TI TLE2161ACD

TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
D
D
D
D
Excellent Output Drive Capability
VO = ± 2.5 V Min at RL = 100 Ω,
VCC± = ± 5 V
VO = ± 12.5 V Min at RL = 600 Ω,
VCC± = ± 15 V
Low Supply Current . . . 280 µA Typ
Decompensated for High Slew Rate and
Gain-Bandwidth Product
AVD = 0.5 Min
Slew Rate = 10 V/µs Typ
Gain-Bandwidth Product = 6.5 MHz Typ
Wide Operating Supply Voltage Range
VCC ± = ± 3.5 V to ± 18 V
High Open-Loop Gain . . . 280 V/mV Typ
Low Offset Voltage . . . 500 µV Max
Low Offset Voltage Drift With Time
0.04 µV/Month Typ
Low Input Bias Current . . . 5 pA Typ
D
D
D
D
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
LOAD RESISTANCE
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
description
The TLE2161, TLE2161A, and TLE2161B are
JFET-input, low-power, precision operational
amplifiers manufactured using the Texas
Instruments Excalibur process. Decompensated
for stability with a minimum closed-loop gain of 5,
these devices combine outstanding output drive
capability with low power consumption, excellent
dc precision, and high gain-bandwidth product.
In addition to maintaining the traditional JFET
advantages of fast slew rates and low input bias
and offset currents, the Excalibur process offers
outstanding parametric stability over time and
temperature. This results in a device that remains
precise even with changes in temperature and
over years of use.
10
VCC ± = ± 5 V
TA = 25°C
8
6
4
2
0
10
100
1k
RL – Load Resistance – Ω
10 k
AVAILABLE OPTIONS
PACKAGE
TA
VIOmax
AT 25°C
25 C
0°C
to
70°C
SMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
500 µV
1 5 mV
1.5
3 mV
—
TLE2161ACD
TLE2161CD
—
—
—
—
TLE2161BCP
TLE2161ACP
TLE2161CP
– 40°C
to
85°C
500 µV
1 5 mV
1.5
3 mV
—
TLE2161AID
TLE2161ID
—
—
—
—
TLE2161BIP
TLE2161AIP
TLE2161IP
– 55°C
to
125°C
500 µV
1.5
1 5 mV
3 mV
—
TLE2161AMD
TLE2161MD
—
TLE2161AMFK
TLE2161MFK
TLE2161BMJG
TLE2161AMJG
TLE2161MJG
TLE2161BMP
TLE2161AMP
TLE2161MP
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2161ACDR).
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1996, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
description (continued)
A variety of available options includes small-outline packages and chip-carrier versions for high-density system
applications.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of – 55°C to 125°C.
FK PACKAGE
(TOP VIEW)
1
8
2
7
3
6
4
5
NC
VCC +
OUT
OFFSET N2
NC
IN –
NC
IN +
NC
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
VCC +
NC
OUT
NC
NC
VCC –
NC
N2
NC
OFFSET N1
IN –
IN +
VCC –
NC
N1
NC
NC
NC
D, JG, OR P PACKAGE
(TOP VIEW)
NC – No internal connection
equivalent schematic
VCC +
Q9
Q13
Q32
Q14
Q18
Q29
Q33
Q4
Q36
Q16
Q19
IN +
Q25
Q37
Q27
IN –
Q3
Q5
Q1
Q7
Q43
R8
Q17
Q35
R6
Q11
2.7 kΩ
Q10
Q6
C1
Q30
C3
1.6 pF
R3
2.4 kΩ
20
Q38
Q42
Q41
Q39
Q15
C2 15 pF
Q8
Q21
OFFSET N1
OFFSET N2
Q12
R1
1.1 kΩ
R4
55 kΩ
R2
1.1 kΩ
R5
60 kΩ
Q26
Q22
VCC –
All component values are nominal.
POST OFFICE BOX 655303
OUT
R9
100
Q24
Q31
Q2
Ω
Q28
Q20
15 pF
2
Q40
Q34
Q23
• DALLAS, TEXAS 75265
R7
600 Ω
Ω
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V
Supply voltage, VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 19 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 38 V
Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC ±
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 80 mA
Total current into VCC + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC –.
2. Differential voltages are at IN+ with respect to IN –.
3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D
725 mW
5.8 mW/°C
464 mW
377 mW
145 mW
FK
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
JG
1050 mW
8.4 mW/°C
672 mW
546 mW
210 mW
P
1000 mW
8.0 mW/°C
640 mW
520 mW
200 mW
recommended operating conditions
C SUFFIX
Supply voltage, VCC ±
Common mode input voltage,
Common-mode
voltage VIC
Operating free-air temperature, TA
VCC ± = ± 5 V
VCC ± = ± 15 V
I SUFFIX
M SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
± 3.5
± 18
± 3.5
± 18
+ 3.5
± 18
– 1.6
4
– 1.6
4
– 1.6
4
– 11
13
– 11
13
– 11
13
0
70
– 40
85
– 55
125
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
V
V
°C
3
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
electrical characteristics at specified free-air temperature, VCC ± = ± 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLE2161C, TLE2161AC
TLE2161BC
MIN
25°C
TLE2161C
VIO
Input offset voltage
IIB
VICR
RS = 50 Ω
VIC = 0
0,
Input offset current
0.5
Full range
Input bias current
6
µV/°C
0.04
µV/mo
25°C
1
0.8
Full range
– 1.6
to 4
RL = 100 Ω
Large signal differential voltage amplification
Large-signal
25°C
3.5
Full range
3.3
25°C
2.5
VO = ± 2
2.8
8V
V,
RL = 10 kΩ
VO = 0 to 2 V
V,
RL = 100 Ω
VO = 0 to – 2 V
V, RL = 100 Ω
nA
pA
2
– 1.6
to 4
Full range
pA
3
25°C
Common mode input voltage range
Common-mode
Maximum negative peak output voltage swing
1.9
25°C
Full range
Full range
Maximum positive peak output voltage swing
mV
2.4
25°C
RL = 10 kΩ
AVD
2.6
Full range
RL = 100 Ω
VOM –
0.6
3.5
25°C
RL = 10 kΩ
VOM +
3.1
Full range
Input offset voltage long-term drift (see Note 4)
IIO
0.8
UNIT
4
25°C
TLE2161AC
Temperature coefficient of input offset voltage
MAX
Full range
TLE2161BC
αVIO
TYP
–2
to 6
nA
V
V
3.7
V
3.1
2
25°C
– 3.7
Full range
– 3.3
25°C
– 2.5
Full range
–2
25°C
15
Full range
2
25°C
0.75
Full range
0.5
25°C
0.5
Full range
0.25
– 3.9
V
– 2.7
80
45
V/mV
3
ri
Input resistance
25°C
1012
Ω
ci
Input capacitance
25°C
4
pF
zo
Open-loop output impedance
IO = 0
25°C
280
Ω
CMRR
Common mode rejection ratio
Common-mode
VIC=V
=VICRmin
min, RS = 50 Ω
kSVR
Supply voltage rejection ratio (∆VCC± /∆VIO)
Supply-voltage
VCC± = ± 5 V to ± 15 V,
RS = 50 Ω
ICC
Supply current
∆ICC
Supply-current
y
change
g over operating
g
temperature range
25°C
65
Full range
65
25°C
75
Full range
75
25°C
VO = 0
0,
No load
82
93
280
Full range
Full range
dB
dB
325
350
29
µA
µA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
operating characteristics at specified free-air temperature, VCC ± = ±5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SR
Slew rate (see Figure 1)
Vn
Equivalent
q
input noise voltage
g
(see Figure 2)
Vn(PP)
Peak-to-peak equivalent input
noise voltage
f = 0.1 Hz to 10 Hz
In
Equivalent input noise current
f = 1 kHz
Total harmonic distortion
VO(PP) = 2 V,
RL = 10 kΩ
THD
Gain-bandwidth product
(see Figure 3)
AVD = 5,
RL = 10 kΩ,
RS = 20 Ω,
f = 10 Hz
RS = 20 Ω,
f = 1 kHz
f = 100 kHz,
f = 100 kHz,
AVD = 5,
RL = 10 kΩ,
RL = 100 kΩ,
CL = 100 pF
f = 10 kHz,
CL = 100 pF
CL = 100 pF
Settling time
BOM
Maximum output-swing
bandwidth
AVD = 5,
φm
Phase margin (see Figure 3)
AVD = 5,
AVD = 5,
TYP
25°C
7
10
Full
range
5
RL = 10 kΩ
RL = 10 kΩ,
RL = 100 Ω,
CL = 100 pF
100
43
60
25°C
1
25°C
25°C
CL = 100 pF
59
1.1
25°C
25°C
UNIT
MAX
V/µs
25°C
25°C
ε = 0.01%
TLE2161C, TLE2161AC
TLE2161BC
MIN
25°C
ε = 0.1%
ts
TA†
nV/√H
nV/√Hz
µV
fA/√Hz
0.025%
5.8
4.3
5
10
420
MHz
µs
kHz
70°
84°
† Full range is 0°C to 70°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
electrical characteristics at specified free-air temperature, VCC ± = ± 15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLE2161C, TLE2161AC
TLE2161BC
MIN
25°C
TLE2161C
VIO
Input offset voltage
25°C
RS = 50 Ω
IIB
VICR
Input offset current
VOM –
0.04
µV/mo
25°C
2
4
Full range
– 11
to 13
25°C
13.2
25°C
Full range
Maximum negative peak output voltage swing
25°C
Large signal differential voltage amplification
Large-signal
Full range
VO = ± 10 V
V,
RL = 10 kΩ
VO = 0 to 8 V
V,
RL = 600 Ω
VO = 0 to – 8 V
V,
RL = 600 Ω
– 12
to 16
nA
V
V
13.7
13
12.5
nA
pA
3
25°C
Full range
pA
1
– 11
to 13
25°C
RL = 600 Ω
AVD
25°C
Full range
RL = 10 kΩ
0.5
µV/°C
Common mode input voltage range
Common-mode
RL = 600 Ω
mV
1
Full range
Maximum positive peak output voltage swing
1.5
6
Full range
25°C
RL = 10 kΩ
VOM +
0.3
Full range
Input bias current
3
2.5
Full range
Input offset voltage long-term drift
(see Note 4)
IIO
0.5
Full range
VIC = 0,
UNIT
MAX
3.9
25°C
TLE2161AC
Temperature coefficient of input offset voltage
0.6
Full range
TLE2161BC
αVIO
TYP
V
13.2
12
– 13.2
– 13.7
– 13
– 12.5
V
– 13
– 12
25°C
30
Full range
20
25°C
25
Full range
10
25°C
3
Full range
1
230
100
V/mV
25
ri
Input resistance
25°C
1012
Ω
ci
Input capacitance
25°C
4
pF
zo
Open-loop output impedance
IO = 0
25°C
280
Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
kSVR
Supply voltage rejection ratio (∆VCC± /∆VIO)
Supply-voltage
VCC± = ± 5 V to ± 15 V,,
RS = 50 Ω
ICC
Supply current
25°C
72
Full range
70
25°C
75
Full range
75
25°C
0
VO = 0,
∆ICC
RS = 50 Ω
No load
Supply-current
y
change
g over operating
g
temperature range
90
93
290
Full range
Full range
dB
dB
350
375
34
µA
µA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
operating characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SR
Slew rate (see Figure 1)
AVD = 5
5,
RL = 10 kΩ
kΩ,
Vn
Equivalent
input noise voltage
q
g
(see Figure 2)
RS = 20 Ω,
RS = 20 Ω,
f = 10 Hz
Vn(PP)
Peak-to-peak equivalent input
noise voltage
f = 0.1 Hz to 10 Hz
In
Equivalent input noise current
f = 1 kHz
Total harmonic distortion
VO(PP) = 2 V,
RL = 10 kΩ
AVD = 5,
f = 10 kHz,
f = 100 kHz,
RL = 10 kΩ,
CL = 100 pF
THD
Gain-bandwidth product
(see Figure 3)
f = 100 kHz,
CL = 100 pF
RL = 600 Ω,
CL = 100 pF
Settling time
BOM
Maximum output-swing
bandwidth
AVD = 5,
φm
Phase margin (see Figure 3)
AVD = 5,
AVD = 5,
TYP
25°C
7
10
Full range
5
RL = 10 kΩ
RL = 10 kΩ,
RL = 600 Ω,
CL = 100 pF
V/µs
70
100
40
60
nV/√Hz
1.1
µV
25°C
1.1
fA/√Hz
25°C
25°C
25°C
CL = 100 pF
UNIT
MAX
25°C
25°C
ε = 0.01%
TLE2161C, TLE2161AC
TLE2161BC
MIN
25°C
f = 1 kHz
ε = 0.1%
ts
TA†
25°C
0.025%
6.4
5.6
5
10
116
MHz
µs
kHz
72°
78°
† Full range is 0°C to 70°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
electrical characteristics at specified free-air temperature, VCC ± = ± 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLE2161I, TLE2161AI
TLE2161BI
MIN
25°C
TLE2161I
VIO
Input offset voltage
IIB
VICR
VIC = 0,
RS = 50 Ω
Input offset current
25°C
0.04
µV/mo
25°C
1
Large signal differential voltage amplification
Large-signal
VO = ± 2
2.8
8V
V,
RL = 10 kΩ
VO = 0 to 2 V
V,
RL = 100 Ω
VO = 0 to – 2 V
V, RL = 100 Ω
ri
Input resistance
ci
Input capacitance
zo
Open-loop output impedance
3
25°C
Full range
– 1.6
to
4
25°C
3.5
Full range
3.1
25°C
2.5
CMRR
Common mode rejection ratio
Common-mode
VIC=V
=VICRmin
min, RS = 50 Ω
kSVR
Supply voltage rejection ratio (∆VCC± /∆VIO)
Supply-voltage
VCC± = ± 5 V to ± 15 V,
RS = 50 Ω
ICC
Supply current
Supply-current change over operating
temperature range
No load
–2
to
6
nA
V
3.7
V
3.1
2
25°C
– 3.7
Full range
– 3.1
25°C
– 2.5
Full range
–2
25°C
15
Full range
2
25°C
0.75
Full range
0.5
25°C
0.5
Full range
0.25
– 3.9
V
– 2.7
80
45
V/mV
3
1012
Ω
25°C
4
pF
25°C
280
Ω
25°C
65
Full range
65
25°C
75
Full range
65
25°C
VO = 0
0,
nA
pA
4
25°C
IO = 0
pA
2
– 1.6
to
4
Full range
RL = 100 Ω
∆ICC
µV/°C
Common mode input voltage range
Common-mode
Maximum negative peak output voltage swing
1.9
2.7
Full range
Maximum positive peak output voltage
mV
6
Full range
25°C
RL = 10 kΩ
AVD
0.5
Full range
Input bias current
2.6
3.9
25°C
RL = 100 Ω
VOM –
0.6
Full range
RL = 10 kΩ
VOM +
3.1
Full range
Input offset voltage long-term drift
(see Note 4)
IIO
0.8
UNIT
4.4
25°C
TLE2161AI
Temperature coefficient of input offset voltage
MAX
Full range
TLE2161BI
αVIO
TYP
82
93
280
Full range
Full range
dB
dB
325
350
29
µA
µA
† Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA= 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
operating characteristics at specified free-air temperature, VCC ± = ± 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE2161I, TLE2161AI
TLE2161BI
MIN
TYP
25°C
7
10
Full range
5
SR
Slew rate (see Figure 1)
AVD = 5
5,
RL = 10 kΩ
kΩ,
Vn
Equivalent
input noise
q
voltage (see Figure 2)
RS = 20 Ω,
RS = 20 Ω,
f = 10 Hz
Vn(PP)
Peak-to-peak equivalent
input noise voltage
f = 0.1 Hz to 10 Hz
25°C
1.1
In
Equivalent input noise
current
f = 1 kHz
25°C
1
THD
Total harmonic distortion
VO(PP) = 2 V,
RL = 10 kΩ
25°C
0.025%
Gain-bandwidth product
(see Figure 3)
f = 100 kHz,
f = 100 kHz,
CL = 100 pF
TA†
25°C
f = 1 kHz
AVD = 5,
f = 10 kHz,
RL = 10 kΩ,
CL = 100 pF
RL = 100 Ω,
CL = 100 pF
ε = 0.1%
ts
Settling time
BOM
Maximum output-swing
bandwidth
AVD = 5,
φm
Phase margin (see Figure 3)
AVD = 5,
AVD = 5,
25°C
25°C
ε = 0.01%
RL = 10 kΩ
RL = 10 kΩ,
RL = 100 Ω,
25°C
CL = 100 pF
CL = 100 pF
25°C
V/µs
59
100
43
60
5.8
4.3
5
10
420
UNIT
MAX
nV/√Hz
µV
fA/√Hz
MHz
µs
kHz
70°
84°
† Full range is – 40°C to 85°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
electrical characteristics at specified free-air temperature, VCC ± = ± 15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLE2161I, TLE2161AI
TLE2161BI
MIN
25°C
TLE2161I
VIO
Input offset voltage
RS = 50 Ω
IIB
VICR
Input offset current
VOM –
µV/mo
25°C
2
4
Full range
– 11
to
13
25°C
13.2
25°C
Full range
Maximum negative peak output voltage swing
25°C
Large signal differential voltage amplification
Large-signal
Full range
V
V0 = ± 10 V,
RL = 10 kΩ
V0 = 0 to 8 V
V,
RL = 600 Ω
V RL = 600 Ω
V0 = 0 to – 8 V,
– 12
to
16
nA
V
V
13.7
13
12.5
nA
pA
5
25°C
Full range
pA
3
– 11
to
13
25°C
RL = 600 Ω
AVD
µV/°C
0.04
Full range
RL = 10 kΩ
0.5
25°C
Common mode input voltage range
Common-mode
RL = 600 Ω
mV
1.3
Full range
Maximum positive peak output voltage swing
1.5
6
Full range
25°C
RL = 10 kΩ
VOM +
0.3
Full range
Full range
Input bias current
3
2.9
25°C
Input offset voltage long-term drift (see Note 4)
IIO
0.5
Full range
VIC = 0
0,
UNIT
MAX
4.3
25°C
TLE2161AI
Temperature coefficient of input offset voltage
0.6
Full range
TLE2161BI
αVIO
TYP
V
13.2
12
– 13.2
– 13.7
– 13
– 12.5
V
– 13
– 12
25°C
30
Full range
20
25°C
25
Full range
10
25°C
3
Full range
1
230
100
V/mV
25
ri
Input resistance
25°C
1012
Ω
ci
Input capacitance
25°C
4
pF
zo
Open-loop output impedance
IO = 0
25°C
280
Ω
CMRR
Common mode rejection ratio
Common-mode
VIC=V
=VICRmin
min, RS = 50 Ω
kSVR
Supply voltage rejection ratio (∆VCC± /∆VIO)
Supply-voltage
VCC± = ± 5 V to ± 15 V,
RS = 50 Ω
ICC
Supply current
∆ICC
25°C
72
Full range
65
25°C
75
Full range
65
25°C
Supply-current change over operating
temperature range
VO = 0
0,
No load
90
93
290
Full range
Full range
dB
dB
350
375
34
µA
µA
† Full range is – 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA= 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
operating characteristics at specified free-air temperature, VCC ± = ± 15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE2161I, TLE2161AI
TLE2161IB
MIN
TYP
25°C
7
10
Full range
5
UNIT
MAX
SR
Slew rate (see Figure 1)
AVD = 5
5,
RL = 10 kΩ
kΩ,
Vn
Equivalent
input noise voltage
q
g
(see Figure 2)
RS = 20 Ω,
RS = 20 Ω,
f = 10 Hz
Vn(PP)
(PP)
Peak-to-peak equivalent
q
input
noise voltage
f = 0.1
0 1 Hz to 10 Hz
25°C
11
1.1
µV
In
Equivalent input noise current
f = 1 kHz
25°C
1.1
fA/√Hz
THD
Total harmonic distortion
VO(PP) = 2 V,,
RL = 10 kΩ
Gain-bandwidth product
(see Figure 3)
f = 100 kHz,
f = 100 kHz,
CL = 100 pF
TA†
25°C
f = 1 kHz
AVD = 5,,
f = 10 kHz,,
RL = 10 kΩ,
RL = 600 Ω,
CL = 100 pF
CL = 100 pF
ε = 0.1%
ts
Settling time
BOM
Maximum output-swing
g
bandwidth
AVD = 5,
5
φm
Phase margin (see Figure 3)
AVD = 5,
AVD = 5,
25°C
25°C
25°C
ε = 0.01%
RL = 10 kΩ
RL = 10 kΩ,
RL = 600 Ω,
25°C
CL = 100 pF
CL = 100 pF
25°C
V/µs
70
100
40
60
nV/√Hz
0 025%
0.025%
6.4
5.6
5
10
116
MHz
µs
kHz
72°
78°
† Full range is – 40°C to 85°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
electrical characteristics at specified free-air temperature, VCC ± = ± 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLE2161M
TLE2161AM
TLE2161BM
MIN
25°C
TLE2161M
VIO
Input offset voltage
αVIO
Input offset current
IIB
Input bias current
VICR
VOM +
VOM –
AVD
Maximum negative
peak
g
output voltage swing
Large-signal
g
g
differential
voltage amplification
3.1
0.6
2.6
4.6
25°C
0.5
Full range
RS = 50 Ω
VIC = 0,
µV/°C
25°C
0.04
µV/mo
25°C
1
25°C
3
25°C
Full range
– 1.6
to 4
FK and JG
packages
RL = 600 Ω
Full range
25°C
Full range
25°C
D and P
packages
RL = 100 Ω
All packages
RL = 10 kΩ
FK and JG
packages
RL = 600 Ω
D and P
packages
RL = 100 Ω
All packages
V0 = ± 2.8
28V
V,
RL = 10 kΩ
V0 = 0 to 2.5
2 5 V,
V
RL = 600 Ω
FK and JG
packages
D and P
packages
Full range
25°C
Full range
25°C
Full range
25°C
V0 = 0 to – 2
2.5
5 V,
V
RL = 600 Ω
V0 = 0 to 2 V
V,
RL = 100 Ω
V0 = 0 to – 2 V,
V
RL = 100 Ω
3.5
2.5
V
V
3.6
3.1
V
2
– 3.7
– 3.9
–3
– 2.5
– 3.5
–2
– 2.5
–2
25°C
15
Full range
2
25°C
1
25°C
3.7
2
2.5
nA
V
3
Full range
Full range
–2
to 6
nA
pA
30
– 1.6
to 4
25°C
pA
15
Full range
RL = 10 kΩ
1.9
6
Full range
All packages
mV
3.1
Full range
Common mode input voltage range
Common-mode
Maximum positive peak
output voltage swing
0.8
Full range
Input offset voltage long-term drift
(see Note 4)
IIO
MAX
6
25°C
TLE2161BM
Temperature coefficient of input offset
voltage
TYP
Full range
TLE2161AM
UNIT
V
– 2.7
80
65
0.5
1
Full range
0.5
25°C
0.75
Full range
0.5
25°C
0.5
Full range
0.25
16
V/mV
45
3
† Full range is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
electrical characteristics at specified free-air temperature, VCC ± = ± 5 V (unless otherwise noted
continued)
PARAMETER
TLE2161M
TLE2161AM
TLE2161BM
TA†
TEST CONDITIONS
MIN
UNIT
ri
Input resistance
25°C
TYP
1012
ci
Input capacitance
25°C
4
pF
zo
Open-loop output impedance
IO = 0
25°C
280
Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
kSVR
Supply voltage rejection ratio (∆VCC±/∆VIO)
Supply-voltage
VCC± = ± 5 V to ± 15 V,,
RS = 50 Ω
ICC
Supply current
∆ICC
RS = 50 Ω
25°C
65
Full range
60
25°C
75
Full range
65
25°C
VO = 0
0,
Supply-current change over operating
temperature range
Ω
82
dB
93
280
Full range
No load
MAX
dB
325
350
Full range
µA
µA
39
† Full range is – 55°C to 125°C.
operating characteristics, VCC ± = ± 5 V, TA = 25°C
PARAMETER
TLE2161M
TLE2161AM
TLE2161BM
TEST CONDITIONS
MIN
SR
Slew rate (see Figure 1)
AVD = 5,
RS = 20 Ω,
RL = 10 kΩ,
f = 10 Hz
59
RS = 20 Ω,
f = 1 kHz
43
Vn
Equivalent input noise voltage (see Figure 2)
Vn(PP)
In
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz
Equivalent input noise current
f = 1 kHz
THD
Total harmonic distortion
AVD = 5,
RL = 10 kΩ
Gain bandwidth product (see Figure 3)
Gain-bandwidth
ts
Settling time
BOM
Maximum output-swing bandwidth
φm
Phase margin (see Figure 3)
f = 100 kHz,
f = 100 kHz,
CL = 100 pF
TYP
10
1.1
1
VO(PP) = 2 V,
RL = 10 kΩ,
RL = 600 kΩ,
f = 10 kHz,
CL = 100 pF
5.8
CL = 100 pF
4.3
5
ε = 0.01%
10
AVD = 5,
POST OFFICE BOX 655303
RL = 10 kΩ
RL = 10 kΩ,
RL = 600 Ω,
420
CL = 100 pF
70°
CL = 100 pF
84°
• DALLAS, TEXAS 75265
MAX
V/µs
nV/√H
nV/√Hz
µV
fA/√Hz
0.025%
ε = 0.1%
AVD = 5,
AVD = 5,
UNIT
MHz
µs
kHz
13
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
electrical characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLE2161M
TLE2161AM
TLE2161BM
MIN
25°C
TLE2161M
VIO
Input offset voltage
IIB
VICR
Temperature coefficient of input offset voltage
RS = 50 Ω
VIC = 0,
Input offset current
1.5
0.3
µV/°C
25°C
0.04
µV/mo
25°C
2
4
25°C
Full range
– 11
to 13
13.2
12.5
25°C
12.5
Full range
Maximum negative peak output voltage swing
RL = 600 Ω
Large signal differential voltage amplification
Large-signal
25°C
Full range
VO = ± 10 V
V,
RL = 10 kΩ
VO = 0 to 8 V
V,
RL = 600 Ω
VO = 0 to – 8 V
V,
RL = 600 Ω
– 12
to 16
nA
V
V
13.7
V
13.2
12
25°C
– 13.2
Full range
– 12.5
25°C
– 12.5
Full range
nA
pA
40
– 11
to 13
Common mode input voltage range
Common-mode
pA
20
Full range
Maximum positive peak output voltage swing
0.5
1.7
25°C
Input bias current
mV
6
Full range
Full range
RL = 10 kΩ
AVD
0.5
3.6
25°C
RL = 600 Ω
VOM –
3
Full range
RL = 10 kΩ
VOM +
0.6
Full range
Input offset voltage long-term drift
(see Note 4)
IIO
MAX
6
25°C
TLE2161BM
αVIO
TYP
Full range
TLE2161AM
UNIT
– 13.7
V
– 13
– 12
25°C
30
Full range
20
25°C
25
Full range
7
25°C
3
Full range
1
230
100
V/mV
25
ri
Input resistance
25°C
1012
Ω
ci
Input capacitance
25°C
4
pF
zo
Open-loop output impedance
IO = 0
25°C
280
Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
kSVR
Supply voltage rejection ratio (∆VCC± /∆VIO)
Supply-voltage
VCC± = ± 5 V to ± 15 V,
RS = 50 Ω
ICC
Supply current
∆ICC
RS = 50 Ω
25°C
72
Full range
65
25°C
75
Full range
65
25°C
Supply-current change over operating
temperature range
VO = 0
0,
No load
90
93
290
Full range
Full range
dB
dB
350
375
46
µA
µA
† Full range is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
operating characteristics at specified free-air temperature, VCC ± = ±15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
RL = 10 kΩ
kΩ,
RS = 20 Ω,
f = 10 Hz
RS = 20 Ω,
f = 1 kHz
TYP
25°C
7
10
Full range
5
MAX
Slew rate (see Figure 1)
Vn
Equivalent
q
input noise voltage
g
(see Figure 2)
VN(PP)
Peak-to-peak equivalent input
noise voltage
f = 0.1 Hz to 10 Hz
25°C
1.1
µV
In
Equivalent input noise current
f = 1 Hz
25°C
1.1
fA/√Hz
THD
Total harmonic distortion
VO(PP) = 2 V,
RL = 10 kΩ
f = 100 kHz,
f = 100 kHz,
CL = 100 pF
MIN
UNIT
SR
Gain-bandwidth product
(see Figure 3)
AVD = 5
5,
TA†
TLE2161M
TLE2161AM
TLE2161BM
25°C
AVD = 5,
f = 10 kHz,
RL = 10 kΩ,
CL = 100 pF
RL = 600 Ω,
CL = 100 pF
ε = 0.1%
ts
Settling time
BOM
Maximum output-swing
bandwidth
AVD = 5,
φm
Phase margin (see Figure 3)
AVD = 5,
AVD = 5,
25°C
25°C
25°C
ε = 0.01%
RL = 10 kΩ
RL = 10 kΩ,
RL = 600 Ω,
25°C
CL = 100 pF
CL = 100 pF
25°C
V/µs
70
40
nV/√Hz
0.025%
6.4
5.6
5
10
116
MHz
µs
kHz
72°
78°
† Full range is – 55°C to 125°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
PARAMETER MEASUREMENT INFORMATION
8 kΩ
2 kΩ
VCC +
VCC +
–
–
VO
VI
2 kΩ
VO
+
+
VCC –
VCC –
CL
(see Note A)
RS
RS
NOTE A: CL includes fixture capacitance.
Figure 2. Noise-Voltage Test Circuit
Figure 1. Slew-Rate Test Circuit
10 kΩ
VCC +
100 Ω
VI
–
VO
+
VCC –
CL
(see Note A)
RL
NOTE A: CL includes fixture capacitance.
Figure 3. Gain-Bandwidth Product and Phase-Margin Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
Input bias and offset current
At the picoampere bias-current level typical of the TLE2161, TLE2161A, and TLE2161B, accurate
measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter,
but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small
currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters
with bias voltages applied but with no device in the socket. The device is then inserted into the socket, and a
second test that measures both the socket leakage and the device input bias current is performed. The two
measurements are then subtracted algebraically to determine the bias current of the device.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
4
IIB
Input bias current
vs Common-mode input voltage
vs Free-air temperature
5
6
IIO
VICR
Input offset current
vs Free-air temperature
6
Common-mode input voltage range limits
vs Free-air temperature
7
VOM
VOM
Maximum positive peak output voltage
vs Output current
8
Maximum negative peak output voltage
vs Output current
9
VOM
VO(PP)
Maximum peak output voltage
vs Supply voltage
10, 11, 12
Maximum peak-to-peak output voltage
vs Frequency
13, 14, 15
AVD
Large-signal differential voltage amplification
vs Frequency
vs Free-air temperature
16
17
IOS
Short-circuit output current
vs Elapsed time
18
Large-signal voltage amplification
vs Free-air temperature
19
zo
Output impedance
vs Frequency
20
CMRR
Common-mode rejection ratio
vs Frequency
21
Supply current
vs Supply voltage
vs Free-air temperature
22
23
Pulse response
Small signal
Large signal
24, 25
26, 27
Noise voltage (referred to input)
0.1 to 10 Hz
28
Equivalent input noise voltage
vs Frequency
29
Total harmonic distortion
vs Frequency
30, 31
Gain-bandwidth product
vs Supply voltage
vs Free-air temperature
32
33
Phase margin
vs Supply voltage
vs Free-air temperature
34
35
Phase shift
vs Frequency
16
ICC
Vn
THD
φm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
TYPICAL CHARACTERISTICS†
TLE2161
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
60
736 Amplifiers Tested From 3 Wafer Lots
VCC ± = ± 15 V
TA = 25°C
P Package
50
I IB – Input Bias Current – pA
Percentage of Amplifiers – %
15
10
5
VCC ± = ± 15 V
VID = 0
TA = 25°C
40
30
20
10
0
–4
–3
–2 –1
0
1
2
VIO – Input Offset Voltage – mV
3
0
4
– 20
Figure 4
COMMON-MODE
INPUT VOLTAGE RANGE LIMITS
vs
FREE-AIR TEMPERATURE
VIC – Common-Mode Input Voltage – V
I IB and I IO – Input Bias and Offset Currents – pA
VCC + +2
VCC ± = ± 15 V
VIC = 0
104
103
ÏÏ
IIB
102
ÏÏ
IIO
101
1
25
45
65
85
105
TA – Free-Air Temperature – °C
125
VCC + +1
Positive Limit
VCC +
VCC – +4
Negative Limit
VCC – +3
VCC – +2
– 75 – 50 – 25 0
25
50
75
TA – Free-Air Temperature – °C
100
Figure 7
Figure 6
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
18
20
Figure 5
INPUT BIAS CURRENT
AND INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
105
– 15 –10 – 5
0
5
10
15
VIC – Common-Mode Input Voltage – V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
TYPICAL CHARACTERISTICS
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
OUTPUT CURRENT
16
TA = 25°C
14
VCC ± = ± 15 V
12
10
8
6
4
VCC ± = ± 5 V
2
0
0
– 10
– 20
– 30
– 40
IO – Output Current – mA
– 50
VOM – – Maximum Negative Peak Output Voltage – V
VOM+ – Maximum Positive Peak Output Voltage – V
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
OUTPUT CURRENT
– 60
ÏÏÏÏ
ÏÏÏÏ
– 16
TA = 25°C
– 14
VCC ± = ± 15 V
– 12
– 10
–8
–6
–4
VCC ± = ± 5 V
–2
0
0
30
10
15
20
25
IO – Output Current – mA
5
Figure 8
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
20
RL = 10 kΩ
TA = 25°C
15
VOM +
10
5
0
–5
– 10
VOM –
– 15
VOM – Maximum Peak Output Voltage – V
20
VOM – Maximum Peak Output Voltage – V
40
Figure 9
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
– 20
35
VOM +
10
5
0
–5
– 10
VOM –
– 15
– 20
0
2
4
6
8
10
12
14
16
18 20
RL = 600 Ω
TA = 25°C
15
0
2
4
6
8
10
12
14
16
18
20
| VCC ± | – Supply Voltage – V
| VCC ± | – Supply Voltage – V
Figure 11
Figure 10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
VOM – Maximum Peak Output Voltage – V
6
RL = 100 Ω
TA = 25°C
4
VOM +
2
0
–2
–4
VOM –
–6
0
2
4
6
8
|VCC ± | – Supply Voltage – V
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
10
10
VCC ± = ± 5 V
RL = 10 kΩ
TA = 25°C
8
6
4
2
0
10 k
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
20
15
10
5
0
10 k
100 k
1M
f – Frequency – Hz
10 M
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FRQUENCY
25
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
40
VCC ± = ± 5 V
RL = 10 kΩ
TA = 25°C
35
30
25
20
15
10
5
0
10 k
Figure 14
20
10 M
Figure 13
Figure 12
30
100 k
1M
f – Frequency – Hz
100 k
1M
f – Frequency – Hz
Figure 15
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 M
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
TYPICAL CHARACTERISTICS†
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FRQUENCY
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
120
60°
400
100
80°
350
80
100°
AVD
60
120°
40
140°
20
160°
ÁÁ
ÁÁ
ÁÁ
VCC ± = ± 15 V
RL = 10 kΩ
CL = 100 pF
TA = 25°C
0
– 20
0.1
1
180°
200°
100 k 1 M 10 M
10 100 1 k 10 k
f – Frequency – Hz
AVD
AVD – Large-Signal Differential
Voltage Amplification – V/mV
Phase Shift
Phase Shift
AVD
AVD – Large-Signal Differential
Voltage Amplification – dB
RL = 10 kΩ
300
250
200
ÁÁ
ÁÁ
ÁÁ
VCC ± = ± 15 V
150
100
50
VCC ± = ± 5 V
0
– 75 – 50 – 25
0
25
50
75 100
TA – Free-Air Temperature – °C
Figure 17
Figure 16
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
LARGE-SIGNAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
80
80
VCC ± = ± 15 V
VO = 0
I OS – Short-Circuit Output Current – mA
I OS – Short-Circuit Output Current – mA
VID = – 100 mV
60
40
20
VCC ± = ± 15 V
TA = 25°C
VO = 0
0
– 20
– 40
VID = 100 mV
– 60
– 80
0
10
125
20
30
40
t – Elapsed Time – s
50
60
60
40
VID = –100 mV
20
0
– 20
VID = 100 mV
– 40
– 60
– 80
– 75 – 50 – 25
0
25
50
75 100
TA – Free-Air Temperature – °C
Figure 18
125
Figure 19
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
TYPICAL CHARACTERISTICS†
1000
VCC ± = ± 15 V
TA = 25°C
100
z o – Output Impedance – Ω
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR – Common-Mode Rejection Ratio – dB
OUTPUT IMPEDANCE
vs
FREQUENCY
AVD =100
10
AVD = 10
1
0.1
AVD = 1
0.01
0.001
10
100
1k
10 k
100 k
100
VCC ± = ± 5 V
TA = 25°C
80
60
40
20
0
10
1M
100
1k
100 k
1M
10 M
f – Frequency – Hz
f – Frequency – Hz
Figure 20
Figure 21
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
340
340
VO = 0
No Load
VO = 0
No Load
320
I CC – Supply Current – µ A
I CC – Supply Current – µ A
10 k
TA = 125°C
300
TA = 25°C
280
260
320
300
VCC ± = ± 15 V
280
VCC ± = ± 5 V
260
TA = – 55°C
240
0
2
4
6
8
10
12
14
16
18
20
240
–75
– 50
– 25
0
25
50
75
100
125
TA – Free-Air Temperature – °C
|VCC ±| – Supply Voltage – V
Figure 22
Figure 23
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
TYPICAL CHARACTERISTICS
SMALL-SIGNAL
PULSE RESPONSE
SMALL-SIGNAL
PULSE RESPONSE
100
VO – Output Voltage – mV
VO – Output Voltage – mV
100
50
0
VCC± = ± 5 V
AVD = 5
RL = 10 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
– 50
0.5
1
0
VCC ± = ± 15 V
AVD = 5
RL = 10 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
– 50
– 100
0
50
1.5
2
2.5
3
– 100
0
0.5
t – Time – µs
Figure 24
15
3
10
VO – Output Voltage – V
VO – Output Voltage – V
2
2.5
3
LARGE-SIGNAL
PULSE RESPONSE
4
2
1
VCC ± = ± 5 V
AVD = 5
RL = 10 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
–1
1.5
Figure 25
LARGE-SIGNAL
PULSE RESPONSE
0
1
t – Time – µs
5
0
–5
– 10
VCC± = ±15 V
AVD = 5
RL = 10 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
– 15
–2
0
5
t – Time – µs
10
0
15
Figure 26
10
20
t – Time – µs
30
40
Figure 27
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
TYPICAL CHARACTERISTICS
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
Vn – Equivalent Input Noise Voltage – nV/ Hz
1
Vn – Noise Voltage – uV
µ
VCC ± = ± 15 V
f = 0.1 to 10 Hz
TA = 25°C
0.5
0
– 0.5
–1
0
1
2
3
4
5
6
7
8
9
100
80
60
40
20
0
10
VCC ± = ± 5 V
RS = 20 Ω
TA = 25°C
See Figure 2
1
10
t – Time – s
100
Figure 29
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
ÏÏÏÏÏ
0.15
0.1
Source Signal
0.05
0
10
100
1k
t – Frequency – Hz
ÏÏÏÏÏÏ
0.6
VCC ± = ± 5 V
AVD = 2
VO(PP) = 2 V
TA = 25°C
THD – Total Harmonic Distortion – %
THD – Total Harmonic Distortion – %
0.2
10 k
100 k
0.5
VCC ± = ± 5 V
AVD = 10
VO(PP) = 2 V
TA = 25°C
0.4
0.3
0.2
Source Signal
0.1
0
10
100
1k
10 k
f – Frequency – Hz
Figure 31
Figure 30
24
10 k
f – Frequency – Hz
Figure 28
0.25
1k
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100 k
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
TYPICAL CHARACTERISTICS
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
7
f = 100 kHz
RL = 10 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
6.6
Gain-Bandwidth Product – MHz
Gain-Bandwidth Product – MHz
7
6.2
5.8
5.4
5
0
4
8
12
6.6
VCC ± = ± 15 V
6.2
5.8
VCC ± = ± 5 V
5.4
5
– 75
20
16
f = 100 kHz
RL = 10 kΩ
CL = 100 pF
See Figure 3
|VCC ± | – Supply Voltage – V
– 50 – 25
0
25
50
75 100
TA – Free-Air Temperature – °C
Figure 32
Figure 33
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
PHASE MARGIN
vs
SUPPLY VOLTAGE
74°
AVD = 5
RL = 10 kΩ
CL = 100 pF
See Figure 3
76°
φ m – Phase Margin
72°
φ m – Phase Margin
78°
AVD = 5
RL = 10 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
73°
71°
ÁÁ
ÁÁ
74°
72°
ÁÁ
ÁÁ
70°
69°
VCC ± = ± 5 V
70°
68°
68°
67°
0
2
125
4
6
8
10 12 14 16
|VCC ± | – Supply Voltage – V
18
20
66°
– 75
VCC ± = ± 15 V
– 50
– 25
0
25
50
75
TA – Free-Air Temperature – °C
Figure 34
100
125
Figure 35
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts , the model generation software used
with Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit in Figure 36 and Figure 37 were
generated using the TLE2161 typical electrical and operating characteristics at 25°C. Using this information,
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
•
•
•
•
•
•
•
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Gain-bandwidth product
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
99
+
9
3
VCC+
rss
+
vb
iss
rp
IN –
2
dp
IN +
1
j1
vc
j2
11
fb
dc
+ dlp
hlim
VCC –
vln
+
+
gcm
ga
vlim
–
ro1
rd2
54
4
ve
–
7
8
+
91
+
vlp
–
C2
6
C1
rd1
92
90
–
r2
–
53
12
–
ro2
–
+
10
dln
egnd
de
5
–
OUT
Figure 36. Boyle Macromodel
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, ”Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE
Journal of Solid-State Circuits, SC-9, 353 (1974).
PSpice and Parts are trademark of MicroSim Corporation.
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
APPLICATION INFORMATION
macromodel information (continued)
.subckt TLE2161 1 2 3 4 5
c1
11 12 125.4E–14
c2
6
7 5.000E–12
dc
5 53 dx
de
54 5d x
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
egnd 99
0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7 99 poly(5) vb vc ve vlp vln 0 4.085E6 –4E6 4E6 4E6 –4E6
ga
6
0 11 12 201.1E–6
gcm
0
6 10 99 3.576E–9
iss
3 10 dc 45.00E–6
hlim 90
0 vlim 1K
j1
11
2 10 jx
j2
12
1 10 jx
r2
6
9 100.0E3
rd1
4 11 4.973E3
rd2
4 12 4.973E3
ro1
8
5 280
ro2
7 99 280
rp
3
4 113.2E3
rss
10 99 4.444E6
vb
9
0 dc 0
vc
3 53 dc 2
ve
54
4 dc 2
vlim
7
8 dc 0
vlp
91
0 dc 50
vln
0 92 dc 50
.model dx
D (Is=800.0E–18)
.model jx PJF (Is=1.000E–12 Beta=480E–6 Vto=–1)
.ends
Figure 37. Macromodel Subcircuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
TLE2161, TLE2161A, TLE2161B
EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE
µPOWER OPERATIONAL AMPLIFIERS
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996
APPLICATION INFORMATION
input characteristics
The TLE2161, TLE2161A and TLE2161B are specified with a minimum and a maximum input voltage that if
exceeded at either input could cause the device to malfunction.
Because of the extremely high input impedance and resulting low bias-current requirements, the TLE2161,
TLE2161A, and TLE2161B are well suited for low-level signal processing; however, leakage currents on printed
circuit boards and sockets can easily exceed bias-current requirements and cause degradation in system
performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards should
be driven from a low-impedance source at the same voltage level as the common-mode input.
VI
+
VI
VO
+
VO
–
–
R2
R1
R3
R4
Where R3
R4
+ R2
R1
Figure 38. Use of Guard Rings
input offset voltage nulling
The TLE2161 series offers external null pins that can further reduce the input offset voltage. The circuit in
Figure 39 can be connected as shown if the feature is desired. When external nulling is not needed, the null
pins may be left disconnected.
IN –
–
IN +
+
N1
N2
OUT
100 kΩ
5 kΩ
VCC –
Figure 39. Input Offset Voltage Nulling
28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated