SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 D Wide Bandwidth . . . 10 MHz D High Output Drive D D D D D D D Operational Amplifier − IOH . . . 57 mA at VDD − 1.5 V − IOL . . . 55 mA at 0.5 V High Slew Rate − SR+ . . . 16 V/µs − SR− . . . 19 V/µs Wide Supply Range . . . 4.5 V to 16 V Supply Current . . . 1.9 mA/Channel Ultralow Power Shutdown Mode IDD . . . 125 µA/Channel Low Input Noise Voltage . . . 7 nV√Hz Input Offset Voltage . . . 60 µV Ultra-Small Packages − 8 or 10 Pin MSOP (TLC070/1/2/3) − + description The first members of TI’s new BiMOS general-purpose operational amplifier family are the TLC07x. The BiMOS family concept is simple: provide an upgrade path for BiFET users who are moving away from dual-supply to single-supply systems and demand higher AC and dc performance. With performance rated from 4.5 V to 16 V across commercial (0°C to 70°C) and an extended industrial temperature range (−40°C to 125°C), BiMOS suits a wide range of audio, automotive, industrial and instrumentation applications. Familiar features like offset nulling pins, and new features like MSOP PowerPAD packages and shutdown modes, enable higher levels of performance in a variety of applications. Developed in TI’s patented LBC3 BiCMOS process, the new BiMOS amplifiers combine a very high input impedance low-noise CMOS front end with a high-drive bipolar output stage, thus providing the optimum performance features of both. AC performance improvements over the TL07x BiFET predecessors include a bandwidth of 10 MHz (an increase of 300%) and voltage noise of 7 nV/√Hz (an improvement of 60%). DC improvements include a factor of 4 reduction in input offset voltage down to 1.5 mV (maximum) in the standard grade, and a power supply rejection improvement of greater than 40 dB to 130 dB. Added to this list of impressive features is the ability to drive ±50-mA loads comfortably from an ultrasmall-footprint MSOP PowerPAD package, which positions the TLC07x as the ideal high-performance general-purpose operational amplifier family. FAMILY PACKAGE TABLE PACKAGE TYPES NO. OF CHANNELS MSOP PDIP SOIC TSSOP TLC070 1 8 8 8 — TLC071 1 8 8 8 — TLC072 2 8 8 8 — — TLC073 2 10 14 14 — Yes TLC074 4 — 14 14 20 — TLC075 4 — 16 16 20 Yes DEVICE SHUTDOWN UNIVERSAL EVM BOARD Yes Refer to the EVM Selection Guide (Lit# SLOU060) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPAD is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. Copyright 2000−2006, Texas Instruments Incorporated !"#$%&'(!$" !) *+%%,"( ') $# -+./!*'(!$" 0'(,1 %$0+*() *$"#$%& ($ )-,*!#!*'(!$") -,% (2, (,%&) $# ,') ")(%+&,"() )('"0'%0 3'%%'"(41 %$0+*(!$" -%$*,))!"5 0$,) "$( ",*,))'%!/4 !"*/+0, (,)(!"5 $# '// -'%'&,(,%)1 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 1 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 TLC070 and TLC071 AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C −40°C to 125°C SMALL OUTLINE (D)† SMALL OUTLINE (DGN)† SYMBOL PLASTIC DIP (P) TLC070CD TLC071CD TLC070CDGN TLC071CDGN xxTIACS xxTIACU TLC070CP TLC071CP TLC070ID TLC071ID TLC070IDGN TLC071IDGN xxTIACT xxTIACV TLC070IP TLC071IP — — — — TLC070AID TLC071AID TLC070AIP TLC071AIP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC070CDR). TLC072 and TLC073 AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C −40°C to 125°C SMALL OUTLINE (D)† SYMBOL‡ PLASTIC DIP (N) PLASTIC DIP (P) (DGN)† SYMBOL‡ (DGQ)† TLC072CD TLC073CD TLC072CDGN — xxTIADV — — TLC073CDGQ — xxTIADX — TLC073CN TLC072CP — TLC072ID TLC073ID TLC072IDGN — xxTIADW — — TLC073IDGQ — xxTIADY — TLC073IN TLC072IP — TLC072AID TLC073AID — — — — — — — — — TLC073AIN TLC072AIP — MSOP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC072CDR). ‡ xx represents the device date code. TLC074 and TLC075 AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C −40°C to 125°C SMALL OUTLINE (D)† PLASTIC DIP (N) TSSOP (PWP)† TLC074CD TLC075CD TLC074CN TLC075CN TLC074CPWP TLC075CPWP TLC074ID TLC075ID TLC074IN TLC075IN TLC074IPWP TLC075IPWP TLC074AID TLC075AID TLC074AIN TLC075AIN TLC074AIPWP TLC075AIPWP † This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLC074CDR). 2 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 TLC07x PACKAGE PIN OUTS TLC070 D, DGN OR P PACKAGE (TOP VIEW) NULL IN − IN + GND 1 8 2 7 3 6 4 5 TLC071 D, DGN OR P PACKAGE (TOP VIEW) SHDN VDD OUT NULL NULL IN − IN + GND TLC073 DGQ PACKAGE (TOP VIEW) 1OUT 1IN − 1IN+ GND 1SHDN 1 2 3 4 5 10 9 8 7 6 VDD 2OUT 2IN − 2IN+ 2SHDN 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 7 3 6 4 5 NC VDD OUT NULL 1OUT 1IN − 1IN + GND 1OUT 1IN − 1IN+ VDD 2IN+ 2IN − 2OUT 1/2SHDN 8 2 7 3 6 4 5 (TOP VIEW) (TOP VIEW) 1 14 2 13 3 12 4 11 5 10 6 9 7 8 1OUT 1IN − 1IN+ VDD 2IN+ 2IN − 2OUT VDD 2OUT 2IN − 2IN+ NC 2SHDN NC 1 16 2 15 3 14 4 13 5 12 6 11 7 10 8 9 1 14 2 13 3 12 4 11 5 10 6 9 7 8 VDD 2OUT 2IN − 2IN+ 4OUT 4IN − 4IN+ GND 3IN+ 3IN − 3OUT TLC075 PWP PACKAGE (TOP VIEW) (TOP VIEW) 4OUT 4IN− 4IN+ GND 3IN+ 3IN− 3OUT NC NC NC 1 TLC074 D OR N PACKAGE TLC075 D OR N PACKAGE (TOP VIEW) 1OUT 1IN− 1IN+ VDD 2IN+ 2IN− 2OUT NC NC NC 8 2 TLC073 D OR N PACKAGE 1OUT 1IN − 1IN+ GND NC 1SHDN NC TLC074 PWP PACKAGE 1 TLC072 D, DGN, OR P PACKAGE (TOP VIEW) 4OUT 4IN − 4IN+ GND 3IN + 3IN− 3OUT 3/4SHDN 1OUT 1IN− 1IN+ VDD 2IN+ 2IN− 2OUT 1/2SHDN NC NC 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 4OUT 4IN− 4IN+ GND 3IN+ 3IN− 3OUT 3/4SHDN NC NC NC − No internal connection TYPICAL PIN 1 INDICATORS Pin 1 Printed or Molded Dot Pin 1 Pin 1 Bevel Edges Stripe Pin 1 Molded ”U” Shape WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 3 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V Differential input voltage range, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values, except differential voltages, are with respect to GND . DISSIPATION RATING TABLE PACKAGE θJC (°C/W) θJA (°C/W) TA ≤ 25°C POWER RATING D (8) 38.3 176 710 mW D (14) 26.9 122.3 1022 mW D (16) 25.7 114.7 1090 mW DGN (8) 4.7 52.7 2.37 W DGQ (10) 4.7 52.3 2.39 W N (14, 16) 32 78 1600 mW P (8) 41 104 1200 mW PWP (20) 1.40 26.1 4.79 W recommended operating conditions Single supply Supply voltage, VDD Split supply Common-mode input voltage, VICR VIH VOL Shutdown on/off voltage level‡ C-suffix Operating free-air temperature, TA I-suffix ‡ Relative to the voltage on the GND terminal of the device. 4 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • MIN MAX 4.5 16 ±2.25 ±8 V +0.5 VDD−0.8 V 2 0.8 0 70 −40 125 UNIT V °C SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage TA† 25°C TEST CONDITIONS TLC070/1/2/3, TLC074/5 VDD = 5 V, VIC = 2.5 V, VO = 2.5 V, RS = 50 Ω TLC070/1/2/3A, TLC074/5A MIN IIB Input offset current Input bias current Common-mode input voltage TLC07XI 3000 25°C 390 Full range 0.7 VIC = 2.5 V IOH = − 35 mA 1.5 Full range 0.5 to 4.2 Full range 0.5 to 4.2 25°C 4.1 Full range 3.9 25°C 3.7 Full range 3.5 25°C 3.4 Full range 3.2 25°C 3.2 IOL = 1 mA Full range IOL = 20 mA Full range 25°C IOL = 35 mA IOS Short-circuit output current IO Output current V 4.3 4 V 3.8 3.6 0.18 0.25 0.35 0.35 0.39 0.45 0.43 0.55 0.48 0.63 Full range 25°C IOL = 50 mA pA 3 25°C VIC = 2.5 V 50 700 25°C −40°C to 85°C pA 700 25°C Low-level output voltage 50 100 RS = 50 Ω µV V µV/°C V/°C 100 Full range 25°C IOH = − 50 mA VOL 1400 UNIT 2000 TLC07XC IOH = − 20 mA High-level output voltage 1900 TLC07XC VDD = 5 V, VIC = 2.5 V, VO = 2.5 V, RS = 50 Ω IOH = − 1 mA VOH 390 1.2 TLC07XI VICR MAX Full range 25°C IIO TYP V 0.7 −40°C to 85°C 0.7 Sourcing 25°C 100 Sinking 25°C 100 VOH = 1.5 V from positive rail VOL = 0.5 V from negative rail 25°C 57 25°C 55 mA mA † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 5 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS AVD Large-signal differential voltage amplification ri(d) Differential input resistance CIC Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 10 kHz, VO(PP) = 3 V, RL = 10 kΩ AV = 10 CMRR Common-mode rejection ratio VIC = 1 to 3 V, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 4.5 V to 16 V, No load VIC = VDD /2, IDD Supply current (per channel) VO = 2.5 V, No load IDD(SHDN) Supply current in shutdown mode (per channel) (TLC070, TLC073, TLC075) SHDN ≤ 0.8 V TA† MIN TYP 25°C 100 120 Full range 100 GΩ 25°C 22.9 pF 0.25 Ω 25°C 25°C 80 Full range 80 25°C 80 Full range 80 25°C 95 dB 100 dB 1.9 Full range Full range • dB 1000 25°C WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 UNIT 25°C † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. 6 MAX 2.5 3.5 125 mA 200 250 µA A SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 operating characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA† 25°C MIN TYP 10 16 Full range 9.5 25°C 12.5 TEST CONDITIONS SR+ Positive slew rate at unity gain VO(PP) = 0.8 V, RL = 10 kΩ CL = 50 pF, SR− Negative slew rate at unity gain VO(PP) = 0.8 V, RL = 10 kΩ CL = 50 pF, Vn Equivalent input noise voltage In Full range 19 V/ s V/µs 10 25°C 12 f = 1 kHz 25°C 7 Equivalent input noise current f = 1 kHz 25°C 0.6 THD + N Total harmonic distortion plus noise VO(PP) = 3 V, RL = 10 kΩ and 250 Ω, f = 1 kHz t(on) t(off) Amplifier turn-on time‡ Amplifier turn-off time‡ RL = 10 kΩ Gain-bandwidth product f = 10 kHz, RL = 10 kΩ V(STEP)PP = 1 V, AV = −1, CL = 10 pF, RL = 10 kΩ 0.1% V(STEP)PP = 1 V, AV = −1, CL = 47 pF, RL = 10 kΩ 0.1% 0.18 0.01% 0.39 RL = 10 kΩ, CL = 50 pF RL = 10 kΩ, CL = 0 pF RL = 10 kΩ, CL = 50 pF RL = 10 kΩ, CL = 0 pF ts φm Settling time Phase margin Gain margin UNIT V/ s V/µs f = 100 Hz AV = 1 AV = 10 MAX nV/√Hz fA /√Hz 0.002% 25°C 25 C AV = 100 0.012% 0.085% 25°C 0.15 µs 25°C 1.3 µs 25°C 10 MHz 0.18 0.01% 0.39 µss 25°C 32° 25°C 40° 2.2 25°C 3.3 dB † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. ‡ Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value. WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 7 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 electrical characteristics at specified free-air temperature, VDD = 12 V (unless otherwise noted) PARAMETER TEST CONDITIONS VIO Input offset voltage αVIO Temperature coefficient of input offset voltage TLC070/1/2/3, TLC074/5 VDD = 12 V VIC = 6 V, VO = 6 V, RS = 50 Ω TLC070/1/2/3A, TLC074/5A TA† 25°C MIN IIB Input offset current Input bias current Common-mode input voltage TLC07xI 3000 25°C 390 Full range 0.7 VIC = 6 V IOH = − 35 mA 1.5 Full range 0.5 to 11.2 Full range 0.5 to 11.2 25°C 11.1 10.8 Full range 10.7 25°C 10.6 Full range 10.3 25°C 10.4 −40°C to 85°C 10.3 IOL = 1 mA Full range IOL = 20 mA Full range 25°C IOL = 35 mA IOS Short-circuit output current IO Output current 11.2 10.9 10.5 0.17 0.35 0.45 0.4 0.52 0.5 V 0.6 0.45 0.6 0.65 Sourcing 25°C 150 25°C 150 VOH = 1.5 V from positive rail VOL = 0.5 V from negative rail 25°C 57 25°C 55 • 0.25 0.35 Sinking WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 V 10.7 −40°C to 85°C † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. 8 V Full range 25°C IOL = 50 mA pA 11 25°C 25°C VIC = 6 V 50 700 25°C Full range pA 700 25°C Low-level output voltage 50 100 RS = 50 Ω µV V µV/°C V/°C 100 Full range 25°C IOH = − 50 mA VOL 1400 UNIT 2000 TLC07xC IOH = − 20 mA High-level output voltage 1900 TLC07xC VDD = 12 V VIC = 6 V, VO = 6 V, RS = 50 Ω IOH = − 1 mA VOH 390 1.2 TLC07xI VICR MAX Full range 25°C IIO TYP mA mA SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 electrical characteristics at specified free-air temperature, VDD = 12 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS AVD Large-signal differential voltage amplification ri(d) Differential input resistance CIC Common-mode input capacitance f = 10 kHz zo Closed-loop output impedance f = 10 kHz, VO(PP) = 8 V, RL = 10 kΩ AV = 10 CMRR Common-mode rejection ratio VIC = 1 to 10 V, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 4.5 V to 16 V, No load VIC = VDD /2, IDD Supply current (per channel) VO = 7.5 V, No load IDD(SHDN) Supply current in shutdown mode (TLC070, TLC073, TLC075) (per channel) SHDN ≤ 0.8 V TA† MIN TYP 25°C 120 140 Full range 120 MAX UNIT dB 25°C 1000 GΩ 25°C 21.6 pF 0.25 Ω 25°C 25°C 80 Full range 80 25°C 80 Full range 80 25°C 100 dB 100 dB 2.1 Full range 25°C Full range 2.9 3.5 125 mA 200 250 µA A † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 9 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 operating characteristics at specified free-air temperature, VDD = 12 V (unless otherwise noted) PARAMETER TEST CONDITIONS SR+ Positive slew rate at unity gain VO(PP) = 2 V, RL = 10 kΩ CL = 50 pF, SR− Negative slew rate at unity gain VO(PP) = 2 V, RL = 10 kΩ CL = 50 pF, Vn Equivalent input noise voltage In TA† 25°C MIN TYP 10 16 Full range 9.5 25°C 12.5 Full range 19 V/ s V/µs 10 25°C 12 f = 1 kHz 25°C 7 Equivalent input noise current f = 1 kHz 25°C 0.6 THD + N Total harmonic distortion plus noise VO(PP) = 8 V, RL = 10 kΩ and 250 Ω, f = 1 kHz t(on) t(off) Amplifier turn-on time‡ Amplifier turn-off time‡ RL = 10 kΩ Gain-bandwidth product f = 10 kHz, RL = 10 kΩ V(STEP)PP = 1 V, AV = −1, CL = 10 pF, RL = 10 kΩ 0.1% V(STEP)PP = 1 V, AV = −1, CL = 47 pF, RL = 10 kΩ 0.1% 0.17 0.01% 0.29 RL = 10 kΩ, CL = 50 pF RL = 10 kΩ, CL = 0 pF RL = 10 kΩ, CL = 50 pF RL = 10 kΩ, CL = 0 pF ts φm Settling time Phase margin Gain margin UNIT V/ s V/µs f = 100 Hz AV = 1 AV = 10 MAX nV/√Hz fA /√Hz 0.002% 25°C 25 C AV = 100 0.005% 0.022% 25°C 0.47 µs 25°C 2.5 µs 25°C 10 MHz 0.17 0.01% 0.22 µss 25°C 37° 25°C 42° 3.1 25°C 4 dB † Full range is 0°C to 70°C for C suffix and − 40°C to 125°C for I suffix. If not specified, full range is − 40°C to 125°C. ‡ Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value. 10 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO IIO Input offset voltage vs Common-mode input voltage 1, 2 Input offset current vs Free-air temperature 3, 4 IIB VOH Input bias current vs Free-air temperature 3, 4 High-level output voltage vs High-level output current 5, 7 VOL Zo Low-level output voltage vs Low-level output current 6, 8 Output impedance vs Frequency 9 IDD PSRR Supply current vs Supply voltage 10 Power supply rejection ratio vs Frequency 11 CMRR Common-mode rejection ratio vs Frequency 12 Vn VO(PP) Equivalent input noise voltage vs Frequency 13 Peak-to-peak output voltage vs Frequency 14, 15 Crosstalk vs Frequency 16 Differential voltage gain vs Frequency 17, 18 Phase vs Frequency 17, 18 Phase margin vs Load capacitance 19, 20 Gain margin vs Load capacitance 21, 22 Gain-bandwidth product vs Supply voltage SR Slew rate vs Supply voltage vs Free-air temperature 24 25, 26 vs Frequency 27, 28 THD + N Total harmonic distortion plus noise vs Peak-to-peak output voltage 29, 30 φm 23 Large-signal follower pulse response 31, 32 Small-signal follower pulse response 33 Large-signal inverting pulse response 34, 35 Small-signal inverting pulse response 36 Shutdown forward isolation vs Frequency 37, 38 Shutdown reverse isolation vs Frequency 39, 40 vs Supply voltage Shutdown supply current vs Free-air temperature Shutdown pulse 41 42 43, 44 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 11 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 TYPICAL CHARACTERISTICS 250 0 225 −25 VDD = 5 V TA = 25° C 175 150 125 100 75 50 25 0 −50 −75 −100 −125 −150 −175 −200 −225 −250 −25 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 −275 0 VICR − Common-Mode Input Voltage − V 1 2 3 4 8 9 10 11 12 IIO −20 −40 −60 −80 −100 IIB −120 VDD = 12 V −140 −100 −120 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 4.5 TA = 70°C TA = 25°C 4.0 TA = −40°C 3.5 TA = 125°C 3.0 2.5 11.0 TA = −40°C TA = 25°C 10.0 9.5 VDD = 12 V 9.0 0.8 0.7 0.6 TA = 125°C TA = 70°C TA = 25°C 0.5 0.4 0.3 TA = −40°C 0.2 0.1 5 10 15 20 25 30 35 40 45 50 IOH - High-Level Output Current - mA 0 5 10 15 20 25 30 35 40 45 50 IOL - Low-Level Output Current - mA Figure 5 Figure 6 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT OUTPUT IMPEDANCE vs FREQUENCY 1000 0.9 0.8 TA = 125°C 0.7 TA = 70°C 0.6 TA = 25°C 0.5 0.4 0.3 TA = −40°C 0.2 0.1 100 VDD = 5 V and 12 V TA = 25°C 10 AV = 100 1 AV = 1 0.10 AV = 10 VDD = 12 V 0.0 10 15 20 25 30 35 40 45 50 IOH - High-Level Output Current - mA VDD = 5 V 0.9 0.0 0 VOL − Low-Level Output Voltage − V TA = 125°C TA = 70°C LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.0 1.0 Figure 7 IIB VDD = 5V TA − Free−Air Temperature − °C 2.0 12.0 5 −80 Figure 3 VDD = 5 V HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 0 −60 5.0 −160 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 10.5 −40 VOL − Low-Level Output Voltage − V 0 11.5 IIO −20 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT V OH − High-Level Output Voltage − V I IB / I IO − Input Bias and Input Offset Current − pA INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE Figure 4 V OH − High-Level Output Voltage − V 7 0 Figure 2 TA − Free-Air Temperature − °C 12 6 20 VICR − Common-Mode Input Voltage − V Figure 1 20 5 Z o − Output Impedance − Ω 200 VDD = 12 V TA = 25° C INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE I IB / I IO − Input Bias and Input Offset Current − pA INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE V IO − Input Offset Voltage − µ V V IO − Input Offset Voltage − µ V INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 0 5 10 15 20 25 30 35 40 45 50 IOL - Low-Level Output Current - mA Figure 8 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 0.01 100 1k 100k 10k f - Frequency - Hz Figure 9 1M 10M SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 TYPICAL CHARACTERISTICS SUPPLY CURRENT vs SUPPLY VOLTAGE TA = −40°C 2.0 TA = 125°C 1.5 TA = 70°C 1.0 AV = 1 SHDN = VDD Per Channel 0.5 0.0 4 5 6 140 120 VDD = 12 V 100 80 60 40 VDD = 5 V 20 0 0 7 8 9 10 11 12 13 14 15 16 VDD − Supply Voltage - V 10 V O(PP) − Peak-to-Peak Output Voltage − V 30 25 20 15 VDD = 5 V 5 1k 10k 10M 80 60 40 20 0 100 8 6 VDD = 5 V 4 THD+N < = 5% RL = 600 Ω TA = 25°C 2 0 10k 100k 1M f - Frequency - Hz f − Frequency − Hz Figure 13 10k 100k f - Frequency - Hz 1M 10M PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY VDD = 12 V 10 1k Figure 12 12 100k 10M Figure 14 12 10 VDD = 12 V 8 6 VDD = 5 V 4 2 0 10k THD+N < = 5% RL = 10 kΩ TA = 25°C 100k 1M f - Frequency - Hz 10M Figure 15 CROSSTALK vs FREQUENCY 0 −20 −40 Crosstalk − dB Hz V n − Equivalent Input Noise Voltage − nV/ VDD = 12 V 100 1M 100 PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 40 0 10 100k VDD = 5 V and 12 V TA = 25°C 120 Figure 11 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 10 10k 140 f − Frequency − Hz Figure 10 35 1k 100 V O(PP) − Peak-to-Peak Output Voltage − V I DD − Supply Current − mA TA = 25°C CMRR − Common-Mode Rejection Ratio − dB PSRR − Power Supply Rejection Ratio − dB 3.0 2.5 COMMON-MODE REJECTION RATIO vs FREQUENCY POWER SUPPLY REJECTION RATIO vs FREQUENCY VDD = 5 V and 12 V AV = 1 RL = 10 kΩ VI(PP) = 2 V For All Channels −60 −80 −100 −120 −140 −160 10 100 1k 10k 100k f − Frequency − Hz Figure 16 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 13 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY DIFFERENTIAL VOLTAGE GAIN AND PHASE vs FREQUENCY 80 80 60 Gain A VD − Different Voltage Gain − dB 70 −45 50 Phase 40 −90 30 20 −135 10 0 −10 −20 1k VDD = ±2.5 V RL = 10 kΩ CL = 0 pF TA = 25°C 10k 100k −180 1M 70 Gain 60 Phase 40 20 −135 10 0 −10 VDD = ±6 V RL = 10 kΩ CL = 0 pF TA = 25°C 10k PHASE MARGIN vs LOAD CAPACITANCE 40° 25° Rnull = 50 Ω Rnull = 20 Ω VDD = 5 V RL = 10 kΩ TA = 25°C 30° Rnull = 100 Ω 25° Rnull = 20 Ω 15° VDD = 12 V RL = 10 kΩ TA = 25°C 10° 5° 0° 10 Rnull = 50 Ω 1.5 1 VDD = 5 V RL = 10 kΩ TA = 25°C Rnull = 20 Ω 0 10 100 100 CL − Load Capacitance − pF Figure 19 Figure 20 Figure 21 GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 3.5 3 Rnull = 50 Ω Rnull = 20 Ω 1.5 VDD = 12 V RL = 10 kΩ TA = 25°C 0 10 100 CL − Load Capacitance − pF Figure 22 22 CL = 11 pF 9.9 9.8 9.7 RL = 10 kΩ 9.6 9.5 9.4 RL = 600 Ω 9.3 20 RL = 600 Ω and 10 kΩ CL = 50 pF AV = 1 19 Slew Rate − 21 TA = 25°C SR − Slew Rate − V/ µ s GBWP - Gain Bandwidth Product - MHz Rnull = 100 Ω 2 SLEW RATE vs SUPPLY VOLTAGE 10.0 Rnull = 0 Ω 4 φ m − Phase Margin − dB 2 CL − Load Capacitance − pF 5 0.5 2.5 CL − Load Capacitance − pF 4.5 1 Rnull = 100 Ω 3 0.5 0° 10 100 GAIN MARGIN vs LOAD CAPACITANCE 2.5 Rnull = 50 Ω 20° Rnull = 0 Ω 3.5 G − Gain Margin − dB φ m − Phase Margin φ m − Phase Margin 4 Rnull = 0 Ω 35° 5° 14 GAIN MARGIN vs LOAD CAPACITANCE 45° 30° 10° −225 100M 10M Figure 18 Rnull = 0 Ω Rnull = 100 Ω 15° 1M f − Frequency − Hz PHASE MARGIN vs LOAD CAPACITANCE 20° −180 100k Figure 17 35° −90 30 f − Frequency − Hz 40° −45 50 −20 1k −225 100M 10M 0 Phase − ° 0 Phase − ° A VD − Different Voltage Gain − dB TYPICAL CHARACTERISTICS 18 17 16 9.2 14 9.1 13 9.0 Slew Rate + 15 12 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD - Supply Voltage - V Figure 23 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD - Supply Voltage - V Figure 24 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 TYPICAL CHARACTERISTICS SLEW RATE vs FREE-AIR TEMPERATURE Slew Rate − 20 SR − Slew Rate − V/ µ s 15 Slew Rate + 10 15 Slew Rate + 10 VDD = 12 V RL = 600 Ω and 10 kΩ CL = 50 pF AV = 1 5 5 0 −55 −35 −15 5 25 45 65 85 105 125 TA - Free-Air Temperature - °C 0 −55 −35 −15 5 25 45 65 85 105 125 TA - Free-Air Temperature - °C Figure 25 0.1 Total Harmonic Distortion + Noise − % VDD = 12 V RL = 10 kΩ VO(PP) = 12 V AV = 100 0.01 AV = 10 AV = 1 0.001 100 10k 1k 0.001 100 100k 10k 1k 100k f − Frequency − Hz Figure 27 TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK OUTPUT VOLTAGE 10 10 VDD = 5 V AV = 1 f = 1 kHz 1 RL = 250 Ω 0.1 RL = 600 Ω 0.01 RL = 10 kΩ 0.001 0.0001 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 VDD = 12 V AV = 1 f = 1 kHz 1 RL = 250 Ω 0.1 RL = 600 Ω 0.01 0.001 RL = 10 kΩ 0.0001 0.5 2.5 4.5 6.5 8.5 10.5 VO(PP) − Peak-to-Peak Output Voltage − V VO(PP) − Peak-to-Peak Output Voltage − V Figure 28 Figure 29 Figure 30 LARGE SIGNAL FOLLOWER PULSE RESPONSE LARGE SIGNAL FOLLOWER PULSE RESPONSE SMALL SIGNAL FOLLOWER PULSE RESPONSE VI (1 V/Div) VI (5 V/Div) VO (500 mV/Div) VDD = 5 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VO (2 V/Div) VDD = 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 t − Time − µs t − Time − µs Figure 31 Figure 32 2 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • VI(100mV/Div) V O − Output Voltage − V V O − Output Voltage − V V O − Output Voltage − V AV = 1 TOTAL HARMONIC DISTORTION PLUS NOISE vs PEAK-TO-PEAK OUTPUT VOLTAGE f − Frequency − Hz 0 AV = 10 0.01 Figure 26 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY VDD = 5 V RL = 10 kΩ VO(PP) = 2 V AV = 100 0.1 Total Harmonic Distortion + Noise − % Slew Rate − 20 SR − Slew Rate − V/ µ s 1 25 VDD = 5 V RL = 600 Ω and 10 kΩ CL = 50 pF AV = 1 Total Harmonic Distortion + Noise − % 25 Total Harmonic Distortion + Noise − % TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY SLEW RATE vs FREE-AIR TEMPERATURE VO(50mV/Div) VDD = 5 V and 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.10 t − Time − µs Figure 33 15 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 TYPICAL CHARACTERISTICS LARGE SIGNAL INVERTING PULSE RESPONSE LARGE SIGNAL INVERTING PULSE RESPONSE VI (5 V/div) VDD = 5 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C VI (100 mV/div) V O − Output Voltage − V V O − Output Voltage − V VI (2 V/div) V O − Output Voltage − V SMALL SIGNAL INVERTING PULSE RESPONSE VDD = 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C VDD = 5 & 12 V RL = 600 Ω and 10 kΩ CL = 8 pF TA = 25°C VO (50 mV/Div) VO (2 V/Div) VO (500 mV/Div) 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 2 0.2 0.4 0.6 0.8 Figure 35 Figure 36 SHUTDOWN FORWARD ISOLATION vs FREQUENCY 100 RL = 600 Ω 80 60 RL = 10 kΩ 40 140 VDD = 12 V CL= 0 pF TA = 25°C VI(PP) = 0.1, 8, and 12 V 120 100 80 RL = 600 Ω 60 RL = 10 kΩ 40 20 10k 100k 1M f - Frequency - Hz 10M I DD(SHDN) − Shutdown Supply Current - µ A VDD = 12 V CL= 0 pF TA = 25°C VI(PP) = 0.1, 8, and 12 V 100 RL = 600 Ω 60 RL = 10 kΩ 40 20 1k 10k 100k 1M f - Frequency - Hz Figure 40 80 RL = 600 Ω 60 RL = 10 kΩ 40 1k 10k 100k 1M f - Frequency - Hz 10M 100 100M 10M 100M 136 Shutdown On RL = open VIN = VDD/2 134 132 130 128 126 124 122 120 118 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD - Supply Voltage - V Figure 41 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 1k 10k 100k 1M f - Frequency - Hz 10M 100M Figure 39 SHUTDOWN SUPPLY CURRENT vs SUPPLY VOLTAGE 140 80 100 Figure 38 SHUTDOWN REVERSE ISOLATION vs FREQUENCY 120 VDD = 5 V CL= 0 pF TA = 25°C VI(PP) = 0.1, 2.5, and 5 V 120 20 100 100M Figure 37 Sutdown Reverse Isolation - dB Sutdown Reverse Isolation - dB Sutdown Forward Isolation - dB Sutdown Forward Isolation - dB 120 1 SHUTDOWN REVERSE ISOLATION vs FREQUENCY 140 VDD = 5 V CL= 0 pF TA = 25°C VI(PP) = 0.1, 2.5, and 5 V 1k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Figure 34 20 16 0 2 t − Time − µs 140 100 1.2 1.4 1.6 1.8 t − Time − µs SHUTDOWN FORWARD ISOLATION vs FREQUENCY 100 1 t − Time − µs SHUTDOWN SUPPLY CURRENT vs FREE-AIR TEMPERATURE I DD(SHDN) − Shutdown Supply Current - µ A 0 180 AV = 1 VIN = VDD/2 160 140 VDD = 12 V 120 VDD = 5 V 100 80 60 −55 −25 5 35 65 95 TA - Free-Air Temperature - °C Figure 42 125 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 TYPICAL CHARACTERISTICS SHUTDOWN PULSE SHUTDOWN PULSE 5.5 4 Shutdown Pulse I DD − Supply Current − mA 5.0 4.5 4.0 2 VDD = 5 V CL= 8 pF TA = 25°C 3.5 3.0 2.5 0 IDD RL = 10 kΩ 2.0 1.5 −2 IDD RL = 600 Ω 1.0 6 5.5 SD Off Shutdown Pulse - V I DD − Supply Current − mA 6.0 6 −4 SD Off 5.0 4 Shutdown Pulse 4.5 4.0 2 VDD = 12 V CL= 8 pF TA = 25°C 3.5 3.0 2.5 0 IDD RL = 10 kΩ 2.0 1.5 −2 IDD RL = 600 Ω 1.0 Shutdown Pulse - V 6.0 −4 0.5 0.5 0.0 0.0 −6 0 10 20 30 40 50 t - Time - µs 60 70 −6 0 80 10 20 30 40 50 t - Time - µs 60 70 80 Figure 44 Figure 43 PARAMETER MEASUREMENT INFORMATION Rnull _ + RL CL Figure 45 APPLICATION INFORMATION input offset voltage null circuit The TLC070 and TLC071 has an input offset nulling function. Refer to Figure 46 for the diagram. − IN − OUT + IN + N2 N1 100 kΩ R1 VDD − NOTE A: R1 = 5.6 kΩ for offset voltage adjustment of ±10 mV. R1 = 20 kΩ for offset voltage adjustment of ±3 mV. Figure 46. Input Offset Voltage Null Circuit WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 17 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 APPLICATION INFORMATION driving a capacitive load When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device’s phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 47. A minimum value of 20 Ω should work well for most applications. RF RG RNULL _ Input Output + CLOAD Figure 47. Driving a Capacitive Load offset voltage The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage: RF IIB− RG + − VI IIB+ V OO +V IO ǒ ǒ ǓǓ 1) R R F VO + RS "I G IB) R S ǒ ǒ ǓǓ 1) R R F G "I IB– Figure 48. Output Offset Voltage Model 18 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • R F SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 APPLICATION INFORMATION high speed CMOS input amplifiers The TLC07x is a family of high-speed low-noise CMOS input operational amplifiers that has an input capacitance of the order of 20 pF. Any resistor used in the feedback path adds a pole in the transfer function equivalent to the input capacitance multiplied by the combination of source resistance and feedback resistance. For example, a gain of −10, a source resistance of 1 kΩ, and a feedback resistance of 10 kΩ add an additional pole at approximately 8 MHz. This is more apparent with CMOS amplifiers than bipolar amplifiers due to their greater input capacitance. This is of little consequence on slower CMOS amplifiers, as this pole normally occurs at frequencies above their unity-gain bandwidth. However, the TLC07x with its 10-MHz bandwidth means that this pole normally occurs at frequencies where there is on the order of 5 dB gain left and the phase shift adds considerably. The effect of this pole is the strongest with large feedback resistances at small closed loop gains. As the feedback resistance is increased, the gain peaking increases at a lower frequency and the 180_ phase shift crossover point also moves down in frequency, decreasing the phase margin. For the TLC07x, the maximum feedback resistor recommended is 5 kΩ; larger resistances can be used but a capacitor in parallel with the feedback resistor is recommended to counter the effects of the input capacitance pole. The TLC073 with a 1-V step response has an 80% overshoot with a natural frequency of 3.5 MHz when configured as a unity gain buffer and with a 10-kΩ feedback resistor. By adding a 10-pF capacitor in parallel with the feedback resistor, the overshoot is reduced to 40% and eliminates the natural frequency, resulting in a much faster settling time (see Figure 49). The 10-pF capacitor was chosen for convenience only. 2 VIN V O − Output Voltage − V 1 0 With CF = 10 pF 1.5 −1 V I − Input Voltage − V Load capacitance had little effect on these measurements due to the excellent output drive capability of the TLC07x. 10 pF 10 kΩ _ 1 + IN 0.5 VOUT 0 VDD = ±5 V AV = +1 RF = 10 kΩ RL = 600 Ω CL = 22 pF 50 Ω 600 Ω 22 pF −0.5 0 0.2 0.4 0.6 0.8 t - Time - µs 1 1.2 1.4 1.6 Figure 49. 1-V Step Response WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 19 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 APPLICATION INFORMATION general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 50). RG RF − VO + VI R1 C1 f V O + V I ǒ 1) R R F G –3dB Ǔǒ + 1 2pR1C1 Ǔ 1 1 ) sR1C1 Figure 50. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. C1 + _ VI R1 R1 = R2 = R C1 = C2 = C Q = Peaking Factor (Butterworth Q = 0.707) R2 f C2 RG RF RG = Figure 51. 2-Pole Low-Pass Sallen-Key Filter 20 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • –3dB + ( 1 2pRC RF 1 2− Q ) SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 APPLICATION INFORMATION shutdown function Three members of the TLC07x family (TLC070/3/5) have a shutdown terminal (SHDN) for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 125 µA/channel, the amplifier is disabled, and the outputs are placed in a high-impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. The shutdown terminal threshold is always referenced to the voltage on the GND terminal of the device. Therefore, when operating the device with split supply voltages (e.g. ± 2.5 V), the shutdown terminal needs to be pulled to VDD− (not system ground) to disable the operational amplifier. The amplifier’s output with a shutdown pulse is shown in Figures 43 and 44. The amplifier is powered with a single 5-V supply and is configured as noninverting with a gain of 5. The amplifier turn-on and turn-off times are measured from the 50% point of the shutdown pulse to the 50% point of the output waveform. The times for the single, dual, and quad are listed in the data tables. Figures 37, 38, 39, and 40 show the amplifier’s forward and reverse isolation in shutdown. The operational amplifier is configured as a voltage follower (AV = 1). The isolation performance is plotted across frequency using 0.1 VPP, 2.5 VPP, and 5 VPP input signals at ±2.5 V supplies and 0.1 VPP, 8 VPP, and 12 VPP input signals at ±6 V supplies. circuit layout considerations To achieve the levels of high performance of the TLC07x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. D Ground planes − It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. D Proper power supply decoupling − Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. D Sockets − Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. D Short trace runs/compact part placements − Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier. D Surface-mount passive components − Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 21 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 APPLICATION INFORMATION general PowerPAD design considerations The TLC07x is available in a thermally-enhanced PowerPAD family of packages. These packages are constructed using a downset leadframe upon which the die is mounted [see Figure 52(a) and Figure 52(b)]. This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see Figure 52(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad. The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad must be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat dissipating device. Soldering the PowerPAD to the PCB is always required, even with applications that have low-power dissipation. This provides the necessary thermal and mechanical connection between the lead frame die pad and the PCB. The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surface mount with mechanical methods of heatsinking. DIE Side View (a) Thermal Pad DIE End View (b) Bottom View (c) NOTE A: The thermal pad is electrically isolated from all terminals in the package. Figure 52. Views of Thermally-Enhanced DGN Package 22 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 APPLICATION INFORMATION Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the recommended approach. general PowerPAD design considerations (continued) 1. The thermal pad must be connected to the same voltage potential as the GND pin. 2. Prepare the PCB with a top side etch pattern as illustrated in the thermal land pattern mechanical drawing at the end of this document. There should be etch for the leads as well as etch for the thermal pad. 3. Place five holes (single and dual) or nine holes (quad) in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow. 4. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the TLC07x IC. These additional vias may be larger than the 13-mil diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be soldered so that wicking is not a problem. 5. Connect all holes to the internal ground plane that is the same potential as the device GND pin. 6. When connecting these holes to the ground plane, do not use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the TLC07x PowerPAD package should make their connection to the internal ground plane with a complete connection around the entire circumference of the plated-through hole. 7. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five holes (dual) or nine holes (quad) exposed. The bottom-side solder mask should cover the five or nine holes of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the reflow process. 8. Apply solder paste to the exposed thermal pad area and all of the IC terminals. 9. With these preparatory steps in place, the TLC07x IC is simply placed in position and run through the solder reflow operation as any standard surface-mount component. This results in a part that is properly installed. For a given θJA, the maximum power dissipation is shown in Figure 54 and is calculated by the following formula: P Where: D + ǒ T Ǔ –T MAX A q JA PD = Maximum power dissipation of TLC07x IC (watts) TMAX = Absolute maximum junction temperature (150°C) TA = Free-ambient air temperature (°C) θJA = θJC + θCA θJC = Thermal coefficient from junction to case θCA = Thermal coefficient from case to ambient air (°C/W) WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 23 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 APPLICATION INFORMATION general PowerPAD design considerations (continued) MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE Maximum Power Dissipation − W 7 6 5 4 3 2 PWP Package Low-K Test PCB θJA = 29.7°C/W TJ = 150°C SOT-23 Package Low-K Test PCB θJA = 324°C/W DGN Package Low-K Test PCB θJA = 52.3°C/W SOIC Package Low-K Test PCB θJA = 176°C/W PDIP Package Low-K Test PCB θJA = 104°C/W 1 0 −55 −40 −25 −10 5 20 35 50 65 80 95 110 125 TA − Free-Air Temperature − °C NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 53. Maximum Power Dissipation vs Free-Air Temperature The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent power and output power. The designer should never forget about the quiescent heat generated within the device, especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat dissipation is at low output voltages with high output currents. The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the device, θJA decreases and the heat dissipation capability increases. The currents and voltages shown in these graphs are for the total package. For the dual or quad amplifier packages, the sum of the RMS output currents and voltages should be used to choose the proper package. 24 WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts, the model generation software used with Microsim PSpice. The Boyle macromodel (see Note 1) and subcircuit in Figure 55 are generated using the TLC07x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). PSpice and Parts are trademarks of MicroSim Corporation. WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • 25 SLOS219E − JUNE 1999 − REVISED SEPTEMBER 2006 APPLICATION INFORMATION 99 3 VDD + 9 RSS 92 FB + 10 J1 DP VC J2 IN + 11 C1 RD1 VAD R2 − 53 DC 12 HLIM − C2 6 − + + GA GCM VLIM 8 − − RO1 DE 5 + VE OUT ga gcm iss ioff hlim j1 j2 r2 rd1 rd2 ro1 ro2 rp rss vb vc ve vlim vlp vln .model .model .model .model .ends *DEVICE=TLC07X_5V, OPAMP, PJF, INT * TLC07X − 5V operational amplifier ”macromodel” subcircuit * created using Parts release 8.0 on 12/16/99 at 08:38 * Parts is a MicroSim product. * * connections: non-inverting input * inverting input * positive power supply * negative power supply * output * .subckt TLC07X_5V 1 2 3 4 5 * c1 11 12 4.8697E−12 c2 6 7 8.0000E−12 css 10 99 4.0063E−12 dc 5 53 dy de 54 5 dy dlp 90 91 dx dln 92 90 dx dp 4 3 dx egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5 fb 7 99 poly(5) vb vc ve vlp vln 0 6.9132E6 −1E3 1E3 6E6 −6E6 6 0 3 0 90 11 12 6 4 4 8 7 3 10 9 3 54 7 91 0 dx dy jx1 jx2 0 11 12 457.42E−6 6 10 99 1.1293E−6 10 dc 183.67E−6 6 dc .806E−6 0 vlim 1K 2 10 jx1 1 10 jx2 9 100.00E3 11 2.1862E3 12 2.1862E3 5 10 99 10 4 2.4728E3 99 1.0889E6 0 dc 0 53 dc 1.5410 4 dc .84403 8 dc 0 0 dc 119 92 dc 119 D(Is=800.00E−18) D(Is=800.00E−18 Rs=1m Cjo=10p) PJF(Is=117.50E−15 Beta=1.1391E−3 Vto=−1) PJF(Is=117.50E−15 Beta=1.1391E−3 Vto=−1) Figure 54. Boyle Macromodel and Subcircuit 26 − RD2 54 4 − 7 60 + − + DLP 91 + VLP 90 RO2 VB IN − VDD − − + ISS RP 2 1 DLN EGND + WWW.TI.COM POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443 • VLN PACKAGE OPTION ADDENDUM www.ti.com 11-Dec-2006 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLC070AID ACTIVE SOIC D 8 TLC070AIDR ACTIVE SOIC D TLC070AIDRG4 ACTIVE SOIC TLC070AIP ACTIVE TLC070AIPE4 75 Lead/Ball Finish MSL Peak Temp (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC070CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070CDGN ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070CDGNG4 ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070CDGNR ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070CDGNRG4 ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC070CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC070ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070IDGNG4 ACTIVE MSOPPower PAD DGN 8 TBD Call TI TLC070IDGNR ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070IDGNRG4 ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC070IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC070IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Addendum-Page 1 Call TI PACKAGE OPTION ADDENDUM www.ti.com 11-Dec-2006 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLC071AID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071AIDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC071AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC071CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071CDGN ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071CDGNG4 ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071CDGNR ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071CDGNRG4 ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC071CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC071ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071IDGN ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071IDGNG4 ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071IDGNR ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071IDGNRG4 ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC071IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC071IPE4 ACTIVE PDIP P 8 50 Pb-Free CU NIPDAU N / A for Pkg Type Addendum-Page 2 Lead/Ball Finish MSL Peak Temp (3) PACKAGE OPTION ADDENDUM www.ti.com 11-Dec-2006 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLC072AID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072AIDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072AIDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC072AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC072CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072CDGN ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072CDGNG4 ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072CDGNR ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072CDGNRG4 ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC072CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC072ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072IDGN ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072IDGNG4 ACTIVE MSOPPower PAD DGN 8 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072IDGNR ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072IDGNRG4 ACTIVE MSOPPower PAD DGN 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Lead/Ball Finish MSL Peak Temp (3) (RoHS) Addendum-Page 3 PACKAGE OPTION ADDENDUM www.ti.com 11-Dec-2006 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLC072IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC072IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC072IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC073AID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073AIDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073AIDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073CD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC073CDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC073CDGQ ACTIVE MSOPPower PAD DGQ 10 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073CDGQG4 ACTIVE MSOPPower PAD DGQ 10 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073CDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC073CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC073IDGQ ACTIVE MSOPPower PAD DGQ 10 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073IDGQG4 ACTIVE MSOPPower PAD DGQ 10 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073IDGQR ACTIVE MSOPPower PAD DGQ 10 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073IDGQRG4 ACTIVE MSOPPower PAD DGQ 10 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC073IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC073INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC074AID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Addendum-Page 4 Lead/Ball Finish MSL Peak Temp (3) PACKAGE OPTION ADDENDUM www.ti.com 11-Dec-2006 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLC074AIDG4 ACTIVE SOIC D 14 TLC074AIDR ACTIVE SOIC D TLC074AIDRG4 ACTIVE SOIC TLC074AIN ACTIVE TLC074AINE4 50 Lead/Ball Finish MSL Peak Temp (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC074AIPWP ACTIVE HTSSOP PWP 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TLC074AIPWPG4 ACTIVE HTSSOP PWP 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TLC074CD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC074CDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC074CDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC074CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC074CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC074CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC074CPWP ACTIVE HTSSOP PWP 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TLC074CPWPR ACTIVE HTSSOP PWP 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TLC074CPWPRG4 ACTIVE HTSSOP PWP 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TLC074ID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC074IDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC074IDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC074IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) Call TI Level-1-260C-UNLIM TLC074IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC074INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC074IPWP ACTIVE HTSSOP PWP 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TLC075AID ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC075AIDG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC075AIDR ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Addendum-Page 5 PACKAGE OPTION ADDENDUM www.ti.com 11-Dec-2006 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLC075AIDRG4 ACTIVE SOIC D 16 TLC075AIN ACTIVE PDIP N 16 25 TLC075AINE4 ACTIVE PDIP N 16 TLC075AIPWP ACTIVE HTSSOP PWP TLC075AIPWPG4 ACTIVE HTSSOP TLC075CD ACTIVE TLC075CN 2500 Green (RoHS & no Sb/Br) Lead/Ball Finish MSL Peak Temp (3) CU NIPDAU Level-1-260C-UNLIM Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR PWP 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC075CNE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC075CPWP ACTIVE HTSSOP PWP 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR TLC075CPWPRG4 ACTIVE HTSSOP PWP 20 TBD Call TI Call TI TLC075IDG4 ACTIVE SOIC D 16 TBD Call TI Call TI TLC075IDR ACTIVE SOIC D 16 TLC075IN ACTIVE PDIP N 16 25 TLC075INE4 ACTIVE PDIP N 16 TLC075IPWP ACTIVE HTSSOP PWP TLC075IPWPG4 ACTIVE HTSSOP TLC075IPWPRG4 ACTIVE HTSSOP 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR PWP 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR PWP 20 TBD Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 6 PACKAGE OPTION ADDENDUM www.ti.com 11-Dec-2006 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 7 MECHANICAL DATA MPDI001A – JANUARY 1995 – REVISED JUNE 1999 P (R-PDIP-T8) PLASTIC DUAL-IN-LINE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.325 (8,26) 0.300 (7,62) 0.020 (0,51) MIN 0.015 (0,38) Gage Plane 0.200 (5,08) MAX Seating Plane 0.010 (0,25) NOM 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.430 (10,92) MAX 0.010 (0,25) M 4040082/D 05/98 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony Mailing Address: Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated