TI SN74ALVCH16271DGGR

SN74ALVCH16271
12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER
WITH 3-STATE OUTPUTS
www.ti.com
SCES017G – JULY 1995 – REVISED SEPTEMBER 2004
FEATURES
•
•
•
•
DGG OR DL PACKAGE
(TOP VIEW)
Member of the Texas Instruments Widebus™
Family
Bus Hold on Data Inputs Eliminates the Need
for External Pullup/Pulldown Resistors
Latch-Up Performance Exceeds 250 mA Per
JESD 17
ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
OEA
LE1B
2B3
GND
2B2
2B1
VCC
A1
A2
A3
GND
A4
A5
A6
A7
A8
A9
GND
A10
A11
A12
VCC
1B1
1B2
GND
1B3
LE2B
SEL
DESCRIPTION/ORDERING INFORMATION
This 12-bit to 24-bit bus exchanger is designed for
1.65-V to 3.6-V VCC operation.
The SN74ALVCH16271 is intended for applications in
which two separate data paths must be multiplexed
onto, or demultiplexed from, a single data path. This
device is particularly suitable as an interface
between conventional DRAMs and high-speed
microprocessors.
A data is stored in the internal A-to-B registers on the
low-to-high transition of the clock (CLK) input,
provided that the clock-enable (CLKENA) inputs are
low. Proper control of these inputs allows two
sequential 12-bit words to be presented as a 24-bit
word on the B port.
Transparent latches in the B-to-A path allow
asynchronous operation to maximize memory access
throughput. These latches transfer data when the
latch-enable (LE) inputs are low. The select (SEL)
line selects 1B or 2B data for the A outputs. Data flow
is controlled by the active-low output enables (OEA,
OEB).
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
OEB
CLKENA2
2B4
GND
2B5
2B6
VCC
2B7
2B8
2B9
GND
2B10
2B11
2B12
1B12
1B11
1B10
GND
1B9
1B8
1B7
VCC
1B6
1B5
GND
1B4
CLKENA1
CLK
line
space
To ensure the high-impedance state during power up or power down, the output enables should be tied to VCC
through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the
driver.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
ORDERING INFORMATION
PACKAGE (1)
TA
-40°C to 85°C
SSOP - DL
TSSOP - DGG
(1)
ORDERABLE
PART NUMBER
TOP-SIDE
MARKING
Tube
SN74ALVCH16271DL
Tape and reel
SN74ALVCH16271DLR
Tape and reel
SN74ALVCH16271DGGR ALVCH16271
ALVCH16271
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus is a trademark of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1995–2004, Texas Instruments Incorporated
SN74ALVCH16271
12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER
WITH 3-STATE OUTPUTS
www.ti.com
SCES017G – JULY 1995 – REVISED SEPTEMBER 2004
FUNCTION TABLES
line space
OUTPUT ENABLE
INPUTS
OUTPUTS
OEA
OEB
A
1B, 2B
H
H
Z
Z
Active
H
L
Z
L
H
Active
Z
L
L
Active
Active
A-TO-B STORAGE (OEB = L)
INPUTS
CLKENA1
(1)
CLKENA2
OUTPUTS
CLK
A
1B
X
1B0
2B
(1)
2B0 (1)
H
H
X
L
X
↑
L
L
X
L
X
↑
H
H
X
X
L
↑
L
X
L
X
L
↑
H
A0
H
Output level before the indicated steady-state input conditions were established
B-TO-A STORAGE (OEA = L)
INPUTS
(1)
2
LE
SEL
1B
2B
OUTPUT
A
H
X
X
X
A0 (1)
H
X
X
X
A0 (1)
L
H
L
X
L
L
H
H
X
H
L
L
X
L
L
L
L
X
H
H
Output level before the indicated steady-state input conditions were
established
SN74ALVCH16271
12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER
WITH 3-STATE OUTPUTS
www.ti.com
SCES017G – JULY 1995 – REVISED SEPTEMBER 2004
LOGIC DIAGRAM (POSITIVE LOGIC)
CLK
29
2
LE1B
27
LE2B
CLKENA1
30
55
CLKENA2
56
OEB
28
SEL
LE
23
1
1B1
1D
OEA
G1
1
8
A1
LE
1
6
1D
2B1
CE
C1
1D
CE
C1
1D
1 of 12 Channels
3
SN74ALVCH16271
12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER
WITH 3-STATE OUTPUTS
www.ti.com
SCES017G – JULY 1995 – REVISED SEPTEMBER 2004
ABSOLUTE MAXIMUM RATINGS (1)
over operating free-air temperature range (unless otherwise noted)
VCC
Supply voltage range
MIN
MAX
-0.5
4.6
Except I/O ports (2)
-0.5
4.6
I/O ports (2) (3)
-0.5
VCC + 0.5
-0.5
VCC + 0.5
UNIT
V
VI
Input voltage range
VO
Output voltage range (2) (3)
IIK
Input clamp current
VI < 0
-50
mA
IOK
Output clamp current
VO < 0
-50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through each VCC or GND
θJA
Package thermal impedance (4)
Tstg
Storage temperature range
(1)
(2)
(3)
(4)
DGG package
64
DL package
56
-65
150
V
V
°C/W
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
This value is limited to 4.6 V maximum.
The package thermal impedance is calculated in accordance with JESD 51-7.
RECOMMENDED OPERATING CONDITIONS (1)
VCC
Supply voltage
VCC = 1.65 V to 1.95 V
VIH
High-level input voltage
MIN
MAX
1.65
3.6
UNIT
V
0.65 × VCC
VCC = 2.3 V to 2.7 V
1.7
VCC = 2.7 V to 3.6 V
2
V
0.35 × VCC
VCC = 1.65 V to 1.95 V
VIL
Low-level input voltage
VCC = 2.3 V to 2.7 V
0.7
VI
Input voltage
0
VCC
V
VO
Output voltage
0
VCC
V
VCC = 2.7 V to 3.6 V
IOH
High-level output current
IOL
Low-level output current
∆t/∆v
Input transition rise or fall rate
TA
Operating free-air temperature
(1)
4
V
0.8
VCC = 1.65 V
-4
VCC = 2.3 V
-12
VCC = 2.7 V
-12
VCC = 3 V
-24
VCC = 1.65 V
4
VCC = 2.3 V
12
VCC = 2.7 V
12
VCC = 3 V
24
-40
mA
mA
10
ns/V
85
°C
All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
SN74ALVCH16271
12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER
WITH 3-STATE OUTPUTS
www.ti.com
SCES017G – JULY 1995 – REVISED SEPTEMBER 2004
ELECTRICAL CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = -100 µA
1.65 V to 3.6 V
1.65 V
IOH = -6 mA
2.3 V
2
2.3 V
1.7
2.7 V
2.2
3V
2.4
IOH = -24 mA
3V
2
IOL = 100 µA
IOH = -12 mA
II(hold)
V
1.65 V to 3.6 V
0.2
1.65 V
0.45
IOL = 6 mA
2.3 V
0.4
2.3 V
0.7
IOL = 24 mA
2.7 V
0.4
3V
0.55
3.6 V
VI = 0.58 V
1.65 V
25
VI = 1.07 V
1.65 V
-25
VI = 0.7 V
2.3 V
45
VI = 1.7 V
2.3 V
-45
VI = 0.8 V
3V
75
3V
-75
VI = 0 to 3.6
VO = VCC or GND
ICC
VI = VCC or GND,
IO = 0
∆ICC
One input at VCC - 0.6 V,
Other inputs at VCC or GND
µA
µA
3.6 V
±500
3.6 V
±10
µA
3.6 V
40
µA
3 V to 3.6 V
750
µA
V (2)
IOZ (3)
V
±5
VI = VCC or GND
VI = 2 V
UNIT
1.2
IOL = 4 mA
IOL = 12 mA
II
MAX
VCC - 0.2
IOH = -4 mA
VOH
VOL
MIN TYP (1)
VCC
Ci
Control inputs
VI = VCC or GND
3.3 V
3.5
pF
Cio
A or B ports
VO = VCC or GND
3.3 V
9
pF
(1)
(2)
(3)
All typical values are at VCC = 3.3 V, TA = 25°C.
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to
another.
For I/O ports, the parameter IOZ includes the input leakage current.
TIMING REQUIREMENTS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3)
VCC = 2.5 V
± 0.2 V
MIN
fclock
Clock frequency
tw
Pulse duration, CLK high or low
tsu
th
Setup time
Hold time
MAX
VCC = 2.7 V
MIN
130
MAX
VCC = 3.3 V
± 0.3 V
MIN
130
130
3.3
3.3
3.3
A before CLK↑
2.6
2.1
1.7
B before LE
1.7
1.5
1.3
CLKEN before CLK↑
1.6
1.3
1
A after CLK↑
0.6
0.6
0.7
B after LE
0.9
0.9
1.1
1
0.9
0.9
CLKEN after CLK↑
UNIT
MAX
MHz
ns
ns
ns
5
SN74ALVCH16271
12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER
WITH 3-STATE OUTPUTS
www.ti.com
SCES017G – JULY 1995 – REVISED SEPTEMBER 2004
SWITCHING CHARACTERISTICS
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3)
PARAMETER
VCC = 3.3 V
± 0.3 V
TO
(OUTPUT)
VCC = 1.8 V
CLK
B
8
1
6.2
5
1
7
1
5.3
4.7
1.4
4
7
1
6
5.9
1.4
4.8
7
1.1
6.4
6.2
1.3
5.2
TYP
fmax
tpd
VCC = 2.5 V
± 0.2 V
FROM
(INPUT)
MIN
VCC = 2.7 V
MAX
130
B
LE
A
SEL
MIN
MAX
130
MIN
UNIT
MAX
130
MHz
4.3
ns
ten
OEB or OEA
B or A
8
1
6
6.1
1
5.1
ns
tdis
OEB or OEA
B or A
7
1.4
5.4
4.6
1.7
4.2
ns
OPERATING CHARACTERISTICS
TA = 25°C
PARAMETER
TEST CONDITIONS
A to B
Cpd
Power dissipation capacitance
B to A
6
VCC = 2.5 V VCC = 3.3 V
TYP
TYP
Outputs enabled
92
105
Outputs disabled
61
76
39
43
11
13
Outputs enabled
Outputs disabled
CL = 0,
f = 10 MHz
UNIT
pF
SN74ALVCH16271
12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER
WITH 3-STATE OUTPUTS
www.ti.com
SCES017G – JULY 1995 – REVISED SEPTEMBER 2004
PARAMETER MEASUREMENT INFORMATION
VCC = 1.8 V
2 × VCC
1 kΩ
From Output
Under Test
S1
Open
TEST
tpd
tPLZ/tPZL
tPHZ/tPZH
GND
CL = 30 pF
(see Note A)
1 kΩ
S1
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
tPLZ
VCC
VCC/2
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
VCC/2
VOH
VOH − 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
7
SN74ALVCH16271
12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER
WITH 3-STATE OUTPUTS
www.ti.com
SCES017G – JULY 1995 – REVISED SEPTEMBER 2004
PARAMETER MEASUREMENT INFORMATION
VCC = 2.5 V ± 0.2 V
2 × VCC
500 Ω
From Output
Under Test
S1
Open
TEST
tpd
tPLZ/tPZL
tPHZ/tPZH
GND
CL = 30 pF
(see Note A)
500 Ω
S1
Open
2 × VCC
GND
LOAD CIRCUIT
tw
VCC
Timing
Input
VCC/2
VCC/2
VCC/2
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VCC/2
VCC/2
0V
tPLH
Output
Control
(low-level
enabling)
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
tPLZ
VCC
VCC/2
tPZH
VOH
VCC/2
0V
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPHL
VCC/2
VCC
VCC/2
tPZL
VCC
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VCC
Data
Input
VCC/2
0V
0V
tsu
Output
VCC
VCC/2
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.15 V
VOL
tPHZ
VCC/2
VOH
VOH − 0.15 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 2. Load Circuit and Voltage Waveforms
8
SN74ALVCH16271
12-BIT TO 24-BIT MULTIPLEXED BUS EXCHANGER
WITH 3-STATE OUTPUTS
www.ti.com
SCES017G – JULY 1995 – REVISED SEPTEMBER 2004
PARAMETER MEASUREMENT INFORMATION
VCC = 2.7 V AND 3.3 V ± 0.3 V
6V
500 Ω
From Output
Under Test
S1
Open
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
tw
LOAD CIRCUIT
2.7 V
2.7 V
Timing
Input
1.5 V
Input
1.5 V
0V
1.5 V
0V
tsu
VOLTAGE WAVEFORMS
PULSE DURATION
th
2.7 V
Data
Input
1.5 V
1.5 V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
2.7 V
Output
Control
(low-level
enabling)
1.5 V
0V
tPZL
2.7 V
Input
1.5 V
1.5 V
0V
tPLH
VOH
Output
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
Output
Waveform 1
S1 at 6 V
(see Note B)
tPLZ
3V
1.5 V
VOL + 0.3 V
VOL
tPZH
tPHL
1.5 V
Output
Waveform 2
S1 at GND
(see Note B)
tPHZ
VOH
1.5 V
VOH − 0.3 V
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 3. Load Circuit and Voltage Waveforms
9
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
74ALVCH16271DGGRE4
ACTIVE
TSSOP
DGG
56
74ALVCH16271DLG4
ACTIVE
SSOP
DL
56
74ALVCH16271DLRG4
ACTIVE
SSOP
DL
SN74ALVCH16271DGGR
ACTIVE
TSSOP
SN74ALVCH16271DL
ACTIVE
SN74ALVCH16271DLR
ACTIVE
2000 Green (RoHS &
no Sb/Br)
Lead/Ball Finish
MSL Peak Temp (3)
CU NIPDAU
Level-1-260C-UNLIM
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
DGG
56
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SSOP
DL
56
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SSOP
DL
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
20
20
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
16-Jul-2007
TAPE AND REEL INFORMATION
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
Device
16-Jul-2007
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74ALVCH16271DGGR
DGG
56
MLA
330
24
8.6
15.8
1.8
12
24
Q1
SN74ALVCH16271DLR
DL
56
MLA
330
32
11.35
18.67
3.1
16
32
Q1
TAPE AND REEL BOX INFORMATION
Device
Package
Pins
Site
Length (mm)
Width (mm)
Height (mm)
SN74ALVCH16271DGGR
DGG
56
MLA
333.2
333.2
31.75
SN74ALVCH16271DLR
DL
56
MLA
346.0
346.0
49.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001
DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0.025 (0,635)
0.0135 (0,343)
0.008 (0,203)
48
0.005 (0,13) M
25
0.010 (0,25)
0.005 (0,13)
0.299 (7,59)
0.291 (7,39)
0.420 (10,67)
0.395 (10,03)
Gage Plane
0.010 (0,25)
1
0°–ā8°
24
0.040 (1,02)
A
0.020 (0,51)
Seating Plane
0.110 (2,79) MAX
0.004 (0,10)
0.008 (0,20) MIN
PINS **
28
48
56
A MAX
0.380
(9,65)
0.630
(16,00)
0.730
(18,54)
A MIN
0.370
(9,40)
0.620
(15,75)
0.720
(18,29)
DIM
4040048 / E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MO-118
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated