STMICROELECTRONICS STCD1020RDG6F

STCD1020, STCD1030, STCD1040
Multichannel clock distribution circuit
Features
■
2, 3 or 4 outputs buffered clock distribution
■
Single-ended sine wave or square wave clock
input and output
■
Individual clock enable for each output
■
Lower fan-out on clock source
■
No AC coupling capacitor needed at the input
■
Ultra-low phase noise and standby current
■
2.5 V to 3.6 V supply voltage(a)
■
10 pF typical load driving capability
■
Available in TDFN packages
– STCD1020 - 8-lead (2 mm x 2 mm)
– STCD1030 - 10-lead (2 mm x 2.5 mm)
– STCD1040 - 12-lead (2 mm x 3 mm)
■
Operating temperature : –40 °C to 85 °C
TDFN (8-, 10- or 12- lead)
Applications
■
Multimode RF clock reference
■
Baseband peripheral devices clock reference
a. For the 1.65 to 2.75 V version, please contact local ST
sales office.
Table 1.
Device summary
Order code
Operating temperature range
Channel
Supply
Package
STCD1020RDG6E
–40 °C to 85 °C
2
2.8 V
TDFN8
STCD1030RDH6E(1)
–40 °C to 85 °C
3
2.8 V
TDFN10
STCD1040RDM6F
–40 °C to 85 °C
4
2.8 V
TDFN12
1. Contact local ST sales office for availability.
May 2010
Doc ID 13823 Rev 6
1/40
www.st.com
1
Contents
STCD1020, STCD1030, STCD1040
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2
Connection of the source clock to MCLK . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin names and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Truth table for enable signals (EN 1-4) and output clocks (CLK1-4) . . . . . . . . . . . . . . . . . 11
Absolute maximum ratings (1.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Absolute maximum ratings (2.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Operating and AC measurement conditions (1.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . 16
DC and AC characteristics (1.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Operating and AC measurement conditions (2.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . 17
DC and AC characteristics (2.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
TDFN - 8-lead (2 x 2 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
TDFN - 10-lead (2 x 2.5 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TDFN - 12-lead (2 x 3 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Carrier tape dimensions for TDFN8, TDFN10, and TDFN12 packages . . . . . . . . . . . . . . . 35
STCD10x0 top marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Landing pattern parameters (TDFN8, TDFN10, TDFN12) . . . . . . . . . . . . . . . . . . . . . . . . . 37
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Doc ID 13823 Rev 6
3/40
List of figures
STCD1020, STCD1030, STCD1040
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
4/40
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Connections diagram (STCD1020, 2-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Connections diagram (STCD1030, 3-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Connections diagram (STCD1040, 4-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Typical application circuit using STCD1040 for RF ends of TD-SCDMA/GSM dual-mode
mobile phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Typical application circuit using STCD1040 for baseband peripherals in mobile phone . . 13
Direct connection of the source clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Connection of the DC-CUT capacitor and bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Quiescent current (IQ) vs. supply voltage (VCC) (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=1, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Quiescent current (IQ) vs. temperature (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=1, CL = 30 pF, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . 19
Standby current (ISB) vs. supply voltage (VCC) (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=0, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Active current (IACT) vs. supply voltage (VCC) (STCD1040, 2.8 V version, . . . . . . . . . . . . . .
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO) . . . . . . . . . . 20
Active current (IACT) vs. master clock input voltage level (Vpp) (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input) . . . . . . . . . . . . . . . . . . . . 21
Active current (IACT) vs. input frequency (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=1, master clock input Vpp = 1 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 21
STCD10x0 recovery time from standby to active (STCD1040, 2.8 V version,
EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1) . . . . . . . . . . . . . . . . . . . . . . . . 22
STCD10x0 buffer recovery time from off to on (STCD1040, 2.8 V version,
EN2=EN3=EN4=1, measure CLK1 when EN1 from 0 to 1) . . . . . . . . . . . . . . . . . . . . . . . . 22
Sine wave input clock vs. output clock (STCD1040, 2.8 V version, 26 MHz sine wave
master clock input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Rise and fall time for square wave output (STCD1040, 2.8 V, 10 MHz square wave
master clock input, CL = 20 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Input clock phase noise (STCD1040, 2.8 V version, 26 MHz master clock
input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Output clock phase noise (STCD1040, 2.8V version, this phase noise includes the
additive phase noise from TCXO and STCD1040) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Clock bandwidth (STCD1040, 2.8 V version, CL = 10 pF) . . . . . . . . . . . . . . . . . . . . . . . . . 25
Quiescent current (IQ) vs. supply voltage (VCC) (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=1, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Quiescent current (IQ) vs. temperature (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=1, CL = 30 pF, no master clock input) . . . . . . . . . . . . . . . . . . . . . . 25
Standby current (ISB) vs. supply voltage (VCC) (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=0, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Active current (IACT) vs. supply voltage (VCC) (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO) . . . . . . . . . . 26
Active current (IACT) vs. master clock input voltage level (Vpp) (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input) . . . . . . . . . . . . . . . . . . . . 26
Active current (IACT) vs. input frequency (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=1, master clock input Vpp=1 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
List of figures
STCD10x0 recovery time from standby to active (STCD1040, 1.8 V version,
EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1) . . . . . . . . . . . . . . . . . . . . . . . . 27
STCD10x0 buffer recovery time from off to on (STCD1040, 1.8 V version,
EN2 =EN3=EN4=1, measure CLK1 when EN1 from 0 to 1). . . . . . . . . . . . . . . . . . . . . . . . 28
Sine wave input clock vs. output clock (STCD1040, 1.8 V version, 26 MHz sine wave
master clock input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Rise and fall time for square wave output (STCD1040, 1.8 V version,
10 MHz square wave master clock input, CL = 20 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Input clock phase noise (STCD1040, 1.8 V version, 26 MHz master clock
input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Output clock phase noise (STCD1040, 1.8 V version, this phase noise includes the
additive phase noise from TCXO and STCD1040) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Clock bandwidth (STCD1040, 1.8 V version, CL = 10 pF) . . . . . . . . . . . . . . . . . . . . . . . . . 30
TDFN - 8-lead, 2 x 2 mm package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
TDFN - 10-lead, 2 x 2.5 mm package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TDFN - 12-lead, 2 x 3 mm package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Carrier tape for TDFN8, TDFN10, and TDFN12 packages. . . . . . . . . . . . . . . . . . . . . . . . . 35
DG package topside marking information (TDFN8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
DH and DM package topside marking information (TDFN10 and TDFN12). . . . . . . . . . . . 36
Landing pattern – TDFN8 2 x 2 mm, TDFN10 2 x 2.5 mm, TDFN12 2 x 3 mm . . . . . . . . . 37
Doc ID 13823 Rev 6
5/40
Description
1
STCD1020, STCD1030, STCD1040
Description
The STCD1020, STCD1030 and STCD1040 are 2, 3 or 4 outputs unity gain clock
distribution circuits, which are used to provide a common frequency clock to multimode
mobile RF applications. It can also be used for those baseband peripheral applications in a
mobile phone such as WLAN, Bluetooth, GPS and DVB-H as a clock reference. The
STCD1020, STCD1030 and STCD1040 isolate each device driven by their clock outputs
and minimize interference between the devices. Each of the clock buffers can be disabled to
lower the power consumption if the connected device does not need the clock. The
STCD1020, STCD1030 and STCD1040 accept commonly used mobile master clock
frequencies ranging from 10 MHz to 52 MHz.
The STCD1020, STCD1030 and STCD1040 are available in 2 mm x 2 mm 8-lead, 2 mm x
2.5 mm 10-lead and 2 mm x 3 mm 12-lead TDFN packages and can be operated with a
single 2.8 V (or 1.8 V) supply. The operating temperature is –40 °C to +85 °C.
6/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
2
Device overview
Device overview
Figure 1.
Logic diagram
V
CC
MCLK
CLK1
STCD1040
EN1
EN2
CLK2
Clock
distribution
EN3
CLK3
CLK4
EN4
GND
Note:
ai13948
No EN3, EN4, CLK3 nor CLK4 for STCD1020 and no EN4 nor CLK4 for STCD1030.
Figure 2.
Connections diagram (STCD1020, 2-channel)
V CC
1
MCLK
2
EN1
3
EN2
4
STCD1020
TDFN8
8
GND
7
NC
6
CLK1
5
CLK2
ai13949
Doc ID 13823 Rev 6
7/40
Device overview
Figure 3.
STCD1020, STCD1030, STCD1040
Connections diagram (STCD1030, 3-channel)
VCC
1
MCLK
2
EN1
3
EN2
EN3
10
GND
9
NC
8
CLK1
4
7
CLK2
5
6
CLK3
STCK1030
TDFN10
ai13950
Figure 4.
Connections diagram (STCD1040, 4-channel)
V CC
1
12
GND
MCLK
2
11
NC
EN1
3
10
CLK1
EN2
4
9
CLK2
EN3
5
8
CLK3
EN4
6
7
CLK4
STCD1040
TDFN12
ai13951
8/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
Table 2.
Device overview
Pin names and functions
Pin
Type
CLK1, CLK2, CLK3, CLK4
Output
Clock output channel #1, #2, #3, #4. A 0.001 µF DC cut
capacitor needed outside.
EN1, EN2, EN3, EN4
Input
Clock output channel #1, #2, #3, #4 enable, active high
MCLK
Input
Master clock input
VCC
Supply
Supply voltage. Bypass to GND with a 0.1 µF capacitor.
GND
Supply
Supply ground
NC
Figure 5.
Function
Not connected
Block diagram
VCC
EN4
STCD1040
4
CLK4
3
CLK3
EN3
MCLK
EN2
2
CLK2
EN1
1
GND
Doc ID 13823 Rev 6
CLK1
ai13952
9/40
Device overview
Figure 6.
STCD1020, STCD1030, STCD1040
Hardware hookup
VCC
Clock enable
control
VCC
STCD1040
Master
Clock input
MCLK
EN4
CLK4
EN3
CLK3
EN2
CLK2
GND
EN1
CLK1
Clock #4
output
Clock #3
output
Clock #2
output
Clock #1
output
ai13953
10/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
3
Device operation
Device operation
The STCD1020, STCD1030 and STCD1040 are 2, 3 or 4 buffered unity gain clock
distribution circuits. They accept the clock input from an external clock source and send 2, 3
or 4 buffered outputs to different devices.
Each clock output of the STCD1020, STCD1030 and STCD1040 can be enabled for the
device connected to it. If the device connected is in standby and does not require a clock,
the buffer can be disabled to save power consumption. If all the devices connected are in
standby, the STCD1020, STCD1030 and STCD1040 will also be put into standby mode for
further power consumption saving. The enable signals and output clock signals truth table
are given in Table 3.
The input DC cut capacitor is embedded in STCD1020, STCD1030 and STCD1040. A
capacitor outside is needed for each of the clock outputs. The STCD1020, STCD1030 and
STCD1040 are internally biased at 1/2 VCC DC voltage level at the outputs.
Table 3.
Note:
Truth table for enable signals (EN 1-4) and output clocks (CLK1-4)
EN1
EN2
EN3
EN4
CLK1
CLK2
CLK3
CLK4
0
0
0
0
NO CLOCK
NO CLOCK
NO CLOCK
NO CLOCK
1
0
0
0
CLOCK
NO CLOCK
NO CLOCK
NO CLOCK
1
1
0
0
CLOCK
CLOCK
NO CLOCK
NO CLOCK
...
...
...
...
...
...
...
...
1
1
1
1
CLOCK
CLOCK
CLOCK
CLOCK
"0" means logic low and "1" means logic high. When NO CLOCK outputs, the CLKx pins
stay at high impedance.
Doc ID 13823 Rev 6
11/40
Application information
STCD1020, STCD1030, STCD1040
4
Application information
4.1
Typical applications
The STCD1020, STCD1030 and STCD1040 distribute a source clock (for example, from
VCTCXO) to 2, 3 or 4 channel outputs. The typical application circuits using STCD1040 are
shown in Figure 7 and Figure 8 below.
In Figure 7, the clock from VCTCXO is distributed to the TD-SCDMA transmitter and
receiver and GSM transceiver separately.
In Figure 8, the buffer #4 output is fed into the Bluetooth system. In order to allow minimum
power consumption, a Bluetooth system always has a clock request feature. If the Bluetooth
system does not require the clock, the clock request will disable the clock output.
The enable pins can also be connected to logic high to let the channel output always on. If
the channels of STCD1020, STCD1030 and STCD1040 are not used in the application, the
enable pins of the channels should be connected to ground on PCB.
Figure 7.
Typical application circuit using STCD1040 for RF ends of TDSCDMA/GSM dual-mode mobile phone
VCC
Mode
selection
VCC
VCTCXO
STCD1040 EN4
CLK4
EN3
CLK3
MCLK
EN2
CLK2
GND
TD-SCDMA
transmitter
TD-SCDMA
receiver
EN1
CLK1
GSM
transceiver
ai13954
12/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
Figure 8.
Application information
Typical application circuit using STCD1040 for baseband peripherals in
mobile phone
VCC
BT_External_Req
Internal_Req
VCC
VCTCXO
Bluetooth
STCD1040 EN4
CLK4
EN3
CLK3
MCLK
WLAN
EN2
CLK2
GND
GPS
EN1
CLK1
Other
device
ai13955
4.2
Connection of the source clock to MCLK
If the output of the clock source voltage level is within the supply rails of the STCD1020,
STCD1030 and STCD1040, the output of the source clock should be connected directly to
the MCLK of the clock distribution circuits. This is described in Figure 9. The direct
connection of the source clock is the common case and a DC-CUT capacitor is saved on
PCB.
Figure 9.
Direct connection of the source clock
VCC
OUT
MCLK
VCTCXO
STCD1020
STCD1030
STCD1040
ai13956
Note:
The input clock voltage level of the STCD1020, STCD1030, and STCD1040 cannot exceed
the supply rails when it is directly connected to the source clock. If it is needed to connect a
source clock with the voltage level exceeds the supply rails of the clock distribution circuits,
the user needs to connect a DC-CUT capacitor serially as shown in Figure 10. A voltage
divider formed by a resistor string is also needed to set a proper DC bias for the clock input
Doc ID 13823 Rev 6
13/40
Application information
STCD1020, STCD1030, STCD1040
of the STCD1020, STCD1030 and STCD1040. The proper DC voltage is around half of the
supply.
The connection of the DC-CUT capacitor and bias for the STCD1020, STCD1030 and
STCD1040 is only needed when the output of VCTCXO voltage level exceeds the supply of
the clock distribution circuit (see Figure 10).
Figure 10. Connection of the DC-CUT capacitor and bias
VCC
R1
VCTCXO
OUT
0.1μF
DC-CUT
MCLK
R2
STCD1020
STCD1030
STCD1040
ai13957
14/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
5
Maximum ratings
Maximum ratings
Stressing the device above the rating listed in the absolute maximum ratings table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 4.
Absolute maximum ratings (1.8 V supply)
Symbol
TSTG
TSLD(1)
TJ
Parameter
Value
Unit
Lead solder temperature for 10 seconds
260
Maximum junction temperature
150
°C
°C
°C
Storage temperature (VCC off)
–55 to 150
VCC
Supply voltage
–0.3 to 3.6
V
VIN
Input voltage level
–0.3 to 3.6
V
VEN
Voltage on enable pins
–0.3 to 3.6
V
θJA
Thermal resistance (junction to ambient)
TDFN8
149.0
TDFN10
136.6
TDFN12
132.4
°C/W
°C/W
°C/W
1. Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds.
Table 5.
Absolute maximum ratings (2.8 V supply)
Symbol
TSTG
TSLD
(1)
TJ
Parameter
Value
Unit
Lead solder temperature for 10 seconds
260
Maximum junction temperature
150
°C
°C
°C
Storage temperature (VCC off)
–55 to 150
VCC
Supply voltage
–0.3 to 6
V
VIN
Input voltage level
–0.3 to 6
V
VEN
Voltage on enable pins
–0.3 to 6
V
θJA
Thermal resistance (junction to ambient)
TDFN8
149.0
TDFN10
136.6
TDFN12
132.4
°C/W
°C/W
°C/W
1. Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds.
Doc ID 13823 Rev 6
15/40
DC and AC parameters
6
STCD1020, STCD1030, STCD1040
DC and AC parameters
This section summarizes the operating measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC characteristics tables that
follow are derived from tests performed under the measurement conditions summarized in
Table 6. Designers should check that the operating conditions in their circuit match the
operating conditions when relying on the quoted parameters.
Table 6.
Operating and AC measurement conditions (1.8 V supply)
Parameter
Condition
Unit
1.65 to 2.75
V
Output clock voltage (CLK1…CLK4)
0 to VCC
V
Device enable voltage (EN1…EN4)
0 to VCC
V
Ambient operating temperature (TA)
–40 to +85
°C
VCC supply
Table 7.
DC and AC characteristics (1.8 V supply)
Symbol
fMCLK
VCC
Parameter
Master clock (eg. from VCTCXO)
Input clock voltage level
Vout
Output gain level(3)
IACT
Min
Typ
Max
Unit
Sine wave/square wave
10
26
52
MHz
1.65
1.8
2.75
V
0.75
1
Vpp
–1.5
–0.5
dB
Supply voltage
Vin
IQ
Condition(1)
Quiescent
current(4)
Active current(5)
(2)
CL = 10 pF
2 buffers version
1.6
2.6
3 buffers version
2.0
3.3
4 buffers version
2.6
4
1 channel enabled
1.7
2 channels enabled
2.2
3 channels enabled
2.7
4 channels enabled
3.2
mA
mA
μA
ISB
Standby current
All buffers disabled
RIN
Input resistance
At DC level
>100
CIN
Input capacitance
f = 26 MHz
3
4
pF
tr/f
Rise/fall time(6)
Vin = 1 Vpp, CL = 10 pF
Square wave input/output
2
5
ns
Vin = 1 Vpp, –1 dB, CL = 10 pF
Sine wave input/output
52
BW
Signal bandwidth(3)
VENH
Enable voltage high(7)
EN1~EN4
VENL
Enable voltage low(7)
EN1~EN4
16/40
Doc ID 13823 Rev 6
1
kΩ
MHz
1.2
V
0.6
V
STCD1020, STCD1030, STCD1040
Table 7.
DC and AC characteristics (1.8 V supply)
Symbol
PN
DC and AC parameters
Condition(1)
Parameter
Additive phase noise(3)(8)
Min
Typ
Max
Unit
at 1 kHz offset
–135
at 10 kHz offset
–145
at 100 kHz offset
–150
STCD10x0 active
20
µs
µs
tRECB
Buffer recovery time from off to on
tRECC
STCD10x0 active recovery time
from standby to active
50
CL
Capacitive load for each channel
10
RL
Resistive load for each channel
dBc/
Hz
20
pF
10
kΩ
1. Valid for ambient operating temperature: TA = –40 °C to 85 °C; VCC = 1.65 V to 2.75 V; typical TA = 25 °C;
Load capacitance = 10 pF (except where noted).
2.
Clock input voltage level should not exceed supply rails.
3. Simulated and determined via design and NOT 100% tested.
4. The quiescent current is measured when the enable pins are active, but without input master clock signal (fmclk = 0 Hz).
5. The active current is dependent on the master clock input Vpp and frequency and the capacitive load condition. The typical
test condition is 26 MHz sine wave with 1 Vpp master clock input, CL = 10 pF.
6. The rise time is measured when clock edge transfers from 10% VCC to 90% VCC. The fall time is measured when clock
edge transfers from 90% VCC to 10% VCC.
7. Other test results are under test condition VENH = 1.8 V and VENL = 0 V.
8. Guaranteed with the supply noise of 30 µ Vrms from 300 Hz to 50 kHz.
Table 8.
Operating and AC measurement conditions (2.8 V supply)
Parameter
Condition
Unit
VCC supply
2.5 to 3.6
V
Output clock voltage (CLK1…CLK4)
0 to VCC
V
Device enable voltage (EN1…EN4)
0 to VCC
V
Ambient operating temperature (TA)
–40 to +85
°C
Table 9.
DC and AC characteristics (2.8 V supply)
Symbol
fMCLK
Parameter
Master clock (eg. from VCTCXO)
Condition(1)
Min
Typ
Max
Unit
Sine wave/square wave
10
26
52
MHz
3.6
V
VCC
Supply voltage
2.5
2.8
Vin
Input clock voltage level(2)
0.75
1
Vpp
–1.5
–0.5
dB
Vout
IQ
Output gain
level(3)
Quiescent current(4)
CL = 10 pF
2 buffers version
1.7
2.6
3 buffers version
2.2
3.3
4 buffers version
2.8
4
Doc ID 13823 Rev 6
mA
17/40
DC and AC parameters
Table 9.
Symbol
IACT
STCD1020, STCD1030, STCD1040
DC and AC characteristics (2.8 V supply) (continued)
Condition(1)
Parameter
Active current(5)
Min
Typ
1 channel enabled
1.8
2 channels enabled
2.3
3 channels enabled
2.85
4 channels enabled
3.4
Max
Unit
mA
μA
ISB
Standby current
All buffers disabled
RIN
Input resistance
At DC level
>100
CIN
Input capacitance
f = 26 MHz
3
4
pF
tr/f
Rise/fall times(6)
Vin = 1Vpp, CL = 10 pF
Square wave input/output
2
5
ns
Vin =1 Vpp, -1dB, CL = 10 pF
Sine wave input/output
52
BW
VENH
VENL
PN
Signal bandwidth(3)
Enable voltage high(7)
Enable voltage
low(7)
Additive phase
noise(3)(8)
EN1~EN4
1
kΩ
MHz
1.2
V
EN1~EN4
0.6
V
at 1 kHz offset
–135
at 10 kHz offset
–145
at 100 kHz offset
–150
STCD10x0 active
20
µs
µs
tRECB
Buffer recovery time from off to on
tRECC
STCD10x0 active recovery time
from standby to active
50
CL
Capacitive load for each channel
10
RL
Resistive load for each channel
dBc/
Hz
20
10
pF
kΩ
1. Valid for ambient operating temperature: TA = –40 °C to 85 °C; VCC = 2.5 V to 3.6 V; typical TA = 25 °C;
Load capacitance = 10 pF (except where noted).
2. Clock input voltage level should not exceed supply rails.
3. Simulated and determined via design and NOT 100% tested.
4. The quiescent current is measured when the enable pins are active, but without input master clock signal (fMCLK = 0 Hz).
5. The active current is dependent on the master clock input Vpp and frequency and the capacitive load condition. The typical
test condition is 26 MHz sine wave with 1 Vpp master clock input, CL = 10 pF.
6. The rise time is measured when clock edge transfers from 10% VCC to 90% VCC. The fall time is measured when clock
edge transfers from 90% VCC to 10% VCC.
7. Other test results are under test condition VENH = 1.8 V and VENL = 0 V.
8. Guaranteed with the supply noise of 30 µ Vrms from 300 Hz to 50 kHz.
18/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
Typical operating characteristics
Typical operating characteristics of STCD1040 are VCC = 2.8 V; TA = 25 °C;
load capacitance = 10 pF, 26 MHz TCXO ENE3127B from NDK (except where noted).
Figure 11. Quiescent current (IQ) vs. supply voltage (VCC) (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=1, no master clock input)
3
2.9
10pF
2.8
20pF
2.7
30pF
2.6
2.5
3.
6
3.
4
3.
2
3
2.
8
2.
6
2.4
2.
4
Quiescent current (mA)
3.1
Supply voltage (V)
AM03039v1
Figure 12. Quiescent current (IQ) vs. temperature (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=1, CL = 30 pF, no master clock input)
Quiescent current (mA)
7
Typical operating characteristics
3.2
3
2.8
2.6
2.4
2.2
2
-50
-30
-10
10
30
50
70
90
Temperature (ºC)
AM03040v1
Doc ID 13823 Rev 6
19/40
Typical operating characteristics
STCD1020, STCD1030, STCD1040
Figure 13. Standby current (ISB) vs. supply voltage (VCC) (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=0, no master clock input)
Standby current (µA)
1
0.5
0
-0.5
-1
2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7
Supply voltage (V)
AM03041v1
Figure 14. Active current (IACT) vs. supply voltage (VCC) (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO)
Active current (mA)
6
4
10pF
2
20pF
30pF
0
2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7
Supply voltage (V)
AM03042v1
20/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
Typical operating characteristics
Figure 15. Active current (IACT) vs. master clock input voltage level (Vpp)
(STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave
master clock input)
Active current (mA)
6
5
4
3
2
10pF
1
20pF
30pF
1.
3
1.
2
1.
1
1
0.
9
0.
8
0.
7
0
Master clock voltage level Vpp(V)
AM03043v1
Figure 16. Active current (IACT) vs. input frequency (STCD1040, 2.8 V version,
EN1=EN2=EN3=EN4=1, master clock input Vpp = 1 V)
Active current (mA)
10
8
6
4
10pF
2
20pF
30pF
0
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Frequency (MHZ)
Doc ID 13823 Rev 6
AM03044v1
21/40
Typical operating characteristics
STCD1020, STCD1030, STCD1040
Figure 17. STCD10x0 recovery time from standby to active (STCD1040, 2.8 V
version, EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1)
Figure 18. STCD10x0 buffer recovery time from off to on (STCD1040, 2.8 V version,
EN2=EN3=EN4=1, measure CLK1 when EN1 from 0 to 1)
22/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
Typical operating characteristics
Figure 19. Sine wave input clock vs. output clock (STCD1040, 2.8 V version, 26 MHz
sine wave master clock input from TCXO)
Figure 20. Rise and fall time for square wave output (STCD1040, 2.8 V, 10 MHz
square wave master clock input, CL = 20 pF)
Doc ID 13823 Rev 6
23/40
Typical operating characteristics
STCD1020, STCD1030, STCD1040
Figure 21. Input clock phase noise (STCD1040, 2.8 V version, 26 MHz master clock
input from TCXO)
Figure 22. Output clock phase noise (STCD1040, 2.8V version, this phase noise
includes the additive phase noise from TCXO and STCD1040)
24/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
Typical operating characteristics
Figure 23. Clock bandwidth (STCD1040, 2.8 V version, CL = 10 pF)
Output gain (dB)
0.00
-1.00
-2.00
-3.00
-4.00
-5.00
-6.00
-7.00
-8.00
0
1
10
Input frequency (MHz)
100
AM03051v1
Figure 24. Quiescent current (IQ) vs. supply voltage (VCC) (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=1, no master clock input)
2.8
2.6
2.4
10pF
2.2
20pF
2
2.
7
2.
5
2.
3
2.
1
1.
9
1.
7
30pF
1.
5
Quiescent current (mA)
3
Supply voltage (V)
AM03052v1
Quiescent current (mA)
Figure 25. Quiescent current (IQ) vs. temperature (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=1, CL = 30 pF, no master clock input)
2.9
2.7
2.5
2.3
2.1
1.9
1.7
1.5
-50
-30
-10
10
30
Temperature (°C)
Doc ID 13823 Rev 6
50
70
90
AM03053v1
25/40
Typical operating characteristics
STCD1020, STCD1030, STCD1040
Figure 26. Standby current (ISB) vs. supply voltage (VCC) (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=0, no master clock input)
Standby current (µA)
1
0.5
0
-0.5
2.
7
2.
5
2.
3
2.
1
1.
9
1.
5
1.
7
-1
Supply voltage (V)
AM03054v1
Figure 27. Active current (IACT) vs. supply voltage (VCC) (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO)
Active current (mA)
6
4
10pF
2
20pF
30pF
0
1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
Supply voltage (V)
AM03055v1
Figure 28. Active current (IACT) vs. master clock input voltage level (Vpp)
(STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave
master clock input)
Active current (mA)
6
5
4
3
10pF
2
20pF
1
30pF
1.
3
1.
2
1.
1
1
0.
9
0.
8
0.
7
0
Master clock voltage level Vpp(V)
26/40
Doc ID 13823 Rev 6
AM03056v1
STCD1020, STCD1030, STCD1040
Typical operating characteristics
Figure 29. Active current (IACT) vs. input frequency (STCD1040, 1.8 V version,
EN1=EN2=EN3=EN4=1, master clock input Vpp=1 V)
Active current (mA)
12
10
8
6
10pF
4
20pF
2
30pF
0
1
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Frequency (MHZ)
AM03057v1
Figure 30. STCD10x0 recovery time from standby to active (STCD1040, 1.8 V
version, EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1)
Doc ID 13823 Rev 6
27/40
Typical operating characteristics
STCD1020, STCD1030, STCD1040
Figure 31. STCD10x0 buffer recovery time from off to on (STCD1040, 1.8 V version,
EN2 =EN3=EN4=1, measure CLK1 when EN1 from 0 to 1)
Figure 32. Sine wave input clock vs. output clock (STCD1040, 1.8 V version, 26 MHz
sine wave master clock input from TCXO)
28/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
Typical operating characteristics
Figure 33. Rise and fall time for square wave output (STCD1040, 1.8 V version,
10 MHz square wave master clock input, CL = 20 pF)
Figure 34. Input clock phase noise (STCD1040, 1.8 V version, 26 MHz master clock
input from TCXO)
Doc ID 13823 Rev 6
29/40
Typical operating characteristics
STCD1020, STCD1030, STCD1040
Figure 35. Output clock phase noise (STCD1040, 1.8 V version, this phase noise
includes the additive phase noise from TCXO and STCD1040)
Output gain(db)
Figure 36. Clock bandwidth (STCD1040, 1.8 V version, CL = 10 pF)
30/40
0
-0.5
-1
-1.5
-2
-2.5
-3
-3.5
0
1
10
Input frequency(MHz)
Doc ID 13823 Rev 6
100
AM03064v1
STCD1020, STCD1030, STCD1040
8
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Doc ID 13823 Rev 6
31/40
Package mechanical data
STCD1020, STCD1030, STCD1040
Figure 37. TDFN - 8-lead, 2 x 2 mm package outline
D
A
B
0.10 C 2x
E
PIN 1 INDEX AREA
0.10 C 2x
TOP VIEW
A
A1
0.10 C
C
SEAT ING
PLANE
SIDE VIEW
0.08 C
e
b
PIN 1 INDEX AREA
1
0.10
4
C A B
L
Pin#1 ID
5
8
BOTTOM VIEW
8070540_A
Table 10.
TDFN - 8-lead (2 x 2 mm) package mechanical data
mm
inches
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.70
0.75
0.80
0.028
0.030
0.031
A1
0.00
0.02
0.05
0.000
0.001
0.002
b
0.15
0.20
0.25
0.006
0.008
0.010
D
2.00
BSC
0.079
BSC
E
2.00
BSC
0.079
BSC
e
0.50
0.020
L
32/40
0.45
0.55
0.65
Doc ID 13823 Rev 6
0.018
0.022
0.026
STCD1020, STCD1030, STCD1040
Package mechanical data
Figure 38. TDFN - 10-lead, 2 x 2.5 mm package outline
D
A
B
0.10 C 2x
E
PIN 1 INDEX AREA
0.10 C 2x
TOP VIEW
A
A1
0.10 C
SEATING
PLANE
SIDE VIEW
0.08 C
e
b
PIN 1 INDEX AREA
0.10
C A B
L
Pin#1 ID
BOTTOM VIEW
Table 11.
8070541_A
TDFN - 10-lead (2 x 2.5 mm) package mechanical data
mm
inches
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.70
0.75
0.80
0.028
0.030
0.031
A1
0.00
0.02
0.05
0.000
0.001
0.002
b
0.15
0.20
0.25
0.006
0.008
0.010
D
2.50
BSC
0.098
BSC
E
2.00
BSC
0.079
BSC
e
0.50
0.020
L
0.45
0.55
0.65
Doc ID 13823 Rev 6
0.018
0.022
0.026
33/40
Package mechanical data
STCD1020, STCD1030, STCD1040
Figure 39. TDFN - 12-lead, 2 x 3 mm package outline
D
A
B
INDEX AREA
0.10 C 2x
E
(D/2xE/2)
0.10 C
TOP VIEW
A
A1
0.10 C
C
SEATING
PLANE
SIDE VIEW
0.08 C
e
b
1
6
12
7
0.10
C A B
PIN#1 ID
INDEX AREA
L
(D/2xE/2)
BOTTOM VIEW
8070542_A
Table 12.
TDFN - 12-lead (2 x 3 mm) package mechanical data
mm
inches
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.70
0.75
0.80
0.028
0.030
0.031
A1
0.00
0.02
0.05
0.000
0.001
0.002
b
0.15
0.20
0.25
0.006
0.008
0.010
D
3.00
BSC
0.118
E
2.00
BSC
0.079
e
0.50
0.020
L
34/40
0.45
0.55
0.65
Doc ID 13823 Rev 6
0.018
0.022
0.026
STCD1020, STCD1030, STCD1040
Package mechanical data
Figure 40. Carrier tape for TDFN8, TDFN10, and TDFN12 packages
P0
E
P2
D
T
A0
F
TOP COVER
TAPE
W
B0
P1
CENTER LINES
OF CAVITY
K0
USER DIRECTION OF FEED
AM03073v1
Table 13.
Carrier tape dimensions for TDFN8, TDFN10, and TDFN12 packages
Package
W
TDFN8
8.00
+0.30/
–0.10
TDFN10
TDFN12
D
E
P0
P2
F
B0
K0
1.50
1.75 4.00 2.00 3.50
+0.10/
±0.10 ±0.10 ±0.10 ±0.05
–0.00
2.30
±0.05
2.30
±0.05
1.00
±0.05
4.00 0.250
±0.10 ±0.05
mm
3000
12.00
±0.30
1.50
1.75 4.00 2.00 5.50
+0.10/
±0.10 ±0.10 ±0.10 ±0.05
–0.00
2.30
±0.10
2.80
±0.10
1.10
±0.01
4.00
0.30
±0.10 ±0.05
mm
3000
12.00
±0.30
1.50
1.75 4.00 2.00 5.50
+0.10/
±0.10 ±0.10 ±0.10 ±0.05
–0.00
2.30
±0.10
3.20
±0.10
1.10
±0.01
4.00
0.30
±0.10 ±0.05
mm
3000
Doc ID 13823 Rev 6
P1
T
Unit
Bulk
A0
qty.
35/40
Package mechanical data
STCD1020, STCD1030, STCD1040
Figure 41. DG package topside marking information (TDFN8)
(1)
PPYWW
AM03065v1
1. Traceability codes
PP = Assembly plant
Y = Assembly year
WW = Assembly week
Figure 42. DH and DM package topside marking information (TDFN10 and TDFN12)
PPYWW(1)
AM03066v1
1. Traceability codes
PP = Assembly plant
Y = Assembly year
WW = Assembly week
Table 14.
36/40
STCD10x0 top marking information
Part number
Marking
STCD1020RDG
CD20
STCD1020PDG
CD2L
STCD1030RDH
CD30
STCD1030PDH
CD3L
STCD1040RDM
CD40
STCD1040PDM
CD4L
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
Package mechanical data
Figure 43. Landing pattern – TDFN8 2 x 2 mm, TDFN10 2 x 2.5 mm, TDFN12 2 x 3 mm
D3
D2
D1
P
E
E1
L
b
AM03072v1
Table 15.
Landing pattern parameters (TDFN8, TDFN10, TDFN12)
Dimension (mm)
Parameter
Description
Min
Nom
Max
L
Contact length
1.05
-
1.15
b
Contact width
0.25
-
0.30
E
Max landing pattern Y-direction
-
2.75
-
E1
Contact gap spacing
-
0.65
-
TDFN8
-
1.75
-
TDFN10
-
2.25
-
TDFN12
-
2.75
-
-
0.5
-
D1
D2
Max landing pattern X-direction
D3
P
Contact pitch
Doc ID 13823 Rev 6
37/40
Part numbering
9
STCD1020, STCD1030, STCD1040
Part numbering
Table 16.
Ordering information scheme
Example:
STCD
1020
R
DG
6
E
Device type
STCD = clock distribution
Channels
1020 = 2-channel
1030 = 3-channel(1)
1040 = 4-channel
Operating voltage
R = 2.5 to 3.6 V
P = 1.65 to 2.75 V(1)
Package
DG = TDFN8 (2-channel)
DH = TDFN10 (3-channel)
DM = TDFN12 (4-channel)
Temperature range
6 = –40 °C to +85 °C
Shipping method
E = ECOPACK® package, tubes
F = ECOPACK® package, tape & reel
1. Contact local ST sales office for availability.
For other options, or for more information on any aspect of this device, please contact the
ST sales office nearest you.
38/40
Doc ID 13823 Rev 6
STCD1020, STCD1030, STCD1040
10
Revision history
Revision history
Table 17.
Document revision history
Date
Revision
Changes
08-Aug-2007
1
Initial release.
08-Oct-2007
2
Addition of footnote 4 in Table 7: DC and AC characteristics (1.8 V
supply); updated Vout in Table 7 and Table 9; minor text changes.
03-Apr-2008
3
Updated cover page, Table 2, 5, 7, 9, 16, Figure 1, 6, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, Section 3 and 7; added Figure 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36.
08-May-2008
4
Updated cover page, Table 7, 8, Figure 14, 15, 27, 28, and
Section 7; datasheet status upgraded to full datasheet.
07-Sep-2009
5
Added tape and reel specifications (Figure 40, Table 13), top
marking information (Figure 41, 42, Table 14) and landing pattern
(Figure 43, Table 15); updated cover page, Table 4, 5, 16 and text in
Section 8: Package mechanical data; reformatted document.
14-May-2010
6
Updated Figure 42; minor textual changes.
Doc ID 13823 Rev 6
39/40
STCD1020, STCD1030, STCD1040
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
40/40
Doc ID 13823 Rev 6