TI TLV341AIDCKR

 SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
D 1.8-V and 5-V Performance
D Low Offset (A Grade)
D
D
D
D
D
D
D
D
D
D Input Referred Voltage Noise (at 10 kHz)
− 1.25 mV Max (255C)
− 1.7 mV Max (−405C to 1255C)
Rail-to-Rail Output Swing
Wide Common-Mode Input Voltage
Range . . . −0.2 V to (V+ − 0.5 V)
Input Bias Current . . . 1 pA (Typ)
Input Offset Voltage . . . 0.3 mV (Typ)
Low Supply Current . . . 70 µA/Channel
Low Shutdown Current . . . 10 pA (Typ)
Gain Bandwidth . . . 2.3 MHz (Typ)
Slew Rate . . . 0.9 V/µs (Typ)
Turn-On Time From Shutdown
. . . 5 µs (Typ)
TLV341 . . . DBV (SOT-23) OR DCK (SC-70) PACKAGE
(TOP VIEW)
IN+
GND
IN−
1
6
2
5
3
4
D
D
. . . 20 nV//Hz
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
Applications
− Cordless/Cellular Phones
− Consumer Electronics (Laptops, PDAs)
− Audio Pre-Amp for Voice
− Portable/Battery-Powered Electronic
Equipment
− Supply Current Monitoring
− Battery Monitoring
− Buffers
− Filters
− Drivers
TLV342 . . . D (SOIC) OR DGK (MSOP) PACKAGE
(TOP VIEW)
1OUT
1IN−
1IN+
GND
V+
SHDN
OUT
1
8
2
7
3
6
4
5
V+
2OUT
2IN−
2IN+
TLV344 . . . D (SOIC) OR PW (TSSOP) PACKAGE
(TOP VIEW)
TLV341 . . . DRL (SOT-563) PACKAGE
(TOP VIEW)
GND
IN+
IN−
1
6
2
5
3
4
1OUT
1IN−
1IN+
V+
2IN+
2IN−
2OUT
V+
SHDN
OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN−
4IN+
GND
3IN+
3IN−
3OUT
description/ordering information
The TLV341, TLV342, and TLV344 are single, dual, and quad CMOS operational amplifiers, respectively, with
low-voltage, low-power, and rail-to-rail output swing capabilities. The PMOS input stage offers an ultra-low input
bias current of 1 pA (typ) and an offset voltage of 0.3 mV (typ). For applications requiring excellent dc precision,
the A grade (TLV34xA) has a low offset voltage of 1.25 mV (max) at 25°C.
These single-supply amplifiers are designed specifically for ultra-low-voltage (1.5-V to 5-V) operation, with a
common-mode input voltage range that typically extends from −0.2 V to 0.5 V from the positive supply rail.
Additional features include 20-nV/√Hz voltage noise at 10 kHz, 2.3-MHz unity-gain bandwidth, and 0.9-V/µs
slew rate.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2005, Texas Instruments Incorporated
!" # $%&" !# '%()$!" *!"&+
*%$"# $ " #'&$$!"# '& ",& "&# &-!# #"%&"#
#"!*!* .!!"/+ *%$" '$&##0 *&# " &$&##!)/ $)%*&
"&#"0 !)) '!!&"&#+
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
description/ordering information (continued)
The TLV341 (single) also offers a shutdown (SHDN) pin that can be used to disable the device. In shutdown
mode, the supply current is reduced to 45 pA (typ). Offered in both the SOT-23 and smaller SC-70 packages,
the TLV341 is suitable for the most space-constrained applications. The dual TLV342 is offered in the standard
SOIC and MSOP packages.
An extended industrial temperature range from −40°C to 125°C makes the TLV34x suitable in a wide variety
of commercial and industrial applications.
