TOSHIBA T6K14UBW

T6K14
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC
T6K14
COLUMN AND ROW DRIVER LSI FOR A DOT MATRIX GRAPHIC LCD
The T6K14 is a driver for a small-to-medium-sized dot matrix
graphic LCD, especially for reflective color STN LCD. It realizes a
Unit: mm
4-color or 4-gray-scale display. This driver can be interfaced to
Lead Pitch
the MPU via an 8-bit (68/80-series) or a serial interface, and is
T6K14
operated asynchronously with the MPU. Since the T6K14
IN
OUT
contains a CR oscillator, it can generate the timing signals
(UBW, 5NS)
0.60
0.23
required for the LCD. Since the T6K14 has 128 outputs for the
Please contact with Toshiba agents for
LCD drive (segment) signals that constitute display data, 65
each packaging outline dimensions.
outputs for the LCD drive (common) signals that constitute
scanning signals and 65 × 128 × 2 bits display RAM, this single
device allows you to drive an LCD panel comprised of up to 128 ×
64 dots and 128 icons with a minimize of power requirement. It
TCP (Tape Carrier Package)
has 4 gray-scale function. The display RAM of this driver is a 2
port RAM so that the MPU accesses without any wait time. It has
various power circuits such as a voltage regulators, voltage
divider resistors, a power supply op-amp, a contrast control circuit, a temperature compensation circuit, and
DC-DC converter ( ×2, ×3, ×4, ×5 ). All these circuits enable the LCD panel to be driven with a single power supply.
Features
l LCD driver output
: 64 rows + 128 columns + 128 icons
l Built in display RAM
: 65 × 128 × 2 = 16640 bits, 2-port RAM
l Gray scale
: 4 gray-scale selectable
l Word length
: 8-bit/word
l Duty cycle
: 1/2 duty (power save mode)
1/35, 1/49, 1/57, 1/65 duty selectable (normal display mode)Display mode
l Display modes
: Normal mode (Full display)
Power save mode (Icon display)
Stand by mode (Clock stopped)
l Clock oscillator
: CR oscillator with external resistors
Low frequency operation 82 kHz oscillation for FR frequency 70 Hz (1/65 duty)
l Power circuit
: Voltage regulator, Voltage divider, Voltage follower op-amp.
DC-DC converter (×2, ×3, ×4, ×5), Temperature compensation circuit, Contrast
control circuit.
l CPU interface
: Interfacing with 68/80 series MPU and Serial Interface
l Logic operating voltage
: VDD = 2.4 to 3.3 V, VIN = 2.7 to 3.3 V
l LCD drive voltage
: VCC1, 2 = 6.0 to 16.5 V, if case of used the voltage Regulator, VCC2 output voltage
at 12.5 V or 11.0 V (typ.) Ta = 25°C
l CMOS process
l Low power consumption
Condition
l Package
: ISS = 200 µA (typ.)
: VDD = 2.7 V, VIN = 2.7 V, using the DC-DC converter (×5), no data access, op-amp
on, fosc = 82 kHz (internal clock), no load, 1/65 duty, temperature compensation
circuit off.
:
Product
Package
T6K14 (×××, ×××)
TCP (Tape carrier package)
JBT6K14-AS
Gold bump chip
1
2002-01-16
Block Diagram
T6K14
2
2002-01-16
T6K14
Pin Configuration
Note:
Above drawing describes pin configuration of the LSI Chip, it doesn’t define the tape carrier package.
3
2002-01-16
T6K14
PAD Specification
Item
Chip Size
Chip Tip Coordinates
Size
Unit
8960×5050
µm
(1)
−4480, −2525
(2)
−4480,
2525
(3)
4480,
2525
(4)
4480, −2525
Bump Pitch
70 (Min)
Bump Height
15 (Typ.)
Item
µm
µm
µm
Number of Pins
Input Pin
114 (Including dummy pins)
Output Pin
208 (Including dummy pins)
FUSE Pin
12
(Note 1)
TEST Pin
19
(Note 1)
Note 1: FUSE (No.115 to 126) and TEST (No.335 to 353) are LSI test pins, leave these pins open.
4
2002-01-16
Pad Layout
T6K14
5
2002-01-16
T6K14
Pad Coordinates
[Unit: µm]
No.
Name
X-Point
Y-Point
No.
Name
X-Point
Y-Point
No.
Name
X-Point
Y-Point
1
DUMMY1
−4203
−2293
48
VIN
−737
−2293
95
/RD
2719
−2293
2
VLC2
−4121
−2293
49
DUMMY11
−665
−2293
96
VSS
2791
−2293
3
VLC2
−4049
−2293
50
DUMMY12
−521
−2293
97
RS
2863
−2293
4
DUMMY2
−3977
−2293
51
VR32
−449
−2293
98
VDD
2935
−2293
5
VLC1
−3905
−2293
52
VR32
−377
−2293
99
CS2
3007
−2293
6
VLC1
−3833
−2293
53
VR12
−305
−2293
100
/CS1
3079
−2293
7
DUMMY3
−3761
−2293
54
VR12
−233
−2293
101
VSS
3151
−2293
8
VLC0
−3689
−2293
55
VSS
−161
−2293
102
DB0
3223
−2293
9
VLC0
−3617
−2293
56
VSS
−89
−2293
103
DB1
3295
−2293
10
DUMMY4
−3545
−2293
57
VSS
−17
−2293
104
DB2
3367
−2293
11
DUMMY5
−3401
−2293
58
VSS
55
−2293
105
DB3
3439
−2293
12
VCC2
−3329
−2293
59
VSS
127
−2293
106
DB4
3511
−2293
13
VCC2
−3257
−2293
60
DUMMY13
199
−2293
107
DB5
3583
−2293
14
DUMMY6
−3185
−2293
61
OSC2
271
−2293
108
DB6
3655
−2293
15
DUMMY7
−3113
−2293
62
DUMMY14
343
−2293
109
DB7
3727
−2293
16
DUMMY8
−3041
−2293
63
OSC1
415
−2293
110
DUMMY16
3799
−2293
17
DUMMY9
−2969
−2293
64
DUMMY15
487
−2293
111
DUMMY17
3871
−2293
18
VCC1
−2897
−2293
65
VDD
559
−2293
112
DUMMY18
3943
−2293
19
VCC1
−2825
−2293
66
VDD
631
−2293
113
DUMMY19
4015
−2293
20
VCC1
−2753
−2293
67
VDD
703
−2293
114
DUMMY20
4097
−2293
21
VCC1
−2681
−2293
68
VDD
775
−2293
115
FUSE25
4280
−2129
22
DUMMY10
−2609
−2293
69
CIN
847
−2293
116
FUSE24
4280
−1994
23
VOUT4
−2537
−2293
70
RT
919
−2293
117
FUSE2G
4280
−1869
24
VOUT4
−2465
−2293
71
RU
991
−2293
118
FUSE23
4280
−1744
25
C4B
−2393
−2293
72
VDD
1063
−2293
119
FUSE22
4280
−1619
26
C4B
−2321
−2293
73
/STB
1135
−2293
120
FUSE21
4280
−1494
27
C4A
−2249
−2293
74
FR
1207
−2293
121
FUSE35
4280
−1369
28
C4A
−2177
−2293
75
PM
1279
−2293
122
FUSE34
4280
−1244
29
VOUT3
−2105
−2293
76
CL
1351
−2293
123
FUSE3G
4280
−1119
30
VOUT3
−2033
−2293
77
CK
1423
−2293
124
FUSE33
4280
−994
31
C3B
−1961
−2293
78
SYNC
1495
−2293
125
FUSE32
4280
−869
32
C3B
−1889
−2293
79
VSS
1567
−2293
126
FUSE31
4280
−744
33
C3A
−1817
−2293
80
M/S
1639
−2293
127
DUMMY21
4280
−619
−468
34
C3A
−1745
−2293
81
VDD
1711
−2293
128
COM32
4280
35
VOUT2
−1673
−2293
82
MD
1783
−2293
129
COM31
4280
−398
36
VOUT2
−1601
−2293
83
VSS
1855
−2293
130
COM30
4280
−328
37
C2B
−1529
−2293
84
SCK
1927
−2293
131
COM29
4280
−258
38
C2B
−1457
−2293
85
SI
1999
−2293
132
COM28
4280
−188
39
C2A
−1385
−2293
86
SO
2071
−2293
133
COM27
4280
−118
40
C2A
−1313
−2293
87
VDD
2143
−2293
134
COM26
4280
−48
41
VOUT1
−1241
−2293
88
68/80
2215
−2293
135
COM25
4280
22
42
VOUT1
−1169
−2293
89
VSS
2287
−2293
136
COM24
4280
92
43
C1B
−1097
−2293
90
RS
2359
−2293
137
COM23
4280
162
44
C1B
−1025
−2293
91
VDD
2431
−2293
138
COM22
4280
232
45
C1A
−953
−2293
92
/RST
2503
−2293
139
COM21
4280
302
46
C1A
−881
−2293
93
D/I
2575
−2293
140
COM20
4280
372
47
VIN
−809
−2293
94
/WR
2647
−2293
141
COM19
4280
442
6
2002-01-16
T6K14
[Unit: µm]
No.
Name
X-Point
Y-Point
No.
Name
X-Point
Y-Point
No.
Name
X-Point
Y-Point
142
COM18
4280
512
189
SEG29
2486
2325
236
SEG76
−804
2325
143
COM17
4280
582
190
SEG30
2416
2325
237
SEG77
−874
2325
144
COM16
4280
652
191
SEG31
2346
2325
238
SEG78
−944
2325
145
COM15
4280
722
192
SEG32
2276
2325
239
SEG79
−1014
2325
146
COM14
4280
792
193
SEG33
2206
2325
240
SEG80
−1084
2325
147
COM13
4280
862
194
SEG34
2136
2325
241
SEG81
−1154
2325
148
COM12
4280
932
195
SEG35
2066
2325
242
SEG82
−1224
2325
149
COM11
4280
1002
196
SEG36
1996
2325
243
SEG83
−1294
2325
150
COM10
4280
1072
197
SEG37
1926
2325
244
SEG84
−1364
2325
151
COM9
4280
1142
198
SEG38
1856
2325
245
SEG85
−1434
2325
152
COM8
4280
1212
199
SEG39
1786
2325
246
SEG86
−1504
2325
153
COM7
4280
1282
200
SEG40
1716
2325
247
SEG87
−1574
2325
154
COM6
4280
1352
201
SEG41
1646
2325
248
SEG88
−1644
2325
155
COM5
4280
1422
202
SEG42
1576
2325
249
SEG89
−1714
2325
156
COM4
4280
1492
203
SEG43
1506
2325
250
SEG90
−1784
2325
157
COM3
4280
1562
204
SEG44
1436
2325
251
SEG91
−1854
2325
158
COM2
4280
1632
205
SEG45
1366
2325
252
SEG92
−1924
2325
159
COM1
4280
1702
206
SEG46
1296
2325
253
SEG93
−1994
2325
160
ICOM1A
4280
1772
207
SEG47
1226
2325
254
SEG94
−2064
2325
161
SEG1
4280
1842
208
SEG48
1156
2325
255
SEG95
−2134
2325
162
SEG2
4280
1912
209
SEG49
1086
2325
256
SEG96
−2204
2325
163
SEG3
4280
1982
210
SEG50
1016
2325
257
SEG97
−2274
2325
164
SEG4
4280
2052
211
SEG51
946
2325
258
SEG98
−2344
2325
165
SEG5
4280
2133
212
SEG52
876
2325
259
SEG99
−2414
2325
166
SEG6
4107
2325
213
SEG53
806
2325
260
SEG100
−2484
2325
167
SEG7
4026
2325
214
SEG54
736
2325
261
SEG101
−2554
2325
168
SEG8
3956
2325
215
SEG55
666
2325
262
SEG102
−2624
2325
169
SEG9
3886
2325
216
SEG56
596
2325
263
SEG103
−2694
2325
170
SEG10
3816
2325
217
SEG57
526
2325
264
SEG104
−2764
2325
171
SEG11
3746
2325
218
SEG58
456
2325
265
SEG105
−2834
2325
172
SEG12
3676
2325
219
SEG59
386
2325
266
SEG106
−2904
2325
173
SEG13
3606
2325
220
SEG60
316
2325
267
SEG107
−2974
2325
174
SEG14
3536
2325
221
SEG61
246
2325
268
SEG108
−3044
2325
175
SEG15
3466
2325
222
SEG62
176
2325
269
SEG109
−3114
2325
176
SEG16
3396
2325
223
SEG63
106
2325
270
SEG110
−3184
2325
177
SEG17
3326
2325
224
SEG64
36
2325
271
SEG111
−3254
2325
178
SEG18
3256
2325
225
SEG65
−34
2325
272
SEG112
−3324
2325
179
SEG19
3186
2325
226
SEG66
−104
2325
273
SEG113
−3394
2325
180
SEG20
3116
2325
227
SEG67
−174
2325
274
SEG114
−3464
2325
181
SEG21
3046
2325
228
SEG68
−244
2325
275
SEG115
−3534
2325
182
SEG22
2976
2325
229
SEG69
−314
2325
276
SEG116
−3604
2325
183
SEG23
2906
2325
230
SEG70
−384
2325
277
SEG117
−3674
2325
184
SEG24
2836
2325
231
SEG71
−454
2325
278
SEG118
−3744
2325
185
SEG25
2766
2325
232
SEG72
−524
2325
279
SEG119
−3814
2325
186
SEG26
2696
2325
233
SEG73
−594
2325
280
SEG120
−3884
2325
187
SEG27
2626
2325
234
SEG74
−664
2325
281
SEG121
−3954
2325
188
SEG28
2556
2325
235
SEG75
−734
2325
282
SEG122
−4024
2325
7
2002-01-16
T6K14
[Unit: µm]
No.
Name
X-Point
Y-Point
No.
Name
X-Point
Y-Point
No.
Name
X-Point
Y-Point
283
SEG123
−4105
2325
307
COM51
−4280
512
331
VLC3
−4280
−1797
284
SEG124
−4280
2133
308
COM52
−4280
442
332
VLC3
−4280
−1869
285
SEG125
−4280
2052
309
COM53
−4280
372
333
DUMMY25
−4280
−1994
286
SEG126
−4280
1982
310
COM54
−4280
302
334
DUMMY26
−4280
−2119
287
SEG127
−4280
1912
311
COM55
−4280
232
335
TEG1
2249
−450
288
SEG128
−4280
1842
312
COM56
−4280
162
336
TEG2
2349
−450
289
COM33
−4280
1772
313
COM57
−4280
92
337
TEG3
2449
−450
290
COM34
−4280
1702
314
COM58
−4280
22
338
TEG4
2588
−450
291
COM35
−4280
1632
315
COM59
−4280
−48
339
TEG5
2688
−450
292
COM36
−4280
1562
316
COM60
−4280
−118
340
TEG6
2788
−450
293
COM37
−4280
1492
317
COM61
−4280
−188
341
TEG7
2249
−301
294
COM38
−4280
1422
318
COM62
−4280
−258
342
TEG8
2349
−301
295
COM39
−4280
1352
319
COM63
−4280
−328
343
TEG9
2449
−301
296
COM40
−4280
1282
320
COM64
−4280
−398
344
TEG10
−2448
1172
297
COM41
−4280
1212
321
ICOM1B
−4280
−468
345
TEG11
−2448
1072
298
COM42
−4280
1142
322
DUMMY22
−4280
−619
346
TEG12
−2448
972
299
COM43
−4280
1072
323
VLC5
−4280
−744
347
TEG13
−2448
872
300
COM44
−4280
1002
324
VLC5
−4280
−869
348
TEG14
−2448
699
301
COM45
−4280
932
325
VLC5
−4280
−994
349
TEG15
−2448
599
302
COM46
−4280
862
326
VLC5
−4280
−1119
350
TEG16
−2448
499
303
COM47
−4280
792
327
DUMMY23
−4280
−1244
351
TEG17
−2448
399
304
COM48
−4280
722
328
VLC4
−4280
−1369
352
TEG18
−2448
201
305
COM49
−4280
652
329
VLC4
−4280
−1441
353
TEG19
−2448
101
306
COM50
−4280
582
330
DUMMY24
−4280
−1619
8
2002-01-16
T6K14
Pin Function (1)
Pin Name
I/O
Function
SEG1 to SEG128
Output
LCD drive column (segment) signals
COM1 to COM64
Output
LCD drive row (common) signals
ICON
Output
LCD drive row (common) signals for icon
DB0 to DB7
I/O
Data bus
/CS1
Input
Input for chip select signal
Data write: Data write enable at the rising edge of /CS1.
Data read : Data read out while /CS1 is in Low level.
CS2
Input
Input for chip select signal
Data write: Data write enable at the falling edge of CS2.
Data read : Data read out while CS2 is in High level.
D/I
Input
Input for Data/Instruction select signal
● D/I = H → Indicates that the data on DB0 to DB7 or SI is the display data.
● D/I = L → Indicates that the data on DB0 to DB7 or SI is the instruction data.
/WR
Input
Input for write enable signal
● /WR = L → State of select
/RD
Input
Input for read enable signal
● /RD = L → State of select
RS
Input
Input for register/mode select signal
P/S
Input
Input for parallel interface/serial interface select signal
● P/S = H → Parallel interface is selected. SI and SCK must be connected to VDD or
VSS.
● P/S = L → Serial interface is selected. DB0 to DB7, /WR and/RD must connected to
VDD or VSS.
68/80
Input
Input for 68 series MPU/80 series MPU select signal
● 68/80 = H → 68 series MPU selected
● 68/80 = L → 80 series MPU selected
SO
Output
Output for serial data
SI
Input
Input for serial data
SCK
Input
Input for serial clock
/RST
Input
Input for reset signal
● /RST = L → State of select
9
2002-01-16
T6K14
Pin Function (2)
Pin Name
I/O
Function
Input
Input for standby signal
● Usually connected to VDD
● /STB = L → T6K14 is the state of standby.
Column and row drive signal is VSS level, and on-chip oscillator is
stop.
OSC1, OSC2
I/O
When using a internal clock oscillator, connect a resistor between OSC1 and OSC2.
When using a external clock, input the clock to OSC1 and leave OSC2 open.
VIN
―
Power supply for DC-DC converter
CIN
I/O
Input for clock of temperature compensation
RU
―
Connect with standard resistor
RT
―
Connect with thermistor
C1A, C1B
―
Connect with capacitance for ×2 mode
VOUT1
―
DC−DC converter output terminal (×2 level)
C2A, C2B
―
Connect with capacitance for ×3 mode
VOUT2
―
DC−DC converter output terminal (×3 level)
C3A, C3B
―
Connect with capacitance for ×4 mode
VOUT3
―
DC−DC converter output terminal (×4 level)
C4A, C4B
―
Connect with capacitance for ×5 mode
VOUT4
―
DC−DC converter output terminal (×5 level)
VR12
―
LV regulator monitor terminal
(Note)
VR32
―
LV regulator monitor terminal
(Note)
VCC1
―
Power supply for LCD driver circuit
VCC2
―
Power supply for HV regulator monitor terminal
(Note)
VLC0 to VLC5
―
Power supply for LCD driver circuit
VLC5 terminal is connect to VSS.
(Note)
VSS, VDD
―
Power supply for logic circuit. Ground: Reference
/STB
Note: Connect the capacitance between this terminal and VSS.
10
2002-01-16
T6K14
Pin Function (3)
Pin Name
I/O
Function
MD
Input
Mode detect pin for Status Read
M/S
Input
Input for master/slave selects
● M/S = H → T6K14 is master chip
● M/S = L → T6K14 is slave chip
CL
I/O
Input/Output for shift clock pulse
● Master mode (M/S = H) → output
● Slave mode (M/S = L) → input
PM
I/O
Input/Output for frame signal
● Master mode (M/S = H) → output
● Slave mode (M/S = L) → input
FR
I/O
Input/Output for display synchronous signal
● Master mode (M/S = H) → output
● Slave mode (M/S = L) → input
SYNC
I/O
Input/Output for grayscale signal data
● Master mode (M/S = H) → output
● Slave mode (M/S = L) → input
CK
I/O
Input/Output for grayscale signal data
● Master mode (M/S = H) → output
● Slave mode (M/S = L) → input
Pin Function (4)
PS
H
L
Note:
68/80
/CS1
CS2
D/I
RS
/WR
/RD
SO
SI
SCK
DB0 to DB7
80 series MPU (/CS1)
/CS1
H
A0
A1
/WR
/RD
Open
L/H
L/H
DB0 to DB7
80 series MPU (CS2)
L
CS2
A0
A1
/WR
/RD
Open
L/H
L/H
DB0 to DB7
H
68 series MPU
L
H
A0
A1
R/W
E
Open
L/H
L/H
DB0 to DB7
L/H
Serial interface
L
H
L/H
L/H
L/H
L/H
SO
SI
SCK
Open
L
Interface Type
H denotes the VDD level; L denotes the VSS level.
11
2002-01-16
T6K14
Function of Each Block
● Interface logic
The T6K14 can be operated with 80 series MPUs or 68 series MPUs or Serial Interface.
Fig. 1 shows an example of interface. For details, please refer to the example interface part of application
circuit.
Fig. 1
Fig. 2
● Input register
The register stores 8 bit data from MPU. D/I signal discriminate between command data and display data.
● X-address counter
X-address counter is 64-Up/Down counter. It holds the row address for the display RAM. Then it is selected
by the command, writing to or reading the data of display RAM causes the X-address to automatically
increment or decrement.
● Y (Page) -address counter
The Y (Page) -address counter is 32-Up/Down counter. It holds the column address for the display RAM. This
counter is selected by the command. Writing to or reading the display RAM causes the Y-address to
automatically increment or decrement.
● Z-address counter
The Z-address counter is 64-Up counter that provide the display RAM data for the LCD drive circuit. The
data stored in Z-Address Register is send to Z-Address counter as Z start address.
For instance, when Z start address is 16, the counter increment like this: 16, 17, 18···, 62, 63, 0, 1, 2···14, 15,
16. Therefore, the display start line is 16-line of the display RAM.
12
2002-01-16
T6K14
● Up/Down register
The 1 bit data stored in this register selects Up or Down mode of X and Y (Page) -address counter.
● Counter select register
The 1 bit data stored in this register selects X-address counter or Y (Page) -address counter.
● Display ON/OFF register
This 1 bit register holds the display ON or OFF state. In the OFF state, the output data from the display
RAM is not selected. In the On state, the display data appears according to the display RAM data. The
display ON or OFF state does not affect the data of display RAM.
● Z-address register
This 6 bits register holds the data that indicates the display start line.
● Oscillator
The T6K14 has an on-chip oscillator. When using this oscillator, connect an external resistor between OSC1
and OSC2. When using external clock, input the clock to OSC1 and open OSC2, as shown in Fig. 3.
Fig. 3
● Timing generation circuit
The circuit divides the signals from the oscillator and generates display timing signals and operating clock.
● Shift-register
The T6K14 has two 32 bits shift-register and shift register of ICON. These shift-register construct 65 bits
shift-register.
● Latch circuit
This latch circuit latches the data from the display RAM.
13
2002-01-16
T6K14
● Column driver circuit
Column driver circuit consists of 128 driver circuits. One of the four LCD driving level is selected by the
combination of M (internal signal) and the display data transferred from the latch circuit. Details of column
driver circuit are shown in Fig. 4.
Fig. 4
● Row driver circuit
Row driver circuit consists of 65 drive circuits. One of the four LCD driving level is selected by the
combination of M (internal signal) and the data from the sift register. Details of row driver circuit are shown
in Fig. 5.
Fig. 5
14
2002-01-16
T6K14
● DC-DC converter
The T6K14 built in DC-DC converter circuit 2/3/4/5 times.
Voutn = 0 (VSS level) is at the time of /RST = L or /STB = L.
The capacitor for DC-DC converter and the capacitor for DC-DC level maintenance usually use about 1.0µF.
Since the power supply VIN terminal for DC-DC converter circuit can input voltage usually higher than a
digital system power supply VDD terminal, it can generate required LCD voltage in a DC-DC converter.
However, since the maximum of LCD operation voltage is 16.5 V (max) be careful about the relation of the
voltage conditions (VIN voltage) and the number of the DC-DC steps which are used in a DC-DC converter so
that the DC-DC converted voltage (voltage value outputted from Vout) does not exceed 16.5 V.
Note 1: Power supply voltage …….. 3.3 V ≥ VIN ≥ 2.7 V, VIN ≥ VDD
Note 2: LCD voltage ………………. 16.5 V ≥ VIN × n
(n: number of DC-DC steps)
ex) Using the ×5 mode
About Terminal Processing
Conditions
C1A, C1B
VOUT1
C2A, C2B
VOUT2
C3A, C3B
VOUT3
C4A, C4B
VOUT4
×2 mode
O
O
Open
Open
Open
Open
Open
Open
×3 mode
O
O
O
O
Open
Open
Open
Open
×4 mode
O
O
O
Open
O
O
Open
Open
×5 mode
O
O
O
Open
O
Open
O
O
None
Open
Open
Open
Open
Open
Open
Open
Open
Note: O = Connect the capacitance.
Note: The voltage outputted from DC-DC converter changes with voltage condition, temperature environment,
substrate environment, etc.
15
2002-01-16
T6K14
● Voltage driver resistor, contrast control circuit (Normal mode)
The T6K14 has on-chip resistors to divide bias voltage with op-amp., and a contrast control circuit.
The voltage bias is changed by instruction command. And one of four bias is selected.
16
2002-01-16
T6K14
● Contrast control circuit (Power Save Mode)
Contrast control output voltage (VLC0) (Typical Value)
Condition
VR32 [V]
VLC0 (min)
[V]
VLC0 (max)
[V]
Contrast Step
[mV]
Bias
Power Save
3.2
2.2
5.0
11.0
1/12
17
2002-01-16
T6K14
● Temperature compensation circuit
The T6K14 has the temperature compensation circuit.
While this temperature compensation circuit detects temperature, it controls automatically built-in contrast
control. And, original contrast control suitable for all LCD material can be created by writing data in RAM
for temperature compensation circuit (TMP-RAM). Please refer to description of a function about the usage.
18
2002-01-16
T6K14
Command Definition
Reg.
No.
D/I
RS
/WR
/RD
DB7
DB6
DB5
Register set (REG)
―
0
0
0
1
0
0
0
Status read (STRD)
―
0
0
1
0
MD
*
Data mode (DMD)
R0
0
1
0
1
0
0
Command
DB4
DB1
0
DP
Y/X
U/D
0
D/TM
Y/X
U/D
R1
0
1
0
1
0
Power mode (PWE)
R2
0
1
0
1
×4/×5
Duty/Bias Select (DTE)
R3
0
1
0
1
Oscillation (OSE)
R4
0
1
0
1
X, Y−address (SXYE)
R5
0
1
0
1
Z−address (SZE)
R6
0
1
0
1
Contrast control (SCE)
R7
0
1
0
1
TMP mode (TMPM)
R8
0
1
0
1
0
TMP−RAM address (TMPA)
R9
0
1
0
1
0
FRS control mode (FRSC)
R10
0
1
0
1
0
Grayscale (1) (GR1)
Normal display pattern
R11
0
1
0
1
R12
0
1
0
1
R13
0
1
0
1
R14
0
1
0
1
R15
0
1
0
1
R16
0
1
0
1
R17
0
1
0
1
R18
0
1
0
1
R19
0
1
0
1
R20
0
1
0
1
R21
0
1
0
1
R22
0
1
0
1
R23
0
1
0
1
R24
0
1
0
1
Grayscale (8) (GR8)
Power save display pattern
R25
0
1
0
1
R26
0
1
0
1
TMP−RAM address read
R27
0
1
1
0
R28 to
31
0
1
0
1
Please do not using this register
Data write (DAWR)
―
1
1
0
1
Write data
Data read (DARD)
―
1
1
1
0
Read data
Grayscale (3) (GR3)
Normal display pattern
Grayscale (4) (GR4)
Normal display pattern
Grayscale (5) (GR5)
Power save display pattern
Grayscale (6) (GR6)
Power save display pattern
Grayscale (7) (GR7)
Power save display pattern
Test mode
19
0
0
0
0
0
N/F
DP
0
0
VR
OP
DC
0
0
0
0
Bias (5 to 9)
0
0
1
F/N
0
0
0
0
0
DB0
N/F
Display mode (DPE)
Grayscale (2) (GR2)
Normal display pattern
CDR SDR
DB2
Register (0 to 31)
TMP HVR
0
DB3
0
Duty (0 to
3)
0
OSC
X-Address (0 to 63)
0
Y-Address (0 to 31)
Z-Address (0 to 63)
Contrast Control (0 to 255)
0
0
0
TMO
F
0
time (0 to 3)
TMP-RAM address (0 to 127)
0
FR control (0 to 63)
Grayscale pattern data (1)
Normal display data = “00” ··· 16 bits
Grayscale pattern data (2)
Normal display data = “01” ··· 16 bits
Grayscale pattern data (3)
Normal display data = “10” ··· 16 bits
Grayscale pattern data (4)
Normal display data = “11” ··· 16 bits
Grayscale pattern data (5)
Power save display data = “00” ··· 16 bits
Grayscale pattern data (6)
Power save display data = “01” ··· 16 bits
Grayscale pattern data (7)
Power save display data = “10” ··· 16 bits
Grayscale pattern data (8)
Power save display data = “11” ··· 16 bits
*
TMP-RAM address data (7 bits)
2002-01-16
T6K14
● Register set
Identify register number
R0 (00H) to R31 (1FH)
Note: R28 to R31 registers are provided for test. Please do not choose these registers.
● R0: Data mode
D/TM
Y/X
U/D
: Selects between display RAM address and TMP-RAM address counters.
D/TM = 1: Display RAM counter is selected. D/TM = 0: TMP-RAM counter is selected.
: Selects between X-counter and Y-counter.
Y/X = 1: Y-counter is selected.
Y/X = 0: X-counter is selected.
: Sets a counter mode.
U/D = 1: Up mode is selected.
U/D = 0: Down mode is selected.
● R1: Display mode
CDR
SDR
N/F
DP
: Sets the common data scanning direction.
CDR = 1: COM1 → COM64 → ICON
CDR = 0: COM64 → COM1 → ICON
: Sets the segment data direction
See “RAM map and CDR, SDR relation”
: Selects between normal display mode and Power save mode.
N/F = 1: Normal display mode is selected. N/F = 0: Power save mode (Flag display only) is selected.
: Turns display ON or OFF.
DP = 1: Display is turned ON.
DP = 0: Display is turned OFF.
20
2002-01-16
T6K14
● R2: Power management
X4/X5 :
VR
OP
DC
X4/X5 = 0: LCD voltage regulator output voltage is 12.5 V typ. (at Ta = 25°C)
X4/X5 = 1: LCD voltage regulator output voltage is 11.0 V typ. (at Ta = 25°C)
: LCD voltage regulator (HVR)
VR = 1: Voltage regulator is turned ON.
VR = 0: Voltage regulator is turned OFF.
Input the voltage to VCC2 pin.
: Op-amp
OP = 1: Op-amp is turned ON.
OP = 0: Op-amp is turned OFF.
Input various voltage to VLC0 to VLC4 pins.
: DC-DC converter
DC = 1: DC-DC converter is turned ON.
DC = 0: DC-DC converter is turned OFF.
Input the voltage to VCC1 pin.
Note: Refer to the description of a function for the combination of a power supply setup.
● R3: Bias/Duty select
(Note): The T6K14´s COM output which corresponds to the line of LCD is changed by the Duty.
When CDR = 1, COM outputs in each Duty are shown below.
1/n duty
LCD
st
1 line,
nd
2
th
line, · · · · · · · · · · · · · · · · · · · · ·, n line, ICON
1/65 duty
COM1, COM2, · · · · · · · · · · ·,COM32, COM33, COM34, · · · · · ·,COM64, ICON
1/57 duty
COM1, COM2, · · · · · · · · ·,COM28, COM33, COM34, · · · · · ·,COM60, ICON
1/49 duty
COM1, COM2, · · · · · · ·,COM24, COM33, COM34, · · · · · ·,COM56, ICON
1/35 duty
COM1, COM2, · · · · ·,COM17, COM33, COM34, · · · · · ·,COM49, ICON
● R4: Oscillator control
OSC
: Oscillator
OSC = 1: Oscillator is turned ON.
OSC = 0: Oscillator is turned OFF.
Input an external clock to OSC1 pin.
21
2002-01-16
T6K14
● R5: X-address, Y-address set
(1) X−address set
(Note)
).
F/N = 0: Sets display RAM address (in the range 0 to 63
F/N = 1: Sets flag RAM (The data from DB0 to DB5 is ignored)
Note: Since the effective range of X-address changes by duty setup, pleace be careful.
(2) Y−address set
● R6: Z-address set
This command sets a Z-address. The display RAM and flag RAM are separated and only the display RAM is
selected. By selecting any address in the column direction of the display RAM, it is possible to set the first
line on the LCD screen. The display data can be scrolled in the vertical direction by setting the first line in
this way.
Since the effective range of Z-address changes by duty setup, please be careful.
Please refer to description of a function for details.
● R7: Contrast control
This command sets contrast.
It becomes the maximum contrast when data is 255, and it becomes the minimum contrast when data is 0.
When a temperature compensation circuit is used, data for a contrast control circuit are changed to the sum
of R7 register 8-bit data and TMP-RAM 8-bit data. Therefore, the contrast is controlled.
● R8: TMP mode
TMOF: Temperature compensation ON/OFF
TMOF = 1: ON
TMOF = 0: OFF (Note 1)
Note 1: Data on the output bus of the temperature table RAM are
fixed on Low data. Therefore, data on the contrast control
register are inputted to contrast control circuit.
22
2002-01-16
T6K14
● R9: TMP-RAM address
This command sets TMP-RAM address.
In case of using this command, counter up mode only.
● R10: FRS control
This command sets the number of the row lines for polarity change.
The setting of FRS corresponds to the row line number, see following table.
FRS
Frame
0
In case 1/x duty is selected by R3, FR signal inverts on every x line.
n
FR signal inverts on every (n + 1) line.
(Note)
Note: In case FRS = 0;
FR signal inverts synchronously with the earlier edge of COM1.
In case FRS ≠ 0 (1 to 63);
FR signal inverts synchronously with the edge of COMm. (m = 1 to 64, or ICON)
“m” shows a COM line right after the instruction practice.
● R11 to R26: Grayscale data
This register have the PWM (Pulse Width Modulation) and FRC (Frame Rate Control) control data. PWM
chooses one of 10 kinds and assigns data of PWM to four frames.
This register is constituted from “0th FR data” by 4 bits of “3rd FR data”, and inputs PWM data into four FR
data. That is, it becomes data of one color (one grayscale level) by 4 frames.
Display Mode
Normal Display Mode
Power Save Mode
Display RAM Data
Register No.
Grayscale Data
0
0
R11, 12
4 bits × 4
0
1
R13, 14
4 bits × 4
1
0
R15, 16
4 bits × 4
1
1
R17, 18
4 bits × 4
0
0
R19, 20
4 bits × 4
0
1
R21, 22
4 bits × 4
1
0
R23, 24
4 bits × 4
1
1
R25, 26
4 bits × 4
23
2002-01-16
T6K14
● Data of PWM (Pulse Width Modulation)
*:
Note:
The phase of PWM turn over by the even/odd of the output pin.
This area is selected to off level (0/9 level)
● R27: TMP-RAM address read
This register stores the address equivalent to the temperature detected by the temperature compensation
circuit. (Read out only). When the temperature compensation circuit is used, the contrast is controlled by the
sum of TMP-RAM data specified by this address, and the data in the R7 register.
● R28 to 31: Test mode
Please don’ t access this register.
24
2002-01-16
T6K14
● Status read
MD : When MD terminal is connected to VDD level, MD (DB7) = 1.
When MD terminal is connected to VSS level, MD (DB7) = 0.
TMP : When TMP = 1, the temperature compensation circuit is turned ON.
When TMP = 0, the temperature compensation circuit is turned OFF.
HVR : When HVR = 1, HV - Regulator X 4 mode is selected.
When HVR = 0, HV - Regulator X 5 mode is selected.
N/F : When N/F = 1, Normal display mode is selected.
When N/F = 0, Power save mode (FLAG display only) is selected.
DP
: When DP = 1, Display is turned ON.
When DP = 0, Display is turned OFF.
Y/X : When Y/X = 1, Y - counter is selected.
When Y/X = 0, X - counter is selected.
U/D : When U/D = 1, X and Y counters are in up mode.
When U/D = 0, X and Y counters are in down mode.
● Write/read data (DAWR/DARD)
The command DAWR writes 8-bit data to Display RAM or TMP-RAM.
The command DARD reads 8-bit data from Display RAM or TMP-RAM.
25
2002-01-16
T6K14
Function Description
● Display data bit
SDR = 1
SDR = 0
● Display mode
26
2002-01-16
T6K14
RAM map and CDR, SDR relation
(1) CDR = 1, SDR = 1
(2) CDR = 1, SDR = 0
(3) CDR = 0, SDR = 1
(4) CDR = 0, SDR = 0
27
2002-01-16
T6K14
● Reset function
When/RST = L, reset function is executed and following instruction (resister) are executed.
Command
Reg No.
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
Data mode
R0
*
*
*
*
*
1
1
1
Display mode
R1
*
1
1
*
*
*
1
0
Power mode
R2
1
*
*
*
*
0
0
0
Duty/Bias
R3
1
0
0
1
*
*
1
1
Oscillator
R4
*
*
*
*
*
*
*
1
X, Y−address
R5
0
0
0
0
0
0
0
0
Z−address
R6
*
*
0
0
0
0
0
0
Contrast control
R7
0
0
0
0
0
0
0
0
TMP mode
R8
*
*
*
*
0
*
0
0
TMP−RAM address
R9
*
0
0
0
0
0
0
0
FRS control mode
R10
*
*
0
0
0
0
0
0
R11 to
R27
0
0
0
0
0
0
0
0
Gray scale
● Standby function
When/STB = L, the T6K14 is in standby state. The internal oscillation is stopped, power consumption is
reduced, and power supply for LCD (VLC0 to VLC5) become VSS.
28
2002-01-16
T6K14
● Expansion function
The T6K14 has expansion function. When using this function, the T6K14 (2 chip) can drive 256 × 64 + icon
dots LCD panel (maximum) or 128 × 128 + icon dots LCD panel (Maximum).
Next table shows the selectable function by using M/S pins.
M/S
H
L
● One chip mode Disable expansion
model
● Two chips mode (Master chip)
Timing signal and power voltage
supply to Slave chip.
● Two chips mode (Slave chip)
Timing signal and power voltage
are supplied from Master chip.
Fig. 6 and Fig.7 illustrate the application example of disable expansion mode and enable expansion mode.
In enable expansion mode (Tow chip mode)
As shown in Fig.7-1, Fig.7-2 Master chip supplies LCD drive signals and power voltage to slave chip. (The
oscillator, the timing circuits, Op-amp, and Contrast control circuit are disable.)
(1) Disable expansion mode
Fig. 6
29
2002-01-16
T6K14
(2) Enable expansion mode
Fig. 7−1
Fig. 7−2
30
2002-01-16
T6K14
● X-address counter and Y (Page) -address counter
Fig. 8-1 shows a sample of operating procedure for the X-address counter.
After reset is executed, X-address becomes X-address = 0, then select X-counter/Up mode. Next set the X
-address to 62 by commanding SXYE (R5).
After data has been written to or read, the X-address is automatically incremented by one.
After X-counter/Down mode has been selected and data has been written to or read, the X-address is
automatically decremented by one.
When the X-counter is selected, Y-counter does not count up or down.
And flag-counter does not count up or down too.
Fig. 8−1
Fig. 8-2 shows a sample operating procedure for the Y-address counter.
After reset is executed, Y (Page) -address becomes Y-address = 0, then select Y (Page) -counter/Up -mode.
After data has been written to or read, the Y (Page) -address counter is automatically incremented by one.
After Y (Page) -counter/Down mode has been selected and data has been written to or read, the Y (Page)
-address is automatically decremented by one.
When the Y (Page) -counter is selected, X -counter doesn’t count up or down.
Fig. 8−2
31
2002-01-16
T6K14
● LCD Driver Waveform (Case of normal mode)
Maximum Ratings (Ta = 25°C)
Item
Symbol
Rating
Unit
Supply Voltage (1)
VDD (Note 1)
−0.3 to 7.0
V
Supply Voltage (2)
VLC1, 2, 3, 4, 5
VCC1, VCC2
VSS + 18.0 to VSS − 0.3
V
Vinp
(Note 1, 2)
−0.3 to VDD + 0.3
V
Operating Temperature
Topr
−30 to 85
°C
Storage Temperature
Tstg
−55 to 125
°C
Input Voltage
Note 1: Referred to VSS = 0 V
Note 2: Applied data bus terminals and Input terminals expect VCC1, VCC2, VLC0, VLC1, VLC2, VLC3, VLC4, VLC5.
32
2002-01-16
T6K14
Electrical Characteristics
DC Characteristics (1) Test conditions: Unless Otherwise Noted, VSS = 0 V,
VDD = 2.4 to 3.3 V, VIN = 2.7 to 3.3 V, VCC = 6.0 to 16.5 V, Ta = 25°C
Item
Symbol
Test
Circuit
Condition
Min
Typ.
Max
Unit
Operating Supply (1)
VDD
―
―
2.4
―
3.3
V
VDD
Operating Supply (2)
VIN
―
―
2.7
―
3.3
V
VIN
Operating Supply (3)
VLC0
VCC1, 2
―
―
6.0
− VSS
―
16.5
− VSS
V
VLC0, VCC1,
VCC2
VDD = 2.8 to 3.3 V
0.7
VDD
―
VDD
VDD = 2.4 to 2.8 V
0.8
VDD
―
VDD
―
0
―
0.2
VDD
V
VDD
− 0.2
―
VDD
V
0
―
0.2
V
H Level
VIH
―
Input Level
Output
Level
V
Applicable
Terminal
DB0 to DB7,
D/I,/WR,
/RD,/CS1,
CS2,/RST,
/STB, RS, SI,
SCK, P/S,
68/80, CL,
PM, FR,
SYNC, CK
L Level
VIL
―
H Level
VOH
―
IOH = −400 µA
L Level
VOL
―
IOL = 400 µA
Rcol1
―
(Note 1)
―
―
7.5
kΩ
SEG1 to
SEG128
Rcol2
―
(Note 2)
―
―
15.0
kΩ
SEG1 to
SEG128
Rrow1
―
(Note 1)
―
―
1.5
kΩ
COM1 to
COM64,ICON
Rrow2
―
(Note 2)
―
―
5.0
kΩ
COM1 to
COM64,
ICON
Normal
Mode
Column
Driver On Power
Resistance Save
Mode
Normal
Row Driver Mode
On
Power
Resistance Save
Mode
DB0 to DB7,
SO, CL, PM,
FR, SYNC,
CK
−1
―
1
µA
DB0 to DB7,
D/I,/WR,
/RD,/CS1,
CS2,/RST,
/STB, RS, SI,
SCK, P/S,
68/80, CL,
PM, FR,
SYNC, CK
69
82
95
kHz
OSC1
―
82
―
kHz
OSC1
45
50
55
%
OSC1
―
―
50
ns
OSC1
(Note 3)
―
200
350
µA
VSS
―
(Note 4)
―
500
700
µA
VSS
―
(Note 5)
−1
―
1
µA
VSS
Input Leakage
IIL
―
Vinp = VDD to GND
Operating Freq
fOSC
―
External Clock Freq
fex
―
External Clock Duty
fduty
―
―
External Clock
Rise/Fall Time
tr/tf
―
―
Current Consumption
(1)
ISS1
―
Current Consumption
(2)
ISS2
Current Consumption
(3)
ISSSTB
(Note 7)
(Note 6)
Note 1: VSS + VLC0 = 11.0 V, Load voltage = ± 0.5 V, 1/9 bias
Note 2: VSS + VLC0 = 3.0 V, Load voltage = ± 0.5 V, 1/12 bias
Note 3: VDD = 2.7 V, VCC1, 2 = VOUT4 (X5 mode), No data access, Internal clock (fOSC = 82 kHz), LCD out pin No
Load, 1/9 bias, 1/65 duty, op-amp. on, regulator on
Note 4: VDD = 3.0 V, VCC1, 2 = VOUT4 (X5 mode), Data access cycle f CE = 1 MHz, Internal clock (OSC = 82 kHz),
LCD out pin No Load, 1/9 bias, 1/65 duty, op-amp. on, regulator on
Note 5: VDD = 3.3 V, VCC1, 2 - VSS = 16.5 V,/STB = L
Note 6: In case of 1/65 duty and fFR = 70 Hz
Note 7: VDD = 3.0 V, 1/65 duty, fFR = 70 Hz, Rosc = 430 kΩ, Ta = 25°C
33
2002-01-16
T6K14
DC Characteristics (2)
(Test conditions: Unless Otherwise Noted, VSS = 0 V, VDD = 2.4 to 3.3 V, Ta = 25°C)
Item
Symbol
Test
Circuit
Output Voltage
(X2 Mode)
VO1
(1)
Output Voltage
(X3 Mode)
VO2
Output Voltage
(X4 Mode)
Output Voltage
(X5 Mode)
Condition
Applicable
Terminal
Min
Typ.
Max
Unit
(Note 8)
4.60
5.10
―
V
VOUT1
(2)
(Note 9)
6.80
7.60
―
V
VOUT2
VO3
(3)
(Note 10)
9.10
10.20
―
V
VOUT3
VO4
(4)
(Note 11)
11.40
12.70
―
V
VOUT4
Note 8: VIN = 2.7 V, ILoad = 200 µA, VCC1, 2 = 5.40 V (external power supply) CnA - CnB = 1.0 µF,
VOUT1 - VSS = 1.0 µF, OSC = 82 kHz, Ta = 25°C
Note 9: VIN = 2.7 V, ILoad = 200 µA, VCC1, 2 = 8.10 V (external power supply) CnA - CnB = 1.0 µF,
VOUT1 - VSS = 1.0 µF, OSC = 82 kHz, Ta = 25°C
Note 10: VIN = 2.7 V, ILoad = 200 µA, VCC1, 2 = 10.80 V (external power supply) CnA - CnB = 1.0 µF,
VOUT1 - VSS = 1.0 µF, OSC = 82 kHz, Ta = 25°C
Note 11: VIN = 2.7 V, ILoad = 200 µA, VCC1, 2 = 13.50 V (external power supply) CnA - CnB = 1.0 µF,
VOUT1 - VSS = 1.0 µF, OSC = 82 kHz, Ta = 25°C
DC Characteristics (3)
(Test conditions: Unless Otherwise Noted, VSS = 0 V, VDD = 2.4 to 3.3 V)
Item
Regulator Reference
High Voltage (1)
Symbol
Test
Circuit
―
VHR
―
Condition
X4/X5 = 0, Ta = 25°C
(Note 12)
X4/X5 = 1, Ta = 25°C
(Note 12)
Applicable
Terminal
Min
Typ.
Max
Unit
12.3
12.5
12.7
V
VCC2
10.8
11.0
11.2
V
VCC2
Regulator Reference
High Voltage (2)
VHRC
―
Ta = − 20°C
(Note 12)
0.999 1.012 1.025
× VHR × VHR × VHR
V
VCC2
Regulator Reference
High Voltage (3)
VHRH
―
Ta = 60°C
(Note 12)
0.982 0.994 1.006
× VHR × VHR × VHR
V
VCC2
Note 12: VCC1 ≥ 12.8 V at Ta = -20 to 60°C
34
2002-01-16
T6K14
DC Characteristics (4)
(Test conditions: Unless Otherwise Noted, VSS = 0 V, VDD = 2.4 to 3.3 V, Ta = 25°C)
Symbol
Test
Circuit
Op−amp Output
Voltage Offset (1)
Vopoff
―
Op−amp Output
Voltage Offset (2)
Vopoffs
―
Item
Min
Typ.
Max
Unit
Applicable
Terminal
(Note 13)
−100
―
100
mV
VLC0, VLC1,
VLC2, VLC3,
VLC4
(Note 14)
−90
―
90
mV
VLC0, VLC1,
VLC2, VLC3,
VLC4
Condition
Note 13: VDD = 2.7 to 3.3 V, VSS = 0 V, 1/9 bias, 1/65 duty
VCC1 = 13.0 V, VCC2 = 12.5 V, Contrast control = max
Op-amp ON, DC-DC OFF, regulator OFF, LCD outpin No Load
Case of VLC0: 12.5 - VLC0 = Vopoff
VLC1: (VLC0 × 8/9) - VLC1 = Vopoff
VLC2: (VLC0 × 7/9) - VLC2 = Vopoff
VLC3: (VLC0 × 2/9) - VLC3 = Vopoff
VLC4: (VLC0 × 1/9) - VLC4 = Vopoff
Note 14: VDD = 2.7 to 3.3 V, VSS = 0 V, 1/9 bias, 1/65 duty
VCC1 = 13.0 V, VCC2 = 12.5 V, Contrast control = max
Op-amp ON, DC-DC OFF, regulator OFF, LCD outpin No Load
Vopoffs = ((VLC1 - VLC2) - (VLC0 - VLC1)) + ((VLC3 - VLC4) - (VLC4 - VLC5))
35
2002-01-16
T6K14
Test Circuit
(1) DC-DC converter X2 mode
(2) DC-DC converter X3 mode
36
2002-01-16
T6K14
(3) DC-DC converter X4 mode
(4) DC-DC converter X5 mode
37
2002-01-16
T6K14
AC Characteristics (1)
● Switching characteristics (80 series MPU 8-bit interface)
Test Conditions
(Unless Otherwise Noted,, VSS = 0 V, VDD = 2.4 to 3.3 V, Ta = 25°C)
Item
Symbol
Min
Max
Unit
Enable Cycle Time
tcycE
500
―
ns
Enable Pulse Width
PWEL
410
―
ns
Enable Rise/Fall Time
tEr, tEf
―
25
ns
Address Set-up Time
tAS
20
―
ns
Address Hold Time
tAH
0
―
ns
Data Set-up Time
tDS
140
―
ns
Data Hold Time
tDHW
20
―
ns
Data Delay Time
tDD (Note)
―
330
ns
Data Hold Time
tDHR (Note)
20
―
ns
Load Circuit
Note: Connect to Load circuit.
38
2002-01-16
T6K14
AC Characteristics (2)
● Switching characteristics (80 series MPU 8-bit interface)
Test Conditions
(Unless Otherwise Noted, VSS = 0 V, VDD = 2.4 to 3.3 V, Ta = 25°C)
Item
Symbol
Min
Max
Unit
Enable Cycle Time
tcycE
500
―
ns
Enable Pulse Width
PWEH
410
―
ns
Enable Rise/Fall Time
tEr, tEf
―
25
ns
Address Set-up Time
tAS
20
―
ns
Address Hold Time
tAH
0
―
ns
Data Set-up Time
tDS
140
―
ns
Data Hold Time
tDHW
20
―
ns
Data Delay Time
tDD (Note)
―
330
ns
Data Hold Time
tDHR (Note)
20
―
ns
Load Circuit
Note: Connect to Load circuit.
39
2002-01-16
T6K14
AC Characteristics (3)
● Switching characteristics (68 series MPU 8-bit interface)
Test Conditions
(Unless Otherwise Noted, VSS = 0 V, VDD = 2.4 to 3.3 V, Ta = 25°C)
Item
Symbol
Min
Max
Unit
Enable Cycle Time
tcycE
500
―
ns
Enable Pulse Width
PWEH
410
―
ns
Enable Rise/Fall Time
tEr, tEf
―
25
ns
Address Set-up Time
tAS
20
―
ns
Address Hold Time
tAH
0
―
ns
Data Set-up Time
tDS
140
―
ns
Data Hold Time
tDHW
20
―
ns
Data Delay Time
tDD (Note)
―
330
ns
Data Hold Time
tDHR (Note)
20
―
ns
Load Circuit
Note: Connect to Load circuit.
40
2002-01-16
T6K14
AC Characteristics (4)
● Switching characteristics (serial interface)
Test Conditions
(Unless Otherwise Noted, VSS = 0 V, VDD = 2.4 to 3.3 V, Ta = 25°C)
Item
Symbol
Min
Max
Unit
Clock Cycle Time
tcycC
2000
―
ns
Clock Pulse Width
PWCL, PWCH
900
―
ns
tCr, tCf
―
25
ns
Data Set−up Time
tDS
300
―
ns
Data Hold Time
tDH
100
―
ns
Data Delay Time
tDD
―
200
ns
Clock Rise/Fall Time
41
2002-01-16
T6K14
AC Characteristics (5)
● Switching characteristics
Test Condition
(Unless Otherwise Noted, VSS = 0 V, VDD = 2.4 to 3.3 V, Ta = 25°C)
Item
Symbol
Min
Max
Unit
VDD Rise Time
VDST
Reset Hold Time
VRST
―
1
ms
1
―
µs
Reset Pulse Width
RSTW
1
―
µs
42
2002-01-16
T6K14
Application Circuit (1)
T6K14 One chip mode
● Using CR oscillator
● LCD drive bias 1/9
● Using DC-DC converter (X5 mode)
● Using 80 series MPU
● Using temperature compensation
43
2002-01-16
T6K14 Two chip mode
● Using CR oscillator
● LCD drive bias 1/9
● Using DC−DC converter (X5 mode)
● Using 80 series MPU
● Using temperature compensation
Application Circuit (2)
T6K14
44
2002-01-16
T6K14
RESTRICTIONS ON PRODUCT USE
000707EBE
· TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
· The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
· Polyimide base film is hard and thin. Be careful not to injure yourself on the film or to scratch any other parts with
the film. Try to design and manufacture products so that there is no chance of users touching the film after
assembly, or if they do , that there is no chance of them injuring themselves. When cutting out the film, try to
ensure that the film shavings do not cause accidents. After use, treat the leftover film and reel spacers as
industrial waste.
· Light striking a semiconductor device generates electromotive force due to photoelectric effects. In some cases
this can cause the device to malfunction.
This is especially true for devices in which the surface (back), or side of the chip is exposed. When designing
circuits, make sure that devices are protected against incident light from external sources. Exposure to light both
during regular operation and during inspection must be taken into account.
· The products described in this document are subject to the foreign exchange and foreign trade laws.
· The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
· The information contained herein is subject to change without notice.
45
2002-01-16