s ICs for Consumer Electronics ADC with Built in Antialiasing filter and Clock generation UnitS ABACUS SDA 9206 Data Sheet 1999-02-10 Edition 1999-02-10 This edition was realized using the software system FrameMaker Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation, Balanstraße 73, 81541 München © Siemens AG 1999. All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. ICs for Consumer Electronics ADC with Built in Antialiasing filter and Clock generation UnitS ABACUS SDA 9206 Data Sheet 1999-02-10 SDA 9206 Revision History: Current Version: 1999-02-10 Previous Version: Page Page (in previous (in current Version) Version) Subjects (major changes since last revision) 21 Update of Table 2 concerning Straight Binary 21 Data Classification Maximum Ratings Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Recommended Operating Conditions Under this conditions the functions given in the circuit description are fulfilled. Nominal conditions specify mean values expected over the production spread and are the proposed values for interface and application. If not stated otherwise, nominal values will apply at TA=25°C and the nominal supply voltage. Characteristics The listed characteristics are ensured over the operating range of the integrated circuit. Edition 1999-02-10 Published by Siemens AG, Semiconductor Group Copyright Siemens AG 1999. All rights reserved. Terms of delivery and right to change design reserved. SDA 9206 Table of Contents Page 1 1.1 1.2 1.3 1.4 1.5 1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Internal Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A/D Converter for YUV Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Signal Amplification, Prefiltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Decimation Filters for YUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Output Formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Coding for Straight Binary / Two’s Complement Mode . . . . . . . . . . Clock Sync Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Horizontal PLL (HPLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vertical Sync Processing (only available for 1fh mode) . . . . . . . . . . . . . . . . Pulse Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Miscellaneous Circuit Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C-Bus Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C-Bus Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C-Bus Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 3.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Characteristics (Assuming Recommended Operating Conditions) . . . . . . . 47 4 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 5.1 5.2 5.3 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Diagram Data Input/Output Referenced to the Clock CLK1 . . . . . . . Timing Diagram Clock Skew CLK2 - CLK1 . . . . . . . . . . . . . . . . . . . . . . . . . Programmable Data Output Delay: DAT_OUT: Pins PAQ7...0, PBQ7...0, BLN, HS, H1I1, H2I2 and VS . . . . . . 6 15 15 15 15 16 16 18 20 21 21 23 25 26 27 27 27 28 29 42 52 52 52 53 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Semiconductor Group 5 1999-02-10 SDA 9206 ADC with Built in Antialiasing filter and Clock generation UnitS ABACUS Preliminary Data 1 Overview 1.1 Features • • • • • • • • • • • • • • • • • • CMOS Three equivalent CMOS A/D converters on chip 30 MHz sampling rate 8-Bit resolution No external sample & hold required P-MQFP-64-3 Internal clamping circuits for each of the ADCs Internal amplification of input signals can be set by I2C Bus Internal pre-filtering of analog input signals High performance decimation filters Two data sampling modes (4:2:2 and 4:1:1) 3 output data interfaces - CCIR 656 interface (8 wires) - Parallel data interface (2 x 8 wires) - Quasi Parallel data interface (8 + 4 wires) Overflow and underflow I2C status bits On-chip sync and clock generation Separate SYNC input with clamping for sync and clock generation (max. line frequency of SYNC input: 38 kHz) positive and negative polarity of SYNC signal (switchable by I2C Bus) Lock-in behavior can be set via I2C Bus Frequency generator function possible with digitally adjustable frequency Clock generation for single and double line input frequencies supported (1fh / 2fh mode) Vertical noise suppression and 50/60 Hz detection (for 1fh mode only) Type Ordering Code Package SDA 9206 Q67101-H5185-A704 P-MQFP-64-3 Semiconductor Group 6 1999-02-10 SDA 9206 • • • • I2C-Bus interface P-MQFP-64-3 5 V supply voltage for input signals 3.3 V or 5 V supply voltage for output signals 1.2 General Description The SDA 9206 is a single monolithic IC containing three separate 8-Bit A/D converters for video (YUV) applications and a clock sync generator which is delivering the sample clock for the A/D converters. It utilizes an advanced VLSI 0.5 µm CMOS process providing 30 MHz sampling rates at 8-Bits. The YUV processing consists of following functional blocks: • • • • • Analog input buffers and clamping circuits Three 30 MHz A/D converters Digital decimation filters Delay compensation in Y-path Output formatter and buffer The clock sync generator consists essentially of the following functional blocks: • Analog clamping • 7-Bit A/D converter • Sync processor with digital horizontal PLL, vertical sync processor and pulse generator • Clock generator with discrete timing oscillator, D/A converter, analog PLL and divider, as well as a crystal oscillator Semiconductor Group 7 1999-02-10 SDA 9206 Pin Configuration X1 X2 V DDDTO V DD PBQ0 PBQ1 PBQ2 PBQ3 PBQ4 PBQ5 PBQ6 PBQ7 V SS ADR0 SDL SDA 1.3 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 49 31 50 30 51 29 52 28 53 27 54 26 55 25 56 SDA 9206 24 57 23 58 22 59 21 60 20 61 19 62 18 63 64 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VADDY V REFHY AINY V REFLY VAGNDY VADDU V REFHU AINU V REFLU VAGNDU V ADDV V REFHV AINV V REFLV VAGNDV RESIN VSSDTO V DDQ VS CLK2 CLK1 HS VSSQ TEST EXSYN VAGNDPA VADDPA VAGNDC V REFLC SYNC V REFHC VADDC V DDQ PAQ0 PAQ1 PAQ2 PAQ3 PAQ4 PAQ5 PAQ6 PAQ7 V SSQ V SS V DD H2I2 BLN RESOUTN H1I1 UEP10457 Figure 1 Semiconductor Group 8 1999-02-10 SDA 9206 1.4 Pin Description Pin No. Symbol Type Description 22, 36 VSS S Supply ground (VSS) for digital parts 21, 45 VDD S Supply voltage (VDD) for digital parts 23, 55 VSSQ S Supply ground for output stages and input stages 32, 50 VDDQ S Supply voltage for output stages and input stages (3.3 V / 5 V) 1 VADDY S Analog positive supply voltage of ADC AINY (5 V) 2 VREFHY 3 AINY 4 VREFLY 5 VAGNDY S Analog ground of ADC AINY 6 VADDU S Analog positive supply voltage of ADC AINU (5 V) 7 VREFHU 8 AINU 9 VREFLU 10 VAGNDU S Analog ground of ADC AINU 11 VADDV S Analog positive supply voltage of ADC AINV (5 V) 12 VREFHV 13 AINV 14 VREFLV 15 VAGNDV S Analog ground of ADC AINV 16 RESIN I/TTL/pu Reset input signal: active low 17 H1I1 Q/TTL Pin function defined by I2C Bus: Line frequent pulse output or programmable digital control output 18 RESOUTN Q/TTL Reset output signal: active low; reset for other ICs 19 BLN Blanking signal output, high level indicates active video line Semiconductor Group Reference voltage high of ADC AINY (4.2 V) I/ana Analog voltage input of ADC AINY input range selectable via I2C Bus (subaddress 11H, YAMP) Reference voltage low of ADC AINY (2.2 V) Reference voltage high of ADC AINU (4.2 V) I/ana Analog voltage input of ADC AINU input range selectable via I2C Bus (subaddress 12H, UAMP) Reference voltage low of ADC AINU (2.2 V) Reference voltage high of ADC AINV (4.2 V) I/ana Analog voltage input of ADC AINV input range selectable via I2C Bus (subaddress 12H, VAMP) Reference voltage low of ADC AINV (2.2 V) Q/TTL 9 1999-02-10 SDA 9206 1.4 Pin Description (cont’d) Pin No. Symbol Type Description 20 H2I2 Q/TTL Pin function defined by I2C Bus: Line frequent pulse output or programmable digital control output 24 ... 31 PAQ7 ... 0 Q/TTL Data output Port A (see Data Format) 33 SDA IQ I2C-Bus data line 34 SCL I I2C-Bus clock line 35 ADR0 I/TTL/pd I2C-Chip select 37 ... 44 PBQ7... 0 Q/TTL Data output port B (see Data Format) 46 VDDDTO S Positive supply voltage of DTO (5 V) 47 X2 Q/ana Crystal connection 48 X1 I/ana Crystal connection (clock input) 49 VSSDTO S Ground of DTO 51 VS Q/TTL Vertical sync pulse output 52 CLK2 Q/TTL Clock out: tristate / 6.75 / 13.5 / 27 MHz; selectable via I2C 53 CLK1 Q/TTL Clock out: tristate / 6.75 / 13.5 / 27 MHz; selectable via I2C 54 HS Q/TTL Horizontal sync pulse output 56 TEST I/TTL/pd Input signal for test mode selection (0 V: no test mode selected) Leave unconnected or connect to VSS 57 EXSYN I/TTL/pd Input signal for test mode selection (0 V: no test mode selected) Leave unconnected or connect to VSS 58 VAGNDPA Analog ground of analog PLL and DACs 59 VADDPA Analog positive supply voltage of analog PLL and DACs (5 V) 60 VAGNDC Analog ground of ADC SYNC 61 VREFLC Reference voltage low of ADC SYNC (2.2 V) 62 SYNC Semiconductor Group I/ana SYNC input Input range selectable via I2C Bus (subaddress 11H, SYNAMP) 10 1999-02-10 SDA 9206 1.4 Pin Description (cont’d) Pin No. Symbol 63 VREFHC Reference voltage high of ADC SYNC (4.2 V) 64 VADDC Analog positive supply voltage of ADC SYNC (5 V) S: supply, I: input, ana: analog, 1.5 Type Q: output, Description TTL: digital (TTL) pu: internal pullup-circuit, pd: internal pulldown-circuit Internal Pin Configuration Pin 2, 4, 7, 9, 12, 14, 61, 63 V REFHY , V REFLY , V REFHU , V REFLU , V REFHV , V REFLV , V REFLC , V REFHC PAD UES10549 Figure 2 Pin 17, 18, 19, 20, 24...31, 37...44, 51, 52, 53, 54 H1I1, RESOUTN, BLN, H2I2, PAQ7...0, PBQ7...0, VS, CLK2, CLK1, HS PAD UES10550 Figure 3 Semiconductor Group 11 1999-02-10 SDA 9206 Pin 16, 35, 56, 57 RESIN, ADR0, TEST, EXSYN 350 Ω PAD UES10551 Figure 4 Pin 33 SDA 350 Ω PAD UES10552 Figure 5 Pin 34 SCL 350 Ω PAD UES10553 Figure 6 Semiconductor Group 12 1999-02-10 SDA 9206 Pin 3, 8, 13, 62 AINY, AINU, AINV, SYNC 350 Ω PAD 350 Ω UES10554 Figure 7 Pin 47, 48 X2, X1 350 Ω PAD X2 350 Ω PAD X1 UES10555 Figure 8 Semiconductor Group 13 1999-02-10 SDA 9206 1.6 Block Diagram V AGND V ADD V REFHY AINY V REFLY V REFHU AINU V REFLU V REFHV AINV V REFLV V REFHC SYNC V REFLC Clamping Circuit Triple 8 Bit 30 MHz ADC V SS Decimator 2:1 Decimator Stage 1 2:1 Sync Processing V DD V SSQ Delay V DDQ 8 Delay Decimator Stage 2 2:1 Decimator Stage 3 2:1 Numerical Clock PLL Port A Output Formatter 8 Ι 2 C Bus Port B VS HS BLN CLK2 CLK1 H1I1 H2I2 RESOUTN RESIN V DDDTO V SSDTO X1 X2 V AGNDPA V ADDPA ADR0 SCL SDA UEB10456 Figure 9 Semiconductor Group 14 1999-02-10 SDA 9206 2 System Description 2.1 A/D Converter for YUV Inputs 2.1.1 Introduction The SDA 9206 implements 3 independent 8-Bit A/D converters. Maximum conversion rate is 30 MHz. 2.1.2 Input Signal Amplification, Prefiltering The amplification of the input signals can be adjusted via I2C Bus. An internal prefiltering of the analog input signals is implemented. The typ. frequency response of the analog antialiasing prefilter is shown in figure 10. UED10458 0 dB -10 -20 -30 -40 -50 -60 -70 10 0 5 10 1 5 MHz 10 2 Frequency Figure 10 Frequency Response of the Analog Antialiasing Prefilter Semiconductor Group 15 1999-02-10 SDA 9206 2.1.3 Clamping The analog pins AINY, AINU, AINV are switched simultaneously to on chip generated clamping levels by an on chip clamping pulse H2. Analog Channel Straight Binary Code Two’s Complement Code Components AINY 0001 0000 1001 0000 Y AINU, AINV 1000 0000 0000 0000 U, V The external clamping capacitance is loaded by on chip current sources during clamping. So loading time depends on the values of Cext cl . 2.1.4 Digital Decimation Filters for YUV The data rates of digital YUV signals are reduced in decimation filters following the A/D conversion. The overall performance of the decimation filters is tuned to the requirements for TV signals. In figure 11 the frequency response of the filter for the Y channel is shown. The input sampling rate is 27 MHz, the output sampling rate is 13.5 MHz. UED10459 10 dB Amplitude 0 -10 -20 -30 -40 -50 0 0.1 0.2 0.3 0.4 0.5 f / fS Figure 11 Magnitude Frequency Response of the Luminance Filter The Input Sampling Frequency fS is 27 MHz Semiconductor Group 16 1999-02-10 SDA 9206 The total frequency response of the decimator stages 1 and 2 of the UV channels for an input sampling rate of 27 MHz and an output sampling rate of 6.75 MHz is shown in figure 12. UED10460 Amplitude 10 dB 0 -10 -20 -30 -40 -50 0 0.1 0.2 0.3 0.4 0.5 f / fS Figure 12 Magnitude Frequency Response for Chroma Signals (Decimator Stages 1 and 2) The Input Sampling Frequency fS is 27 MHz Semiconductor Group 17 1999-02-10 SDA 9206 The frequency response of the decimator filter stage 3 of the UV channels for an input sampling rate of 6.75 MHz and an output sampling rate of 3.375 MHz is shown in figure 13. The decimator stage 3 is active for 4:1:1 mode and can also be activated for 4:2:2 mode by I2C Bus (control bit UV3FIL). UED10461 Amplitude 10 dB 0 -10 -20 -30 -40 -50 0 0.1 0.2 0.3 0.4 0.5 f / fS Figure 13 Frequency Response of the Chroma Decimator Stage 3 The Input Sampling Frequency fS is 6.75 MHz 2.2 Data Output Formatter Three output data formats can be selected via I2C Bus (control Bits FORMAT). One format corresponds to CCIR 656 (8-Bit bus at a data rate of 27 MHz), an other format makes available Y and UV data separately on 2 parallel 8-Bit buses for Y and UV at a data rate of 13.5 MHz each. The third format is a 12-Bit bus with 8 connections for Y and 4 connections for multiplexed UV data. Semiconductor Group 18 1999-02-10 SDA 9206 Output Quasiparallel Data Pin FORMAT = 10 or 11 (13.5 MHz) Parallel Data CCIR 656 FORMAT = 01 FORMAT = 00 (13.5 MHz) (27 MHz) PAQ7 Y07 Y17 Y27 Y37 Y07 Y17 U07 Y07 V07 Y17 PAQ6 Y06 Y16 Y26 Y36 Y06 Y16 U06 Y06 V06 Y16 PAQ5 Y05 Y15 Y25 Y35 Y05 Y15 U05 Y05 V05 Y15 PAQ4 Y04 Y14 Y24 Y34 Y04 Y14 U04 Y04 V04 Y14 PAQ3 Y03 Y13 Y23 Y33 Y03 Y13 U03 Y03 V03 Y13 PAQ2 Y02 Y12 Y22 Y32 Y02 Y12 U02 Y02 V02 Y12 PAQ1 Y01 Y11 Y21 Y31 Y01 Y11 U01 Y01 V01 Y11 PAQ0 Y00 Y10 Y20 Y30 Y00 Y10 U00 Y00 V00 Y10 PBQ7 U07 U05 U03 U01 U07 V07 Z Z Z Z PBQ6 U06 U04 U02 U00 U06 V06 Z Z Z Z PBQ5 V07 V05 V03 V01 U05 V05 Z Z Z Z PBQ4 V06 V04 V02 V00 U04 V04 Z Z Z Z PBQ3 Z Z Z Z U03 V03 Z Z Z Z PBQ2 Z Z Z Z U02 V02 Z Z Z Z PBQ1 Z Z Z Z U01 V01 Z Z Z Z PBQ0 Z Z Z Z U00 V00 Z Z Z Z XAB: X: signal component Z: Pin is in tristate mode. A: sample number B: bit number The BLN signal marks the active part of the video line (see figure 14). CLK1 BLN PAQ U0 PAQ, PBQ Y0 Y0 / U0 V0 Y1 Y1 / V0 UED10462 Figure 14 Semiconductor Group 19 1999-02-10 SDA 9206 2.2.1 Output Coding for Straight Binary / Two’s Complement Mode Straight binary or Two’s complement output coding is selectable for each separate signal component (Y and UV) via I2C-Bus control bits YCODE and UVCODE. For straight binary coding a special suppression of code 0 and code 255 is provided in output format mode according CCIR 656. Table 1 Output Coding Step AINY AINU, AINV OFL UFL Straight Two’s Bit Bit Binary Complement 7654 3210 7654 3210 < VCU, V - 1.0 V 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 VCU, V - 1.0 V 0 VCU, V - 0.992 V 0 VCU, V - 0.984 V 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 00 1 2 VCY - 0.125 V VCY - 0.117 V VCY - 0.109 V 0 0 0 0 0 0 0 1 0 1 0 0 0 0 01 0 • • • • • • • • • • • • • • VCU, V + 0.984 V VCU, V + 0.992 V VCU, V + 1.0 V VCU, V + 1.0 V 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 10 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 11 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 11 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 11 1 Underflow < VCY - 0.125 V 0 1 VCY + 1.859 V VCY + 1.867 V 254 VCY + 1.875 V 255 Overflow > VCY + 1.875 V > 253 VCY, VCU, V: ext. clamping level during clamping at Cext cl on channel AINY resp. AINU, AINV Table 1 is valid for VREFL = 2.2 V and VREFH = 4.2 V, xAMP = 0000 Semiconductor Group 20 1999-02-10 SDA 9206 Table 2 Output Coding in Case of CCIR 656 Format, FORMAT = 00 Step AINY AINU, AINV OFL UFL Straight Two’s Bit Bit Binary Complement 7654 3210 7654 3210 < VCU, V - 1.0 V 0 1 0000 0001 1000 0000 VCU, V - 1.0 V 0 VCU, V - 0.992 V 0 VCU, V - 0.984 V 0 0 0000 0001 1000 0000 0 0000 0001 1000 0001 2 VCY - 0.125 V VCY - 0.117 V VCY - 0.109 V 0 0000 0010 1000 0010 • • • • • • • • • • • • • • VCU, V + 0.984 V VCU, V + 0.992 V VCU, V + 1.0 V VCU, V + 1.0 V 0 0 1111 1101 0111 1101 0 0 1111 1110 0111 1110 0 0 1111 1110 0111 1111 1 0 1111 1110 0111 1111 Underflow < VCY - 0.125 V 0 1 VCY + 1.859 V VCY + 1.867 V 254 VCY + 1.875 V 255 Overflow > VCY + 1.875 V > 253 VCY, VCU,V: ext. clamping level during clamping at Cext cl on channel AINY resp. AINU, AINV Table 2 is valid for VREFL = 2.2 V and VREFH = 4.2 V, xAMP = 0000 2.3 Clock Sync Generation The clock sync generator is a phase locked loop that locks on a horizontal SYNC input signal and generates the clock signals as well as additional control output signals. 2.3.1 Horizontal PLL (HPLL) The input signal SYNC may be either a CVBS signal or a composite sync signal. The polarity of the SYNC signal can be both positive or negative (I2C-Bit SYPOL). The edges of the SYNC input pulses should not be steeper than 100 ns. The frequency of the SYNC signal can be of normal or double line frequency (I2C-Bit 2FH). The SYNC is clamped before A/D conversion. For DC-input signals clamping can be disabled (I2C-Bit CLOF). A/D conversion takes place with 7 bits and a nominal frequency of 27 MHz. The digital HPLL filters the signal with a cutoff frequency of 1 MHz (2 MHz for 2fh mode). If 1fh mode is used the sampling frequency is decimated to 13.5 MHz. Following the low pass filtering a black- and sync bottom- level measurement takes place in order to calculate a threshold value. By means of this value the phase difference between the HPLL output and the SYNC input pulse is determined. Using a digital PI filter an increment is calculated from this for the Discrete Timing Oscillator (DTO). It is possible Semiconductor Group 21 1999-02-10 SDA 9206 to adapt the nominal frequency of the DTO by means of 5 I2C-Bus bits (INC4...INC0) such shifting the center frequency according to the momentary standard used. For the different applications the following values of INC are allowed (values valid for a crystal frequency of 24.576 MHz): Application FH [Hz] 2FH YUV-ADCs INC PAL 15625 0 active 6 NTSC 15750 0 active 6 PAL (100 Hz/VGA) 31250 1 inactive 6 NTSC (120 Hz/VGA) 31500 1 inactive 6 ATV 32400 1 inactive 8 MUSE 33750 1 inactive 11 Macintosh 35000 1 inactive 14 VGA 38000 1 inactive 21 Note: A change of INC causes spontaneous changes of the generated clock frequencies! The DTO generates a saw-tooth with a frequency that is proportional to the increment. The saw-tooth is converted into a sinusoidal clock signal by means of a D/A converter and applied to an analog PLL which multiplies the frequency and minimizes residual jitter. By means of the I2C bits S1CL and S2CL the output frequency on pins CLK1 and CLK2 can be set. In this manner a clock is provided that is line-locked with the SYNC-input signal. The ratio of these clock frequencies to the horizontal frequency of SYNC depends only on the I2C-Bus bits S1CL, S2CL, HPLL and 2FH. For the different modes the following values of S1CL and S2CL are allowed: Mode YUV-ADC 2FH S1CL S2CL fCLK1 fCLK2 (MHz) (MHz) CCIR enabled 0 11 11 27 27 CCIR enabled 0 11 00 27 tristate 4:2:2, 4:1:1 enabled 0 11 11 27 27 4:2:2, 4:1:1 enabled 0 10 00 13.5 tristate VGA disabled 1 01 11 6.25 ... 8.75 25 ... 35 VGA disabled 1 10 11 12.5 ... 17.5 25 ... 35 The digital horizontal PLL supplies a noise-suppressed horizontal pulse. Semiconductor Group 22 1999-02-10 SDA 9206 During 1fh mode (2FH = 0) the digital HPLL also supplies a noise-suppressed vertical pulse obtained by digital integration of the main equalizing pulses. An integration time of 26.6 µs or 11.3 µs can be set by the I2C Bus. This functionality is switched off during 2fh mode (2FH = 1). 2.3.2 Vertical Sync Processing (only available for 1fh mode) Vertical sync processing consists of: • 625/525 line detection • vertical noise suppression The vertical pulses are obtained from the SYNC signal by integration. The 625/525 line detector measures the number of lines per field. By taking the average of the individual measurements with two up/down counters, the status bits ’FF’ ad ’FFGF’ are obtained. When vertical noise suppression is switched on (VOFF = 0), the vertical pulse obtained from the SYNC signal by integration is admitted only within a preset window (refer to timing diagram) and appears as a VS pulse. The width of the window can be set via the I2C Bus. In the temporary absence of vertical pulses in SYNC, a continuous VS can be generated by switching on a ’flywheel mode’ (SCHW = 1) providing a number of lines per field of 312.5 or 262.5 respectively. When interference to SYNC is heavy, missing vertical pulses can be supplemented by switching on the flywheel mode and vertical interference can be eliminated by switching on the noise suppression circuitry. Noise suppression and the flywheel mode can be enabled independently of each other. There is also the possibility of generating VS in the free-running mode. The VS pulses are then completely independent of the vertical sync pulse in SYNC. When FREE = 1 and SCHW = 1, a VS pulse is generated every 262.5 or 312.5 lines (VF = 1 or 0 respectively). When FREE = 1 and SCHW = 0, a VS pulse is generated every 279 or 339 lines (VF = 1 or 0 respectively). Free-running generation of VS occurs every 262 or 312 in the terminal mode (TERM = 1). Semiconductor Group 23 1999-02-10 SDA 9206 Non-Suppressed Vertical Sync from HPLL Interference Pulse xxx Line Number 249 289 298 299 300 (199) (200) (239) (240) 311 312 (249) (250) (261) (262) Vertical Sync Closes Window Window (VWIWI = 11) Window (VWIWI = 10) Window (VWIWI = 01) Window (VWIWI = 00) VS (noise-suppressed) Suppression of Interference Pulse not in Window Numbers in Brackets for 525 Lines per Frame UED10463 When missing Vertical Sync from HPLL: Line Number 312 313 339 1 272 (262) (279) (1) (242) VS SCHW = 0 Windows RC-Opening (Independent from WWW Bit) Numbers in Brackets for 525 Lines per Frame UED10464 Figure 15 Window for Vertical Pulse Noise Suppression Semiconductor Group 24 1999-02-10 SDA 9206 2.3.3 Pulse Generation The clock sync generator supplies the following pulses: • • • • HS VS BLN Two clamping pulses H1 and H2. H2 is also the internal clamping pulse of the YUV-ADCs. • The HS pulse is 16 13.5 MHz clock periods long and can be shifted by the I2C-Bus in increments of four 13.5 MHz clock periods. • For the VS pulse refer to vertical noise suppression. • With the BLN pulse the start time (high-to-low edge) and the stop time (low-to-high edge) can be set within a certain range of lines in increments of 13.5 MHz clock periods by I2C Bus. The timing of BLN does not change during the field blanking interval. • During the BLN pulse the Y-U-V output data are set to their clamping level. • For pulse H1 the start time (low-to-high edge) and stop time can be set in increments of two 13.5 MHz clock periods. • For pulse H2 the start time (low-to-high edge) and stop time can be set in increments of 13.5 MHz clock periods. The timing of the BLN, H1, H2, VS and HS pulses can be set by the costumer using the specified I2C-Bus bits. Figure 9 shows the ranges of those settings. Reference Time BURST SYNC approx. 2.6 µs HS HSON (-35.22 µ s ... 28.42 µ s) approx. 1.2 µs H1 H2 H1ON (-28.27 µ s ... 9.47 µ s) H1OF (-28.27 µ s ... 9.47 µ s) H2ON (-4.67 µ s ... 14.21 µ s) H2OF (-4.67 µ s ... 14.21 µ s) BON (-8.89 µ s ... 9.99 µ s) BOF (0.59 µ s ... 19.46 µ s) BLN UET10465 All times are given in relation to the Reference Time! All times are only valid for 2FH = 0. If 2FH = 1 all times have to be divided by two! Figure 16 I2C-Bus Programming Areas of Horizontal-Frequency Pulses Semiconductor Group 25 1999-02-10 SDA 9206 2.3.4 Miscellaneous Circuit Sections To suppress bottom flutter in VCR mode, the frequency of the clock can be ’hold’ by ’freezing’ the increment of the HPLL. The vertical-frequency ’freezing-time’ starts a number of lines (programmable by the I2C Bus) before the vertical pulse and then lasts for a number (programmable) of lines. The settings do not depend on I2C-Bit TV. This functionality is only available for the 1fh mode (2FH = 0). VS Line Number of Half Picture n-2 n n-1 1 Start 0...15 Lines before VS 15 14 13 12 3 2 2 3 4 5 n = Number of Lines in preceding Half Picture 1 0 Start Range over which Frequency Value is Frozen Stop 0 1 10 11 0...15 Lines Duration 12 13 14 15 (In this example the frequency value was frozen 13 lines before the VS pulse and for a duration of 11 lines.) UED10466 Figure 17 I2C-Bus Programming Area which Clock Frequency Value Generated by HPLL can be Frozen An active low reset signal for other chips is available at pin RESOUTN. It is activated when the chip supply voltage VDD is switched on or when voltage glitches occur on it. RESOUTN also is activated by pin RESIN. The RESOUTN pulse signal is not cancelled until the crystal oscillator resonates and in addition stretched by an internal circuit for approximately 127 lines (8 ms). Semiconductor Group 26 1999-02-10 SDA 9206 2.4 I2C Bus 2.4.1 I2C-Bus Address 1 0 1 1 0 0 B B: equal to the value set on pin ADR0 2.4.2 I2C-Bus Format Write: S 1 0 1 1 0 0 B 0 A Subaddress A Data Byte A A ***** P Read: S 1 0 1 1 0 0 B 1 A ··· Status Byte 0 A Status Byte 1 **** Byte n A Data Byte (n+1) A ***** A Data **** NA P Reading starts with status byte 0, followed by status byte 1 and then in succession by data byte n, data byte n+1..., where n is the last write address. Specification of a subaddress in reading mode is not possible. S: A: P: NA: Start condition Acknowledge Stop condition Not Acknowledge An automatic address increment function is implemented. After switching on the IC or RESIN = 0, all bits are set to defined states. Particularly: Register Default value Register Default value 00H 10H 0CH 00H 01H 40H 0DH 00H 02H 00H 0EH 00H 03H 00H 0FH 00H 04H 28H 10H 00H 05H 00H 11H 00H 06H 00H 12H 00H 07H 06H 13H 00H 08H 00H 14H 13H 09H 00H 15H 00H 0AH 00H 16H 00H 0BH 00H 17H 00H Semiconductor Group 27 1999-02-10 SDA 9206 2.4.3 I2C-Bus Commands Data Byte Subadd. D7 D6 D5 00H 0 UV3FIL 01H YD3 02H D2 D1 D0 FORMAT1 FORMAT0 UVCODE YCODE OENB OENA YD2 YD1 YD0 0 0 0 0 I2 I1 SELH2I2 SELH1I1 0 0 0 0 03H 0 0 0 0 CGSUP1 CGSUP0 VWIWI1 VWIWI0 04H 0 OEFB S1CL1 S1CL0 S2CL1 S2CL0 0 0 05H 0 SCHW HPLL VTHRE CLOF 0 0 0 06H TV FREE VOFF VF TERM GENMOD 0 SYPOL 07H 2FH HSWMA HSWMIN INC4 INC3 INC2 INC1 INC0 08H BON7 BON6 BON5 BON4 BON3 BON2 BON1 BON0 09H BOF7 BOF6 BOF5 BOF4 BOF3 BOF2 BOF1 BOF0 0AH H1ON7 H1ON6 H1ON5 H1ON4 H1ON3 H1ON2 H1ON1 H1ON0 0BH H1OF7 H1OF6 H1OF5 H1OF4 H1OF3 H1OF2 H1OF1 H1OF0 0CH H2ON7 H2ON6 H2ON5 H2ON4 H2ON3 H2ON2 H2ON1 H2ON0 0DH H2OF7 H2OF6 H2OF5 H2OF4 H2OF3 H2OF2 H2OF1 H2OF0 0EH HSON7 HSON6 HSON5 HSON4 HSON3 HSON2 HSON1 HSON0 0FH 0 0 0 0 0 0 0 0 10H FION3 FION2 FION1 FION0 FILE3 FILE2 FILE1 FILE0 11H SYNAMP3 SYNAMP2 SYNAMP1 SYNAMP0 YAMP3 YAMP2 YAMP1 YAMP0 12H UAMP3 UAMP2 UAMP1 UAMP0 VAMP3 VAMP2 VAMP1 VAMP0 13H DATDEL2 DATDEL1 DATDEL0 DATSLOP CLKSLOP1 CLKSLOP0 0 0 14H 0 0 0 1 0 0 1 1 15H 0 0 0 0 0 0 0 0 16H 0 0 0 0 0 0 0 0 17H 0 0 0 0 0 0 0 0 Semiconductor Group D4 D3 28 1999-02-10 SDA 9206 2.4.4 Detailed Description Subaddress 00H Bit Name Function D7 0 Reserved D6 UV3FIL Filter stage 3 for UV data (FORMAT = 0X) OFF 0: 1: ON Note: For FORMAT = 1X filter stage 3 for UV data is “on” (UV3FIL = don´t care) D5...D4 FORMAT Selection of output data interface: 00: Output data format according CCIR 656 (8 wires at Port A) 01: Parallel output data format (2 x 8 wires) 10: Quasiparallel 12 wire interface 11: Quasiparallel 12 wire interface D3 UVCODE Coding of UV data: Straight binary code 0: 1: Two’s complement code D2 YCODE Coding of Y data: Straight binary code 0: 1: Two’s complement code D1 OENB Output enable port B: Tristate 0: 1: Port enabled D0 OENA Output enable port A: Tristate 0: 1: Port enabled Semiconductor Group 29 1999-02-10 SDA 9206 Subaddress 01H Bit Name Function D7...D4 YD Delay compensation in Y-signal path (13.5 MHz clocks): 0000: ... - 0.30 µs 0001 0010 0011 0100: ... 0 µs : : 1110 1111: ... 0.81 µs D3...D0 0000 Reserved Subaddress 02H Bit Name Function D7 I2 Voltage level of H2I2 output (SELH2I2 = 1): 0: Low voltage at pin H2I2 1: High voltage at pin H2I2 D6 I1 Voltage level of H1I1 output (SELH1I1 = 1): Low voltage at pin H1I1 0: 1: High voltage at pin H1I1 D5 SELH2I2 Function of pin H2I2: H2 (line frequency, start and stop programmable) 0: 1: I2 (low/high programmable) D4 SELH1I1 Function of pin H1I1: H1 (line frequency, start and stop programmable) 0: 1: I1 (low/high programmable) D3 0 Reserved D2 0 Reserved D1 0 Reserved D0 0 Reserved Semiconductor Group 30 1999-02-10 SDA 9206 Subaddress 03H Bit Name Function D7...D4 0000 Reserved D3...D2 CGSUP Suppression of black level disturbances caused by copy guarded tapes No function 00: 01: Black level error is limited to + / - 32 (~ 27 mV) 10: Black level error is limited to + / - 16 (~ 14 mV) 11: Black level error is limited to + / - 8 (~ 7 mV) D1...D0 VWIWI Width of Window in Vertical Processing: 00: Narrow window: open from line 312 for PAL and 262 for NTSC 01: Window: open from line 300 for PAL and 250 for NTSC 10: Window: open from line 290 for PAL and 240 for NTSC 11: Very wide window: open from line 250 for PAL and 200 for NTSC Subaddress 04H Bit Name Function D7 0 Reserved D6 OEFB Output enable for Featurebox signals BLN, HS and VS: BLN, HS, VS outputs tristate 0: 1: BLN, HS, VS outputs enabled (2FH = 0) BLN, HS outputs enabled, VS output tristate (2FH = 1) D5...D4 S1CL Selection of clock frequency on pin CLK1: 00: Tristate 01: 6.75 MHz 13.5 MHz 10: 11: 27 MHz For the allowed values of S1CL refer to table chapter 2.3.1! D3...D2 S2CL Selection of clock frequency on pin CLK2: 00: Tristate 01: 6.75 MHz 13.5 MHz 10: 11: 27 MHz For the allowed values of S2CL refer to table chapter 2.3.1! D1...D0 00 Semiconductor Group Reserved 31 1999-02-10 SDA 9206 Subaddress 05H Bit Name Function D7 0 Reserved D6 SCHW Mode of vertical pulse generation: No flywheel mode 0: 1: Flywheel mode D5 HPLL Relationship between horizontal frequency in SYNC and default frequency on CLK1 and CLK2: 0: 864 1: 858 D4 VTHRE Minimum sync pulse length from which a vertical pulse is detected: 0: 26.6 µs 1: 11.3 µs D3 CLOF Clamping of SYNC for clock generator: Clamping on 0: 1: Clamping off D2...D0 000 Reserved Semiconductor Group 32 1999-02-10 SDA 9206 Subaddress 06H Bit Name Function D7 TV Selection of HPLL lock-in behavior: 0: Optimum for VCR 1: Optimum for SYNC from network D6 FREE Generation of V pulse: V derived from SYNC 0: 1: Free-running generation; vertical frequency is determined by VF bit, VOFF bit is enabled, SCHW bit should be set to 1 D5 VOFF Vertical noise suppression: 0: Noise suppression enabled 1: No noise suppression D4 VF Number of lines per field: 312.5 or 312 0: 1: 262.5 or 262 Note: VF must be set to the number of lines present in SYNC for fly-wheel and noise suppression modes. VF determines the number of lines per field for the free-running or terminal mode. D3 TERM Terminal mode: FREE TERM SCHW VF Number of Lines per Field generated in Free-Running Mode don’t care don’t care 1 1 1 1 don’t care don’t care 1 1 0 0 0 1 0 1 0 1 312 262 312.5 262.5 339 279 1 1 0 0 0 0 D2 GENMOD Clock generator mode Normal PLL mode 0: 1: Generator mode (fixed frequency output, controlled by INC) D1 0 Reserved D0 SYPOL SYNC polarity: Negative sync signals (normal SYNC input) 0: 1: Positive sync signals Semiconductor Group 33 1999-02-10 SDA 9206 Subaddress 07H Bit Name Function D7 2FH Selection of input frequency range: 0: Normal line frequencies (around 15.6 kHz) 1: Double line frequencies (31.2...38 kHz) [YUV A/D converters are switched off] D6 HSWMA Maximum width of HSYNC (input SYNC): 6.2 µs for low FH-range 0: 3.1 µs for high FH-range (2FH = 1) 1: 9.0 µs for low FH-range 4.5 µs for high FH-range (2FH = 1) D5 HSWMI Minimum width of HSYNC (input SYNC): 3.0 µs for low FH-range 0: 1.5 µs for high FH-range (2FH = 1) 1: 1.7 µs for low FH-range 0.8 µs for high FH-range (2FH = 1) D4...D0 INC Nominal PLL output frequency: INC = 00110 For the allowed values of INC refer to table chapter 2.3.1! Calculation of INC for low FH range: f INC = INT ---h- * 110592 – 64 ,625 f q for high FH range (2FH = 1): f INC = INT ---h- * 55292 – 64 ,625 f q Semiconductor Group 34 1999-02-10 SDA 9206 Subaddress 08H Bit Name Function D7...D0 BON BLN start time in relation reference time (refer to the following table and to timing diagram) BON7...BON0 Number 13.5 MHz Cycles Time (2FH = 0) 1000 0000 - (- 128) + 7 = 135 9.99 µs ... ... ... ... 1111 1111 - (- 1) + 7 =8 0.60 µs 0000 0000 - (0) + 7 =7 0.52 µs 0000 0001 - (+ 1) + 7 =6 0.44 µs ... ... ... ... 0111 1111 - (+ 127) + 7 = - 120 - 8.89 µs Subaddress 09H Bit Name Function D7...D0 BOF BLN stop time in relation to reference time: (refer to the following table and to timing diagram) BOF7...BOF0 Number 13.5 MHz Cycles Time (2FH = 0) 0000 0000 (0) + 8 =8 0.59 µs 0000 0001 (+ 1) + 8 =9 0.67 µs ... ... ... ... 0111 1111 (+ 127) + 8 = 135 9.99 µs 1000 0000 (+ 128) + 8 = 136 10.06 µs 1000 0001 (+ 129) + 8 = 137 10.14 µs ... ... ... ... 1111 1110 (+ 254) + 8 = 262 19.39 µs 1111 1111 (+ 255) + 8 = 263 19.46 µs Semiconductor Group 35 1999-02-10 SDA 9206 Subaddress 0AH Bit Name Function D7...D0 H1ON H1 start time in relation to reference time: (refer to the following table and to timing diagram) H1ON7...H1ON0 Number 13.5 MHz Cycles Time (2FH = 0) 1100 0000 - (- 64) x 2 = 128 9.47 µs ... ... ... ... 1111 1111 - (- 1) x 2 =2 0.15 µs 0000 0000 - (0) x 2 =0 0 µs 0000 0001 - (+ 1) x 2 =-2 - 0.15 µs ... ... ... ... 0111 1111 - (+ 127) x 2 = - 254 - 18.79 µs 1000 0000 - (+ 128) x 2 = - 256 - 18.94 µs 1000 0001 - (+ 129) x 2 = - 258 - 19.09 µs ... ... ... ... 1011 1111 - (+ 191) x 2 = - 382 - 28.27 µs Subaddress 0BH Bit Name Function D7...D0 H1OF H1 stop time in relation to reference time: (refer to the following table and to timing diagram) H1OF7...H1OF0 Number 13.5 MHz Cycles Time (2FH = 0) 1100 0000 - (- 64) x 2 = 128 9.47 µs ... ... ... ... 1111 1111 - (- 1) x 2 =2 0.15 µs 0000 0000 - (0) x 2 =0 0 µs 0000 0001 - (+ 1) x 2 =-2 - 0.15 µs ... ... ... ... 0111 1111 - (+ 127) x 2 = - 254 - 18.79 µs 1000 0000 - (+ 128) x 2 = - 256 - 18.94 µs 1000 0001 - (+ 129) x 2 = - 258 - 19.09 µs ... ... ... ... 1011 1111 - (+ 191) x 2 = - 382 - 28.27 µs Semiconductor Group 36 1999-02-10 SDA 9206 Subaddress 0CH Bit Name Function D7...D0 H2ON H2 start time in relation to reference time: (H2 is always used as clamping reference for the YUV ADCs) (refer to the following table and to timing diagram) H2ON7...H2ON0 Number 13.5 MHz Cycles Time (2FH = 0) 0100 0000 - (- 192) = 192 14.21 µs ... ... ... ... 0111 1111 - (- 129) = 129 9.55 µs 1000 0000 - (- 128) = 128 9.47 µs 1000 0001 - (- 127) = 127 9.40 µs ... ... ... ... 1111 1111 - (- 1) =1 0.07 µs 0000 0000 - (0) =0 0 µs 0000 0001 - (+ 1) =-1 - 0.07 µs ... ... ... ... 0011 1111 - (+ 63) = - 63 - 4.67 µs Semiconductor Group 37 1999-02-10 SDA 9206 Subaddress 0DH Bit Name Function D7...D0 H2OF H2 stop time in relation to reference time: (H2 is always used as clamping reference for the YUV ADCs) (refer to the following table and to timing diagram) H2OF7...H2OF0 Number 13.5 MHz Cycles Time (2FH = 0) 0100 0000 - (- 192) = 192 14.21 µs ... ... ... ... 0111 1111 - (- 129) = 129 9.55 µs 1000 0000 - (- 128) = 128 9.47 µs 1000 0001 - (- 127) = 127 9.40 µs ... ... ... ... 1111 1111 - (- 1) =1 0.07 µs 0000 0000 - (0) =0 0 µs 0000 0001 - (+ 1) =-1 - 0.07 µs ... ... ... ... 0011 1111 - (+ 63) = - 63 - 4.67 µs Subaddress 0EH Bit Name Function D7...D0 HSON HS start time in relation to reference time: (refer to the following table and to timing diagram) HSON7...HSON0 Number 13.5 MHz Cycles Time (2FH = 0) 1010 0000 - (- 96) x 4 = 384 28.42 µs ... ... ... ... 1111 1111 - (- 1) x 4 =4 0.30 µs 0000 0000 - (0) x 4 =0 0 µs 0000 0001 - (+ 1) x 4 =-4 - 0.30 µs ... ... ... ... 0111 0110 - (+ 118) x 4 = - 472 - 34.93 µs 0111 0111 - (+ 119) x 4 = - 476 - 35.22 µs Semiconductor Group 38 1999-02-10 SDA 9206 Subaddress 0FH Bit Name Function D7...D0 0000 0000 Reserved Subaddress 10H Bit Name Function D7...D4 FION Start of clock frequency freezing in number of lines before the vertical pulse (only valid for 2FH = 0): 0000: 0 (no freezing) 0001: 1 : : 1111: 15 D3...D0 FILE Duration of clock frequency freezing in number of lines: 0000: 0 (no freezing) 0001: 1 : : 1111: 15 Subaddress 11H Bit Name Function D7...D4 SYNAMP Internal amplification of SYNC input signal. Allowed values: SYNAMP = 0000 : amplification 0 dB : SYNC input nom. 2 Vpp SYNAMP = 0110 : amplification 6 dB : SYNC input nom. 1 Vpp D3...D0 YAMP Internal amplification of AINY input signal. Allowed values: YAMP = 0000 : amplification 0 dB : AINY input nom. 2 Vpp YAMP = 0110 : amplification 6 dB : AINY input nom. 1 Vpp Semiconductor Group 39 1999-02-10 SDA 9206 Subaddress 12H Bit Name Function D7...D4 UAMP Internal amplification of AINU input signal. Allowed values: UAMP = 0000 : internal amplification 0 dB : AINU input nom. 2 Vpp UAMP = 0110 : internal amplification 6 dB : AINU input nom. 1 Vpp D3...D0 VAMP Internal amplification of AINV input signal. Allowed values: VAMP = 0000 : amplification 0 dB : AINV input nom. 2 Vpp VAMP = 0110 : internal amplification 6 dB : AINV input nom. 1 Vpp Subaddress 13H Bit Name Function D7...D5 DATDEL Programmable output delay for PAQ7...PAQ0, PBQ7...PBQ0, BLN, HS, H1I1, H2I2, VS. Allowed values: 000 001 (description see chapter 5.3) D4 DATSLOP Adaptation of the output driver stages for PAQ7...PAQ0, PBQ7...PBQ0, BLN, HS, H1I1, H2I2, VS. Allowed values: 0 ... to be used only for 5 V output stage supply voltage 1 ... to be used only for 3.3 V output stage supply voltage and FORMAT = 00 D3...D2 CLKSLOP Adaptation of the output driver stages for CLK1 and CLK2. Allowed values: 00 ... to be used only for 5 V output stage supply voltage 10 ... to be used only for 3.3 V output stage supply voltage D1...D0 00 Semiconductor Group Reserved 40 1999-02-10 SDA 9206 Subaddress 14H Bit Name Function D7...D0 0001 0011 Reserved Subaddress 15H Bit Name Function D7...D0 0000 0000 Reserved Subaddress 16H Bit Name Function D7...D0 0000 0000 Reserved Subaddress 17H Bit Name D7...D0 0000 0000 Reserved Semiconductor Group Function 41 1999-02-10 SDA 9206 2.4.5 Read Mode Status Byte 0 Bit Name Function D7 CON Absolute difference between the horizontal sync pulse in SYNC and the HPLL: 0: Larger than or equal to 32 system clock cycles 1: Less than 32 system clock cycles D6 THRELIM Absolute difference between the horizontal sync pulse in SYNC and the HPLL: 0: Larger than 8 system clock cycles 1: Less than 8 system clock cycles for 8 or more successive lines (i.e. HPLL well locked in) D5, D4 FFGF, FF Identified number of lines per field (refer also to timing diagram figure 16): < N1 ≥ N1 and ≤ N2 > N2 and < 287 ≥ 287 and < N3 ≥ N3 and ≤ N4 > N4 Status Bits FFGF FF 0 1 0 0 1 0 0 0 0 1 1 1 N1 to N4 depends on Control Bits VWIWI: VWIWI1 0 0 1 1 D3 D2 ... D0 VWIWI0 0 1 0 1 N1 262 250 240 200 N2 264 275 285 312 N3 312 300 290 250 N4 314 325 335 362 don´t care POR Semiconductor Group Status bit POR is set by power on reset or by activating the reset pin. POR is reset after reading the status byte. 42 1999-02-10 SDA 9206 Status Byte 1 Bit Name D7...D6 Function don´t care D5 OFLY Overflow detection of ADC for input AINY D4 UFLY Underflow detection of ADC for input AINY D3 OFLU Overflow detection of ADC for input AINU D2 UFLU Underflow detection of ADC for input AINU D1 OFLV Overflow detection of ADC for input AINV D0 UFLV Underflow detection of ADC for input AINV Semiconductor Group 43 1999-02-10 SDA 9206 3 Absolute Maximum Ratings Parameter Storage temperature Symbol Tstg Limit Values Unit min. max. - 40 125 °C 260 °C sec Soldering temperature Tsold Soldering time tsold 10 Input/output voltage VI/Q VSSQ - 0.3 V VDDQ + 0.3 V 1 Remark Not valid for I2C-Bus pins Input/output voltage VI/Q, I2C I2C-pins 33, 34 (SCL, SDA) VSSQ - 0.3 V 6 V 1 Power supply voltage VDD, - 0.3 6 V 1.25 W - 100 100 mA All inputs/outputs -1 1 kV MIL STD 883C method 3015-6, 100 pF, 1500 Ω VADDx, VDDQ, VDDDTO Total power dissipation Ptot Latch-up protection ESD protection ESD All voltages listed are referenced to ground (0 V, VSS) except where noted. Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions or at any other condition beyond those indicated in the operational sections of this specification is not implied. Semiconductor Group 44 1999-02-10 SDA 9206 3.1 Recommended Operating Conditions Parameter Symbol Limit Values Unit min. nom. max. 0 25 70 °C Analog supply voltage VADDx 4.75 5.0 5.25 V Digital supply voltage VDD 4.75 5.0 5.25 V Ambient temperature TA Remark Power Requirements DTO supply voltage VDDDTO 4.75 5.0 5.25 V Output stage supply voltage VDDQ 4.75 5.0 5.25 V 5 V-Mode 3.0 3.3 3.6 V 3.3 V mode, only to be used for FORMAT = 00 VDD, diff - 0.25 0.25 V Supply pins VADDx H-input voltage VIH 2.0V VDDQ 1 L-input voltage VIL 0 0.8 V Supply voltage differential All TTL Inputs I2C-Bus (Values are Referred to min. (VIH) and max. (VIL)) H-input voltage VIH 0.7 x VDDQ VDD L-input voltage VIL 0V 0.3 x VDDQ 1 SCL clock frequency fSCL 0 400 kHz Rise times of SCL, SDA tR 0.3 µs Fall times of SCL, SDA tF 0.3 µs Set-up time data tSU, Dat 100 ns Hold time data tHD, Dat 0 ns Bus free time before start condition tBuf 1.3 µs Set-up time start condition tSU, Sta 0.6 µs Hold time start condition tHD, Sta 0.6 µs Semiconductor Group 45 1 1999-02-10 SDA 9206 3.1 Recommended Operating Conditions (cont’d) Parameter Symbol Limit Values min. nom. Unit max. SCL low time tLow 1.3 µs SCL high time tHigh 0.6 µs Load capacitance Remark 400 pF Reference Inputs for Analog Inputs AINY, AINU, AINV, SYNC Reference voltage high VREFHx 3.2 4.2 4.7 V VADDx = 5 V Reference voltage low VREFLx 1.7 2.2 3.2 V VREFHx VREFLx 1 YAMP, UAMP, VAMP = 0000, Prefiltering see chapter 2.1.2 nF AINY, AINU, AINV each Analog Inputs AINY, AINU, AINV Input range (Peak-Peak) VIPP 2V Required ext clamp capacitance Cext cl 100 Required signal source resistance RS 0 200 Ω VREFHCVREFLC 1 SYNAMP = 0000 12 MHz To avoid aliasing SYNC Input for Sync and Clock Generation Input range (Peak-Peak) VIPP 0.5 V Input frequency f 0 Required ext clamp capacitance Cext cl Required signal source resistance RS 2V 100 nF 200 Ω Inputs Crystal Connections X1, X2 Crystal frequency fc 24.576 MHz 3.6 pF Crystal Type Fundamental Crystal Equivalent parallel C CO Crystal resonant impedance ZR 40 Ω Pin capacitance CI 10 pF External capacitance Cext Semiconductor Group 18 46 pF Each 1999-02-10 SDA 9206 3.2 Characteristics (Assuming Recommended Operating Conditions) Parameter Symbol Limit Values min. nom. Unit Remark max. Supply Currents Analog supply current IADD 120 mA Sum of all VADDx pins Digital supply current IDD 40 mA Sum of all VDD pins + VDDDTO 40 mA Sum of all VDDQ pins Output stage supply current IDDQ Reference Inputs for Analog Inputs AINY, AINU, AINV Reference ladder resistance RREF 175 250 325 Ω For each converter between REFH and REFL 520 Ω For each converter between REFH and REFL 300 µA VI = 0 V...VDDQ Note: internal pullup/ pulldown-circuits 0.6 V I = 4 mA 100 nA AINY, AINU, AINV, SYNC each 10 pF AINY, AINU, AINV, SYNC each Reference Inputs for Analog Input SYNC Reference ladder resistance RREF 280 400 All TTL Inputs Input current - 300 I2C Input/Output SDA L-output voltage VQL Analog Inputs Analog input leakage IAIN current Analog input capacitance - 100 CI TTL Outputs Port A, Port B, VS, HS, BLN, H1, H2, RESOUTN (VDDQ = 3.3 V or 5 V) L-output voltage VQL 0 0.4 V I = 1 mA H-output voltage VQH 2.4 V VDDQ 1 I = - 0.5 mA - 20 20 µA VQ = 0 V...VDDQ High impedance state IQZ output current Load capacitance Semiconductor Group Port A, Port B, VS, HS, BLN CL 25 47 pF 1999-02-10 SDA 9206 3.2 Characteristics (Assuming Recommended Operating Conditions) (cont’d) Parameter Symbol Limit Values min. nom. Output data delay time, tQD referenced to CLK1 (not valid for ESOUTN) Output data hold time, tQH referenced to CLK1 (not valid for RESOUTN) 6 Pin RESOUTN Data delay/ data hold time - Unit Remark 25 ns DATDEL = 000 CL = 15 pF 5 V output stage supply voltage, DATSLOP = 0 35 ns DATDEL = 000 CL = 25 pF 5 V output stage supply voltage, DATSLOP = 0 25 ns DATDEL = 000 CL = 25 pF 3.3 V output stage supply voltage, FORMAT = 00 DATSLOP = 1 max. ns - - Asynchronous output signal Clock TTL Outputs CLK1, CLK2 L-output voltage VQL 0 0.4 V I = 1 mA H-output voltage VQH 2.4 V VDD 1 I = - 0.5 mA Load capacitance CL 30 pF Transition times t R, t F 5 ns 5 V output stage supply voltage, CLKSLOP = 00 3.3 V output stage supply voltage, CLKSLOP = 10 Semiconductor Group 48 1999-02-10 SDA 9206 3.2 Characteristics (Assuming Recommended Operating Conditions) (cont’d) Parameter Symbol Limit Values min. nom. Unit Remark max. Low time 13.5 MHz tWL13 26 ns 13.5 MHz High time 13.5 MHz tWH13 26 ns 13.5 MHz Low time 27 MHz tWL27 10 ns 27 MHz High time 27 MHz tWH27 10 ns 27 MHz Skew tSK -2 0 2 ns CL,CLK1 = CL,CLK2 25 27 35 MHz ± 4.8% at 27 MHz S1CL = 11, S2CL = 11 Frequency range f when PLL is locked at SYNC input signal Performance of A/D Conversion (8-Bit) Test Conditions: ADC Clock = 27 MHz, DATDEL = 000, xAMP = 0000, VIPP = 2 Vpp Sampling rate Differential linearity (DC) 27 DNLE Integral linearity (DC) INLE 0.5 MHz ± 0.5 LSB ±1 LSB ±3 LSB Clamping level accuracy CLA Gain error (DC) GE ±6 LSB Gain matching error (DC) GME ±3 LSB Differential gain DG 3 % Not tested Differential phase DP 3 deg Not tested Signal to noise ratio at 4.4 MHz sinus αS/N dB Without harmonics dB dB dB 4.4 MHz fundamental 4.4 MHz fundamental 4.4 MHz fundamental 45 48 Harmonic Distortion 2./4. order 3. order 5./6. order Semiconductor Group - 42 - 42 - 48 49 1999-02-10 SDA 9206 4 Application Information SDA 9251-2X YI 4 YOUT UI Picture Processor 3ADC CSG 12 SDA 9253 16 8 SDA 9206 UOUT 12 27 MHz VI Display Processor Field Mixer SDA 9253 SDA 9290 SDA 9251-2X CVBS / SYNC SDA 9270 SDA 9280 MSC SDA 9220 SYNC VOUT 4 SYNCOUT UES10470 Figure 18 Application Circuit 1 27 MHz YIN 12 12 UIN VIN CVBS SYNC CLK SDA 9206 Scan Rate Converter YUV Display Provessor HREF SDA 9280 YUV HIN VIN YOUT UOUT SDA 9255 VOUT SYNCOUT UES10471 Figure 19 Application Circuit 2 Semiconductor Group 50 1999-02-10 SDA 9206 L3 L2 +5 V 10 µH L1 2.2 Hµ R4 8.2 Ω / 2% TL 431 D1 1 3 R3 2 62 Ω / 2% R2 + + C 35 100 nF C 54 100 nF C 55 100 nF C 56 100 nF C 12 100 nF 100 nF 100 nF 100 nF 6.8 Ω / C 8 2% + R1 1 µF 16 Ω / C 51 2% C 52 C7 1 µF YIN UIN VIN CVBS SCL SDA C 11 10 µF 1 5 6 10 11 15 64 60 59 58 C 48 2 C 49 7 C 50 12 C 10 63 100 nF 100 nF 4 100 nF 9 C 53 100 nF 14 C9 100 nF 61 C6 100 nF 3 C5 100 nF 8 C4 100 nF 13 C3 100 nF 62 35 34 33 16 10 µH V ADDY V AGNDY V ADDU V AGNDU V ADDV V AGNDV V ADDC V AGNDC V ADDPA V AGNDPA V DDQ V SSQ V DD V SS V DDQ V SSQ 32 23 45 36 50 55 46 49 21 22 44 43 42 41 40 39 38 37 31 30 29 28 27 26 25 24 20 57 54 53 17 52 19 51 18 56 47 V DDDTO V SSDTO V DD V SS PBQ0 PBQ1 V REFHY PBQ2 PBQ3 V REFHU PBQ4 PBQ5 V REFHV PBQ6 V REFHC PBQ7 PAQ0 ABACUS PAQ1 SDA 9206 PAQ2 PAQ3 V REFLY PAQ4 PAQ5 V REFLU PAQ6 V REFLV PAQ7 H2I2 V REFLC EXSYN AINY HS CLK1 AINU H1I1 CLK2 AINV BLN SYNC VS RESOUTN ADR0 TEST SCL X2 SDA 48 X1 RESIN + C 13 10 µF C 14 100 nF C 15 100 nF UV0 UV1 UV2 UV3 UV4 UV5 UV6 UV7 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 CLK1 H1I1 CLK2 BLN VS RESOUTN C 2 18 pF C 1 18 pF Q1 24.576 MHz UES10472 Figure 20 Application Circuit 3 Semiconductor Group 51 1999-02-10 SDA 9206 5 Waveforms 5.1 Timing Diagram Data Input/Output Referenced to the Clock CLK1 t WH t WL V QH Clock CLK1 t THL t TLH V QL V QH Output Data V QL t QH t QD UET10467 Figure 21 5.2 Timing Diagram Clock Skew CLK2 - CLK1 T t WH t WL V QH CLK1 t THL t SK t WH t TLH V QL t WL V QH CLK2 t THL T t TLH V QL UET10468 Figure 22 Semiconductor Group 52 1999-02-10 SDA 9206 5.3 Programmable Data Output Delay: DAT_OUT: Pins PAQ7...0, PBQ7...0, BLN, HS, H1I1, H2I2 and VS T CLK1 DAT_OUT Data valid Data not valid Data valid tQH t QD UET10469 Figure 23 DATDEL tQH; min. tQD; max. 000 6 ns 25 ns 001 10 ns 29 ns The delay times are valid for a clock rate of the analog PLL of 27 MHz. Semiconductor Group 53 1999-02-10 SDA 9206 6 Package Outlines +0.15 7˚ max H 0.88 ±0.15 0.8 0.3 0.15 +0.08 -0.02 2.45 max 2 +0.1 -0.05 0.25 min P-MQFP-64-3 (Plastic Metric Quad Flat Package) 12 0.2 0.1 C M A-B D C 64x 17.2 14 0.2 A-B D 64x 1) 0.2 A-B D H 4x D B 14 1) 17.2 A 64 1 Index Marking 1) 0.6 x 45˚ Does not include plastic or metal protrusions of 0.25 max. per side GPM05250 Figure 24 Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book “Package Information”. Dimensions in mm SMD = Surface Mounted Device Semiconductor Group 54 1999-02-10