Supply Voltage Current VDD2 = 2.8V; VLCD = 10V; fsclk=0; Tamb = 25°C; no display load; 5x charge pump; note 2,3,6, 60 100 µA VDD2 = 2.8V; VLCD = 10V; 5x charge pump; fsclk = 0; Tamb = 25°C; no display load; note 2, 3, 6 80 130 µA Power down Mode with internal or External VLCD. Note 4 3 10 µA 23 µA VDD =2.8V; VLCD =10V;no display load; fsclk = 0; Tamb = 25°C; note 3. Logic Outputs V0H High logic Level Output Voltage IOH=-500µA 0.8VDD1 VDD1 V VOL Low logic Level Output Voltage IOL=+500µA VSS 0.2VDD1 V 55/66 STE2004 Table 23 Electrical Characteristics (continued) DC OPERATION (continued) (VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit VSS 0.3 VDD1 V 0.7 VDD1 VDD2 V -1 1 µA Logic Inputs VIL Logic LOW voltage level VIH Logic HIGH Voltage Level Iin Input Current Vin = VSS1 or VDD1 Logic Inputs/Outputs VIL Logic LOW voltage level VSS 0.3 VDD1 V VIH Logic HIGH Voltage Level 0.7 VDD1 VDD1 + 0.5 V 3K 5K kohm 5K Column and Row Driver Rrow ROW Output Resistance Rcol Column Output resistance Vcol Column Bias voltage accuracy Vrow Row Bias voltage accuracy No load 10K kohm -50 +50 mV -50 +50 mV -1.8 +1.8 % LCD Supply Voltage VLCD LCD Supply Voltage accuracy; Internally generated TC0 Temperature coefficient VDD = 2.8V; VLCD = 10V; fsclk=0; Tamb=25 C; no display load;note 2, 3, 6 & 7, VOP=69h, PRS=2Hex -0.0· 10-3 1/°C TC1 -0.35 · 10-3 1/°C TC2 -0.7 · 10-3 1/°C TC3 -1.05· 10-3 1/°C TC4 -1.4 · 10-3 1/°C TC5 -1.75· 10-3 1/°C TC6 -2.1 · 10-3 1/°C TC7 -2.3· 10-3 1/°C Notes: 1. 2. 3. 4. 5. 6. The maximum possible VLCD voltage that can be generated is dependent on voltage, temperature and (display) load. Internal clock When fsclk = 0 there is no interface clock. Power-down mode. During power-down all static currents are switched-off. If external VLCD, the display load current is not transmitted to IDD Tolerance depends on the temperature; (typically zero at Tamb = 27°C), maximum tolerance values are measured at the temperature range limit. 7. For TC0 to TC7 8. Data Byte Writing Mode 9. VDD1<=VDD2 56/66 STE2004 Table 23 Electrical Characteristics (continued) AC OPERATION (VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit 63 72 81 kHz 100 kHz INTERNAL OSCILLATOR FOSC Internal Oscillator frequency FEXT External Oscillator frequency FFRAME Frame frequency Tw(RES) RES LOW pulse width TLOGIC VDD = 2.8V; Tamb = -20 to +70 °C 20 fosc or fext = 72 kHz; note 1 75 Hz µs 5 Reset Pulse Rejection 1 µs Internal Logic Reset Time 5 µs (RES) TVDD VDD1 vs. VDD2 Delay µs 0 Figure 71. RESET timing diagram Tw(res) Tlogic(res) VDD2 VDD1 RES INPUTS I/O (HOST) I/O (DRIVER) Hi-Z INTERFACE OUTPUT Hi-Z OSCIN FR_IN (HOST) OSC OUT FR_OUT (DRIVER) RESET TABLE LOADED LR0209 57/66 STE2004 Table 23 Electrical Characteristics (continued) AC OPERATION (continued) (VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit 2 I C BUS INTERFACE (See note 4, 7) FSCL SCL Clock Frequency Fast Mode DC 400 kHz High Speed Mode; Cb=100pF (max);note 6;VDD1=2 DC 3.4 MHz High Speed Mode; Cb=400pF (max);note 6; VDD1=2 DC 1.7 MHz 400 KHz Fast Mode; note 6; VDD1=1.7V TSU;STA Set-up time (repeated) START Condition Note 2,3, Cb = 100pF 160 ns THD;STA Hold Time (repeated) START Condition Note 2,3, Cb = 100pF 160 ns TLOW Low Period of SCLH Clock Note 2,3, Cb = 100pF 160 ns THIGH HIGH Period of SCLH Clock Note 2,3, Cb = 100pF 160 ns TSU;DAT Data set-up Time Note 2,3, Cb = 100pF 60 ns THD;DAT Data Hold Time Note 2,3, Cb = 100pF 10 ns Tr;CL Rise Time of SCLH Signal Note 2,3, Cb = 100pF 10 ns Tr;CL1 Rise Time of SCLH Signal after a repeated START condition and aftyer an Acknowledge bit Note 2,3, Cb = 100pF 10 ns Tf;CL Fall time of SCLH signal Note 2,3, Cb = 100pF 10 ns Tr;DA Rise time of SCLH signal Note 2,3, Cb = 100pF 10 Tf;DA Fall time of SDAH signal Note 2,3, Cb = 100pF 10 Tr;DA Rise Time of SDAH signal Note 2,3, Cb = 400pF 20 Tf;DA Fall Time of SDAH signal Note 2,3, Cb = 400pF 20 TSU;STO Setup Time for STOP condition Note 2,3, Cb = 100pF 160 Cb Capacitive Load for SDAH and SCLH Cb Capacitive Load for SDAH +SDA line and SCLH +SCL Line ns 80 ns Sr Sr P trDA SDAH tHD;DAT tSU;STA tSU;DAT tHD;STA SCLH tfCL trCL trCL1 tHIGH tLOW = MCS current source pull-up = Rp resistor pull-up 58/66 (1) tLOW tHIGH 160 ns 400 pF 400 pF ns 100 Figure 72. I2C-bus timings tfDA ns trCL1 (1) LR0093 STE2004 Table 23 Electrical Characteristics (continued) AC OPERATION (continued) (VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit PARALLEL INTERFACE TCYC System Cycle Time TCLW VDD1 = 1.7V; Read & Write 125 ns Control Low Pulse Width (WR) 20 ns TCHW Control High Pulse Width (WR) 75 ns TCLR Control Low Pulse Width (RD) 40 ns TCHR Control High Pulse Width (RD) 55 ns TEWHW Enable High Pulse Width (Write) 60 ns TEWLW Enable Low Pulse Width (Write) 60 ns TEWHR Enable High Pulse Width (Read) 60 ns TEWLR Enable Low Pulse Width (Read) 60 ns TSU(A) Address Set-up Time 10 ns TH(A) Address Hold Time 10 ns TSU1 Data Set-Up Time 30 ns 30 TH1 Data Hold Time TSU2 Read Access Time TH2 Output Disable Time 0 ns 40 ns 30 ns Figure 73. 68000-series Parallel interface timing D/C R/W tSU(A) tH(A) CS tCYC tEWHR, tEWHW E tEWLR, tEWLW tSU1 tH1 D0 to D7 (Write) tSU2 tH2 D0 to D7 (Read) Figure 74. 8080-series parallel Interface timing D/C tSU(A) tH (A) CS tCYC tCLR , tCLW WR, RD tCHR , tCHW tSU1 tH1 D0 to D7 (Write) tSU2 tH2 D0 to D7 (Read) 59/66 STE2004 Table 23 Electrical Characteristics (continued) AC OPERATION (continued) (VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit SERIAL INTERFACE FSCLK Clock Frequency 8 MHz TCYC Clock Cycle SCLK 125 ns TPWH1 SCLK pulse width HIGH 60 ns TPWL1 SCLK Pulse width LOW TS2 CS setup time VDD1 = 1.7V; VDD1 = 1.7V 60 ns 40 ns TH2 CS hold time 50 ns TPWH2 CS minimum high time 50 ns TS3 SD/C setup time 30 ns TH3 SD/C hold time 30 ns TS4 SDIN setup time 30 ns TH4 SDIN hold time 40 ns TS5 SDOUT Access Time 30 ns TH5 SDOUT Disable Time vs. SCLK 0 20 ns TH6 SDOUT Disable Time vs. CS 0 20 ns Figure 75. Serial interface Timing tS2 tH2 tPWH2 CS tH3 tS3 D/C tCYC tPWL1 tWH1 tS2 SCLK tS4 tH4 SDIN tS5 tH5 tH6 SOUT LR0096 f osc Notes: 1. F frame = ---------- 960 2. All timing values are valid within the operating supply voltage and ambient temperature ranges and referenced to VIL and VIH with an input voltage swing of VSS to VDD 3. Cb is the capacitive load for each bus line. 4. For bus line loads Cb between 100 and 400pF the timing parameters must be linearly interpolated 5. CVLCD is the filtering CApacitor on VLCD 6. Trise and Tfall (30%-70%) -10ns 7. I2C bus AC Characteristics are tested by correlation 60/66 STE2004 Table 28. Pad Coordinates Table 28. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) NAME PAD X (µm) Y(µm) R5 1 -2925.0 -596.5 C25 32 -1375.0 -596.5 R4 2 -2875.0 -596.5 C26 33 -1325.0 -596.5 R3 3 -2825.0 -596.5 C27 34 -1275.0 -596.5 R2 4 -2775.0 -596.5 C28 35 -1225.0 -596.5 R1 5 -2725.0 -596.5 C29 36 -1175.0 -596.5 R0 6 -2675.0 -596.5 C30 37 -1125.0 -596.5 C0 7 -2625.0 -596.5 C31 38 -1075.0 -596.5 C1 8 -2575.0 -596.5 C32 39 -1025.0 -596.5 C2 9 -2525.0 -596.5 C33 40 -975.0 -596.5 C3 10 -2475.0 -596.5 C34 41 -925.0 -596.5 C4 11 -2425.0 -596.5 C35 42 -875.0 -596.5 C5 12 -2375.0 -596.5 C36 43 -825.0 -596.5 C6 13 -2325.0 -596.5 C37 44 -775.0 -596.5 C7 14 -2275.0 -596.5 C38 45 -725.0 -596.5 C8 15 -2225.0 -596.5 C39 46 -675.0 -596.5 C9 16 -2175.0 -596.5 C40 47 -625.0 -596.5 C10 17 -2125.0 -596.5 C41 48 -575.0 -596.5 C11 18 -2075.0 -596.5 C42 49 -525.0 -596.5 C12 19 -2025.0 -596.5 C43 50 -475.0 -596.5 C13 20 -1975.0 -596.5 C44 51 -425.0 -596.5 C14 21 -1925.0 -596.5 C45 52 -375.0 -596.5 C15 22 -1875.0 -596.5 C46 53 -325.0 -596.5 C16 23 -1825.0 -596.5 C47 54 -275.0 -596.5 C17 24 -1775.0 -596.5 C48 55 -225.0 -596.5 C18 25 -1725.0 -596.5 C49 56 -175.0 -596.5 C19 26 -1675.0 -596.5 C50 57 -125.0 -596.5 C20 27 -1625.0 -596.5 C51 58 125.0 -596.5 C21 28 -1575.0 -596.5 C52 59 175.0 -596.5 C22 29 -1525.0 -596.5 C53 60 225.0 -596.5 C23 30 -1475.0 -596.5 C54 61 275.0 -596.5 C24 31 -1425.0 -596.5 C55 62 325.0 -596.5 61/66 STE2004 Table 28. Pad Coordinates (continued) Table 28. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) NAME PAD X (µm) Y(µm) C56 63 375.0 -596.5 C87 94 1925.0 -596.5 C57 64 425.0 -596.5 C88 95 1975.0 -596.5 C58 65 475.0 -596.5 C89 96 2025.0 -596.5 C59 66 525.0 -596.5 C90 97 2075.0 -596.5 C60 67 575.0 -596.5 C91 98 2125.0 -596.5 C61 68 625.0 -596.5 C92 99 2175.0 -596.5 C62 69 675.0 -596.5 C93 100 2225.0 -596.5 C63 70 725.0 -596.5 C94 101 2275.0 -596.5 C64 71 775.0 -596.5 C95 102 2325.0 -596.5 C65 72 825.0 -596.5 C96 103 2375.0 -596.5 C66 73 875.0 -596.5 C97 104 2425.0 -596.5 C67 74 925.0 -596.5 C98 105 2475.0 -596.5 C68 75 975.0 -596.5 C99 106 2525.0 -596.5 C69 76 1025.0 -596.5 C100 107 2575.0 -596.5 C70 77 1075.0 -596.5 C101 108 2625.0 -596.5 C71 78 1125.0 -596.5 R32 109 2675.0 -596.5 C72 79 1175.0 -596.5 R33 110 2725.0 -596.5 C73 80 1225.0 -596.5 R34 111 2775.0 -596.5 C74 81 1275.0 -596.5 R35 112 2825.0 -596.5 C75 82 1325.0 -596.5 R36 113 2875.0 -596.5 C76 83 1375.0 -596.5 R37 114 2925.0 -596.5 C77 84 1425.0 -596.5 R38 115 3086.5 -525.0 C78 85 1475.0 -596.5 R39 116 3086.5 -475.0 C79 86 1525.0 -596.5 R40 117 3086.5 -425.0 C80 87 1575.0 -596.5 R41 118 3086.5 -375.0 C81 88 1625.0 -596.5 R42 119 3086.5 -325.0 C82 89 1675.0 -596.5 R43 120 3086.5 -275.0 C83 90 1725.0 -596.5 R44 121 3086.5 -225.0 C84 91 1775.0 -596.5 R45 122 3086.5 -175.0 C85 92 1825.0 -596.5 R46 123 3086.5 -125.0 C86 93 1875.0 -596.5 R47 124 3086.5 -75.0 62/66 STE2004 Table 28. Pad Coordinates (continued) Table 28. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) NAME PAD X (µm) Y(µm) R48 125 3086.5 -25.0 VDD1 156 1475.0 596.5 R49 126 3086.5 25.0 VDD1 157 1425.0 596.5 R50 127 3086.5 75.0 VDD1 158 1375.0 596.5 R51 128 3086.5 125.0 VDD1 159 1325.0 596.5 R52 129 3086.5 175.0 VDD1 160 1275.0 596.5 R53 130 3086.5 225.0 VDD1 161 1225.0 596.5 R54 131 3086.5 275.0 VDD1 162 1175.0 596.5 R55 132 3086.5 325.0 VDD1 163 1125.0 596.5 R56 133 3086.5 375.0 VDD2 164 1075.0 596.5 R57 134 3086.5 425.0 VDD2 165 1025.0 596.5 R58 135 3086.5 475.0 VDD2 166 975.0 596.5 R59 136 3086.5 525.0 VDD2 167 925.0 596.5 R60 137 2925.0 596.5 VDD2 168 875.0 596.5 R61 138 2875.0 596.5 VDD2 169 825.0 596.5 R62 139 2825.0 596.5 VDD2 170 775.0 596.5 R63 140 2775.0 596.5 VDD2 171 725.0 596.5 R64-ICON 141 2725.0 596.5 RES 172 375.0 596.5 VDD1_AUX 142 2475.0 596.5 CS 173 275.0 596.5 FR_IN 143 2425.0 596.5 D/C 174 175.0 596.5 OSC_IN 144 2375.0 596.5 R/W - RD 175 75.0 596.5 VSENSE_SLAVE 145 2325.0 596.5 E - WR 176 -25.0 596.5 TEST_VREF 146 1975.0 596.5 VSSAUX 177 -75.0 596.5 VSSAUX 147 1925.0 596.5 SDAOUT 178 -175.0 596.5 SA1 148 1875.0 596.5 SDIN-SDAIN 179 -225.0 596.5 SA0 149 1825.0 596.5 SDOUT 180 -275.0 596.5 M/S 150 1775.0 596.5 SCLK-SCL 181 -375.0 596.5 EXT_SET 151 1725.0 596.5 D7 182 -425.0 596.5 SEL3 152 1675.0 596.5 D6 183 -475.0 596.5 SEL2 153 1625.0 596.5 D5 184 -525.0 596.5 SEL1 154 1575.0 596.5 D4 185 -575.0 596.5 ICON 155 1525.0 596.5 D3 186 -625.0 596.5 63/66 STE2004 Table 28. Pad Coordinates (continued) Table 28. Pad Coordinates (continued) NAME PAD X (µm) Y(µm) R26 217 -3086.5 475.0 D2 187 -675.0 596.5 NAME PAD X (µm) Y(µm) D1 188 -725.0 596.5 R25 218 -3086.5 425.0 D0 189 -775.0 596.5 R24 219 -3086.5 375.0 VSSAUX 190 -825.0 596.5 R23 220 -3086.5 325.0 TEST_MODE 191 -1225.0 596.5 R22 221 -3086.5 275.0 VSS 192 -1275.0 596.5 R21 222 -3086.5 225.0 VSS 193 -1325.0 596.5 R20 223 -3086.5 175.0 VSS 194 -1375.0 596.5 R19 224 -3086.5 125.0 VSS 195 -1425.0 596.5 R18 225 -3086.5 75.0 VSS 196 -1475.0 596.5 R17 226 -3086.5 25.0 VSS 197 -1525.0 596.5 R16 227 -3086.5 -25.0 VSS 198 -1575.0 596.5 R15 228 -3086.5 -75.0 VSS 199 -1625.0 596.5 R14 229 -3086.5 -125.0 VSS 200 -1675.0 596.5 R13 230 -3086.5 -175.0 VSS 201 -1725.0 596.5 R12 231 -3086.5 -225.0 VSS 202 -1775.0 596.5 R11 232 -3086.5 -275.0 VSS 203 -1825.0 596.5 R10 233 -3086.5 -325.0 VLCDSENSE 204 -2075.0 596.5 R9 234 -3086.5 -375.0 VLCD 205 -2125.0 596.5 R8 235 -3086.5 -425.0 VLCD 206 -2175.0 596.5 R7 236 -3086.5 -475.0 VLCD 207 -2225.0 596.5 R6 237 -3086.5 -525.0 VLCD 208 -2275.0 596.5 VLCD 209 -2325.0 596.5 OSC_OUT 210 -2475.0 596.5 FR_OUT 211 -2525.0 596.5 R31 212 -2775.0 596.5 MARKS X Y R30 213 -2825.0 596.5 mark1 -3089.5 -599.5 R29 214 -2875.0 596.5 mark2 3089.5 -599.5 R28 215 -2925.0 596.5 mark3 -2400.0 599.5 R27 216 -3086.5 525.0 mark4 538.1 599.5 64/66 Table 29. Alignment marks coordinates STE2004 Figure 76. Alignment marks dimensions Table 30. Bumps Bump Number Bumps Size 39 µm Dimensions 30µm X 98 µm X 17.5 Pad Size 43µm X 107µm Pad Pitch 50µm Spacing between Bumps 20µm 94 µm Table 31. Die Mechanical Dimensions Die Size (X x Y) 6.42mm x 1.46mm Wafers Thickness 500µm Table 32. Revision History Date Revision Description of Changes May 2004 3 Moved the value of FSCLK parameter from Min. to Max. on the page 60/ 66. July 2004 4 Inserted Table 24 -N-Line Inversion in the page 44/66 65/66 STE2004 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 66/66