ORDERING INFORMATION
TA
MAX VIO
(255C)
SOT-23 – DBV
Single
SC-70 – DCK
SOT-563 – DRL
Standard
grade: 4 mV
SOIC – D
Dual
MSOP/VSSOP – DGK
SOIC – D
Quad
TSSOP – PW
−40°C
−40
C to 125
125°C
C
SOT-23 – DBV
Single
SC-70 – DCK
SOIC – D
A grade:
1.25 mV
ORDERABLE
PART NUMBER
PACKAGE†
Dual
MSOP/VSSOP – DGK
SOIC – D
Quad
TSSOP – PW
Reel of 3000
TLV341IDBVR
Reel of 250
TLV341IDBVT
Reel of 3000
TLV341IDCKR
Reel of 250
TLV341IDCKT
Reel of 4000
TLV341IDRLR
Tube of 75
TLV342ID
Reel of 2500
TLV342IDR
Reel of 2500
TLV342IDGKR
Reel of 250
TLV342IDGKT
Tube of 50
TLV344ID
Reel of 2500
TLV344IDR
Tube of 90
TLV344IPWR
Reel of 2000
TLV344IPWR
Reel of 3000
TLV341AIDBVR
Reel of 250
TLV341AIDBVT
Reel of 3000
TLV341AIDCKR
Reel of 250
TLV341AIDCKT
Tube of 75
TLV342AID
Reel of 2500
TLV342AIDR
Reel of 2500
TLV342AIDGKR
Reel of 250
TLV342AIDGKT
Tube of 50
TLV344AID
Reel of 2500
TLV344AIDR
Tube of 90
TLV344AIPWR
Reel of 2000
TLV344AIPWR
TOP-SIDE
MARKING‡
YC9_
Y4_
Y4_
TY342
PREVIEW
PREVIEW
PREVIEW
YCG_
Y5_
TY342A
PREVIEW
PREVIEW
PREVIEW
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
‡ DBV/DCK/DRL: The actual top-side marking has one additional character that designates the assembly/test site.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
symbol (each amplifier)
V+
V+
−
VO
−
VI
+
+
C = 200 pF
Sample
Clock
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, V+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5.5 V
Input voltage range, VI (either input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 5.5 V
Package thermal impedance, θJA (see Notes 3 and 4): D package (8 pin) . . . . . . . . . . . . . . . . . . . . . . 97°C/W
D package (14 pin) . . . . . . . . . . . . . . . . . . . . . 86°C/W
DBV package . . . . . . . . . . . . . . . . . . . . . . . . 165°C/W
DCK package . . . . . . . . . . . . . . . . . . . . . . . . 259°C/W
DGK package . . . . . . . . . . . . . . . . . . . . . . . . 172°C/W
DRL package . . . . . . . . . . . . . . . . . . . . . . . . 142°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W
Operating virtual junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values (except differential voltages and V+ specified for the measurement of IOS) are with respect to the network GND.
2. Differential voltages are at IN+ with respect to IN−.
3. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Selecting the maximum of 150°C can affect reliability.
4. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
V+
TA
MIN
MAX
Supply voltage (single-supply operation)
1.5
5.5
UNIT
V
Operating free-air temperature
−40
125
°C
ESD protection
TEST CONDITIONS
Human-Body Model
Machine Model
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TYP
UNIT
2000
V
200
V
3
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
electrical characteristics, V+ = 1.8 V, GND = 0, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
25°C
Standard grade
VIO
IO
0.3
0.3
1.25
0°C to 125°C
0.3
1.5
−40°C to 125°C
0.3
1.7
Full range
1.9
Average temperature coefficient
of input offset voltage
IIO
1
375
3000
6.6
25°C
60
CMRR
Common-mode rejection ratio
0 ≤ VICR ≤ 1.2 V
Full range
50
75
Supply-voltage rejection ratio
1.8 V ≤ V+ ≤ 5 V
25°C
kSVR
Full range
65
VICR
Common-mode
input voltage range
CMRR ≥ 60 dB
25°C
0
25°C
70
Full range
60
25°C
65
Full range
55
AV
Large-signal voltage gain
(see Note 5)
RL = 10 kΩ to 1.35 V
RL = 2 kΩ to 1.35 V
25°C
Low level
RL = 2 kΩ to 0.9 V
Output swing
(delta from supply rails)
RL = 10 kΩ to 0.9 V
95
dB
1.2
V
110
dB
100
50
75
25
Full range
50
75
14
Full range
20
mV
25
25°C
High level
fA
dB
22
25°C
Low level
pA
85
Full range
25°C
High level
VO
100
−40°C to 85°C
25°C
mV
mV/°C
−40°C to 125°C
Input offset current
UNIT
4
25°C
Input offset voltage
Input bias current
MAX
4.5
25°C
IIB
TYP†
Full range
A grade
aV
MIN
7
Full range
20
25
25°C
70
150
A
mA
ICC
Supply current (per channel)
IOS
Output short-circuit current
SR
Slew rate
RL = 10 kΩ, Note 6
25°C
0.9
V/ms
GBW
Unity-gain bandwidth
RL = 100 kΩ, CL = 200 pF
25°C
2.2
MHz
Fm
Gm
Phase margin
RL = 100 kΩ, CL = 20 pF
25°C
55
°
Gain margin
RL = 100 kΩ, CL = 20 pF
25°C
15
dB
Vn
In
Equivalent input noise voltage
f = 1 kHz
25°C
33
nV/√Hz
Equivalent input noise current
f = 1 kHz
25°C
0.001
pA/√Hz
THD
Total harmonic distortion
f = 1 kHz, AV = 1, RL = 600 Ω,
VI = 1 VPP
25°C
0.015
%
Full range
Sourcing
25°C
Sinking
200
6
12
10
20
mA
† Typical values represent the most likely parametric norm.
NOTES: 5. GND + 0.2 V ≤ VO ≤ VCC+ − 0.2 V
6. Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
shutdown characteristics, V+ = 1.8 V, GND = 0, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted)
PARAMETER
TEST CONDITIONS
ICC(SHDN)
Supply current in shutdown mode
t(on)
Amplifier turn-on time
VSD
Shutdown pin voltage range
VSD = 0 V
TA
25°C
TYP
0.01
Full range
25°C
ON mode
MAX
UNIT
1
mA
1.5
mA
ms
5
1.5 to 1.8
Shutdown mode
POST OFFICE BOX 655303
MIN
• DALLAS, TEXAS 75265
25°C
0 to 0.5
V
5
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
electrical characteristics, V+ = 5 V, GND = 0, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Standard grade
VIO
IO
MIN
0.3
Input offset voltage
Average temperature coefficient
of input offset voltage
IIO
Input bias current
Input offset current
0.3
1.25
0°C to 125°C
0.3
1.5
−40°C to 125°C
0.3
1.7
Full range
1.9
1
375
3000
6.6
75
0 ≤ VICR ≤ 4.4 V
Full range
70
75
Supply-voltage rejection ratio
1.8 V ≤ V+ ≤ 5 V
25°C
kSVR
Full range
65
VICR
Common-mode
input voltage range
CMRR ≥ 70 dB
25°C
0
−0.2 to 4.5
25°C
80
110
Full range
70
25°C
75
Full range
60
RL = 2 kΩ to 2.5 V
25°C
Low level
RL = 2 kΩ to 2.5 V
VO
RL = 10 kΩ to 2.5 V
dB
4.4
V
dB
105
60
85
25
Full range
60
85
18
Full range
30
mV
40
25°C
High level
95
40
25°C
Low level
fA
dB
Full range
25°C
High level
Output swing
(delta from supply voltage)
pA
90
Common-mode rejection ratio
Large-signal voltage gain
(see Note 5)
200
−40°C to 85°C
25°C
mV
mV/°C
−40°C to 125°C
CMRR
AV
UNIT
4
25°C
25°C
RL = 10 kΩ to 2.5 V
MAX
4.5
25°C
IIB
TYP†
Full range
A grade
aV
TA
25°C
7
Full range
15
20
25°C
75
150
A
mA
ICC
Supply current (per channel)
IOS
Output short-circuit current
SR
Slew rate
RL = 10 kΩ, Note 6
25°C
1
V/ms
GBW
Unity-gain bandwidth
RL = 10 kΩ, CL = 200 pF
25°C
2.3
MHz
Fm
Gm
Phase margin
RL = 100 kΩ, CL = 20 pF
25°C
55
°
Gain margin
RL = 100 kΩ, CL = 20 pF
25°C
15
dB
Vn
In
Equivalent input noise voltage
f = 1 kHz
25°C
33
nV/√Hz
Equivalent input noise current
f = 1 kHz
25°C
0.001
pA/√Hz
THD
Total harmonic distortion
f = 1 kHz, AV = 1, RL = 600 Ω,
VI = 1 VPP
25°C
0.012
%
Full range
Sourcing
25°C
Sinking
200
60
113
80
115
mA
† Typical values represent the most likely parametric norm.
NOTES: 5. GND + 0.2 V ≤ VO ≤ VCC+ − 0.2 V
6. Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
shutdown characteristics, V+ = 5 V, GND = 0, VIC = VO = V+/2, RL > 1 MΩ (unless otherwise noted)
PARAMETER
TEST CONDITIONS
ICC(SHDN)
Supply current in shutdown mode
t(on)
Amplifier turn-on time
VSD
Shutdown pin voltage range
VSD = 0 V
TA
25°C
TYP
0.01
Full range
25°C
ON mode
Shutdown mode
POST OFFICE BOX 655303
MIN
• DALLAS, TEXAS 75265
25°C
MAX
1
1.5
UNIT
A
mA
ms
5
3.1 to 5
4.5 to 5
0 to 1
0 to 0.8
V
7
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT
vs
TEMPERATURE
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
130
1,000
V+ = 5 V
110
IIB − Input Bias Current − pA
ICC − Supply Current − µA
120
125°C
100
90
85°C
80
25°C
70
60
−40°C
50
100
10
1
40
30
1.5
2
2.5
3
3.5
4
4.5
0.1
−40 −20
5
VCC − Supply Voltage − V
0
20
40
60
80 100 120
TA − Free-Air Temperature − °C
Figure 2
Figure 1
OUTPUT VOLTAGE SWING
vs
SUPPLY VOLTAGE
35
7
RL = 2 kΩ
VO − Output Swing From Supply Voltage − mV
VO − Output Swing From Supply Voltage − mV
OUTPUT VOLTAGE SWING
vs
SUPPLY VOLTAGE
30
Negative Swing
25
20
Positive Swing
15
10
1.5
2
2.5
3
3.5
4
4.5
5
RL = 10 kΩ
6.5
6
Negative Swing
5.5
5
4.5
4
Positive Swing
3.5
3
1.5
2
VCC − Supply Voltage − V
2.5
3
Figure 4
POST OFFICE BOX 655303
3.5
4
VCC − Supply Voltage − V
Figure 3
8
140
• DALLAS, TEXAS 75265
4.5
5
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
SOURCE CURRENT
vs
OUTPUT VOLTAGE
SOURCE CURRENT
vs
OUTPUT VOLTAGE
1000
1000
V+ = 2.7 V
V+ = 5 V
−40°C
100
−40°C
IS − Source Current − mA
IS − Source Current − mA
100
25°C
10
85°C
1
125°C
10
25°C
85°C
1
125°C
0.1
0.1
0.01
0.001
0.01
0.1
1
0.01
0.001
10
VO − Output Voltage Referenced to V+ (V)
0.01
Figure 5
1000
V+ = 5 V
100
100
−40°C
−40°C
IS − Sink Current − mA
IS − Sink Current − mA
10
SINK CURRENT
vs
OUTPUT VOLTAGE
V+ = 2.7 V
10
25°C
85°C
1
125°C
0.1
0.01
0.001
1
Figure 6
SINK CURRENT
vs
OUTPUT VOLTAGE
1000
0.1
VO − Output Voltage Referenced to V+ (V)
10
25°C
85°C
1
125°C
0.1
0.01
0.1
1
10
VO − Output Voltage Referenced to V− (V)
0.01
0.001
0.01
0.1
1
10
VO − Output Voltage Referenced to V− (V)
Figure 7
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
OFFSET VOLTAGE
vs
COMMON-MODE VOLTAGE
OFFSET VOLTAGE
vs
COMMON-MODE VOLTAGE
1
1
V+ = 5 V
0.5
0.5
0
0
VIO − Offset Voltage − mV
VIO − Offset Voltage − mV
V+ = 2.7 V
−0.5
−1
125°C
−1.5
85°C
−2
25°C
−0.5
−1
125°C
85°C
−1.5
25°C
−2
−40°C
−40°C
−2.5
−2.5
−3
−0.2
0.8
1.8
−3
−0.2
2.8
VIC − Common-Mode Voltage − V
0.8
1.8
2.8
3.8
Figure 9
INPUT VOLTAGE
vs
OUTPUT VOLTAGE
300
300
V+ /GND = ±1.35 V
V+ /GND = ±2.5 V
VI − Input Voltage − µV
VI − Input Voltage − µV
200
RL = 2 kΩ
100
0
RL = 10 kΩ
200
100
0
−100
−100
−200
−200
−2
−1
0
1
VO − Output Voltage − V
2
3
RL = 2 kΩ
−300
−1.5
RL = 10 kΩ
−1
−0.5
0
Figure 12
POST OFFICE BOX 655303
0.5
VO − Output Voltage − V
Figure 11
10
5.8
Figure 10
INPUT VOLTAGE
vs
OUTPUT VOLTAGE
−300
−3
4.8
VIC − Common-Mode Voltage − V
• DALLAS, TEXAS 75265
1
1.5
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
SLEW RATE
vs
TEMPERATURE
SLEW RATE
vs
SUPPLY VOLTAGE
2.5
1.9
2.3
Falling Edge
1.7
SR − Slew Rate − V/µs
2.1
SR − Slew Rate − V/µs
1.5
1.3
Rising Edge
1.1
0.9
0.5
1.5
2
1.9
Falling Edge
1.7
1.5
1.3
Rising Edge
1.1
0.9
RL = 10 kΩ
AV = 1
VI = 0.8 VPP for V+ < 2.7 V
VI = 2 VPP for V+ > 2.7 V
0.7
RL = 10 kΩ
AV = 1
VI = 2 VPP
V+ = 2.7 V
0.7
2.5
3
3.5
4
VCC − Supply Voltage − V
4.5
0.5
−40 −20
5
0
20
40
60
80 100 120 140
VCC − Supply Voltage − V
Figure 14
Figure 13
CMRR
vs
FREQUENCY
SLEW RATE
vs
TEMPERATURE
100
2.5
2.3
1.9
90
70
Falling Edge
1.7
1.5
1.3
Rising Edge
60
50
30
0.9
20
0.7
10
0
20
40
60
80 100 120 140
VCC − Supply Voltage − V
2.7 V
40
1.1
0.5
−40 −20
5V
80
Gain − dB
SR − Slew Rate − V/µs
2.1
RL = 10 kΩ
AV = 1
VI = 2 VPP
V+ = 5 V
VI = V+ /2
RL = 5 kΩ
0
100
1K
Figure 15
10K
100K
f − Frequency − Hz
1M
Figure 16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
INPUT VOLTAGE NOISE
vs
FREQUENCY
PSRR
vs
FREQUENCY
100
220
+PSRR (2.7 V)
200
90
VI − Input Voltage Noise − nV/ Hz
−PSRR (2.7 V)
80
Gain − dB
70
60
−PSRR (5 V)
+PSRR (5 V)
50
40
30
20
10
0
100
180
160
140
120
100
80
5V
2.7 V
60
40
20
RL = 5 kΩ
0
1K
10K
100K
f − Frequency − Hz
1M
10M
10
100
Figure 17
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT VOLTAGE
THD+N − Total Harmonic Distortion + Noise − %
THD+N − Total Harmonic Distortion + Noise − %
10
RL = 600 Ω
VO = 1 VPP for V+ = 2.7 V
VO = 2.5 VPP for V+ = 5 V
1
5V
AV = 10
2.7 V
AV = 10
0.1
2.7 V
AV = 1
0.01
5V
AV = 1
0.001
0.0001
10
100
1K
10K
f − Frequency − Hz
100K
f = 10 kHz
RL = 600 Ω
5V
AV = 10
1
2.7 V
AV = 10
0.1
5V
AV = 1
0.01
0.001
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2.7 V
AV = 1
0.01
0.1
1
VO − Output Voltage − VPP
Figure 20
Figure 19
12
10K
Figure 18
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
10
1K
f − Frequency − Hz
10
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
FREQUENCY RESPONSE
vs
TEMPERATURE
160
140
V+ = 5 V
RL = 2 kΩ
Phase
120
140
100
Gain − dB
80
−40°C
Gain
60
80
−40°C
25°C
60
40
125°C
20
−20
40
25°C
125°C
0
Phase Margin − Deg
120
100
20
0
1
10
100
1K
10K
f − Frequency − kHz
Figure 21
FREQUENCY RESPONSE
vs
RL
140
120
140
Phase
120
100
80
RL = 600 Ω
60
RL = 2 kΩ
Gain
RL = 100 kΩ
80
60
40
RL = 100 kΩ
Phase Margin − Deg
100
Gain − dB
160
V+ = 2.7 V
Closed-Loop
Gain = 60 dB
40
20
RL = 600 Ω
RL = 2 kΩ
0
20
0
−20
1
10
100
1K
10K
f − Frequency − kHz
Figure 22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
FREQUENCY RESPONSE
vs
RL
140
120
160
V+ = 5 V
Closed-Loop
Gain = 60 dB
Phase
140
Gain − dB
100
80
RL = 600 Ω
Gain
60
80
RL = 2 kΩ
RL = 100 kΩ
60
40
RL = 100 kΩ
20
40
RL = 2 kΩ
RL = 600 Ω
0
−20
Phase Margin − Deg
120
100
20
0
1
10
100
f − Frequency − kHz
1K
10K
Figure 23
FREQUENCY RESPONSE
vs
CL
140
120
100
Phase
V+ = 5 V
RL = 600 Ω
Closed-Loop Gain = 60 dB
CL = 0 pF
100
80
Gain − dB
80
40
CL = 500 pF
Gain
CL = 1000 pF
60
20
0
40
CL = 0 pF
20
−40
0
CL = 500 pF
−20
CL = 1000 pF
−40
1
10
100
f − Frequency − kHz
1K
Figure 24
14
−20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
−60
CL = 100 pF
10K
−80
Phase Margin − Deg
60
CL = 100 pF
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
LARGE-SIGNAL NONINVERTING RESPONSE
SMALL-SIGNAL NONINVERTING RESPONSE
Input
Input
TA = −40°C
RL = 2 kΩ
V+/GND = ±2.5 V
−0.05
−0.1
0.05
−0.15
0
−0.2
−0.05
5
1
4
0
−1
3
2
TA = −40°C
RL = 2 kΩ
V+/GND = ±2.5 V
1
−3
0
−4
−5
−1
Output
−0.1
4 µs/div"
Output
−2
−0.25
4 µs/div"
LARGE-SIGNAL NONINVERTING RESPONSE
SMALL-SIGNAL NONINVERTING RESPONSE
0.1
Input
TA = 25°C
RL = 2 kΩ
V+/GND = ±2.5 V
−0.05
−0.1
0.05
−0.15
0
−0.2
−0.05
VO − Output Voltage − V
0
VI − Input Voltage − V
VO − Output Voltage − V
5
1
4
0
0.05
0.15
3
2
−1
TA = 25°C
RL = 2 kΩ
V+/GND = ±2.5 V
−2
1
−3
0
−4
−1
−5
Output
Output
−0.1
2
6
Input
0.2
0.1
−6
Figure 26
Figure 25
0.25
−2
VI − Input Voltage − V
0.1
VO − Output Voltage − V
VO − Output Voltage − V
0
0.15
VI − Input Voltage − V
0.05
0.2
VI − Input Voltage − V
0.25
2
6
0.1
4 µs/div"
−0.25
−2
Figure 27
4 µs/div"
−6
Figure 28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
LARGE-SIGNAL NONINVERTING RESPONSE
SMALL-SIGNAL NONINVERTING RESPONSE
Input
TA = 125°C
RL = 2 kΩ
V+/GND = ±2.5 V
−0.05
−0.1
0.05
−0.15
0
−0.2
−0.05
VO − Output Voltage − V
5
1
4
0
−1
3
2
TA = 125°C
RL = 2 kΩ
V+/GND = ±2.5 V
1
−3
0
−4
−5
−1
Output
Output
−0.1
−0.25
4 µs/div"
−2
4 µs/div"
SMALL-SIGNAL INVERTING RESPONSE
LARGE-SIGNAL INVERTING RESPONSE
0.1
6
0.05
5
1
4
0
2
Input
0.1
0.05
TA = −40°C
RL = 2 kΩ
V+/GND = ±2.5 V
−0.05
−0.1
−0.15
0
−0.2
−0.05
VO − Output Voltage − V
VO − Output Voltage − V
0
0.15
VI − Input Voltage − V
Input
0.2
3
2
−1
TA = −40°C
RL = 2 kΩ
V+/GND = ±2.5 V
4 µs/div"
−0.25
−3
0
−4
−1
−5
Output
−2
4 µs/div"
Figure 32
Figure 31
16
−2
1
Output
−0.1
−6
Figure 30
Figure 29
0.25
−2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
−6
VI − Input Voltage − V
VO − Output Voltage − V
0
0.15
VI − Input Voltage − V
0.05
VI − Input Voltage − V
Input
0.2
0.1
2
6
0.1
0.25
SLVS568B − JANUARY 2005 − REVISED DECEMBER 2005
TYPICAL CHARACTERISTICS
LARGE-SIGNAL INVERTING RESPONSE
SMALL-SIGNAL INVERTING RESPONSE
0.25
2
0.1
6
0.05
5
1
4
0
TA = 25°C
RL = 2 kΩ
V+/GND = ±2.5 V
−0.05
−0.1
0.05
−0.15
0
−0.2
−0.05
VO − Output Voltage − V
−1
3
2
TA = 25°C
RL = 2 kΩ
V+/GND = ±2.5 V
1
−3
0
−4
−5
−1
Output
−0.1
Output
−0.25
4 µs/div"
−2
4 µs/div"
LARGE-SIGNAL INVERTING RESPONSE
SMALL-SIGNAL INVERTING RESPONSE
Input
Input
TA = 125°C
RL = 2 kΩ
V+/GND = ±2.5 V
−0.05
−0.1
0.05
−0.15
0
−0.2
−0.05
VO − Output Voltage − V
VO − Output Voltage − V
0
VI − Input Voltage − V
0.05
0.15
5
1
4
0
−1
3
2
TA = 125°C
RL = 2 kΩ
V+/GND = ±2.5 V
−2
1
−3
0
−4
−5
−1
Output
Output
−0.1
2
6
0.1
0.2
0.1
−6
Figure 34
Figure 33
0.25
−2
VI − Input Voltage − V
0.1
VI − Input Voltage − V
VO − Output Voltage − V
0
0.15
VI − Input Voltage − V
Input
Input
0.2
−0.25
−6
−2
4 µs/div"
4 µs/div"
Figure 36
Figure 35
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
PACKAGE OPTION ADDENDUM
www.ti.com
6-Feb-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV341AIDBVR
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341AIDBVRE4
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341AIDBVT
ACTIVE
SOT-23
DBV
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341AIDBVTE4
ACTIVE
SOT-23
DBV
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341AIDCKR
ACTIVE
SC70
DCK
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341AIDCKRE4
ACTIVE
SC70
DCK
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341AIDCKT
ACTIVE
SC70
DCK
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341AIDCKTE4
ACTIVE
SC70
DCK
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDBVR
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDBVRE4
ACTIVE
SOT-23
DBV
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDBVT
ACTIVE
SOT-23
DBV
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDBVTE4
ACTIVE
SOT-23
DBV
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDCKR
ACTIVE
SC70
DCK
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDCKRE4
ACTIVE
SC70
DCK
6
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDCKT
ACTIVE
SC70
DCK
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDCKTE4
ACTIVE
SC70
DCK
6
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDRLR
ACTIVE
SOP
DRL
6
4000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV341IDRLRG4
ACTIVE
SOP
DRL
6
4000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV342AID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV342AIDE4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV342AIDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV342AIDRE4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV342ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV342IDE4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV342IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
6-Feb-2006
Orderable Device
Status (1)
Package
Type
Package
Drawing
TLV342IDRE4
ACTIVE
SOIC
D
Pins Package Eco Plan (2)
Qty
8
2500 Green (RoHS &
no Sb/Br)
Lead/Ball Finish
CU NIPDAU
MSL Peak Temp (3)
Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated