TI TMS320C6413ZTS500

TMS320C6413, TMS320C6410
Fixed-Point Digital Signal
Processors
Data Manual
Literature Number: SPRS247E
April 2004 − Revised May 2005
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
This page intentionally left blank
Revision History
Revision History
This data manual revision history highlights the technical changes made to the SPRS247D device-specific data
manual to make it an SPRS247E revision.
Scope: Applicable updates to the C64x device family, specifically relating to the TMS320C6413 and
TMS320C6410 devices, have been incorporated.
PAGE(s)
NO.
ADDS/CHANGES/DELETES
63
Terminal Functions table:
Host-port data [7:0] pins (I/O/Z) description:
Changed sentence from “Host-Port bus width user-configurable at device reset via a 10-kW resistor pullup/pulldown resistor
on the HD5 pin (I):“ to “Host-Port bus width user-configurable at device reset via a 1-kW pullup/pulldown resistor on the HD5
pin (I):“
78
I2C section:
Updated/added “For more detailed information...” paragraph
90
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature:
IOH, Low-level output current, TEST CONDITIONS:
Moved/added HPI to “Timer, TDO, GPIO, McBSP”
April 2004 − Revised May 2005
SPRS247E
3
Contents
Contents
Section
Page
1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1
GTS and ZTS BGA Packages (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3
Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4
CPU (DSP Core) Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5
Memory Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1
L2 Architecture Expanded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6
Peripheral Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7
EDMA Channel Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8
Interrupt Sources and Interrupt Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.9
Signal Groups Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
12
13
14
15
16
19
21
23
36
37
39
3
Device Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
Device Configuration at Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
Peripheral Configuration at Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3
Peripheral Selection After Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4
Peripheral Configuration Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5
Device Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6
JTAG ID Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7
Multiplexed Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8
Debugging Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9
Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.11
Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12
Device Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.1
Device and Development-Support Tool Nomenclature . . . . . . . . . . . . . . . . . . . . .
3.12.2
Documentation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
44
45
46
48
50
51
52
53
53
55
67
68
68
70
4
Peripherals Detailed Description (Device-Specific) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1
Clock PLL and Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2
Host-Port Interface (HPI) Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3
Multichannel Audio Serial Port (McASP) Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1
McASP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5
General-Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6
Power-Down Modes Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1
Triggering, Wake-up, and Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.2
C64x Power-Down Mode with an Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7
Power-Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.1
Power-Supply Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8
Power-Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9
Peripheral Power-Down Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
71
75
76
76
78
79
82
82
84
84
84
85
86
4
SPRS247E
April 2004 − Revised May 2005
Contents
Section
4.10
4.11
4.12
4.13
Page
IEEE 1149.1 JTAG Compatibility Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EMIF Device Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bootmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
87
87
88
88
5
Device Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1
Absolute Maximum Ratings Over Operating Case Temperature Range . . . . . . . . . . . . . . . . . . 89
5.2
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case
Temperature (Unless Otherwise Noted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4
Recommended Clock and Control Signal Transition Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6
Parameter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1
Signal Transition Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2
Signal Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3
Timing Parameters and Board Routing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
Peripheral Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1
Input and Output Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2
Asynchronous Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3
Programmable Synchronous Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4
Synchronous DRAM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.5
HOLD/HOLDA Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.6
BUSREQ Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.7
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.8
External Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.9
Multichannel Audio Serial Port (McASP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.10
Inter-Integrated Circuits (I2C) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.11
Host-Port Interface (HPI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.12
Multichannel Buffered Serial Port (McBSP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.13
Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.14
General-Purpose Input/Output (GPIO) Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.15
JTAG Test-Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.1
Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.2
Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
April 2004 − Revised May 2005
SPRS247E
91
91
91
92
5
Figures
List of Figures
Figure
Page
2−1
2−2
2−3
2−4
2−5
2−6
2−7
GTS and ZTS BGA Packages (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TMS320C64xE CPU (DSP Core) Data Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TMS320C6413 L2 Architecture Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TMS320C6410 L2 Architecture Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CPU and Peripheral Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Peripheral Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
15
18
21
22
39
40
3−1
3−2
3−3
3−4
3−5
3−6
46
48
49
50
51
3−7
Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000] . . . . . . . . . . . . . . . . . .
Peripheral Enable/Disable Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] − Read/Write Accesses . . . . . . . .
Device Status Register (DEVSTAT) Description − 0x01B3 F004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG ID Register Description − TMS320C6413/C6410 Register Value − 0x0007 902F . . . . . . . . . . . .
Configuration Example A
(HPI16 + 2 McASPs + 2 McBSPs +2 I2Cs + EMIF + 3 Timers + GPIO) . . . . . . . . . . . . . . . . . . . . . . . .
TMS320C6413/C6410 DSP Device Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4−1
4−2
4−3
4−4
4−5
4−6
4−7
4−8
External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode . . . . . . . . . . . . . . . . . . . . . .
McASP0 and McASP1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2Cx Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Enable Register (GPEN) [Hex Address: 01B0 0000] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-Down Mode Logic† . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWRD Field of the CSR Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Schottky Diode Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
77
79
80
81
82
83
85
6−1
6−2
6−3
6−4
Test Load Circuit for AC Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input and Output Voltage Reference Levels for AC Timing Measurements . . . . . . . . . . . . . . . . . . . . . .
Rise and Fall Transition Time Voltage Reference Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Board-Level Input/Output Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
91
91
91
92
7−1
7−2
7−3
7−4
7−5
7−6
7−7
7−8
CLKIN Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLKOUT4 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLKOUT6 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AECLKIN Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AECLKOUT1 Timing for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AECLKOUT2 Timing for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Asynchronous Memory Read Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Asynchronous Memory Write Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
93
94
94
95
95
96
98
99
6
SPRS247E
54
69
April 2004 − Revised May 2005
Figures
7−9
7−10
7−11
7−12
7−13
7−14
7−15
7−16
7−17
7−18
7−19
7−20
7−21
7−22
7−23
7−24
7−25
7−26
7−27
7−28
7−29
7−30
7−31
7−32
7−33
7−34
7−35
7−36
7−37
7−38
7−39
7−40
7−41
7−42
7−43
7−44
Programmable Synchronous Interface Read Timing for EMIFA
(With Read Latency = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Programmable Synchronous Interface Write Timing for EMIFA
(With Write Latency = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Programmable Synchronous Interface Write Timing for EMIFA
(With Write Latency = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SDRAM Read Command (CAS Latency 3) for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
SDRAM Write Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
SDRAM ACTV Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
SDRAM DCAB Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
SDRAM DEAC Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
SDRAM REFR Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
SDRAM MRS Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
SDRAM Self-Refresh Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
HOLD/HOLDA Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
BUSREQ Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
External/NMI Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
McASP Input Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
McASP Output Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
I2C Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
I2C Transmit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
HPI16 Read Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
HPI16 Read Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
HPI16 Write Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
HPI16 Write Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
HPI32 Read Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
HPI32 Read Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
HPI32 Write Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
HPI32 Write Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
McBSP Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
FSR Timing When GSYNC = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 128
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 129
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 130
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
GPIO Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
JTAG Test-Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
April 2004 − Revised May 2005
SPRS247E
7
Tables
List of Tables
Table
Page
2−1
2−2
2−3
2−4
2−5
2−6
2−7
2−8
2−9
2−10
2−11
2−12
2−13
2−14
2−15
2−16
2−17
2−18
2−19
2−20
2−21
2−22
Characteristics of the C6413 and C6410 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TMS320C6413/C6410 Memory Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EMIFA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L2 Cache Registers (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quick DMA (QDMA) and Pseudo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EDMA Registers (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EDMA Parameter RAM (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Selector Registers (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
McBSP 0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
McBSP 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer 0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GP0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
McASP0 and McASP1 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
McASP0 Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
McASP1 Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C0 and I2C1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TMS320C6413/C6410 EDMA Channel Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C6413/C6410 DSP Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
19
23
23
26
26
27
28
28
29
29
30
30
30
31
31
32
34
34
35
36
38
3−1
C6413/C6410 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN,
HD5, CLKINSEL, and OSC_DIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TOUT0/HPI_EN and HD5 Peripheral Selection (HPI or McASP1 and Select GP0 Pins) . . . . . . . . . . .
Peripheral Configuration (PERCFG) Register Selection Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . .
PCFGLOCK Register Selection Bit Descriptions − Read Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PCFGLOCK Register Selection Bit Descriptions − Write Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Device Status (DEVSTAT) Register Selection Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG ID Register Selection Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C6413/C6410 Device Multiplexed Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44
45
47
49
49
50
51
52
56
3−2
3−3
3−4
3−5
3−6
3−7
3−8
3−9
4−1
4−3
4−4
TMS320C6413 PLL Multiply Factor Options, Clock Frequency Ranges,
and Typical Lock Time for −500 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TMS320C6410 PLL Multiply Factor Options, Clock Frequency Ranges,
and Typical Lock Time for −400 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Crystal and Tank Circuit Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics of the Power-Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6−1
Board-Level Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7−1
Timing Requirements for External Crystal Oscillator Input (OSCIN and OSCOUT) . . . . . . . . . . . . . . . 93
4−2
8
SPRS247E
73
74
74
84
April 2004 − Revised May 2005
Tables
Table
7−2
7−3
7−4
7−5
7−6
7−7
7−8
7−9
7−10
7−11
7−12
7−13
7−14
7−15
7−16
7−17
7−18
7−19
7−20
7−21
7−22
7−23
7−24
7−25
7−26
7−27
7−28
7−29
7−30
7−31
7−32
7−33
7−34
7−35
Page
Timing Requirements for CLKIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Switching Characteristics Over Recommended Operating Conditions for CLKOUT4 . . . . . . . . . . . . . . 94
Switching Characteristics Over Recommended Operating Conditions for CLKOUT6 . . . . . . . . . . . . . . 94
Timing Requirements for AECLKIN for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1
for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2
for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Timing Requirements for Asynchronous Memory Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . 97
Switching Characteristics Over Recommended Operating Conditions for Asynchronous
Memory Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module . . . . . . . 100
Switching Characteristics Over Recommended Operating Conditions for Programmable Synchronous
Interface Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Timing Requirements for Synchronous DRAM Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . 104
Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM
Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Timing Requirements for the HOLD/HOLDA Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . 110
Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA
Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Switching Characteristics Over Recommended Operating Conditions for the BUSREQ
Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Timing Requirements for Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Switching Characteristics Over Recommended Operating Conditions During Reset . . . . . . . . . . . . . 112
Timing Requirements for External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Timing Requirements for McASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Switching Characteristics Over Recommended Operating Conditions for McASP . . . . . . . . . . . . . . . 115
Timing Requirements for I2C Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Switching Characteristics for I2C Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Timing Requirements for Host-Port Interface Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Switching Characteristics Over Recommended Operating Conditions During Host-Port
Interface Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Timing Requirements for McBSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Switching Characteristics Over Recommended Operating Conditions for McBSP . . . . . . . . . . . . . . . 126
Timing Requirements for FSR When GSYNC = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
April 2004 − Revised May 2005
SPRS247E
9
Tables
7−36
7−37
7−38
7−39
7−40
7−41
7−42
Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Timing Requirements for Timer Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Switching Characteristics Over Recommended Operating Conditions for Timer Outputs . . . . . . . . . 132
Timing Requirements for GPIO Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs . . . . . . . . . 133
Timing Requirements for JTAG Test Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port . . . . . . . . 134
8−1
8−2
Thermal Resistance Characteristics (S-PBGA Package) [GTS] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Thermal Resistance Characteristics (S-PBGA Package) [ZTS] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10
SPRS247E
April 2004 − Revised May 2005
Features
1
Features
D High-Performance Fixed-Point Digital
D
D
D
Signal Processor (TMS320C6413/C6410)
− TMS320C6413
− 2-ns Instruction Cycle Time
− 500-MHz Clock Rate
− 4000 MIPS
− TMS320C6410
− 2.5-ns Instruction Cycle Time
− 400-MHz Clock Rate
− 3200 MIPS
− Eight 32-Bit Instructions/Cycle
− Fully Software-Compatible With C64x™
− Extended Temperature Devices Available
VelociTI.2™ Extensions to VelociTI™
Advanced Very-Long-Instruction-Word
(VLIW) TMS320C64x™ DSP Core
− Eight Highly Independent Functional
Units With VelociTI.2™ Extensions:
− Six ALUs (32-/40-Bit), Each Supports
Single 32-Bit, Dual 16-Bit, or Quad
8-Bit Arithmetic per Clock Cycle
− Two Multipliers Support
Four 16 x 16-Bit Multiplies
(32-Bit Results) per Clock Cycle or
Eight 8 x 8-Bit Multiplies
(16-Bit Results) per Clock Cycle
− Load-Store Architecture With
Non-Aligned Support
− 64 32-Bit General-Purpose Registers
− Instruction Packing Reduces Code Size
− All Instructions Conditional
Instruction Set Features
− Byte-Addressable (8-/16-/32-/64-Bit Data)
− 8-Bit Overflow Protection
− Bit-Field Extract, Set, Clear
− Normalization, Saturation, Bit-Counting
− VelociTI.2™ Increased Orthogonality
VelociTI.2™ Extensions to VelociTI™
Advanced Very-Long-Instruction-Word
(VLIW) TMS320C64x™ DSP Core
D L1/L2 Memory Architecture
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
− 128K-Bit (16K-Byte) L1P Program Cache
(Direct Mapped)
− 128K-Bit (16K-Byte) L1D Data Cache
(2-Way Set-Associative)
− 2M-Bit (256K-Byte) L2 Unified Mapped
RAM/Cache [C6413]
(Flexible RAM/Cache Allocation)
− 1M-Bit (128K-Byte) L2 Unified Mapped
RAM/Cache [C6410]
(Flexible RAM/Cache Allocation)
Endianess: Little Endian, Big Endian
32-Bit External Memory Interface (EMIF)
− Glueless Interface to Asynchronous
Memories (SRAM and EPROM) and
Synchronous Memories (SDRAM,
SBSRAM, ZBT SRAM, and FIFO)
− 1024M-Byte Total Addressable External
Memory Space
Enhanced Direct-Memory-Access (EDMA)
Controller (64 Independent Channels)
Host-Port Interface (HPI) [32-/16-Bit]
Two Multichannel Audio Serial Ports
(McASPs) - with Six Serial Data Pins each
Two Inter-Integrated Circuit (I2C) Buses
− Additional GPIO Capability
Two Multichannel Buffered Serial Ports
Three 32-Bit General-Purpose Timers
Sixteen General-Purpose I/O (GPIO) Pins
Flexible PLL Clock Generator
On-Chip Fundamental Oscillator
IEEE-1149.1 (JTAG†)
Boundary-Scan-Compatible
288-Pin Ball Grid Array (BGA) Packages
(GTS and ZTS Suffixes), 1.0-mm Ball Pitch
0.13-µm/6-Level Cu Metal Process (CMOS)
3.3-V I/Os, 1.2-V Internal
VelociTI.2, VelociTI, and TMS320C64x are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
† IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
April 2004 − Revised May 2005
SPRS247E
11
Functional Overview
2
Functional Overview
2.1
GTS and ZTS BGA Packages (Bottom View)
GTS and ZTS 288-PIN BALL GRID ARRAY (BGA) PACKAGES
( BOTTOM VIEW )
AB
AA
Y
V
T
P
M
K
H
F
W
U
R
N
L
J
G
E
D
B
C
A
1
3
2
5
4
7
6
9
8
10
11 13 15 17 19 21
12 14 16 18 20 22
Figure 2−1. GTS and ZTS BGA Packages (Bottom View)
12
SPRS247E
April 2004 − Revised May 2005
Description
2.2
Description
The TMS320C64x™ DSPs (including the TMS320C6413, TMS320C6410 devices) are the
highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. The TMS320C6413
and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance,
advanced VelociTI™ very-long-instruction-word (VLIW) architecture (VelociTI.2™) developed by Texas
Instruments (TI). The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system
costs for telecom, medical, industrial, office, and photo lab equipment. The C64x™ is a code-compatible
member of the C6000™ DSP platform.
With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413
device offers cost-effective solutions to high-performance DSP programming challenges.
With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410
device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device
also provides excellent value for packet telephony and for other cost−sensitive applications demanding high
performance.
The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical
capability of array processors. The C64x™ DSP core processor has 64 general-purpose registers of 32-bit
word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic
logic units (ALUs)— with VelociTI.2™ extensions. The VelociTI.2™ extensions in the eight functional units
include new instructions to accelerate the performance in video and imaging applications and extend the
parallelism of the VelociTI™ architecture. The C6413 can produce four 16-bit multiply-accumulates (MACs)
per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of
4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of
1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The
C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip
peripherals similar to the other C6000™ DSP platform devices.
The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of
peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache
(L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit
memory space that is shared between program and data space [for C6413 device] and the Level 2
memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [for
C6410 device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The
peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus
modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a
user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output
port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory
interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and
peripherals.
Each McASP port supports one transmit and one receive clock zone, with six serial data pins which can be
individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin
from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all six serial data pins
transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple
serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S)
format.
In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430
encoded data channels simultaneously, with a single RAM containing the full implementation of user data and
channel status fields.
McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit
for each high-frequency master clock which verifies that the master clock is within a programmed frequency
range.
TMS320C6000, and C6000 are trademarks of Texas Instruments.
April 2004 − Revised May 2005
SPRS247E
13
Device Characteristics
The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and
communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may
be used to communicate with serial peripheral interface (SPI) mode peripheral devices.
The C6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly
optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into
source code execution.
2.3
Device Characteristics
Table 2−1, provides an overview of the C6413 and C6410 DSPs. The tables show significant features of the
C6413 and C6410 devices, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and
the package type with pin count.
Table 2−1. Characteristics of the C6413 and C6410 Processors
HARDWARE FEATURES
Peripherals
Not all peripherals pins
are available at the
i
(F more
same time
(For
detail, see the Device
Configuration section).
section)
C6413 AND C6410
EMIFA (32-bit bus width)
(clock source = AECLKIN, CLKOUT4, or CLKOUT6)
1
EDMA (64 independent channels)
1
McASPs (use Peripheral Clock and AUXCLK)
2
I2Cs (use Peripheral Clock)
HPI (32- or 16-bit user selectable)
2
1 (HPI16 or HPI32)
McBSPs
(internal clock source = CPU/4 clock frequency)
2
32-Bit Timers
(internal clock source = CPU/8 clock frequency)
3
General-Purpose Input/Output Port (GP0)
Size (Bytes)
On-Chip Memory
Organization
16
288K (C6413)
160K (C6410)
16K-Byte (16KB) L1 Program (L1P) Cache
16KB L1 Data (L1D) Cache
256KB Unified Mapped RAM/Cache (L2) [C6413]
128KB Unified Mapped RAM/Cache (L2) [C6410]
CPU ID + CPU Rev ID
Control Status Register (CSR.[31:16])
JTAG BSDL_ID
JTAGID register (address location: 0x01B3F008)
0x0007902F
Frequency
MHz
500 (C6413)
400 (C6410)
Cycle Time
ns
Voltage
Core (V)
I/O (V)
PLL Options
CLKIN frequency multiplier
BGA Package
23 x 23 mm
Process Technology
µm
Product Status‡
Product Preview (PP), Advance Information (AI),
or Production Data (PD)
0x0C01
2 ns (C6413-500, C6413 A−500)
[500 MHz CPU, 100 MHz EMIF†]
2.5 ns (C6410-400, C6410 A−400)
[400 MHz CPU, 100 MHz EMIF†]
1.2 V
3.3 V
Bypass (x1), x5, x6, x7, x8, x9, x10, x11, x12, x16,
x18, x19, x20, x21, x22, and x24
288-Pin Flip-Chip Plastic BGA (GTS and ZTS)
0.13 µm
PD
†
On this C64x™ device, the rated EMIF speed affects only the SDRAM interface on the EMIF. For more detailed information, see the EMIF device
speed portion of this data sheet.
‡ PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard
warranty. Production processing does not necessarily include testing of all parameters.
14
SPRS247E
April 2004 − Revised May 2005
Functional Block Diagram
2.3.1
Functional Block Diagram
Figure 2−2 shows the functional block diagram of the C6413/C6410 device.
SDRAM
32
TMS320C6413/C6410
EMIF A
SBSRAM
L1P Cache
Direct-Mapped
16K Bytes Total
ZBT SRAM
FIFO
Timer 2
SRAM
Timer 1
ROM/FLASH
C64x DSP Core
Timer 0
I/O Devices
Instruction Fetch
Control
Registers
Instruction Dispatch
Advanced Instruction Packet
Control
Logic
McBSP0
Instruction Decode
Data Path A
McBSP1
Data Path B
A Register File
A31−A16
A15−A0
Test
B Register File
B31−B16
B15−B0
Advanced
In-Circuit
Emulation
McASP0
.L1
McASP1
and
Enhanced
DMA
Controller
(edma)
.S1
.M1 .D1
.D2 .M2 .S2
Interrupt
Control
.L2
L2
Cache
Memory
256KBytes§
L1D Cache 2-Way Set-Associative
16K Bytes Total
HPI16
or
HPI32
I2C0
OSCILLATOR
and PLL
(x1, x5 − x12, x16,
x18, x19 − x22, x24)
Power-Down
Logic
I2C1
16
Boot Configuration
GP0
GP0‡
†
McBSPs: Framing Chips − H.100, MVIP, SCSA, T1, E1; AC97 Devices; SPI Devices; Codecs
GP0[15:8] pins are muxed with the HPI HD[15:8] pins and GP0[2:1] pins are muxed with CLKOUT6 and CLKOUT4,
respectively.
§ Note: the C6413 device has 256K-Bytes L2 Cache Memory; the C6410 device has only 128K-Bytes L2 Cache Memory.
‡
Figure 2−2. Functional Block Diagram
April 2004 − Revised May 2005
SPRS247E
15
CPU (DSP Core) Description
2.4
CPU (DSP Core) Description
The CPU fetches VelociTI™ advanced very-long instruction words (VLIWs) (256 bits wide) to supply up to
eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI™ VLIW architecture
features controls by which all eight units do not have to be supplied with instructions if they are not ready to
execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute
packet as the previous instruction, or whether it should be executed in the following clock as a part of the next
execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The
variable-length execute packets are a key memory-saving feature, distinguishing the C64x CPUs from other
VLIW architectures. The C64x™ VelociTI.2™ extensions add enhancements to the TMS320C62x™ DSP
VelociTI™ architecture. These enhancements include:
•
•
•
•
•
•
Register file enhancements
Data path extensions
Quad 8-bit and dual 16-bit extensions with data flow enhancements
Additional functional unit hardware
Increased orthogonality of the instruction set
Additional instructions that reduce code size and increase register flexibility
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register
files each contain 32 32-bit registers for a total of 64 general-purpose registers. In addition to supporting the
packed 16-bit and 32-/40-bit fixed-point data types found in the C62x™ VelociTI™ VLIW architecture, the
C64x™ register files also support packed 8-bit data and 64-bit fixed-point data types. The two sets of functional
units, along with two register files, compose sides A and B of the CPU [see the functional block and CPU (DSP
core) diagram, and Figure 2−3]. The four functional units on each side of the CPU can freely share the 32
registers belonging to that side. Additionally, each side features a “data cross path”—a single data bus
connected to all the registers on the other side, by which the two sets of functional units can access data from
the register files on the opposite side. The C64x CPU pipelines data-cross-path accesses over multiple clock
cycles. This allows the same register to be used as a data-cross-path operand by multiple functional units in
the same execute packet. All functional units in the C64x CPU can access operands via the data cross path.
Register access by functional units on the same side of the CPU as the register file can service all the units
in a single clock cycle. On the C64x CPU, a delay clock is introduced whenever an instruction attempts to read
a register via a data cross path if that register was updated in the previous clock cycle.
In addition to the C62x™ DSP fixed-point instructions, the C64x™ DSP includes a comprehensive collection
of quad 8-bit and dual 16-bit instruction set extensions. These VelociTI.2™ extensions allow the C64x CPU
to operate directly on packed data to streamline data flow and increase instruction set efficiency.
Another key feature of the C64x CPU is the load/store architecture, where all instructions operate on registers
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data
transfers between the register files and the memory. The data address driven by the .D units allows data
addresses generated from one register file to be used to load or store data to or from the other register file.
The C64x .D units can load and store bytes (8 bits), half-words (16 bits), and words (32 bits) with a single
instruction. And with the new data path extensions, the C64x .D unit can load and store doublewords (64 bits)
with a single instruction. Furthermore, the non-aligned load and store instructions allow the .D units to access
words and doublewords on any byte boundary. The C64x CPU supports a variety of indirect addressing modes
using either linear- or circular-addressing with 5- or 15-bit offsets. All instructions are conditional, and most
can access any one of the 64 registers. Some registers, however, are singled out to support specific
addressing modes or to hold the condition for conditional instructions (if the condition is not automatically
“true”).
TMS320C62x and C62x are trademarks of Texas Instruments.
16
SPRS247E
April 2004 − Revised May 2005
CPU (DSP Core) Description
The two .M functional units perform all multiplication operations. Each of the C64x .M units can perform two
16 × 16-bit multiplies or four 8 × 8-bit multiplies per clock cycle. The .M unit can also perform 16 × 32-bit multiply
operations, dual 16 × 16-bit multiplies with add/subtract operations, and quad 8 × 8-bit multiplies with add
operations. In addition to standard multiplies, the C64x .M units include bit-count, rotate, Galois field multiplies,
and bidirectional variable shift hardware.
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results
available every clock cycle. The arithmetic and logical functions on the C64x CPU include single 32-bit, dual
16-bit, and quad 8-bit operations.
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory.
The 32-bit instructions destined for the individual functional units are “linked” together by “1” bits in the least
significant bit (LSB) position of the instructions. The instructions that are “chained” together for simultaneous
execution (up to eight in total) compose an execute packet. A “0” in the LSB of an instruction breaks the chain,
effectively placing the instructions that follow it in the next execute packet. A C64x™ DSP device enhancement
now allows execute packets to cross fetch-packet boundaries. In the TMS320C62x™/TMS320C67x™ DSP
devices, if an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in
the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. In the
C64x™ DSP device, the execute boundary restrictions have been removed, thereby, eliminating all of the
NOPs added to pad the fetch packet, and thus, decreasing the overall code size. The number of execute
packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective
functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the
execute packets from the current fetch packet have been dispatched. After decoding, the instructions
simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock
cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes,
half-words, or doublewords. All load and store instructions are byte-, half-word-, word-, or
doubleword-addressable.
For more details on the C64x CPU functional units enhancements, see the following documents:
•
•
TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189)
TMS320C64x Technical Overview (literature number SPRU395)
TMS320C67x is a trademark of Texas Instruments.
April 2004 − Revised May 2005
SPRS247E
17
CPU (DSP Core) Description
src1
.L1
ST1b (Store Data)
ST1a (Store Data)
32 MSBs
32 LSBs
src2
dst
long dst
long src
long src
long dst
dst
.S1 src1
Data Path A
8
8
8
8
Register
File A
(A0−A31)
src2
See Note A
See Note A
long dst
dst
.M1 src1
src2
LD1b (Load Data)
LD1a (Load Data)
32 MSBs
32 LSBs
DA1 (Address)
.D1
dst
src1
src2
2X
1X
.D2
DA2 (Address)
LD2a (Load Data)
LD2b (Load Data)
src2
src1
dst
32 LSBs
32 MSBs
src2
.M2 src1
dst
See Note A
See Note A
long dst
Register
File B
(B0− B31)
src2
Data Path B
.S2
src1
dst
long dst
long src
ST2a (Store Data)
ST2b (Store Data)
8
8
32 MSBs
32 LSBs
long src
long dst
dst
8
8
.L2 src2
src1
Control Register
File
NOTE A: For the .M functional units, the long dst is 32 MSBs and the dst is 32 LSBs.
Figure 2−3. TMS320C64x™ CPU (DSP Core) Data Paths
18
SPRS247E
April 2004 − Revised May 2005
Memory Map Summary
2.5
Memory Map Summary
Table 2−2 shows the memory map address ranges of the C6413 and C6410 devices. Internal memory is
always located at address 0 and can be used as both program and data memory. The external memory
address ranges in the C6413/C6410 device begin at the hex address location 0x8000 0000 for EMIFA.
Table 2−2. TMS320C6413/C6410 Memory Map Summary
MEMORY BLOCK DESCRIPTION
Internal RAM (L2) [C6413]
Reserved [C6413]
Internal RAM (L2) [C6410]
Reserved [C6410]
BLOCK SIZE
(BYTES)
HEX ADDRESS RANGE
256K
0000 0000 – 0003 FFFF
1024K minus 256K
0004 0000 – 000F FFFF
128K
0000 0000 – 0001 FFFF
1024K minus 128K
0002 0000 – 000F FFFF
Reserved
15M
0010 0000 – 00FF FFFF
Reserved
8M
0100 0000 – 017F FFFF
External Memory Interface A (EMIFA) Registers
256K
0180 0000 – 0183 FFFF
L2 Registers
256K
0184 0000 – 0187 FFFF
HPI Registers
256K
0188 0000 – 018B FFFF
McBSP 0 Registers
256K
018C 0000 – 018F FFFF
McBSP 1 Registers
256K
0190 0000 – 0193 FFFF
Timer 0 Registers
256K
0194 0000 – 0197 FFFF
Timer 1 Registers
256K
0198 0000 – 019B FFFF
Interrupt Selector Registers
256K
019C 0000 – 019F FFFF
EDMA RAM and EDMA Registers
256K
01A0 0000 – 01A3 FFFF
Reserved
512K
01A4 0000 – 01AB FFFF
Timer 2 Registers
256K
01AC 0000 – 01AF FFFF
256K minus 4K
01B0 0000 – 01B3 EFFF
Device Configuration Registers
4K
01B3 F000 – 01B3 FFFF
I2C0 Data and Control Registers
16K
01B4 0000 – 01B4 3FFF
I2C1 Data and Control Registers
16K
01B4 4000 – 01B4 7FFF
Reserved
16K
01B4 8000 – 01B4 BFFF
McASP0 Control Registers
16K
01B4 C000 – 01B4 FFFF
McASP1 Control Registers
16K
01B5 0000 – 01B5 3FFF
Reserved
176K
01B5 4000 – 01B7 FFFF
Reserved
128K
01B8 0000 – 01B9 FFFF
Reserved
128K
01BA 0000 – 01BB FFFF
Emulation
256K
01BC 0000 – 01BF FFFF
Reserved
528K
01C0 0000 – 01C8 3FFF
Reserved
3.5M
01C8 4000 – 01FF FFFF
GP0 Registers
QDMA Registers
52
0200 0000 – 0200 0033
928M minus 52
0200 0034 – 2FFF FFFF
McBSP 0 Data
64M
3000 0000 – 33FF FFFF
McBSP 1 Data
64M
3400 0000 – 37FF FFFF
Reserved
64M
3800 0000 – 3BFF FFFF
McASP0 Data
1M
3C00 0000 – 3C0F FFFF
Reserved
April 2004 − Revised May 2005
SPRS247E
19
Memory Map Summary
Table 2−2. TMS320C6413/C6410 Memory Map Summary (Continued)
BLOCK SIZE
(BYTES)
HEX ADDRESS RANGE
McASP1 Data
1M
3C10 0000 – 3C1F FFFF
Reserved
62M
3C20 0000 – 3FFF FFFF
MEMORY BLOCK DESCRIPTION
Reserved
1G
4000 0000 – 7FFF FFFF
EMIFA CE0
256M
8000 0000 – 8FFF FFFF
EMIFA CE1
256M
9000 0000 – 9FFF FFFF
EMIFA CE2
256M
A000 0000 – AFFF FFFF
EMIFA CE3
256M
B000 0000 – BFFF FFFF
1G
C000 0000 – FFFF FFFF
Reserved
20
SPRS247E
April 2004 − Revised May 2005
Memory Map Summary
2.5.1
L2 Architecture Expanded
Figure 2−4 and Figure 2−5 show the detail of the L2 architecture on the TMS320C6413 and TMS320C6410
devices, respectively . For more information on the L2MODE bits, see the cache configuration (CCFG) register
bit field descriptions in the TMS320C64x Two-Level Internal Memory Reference Guide (literature number
SPRU610).
L2MODE
000
001
010
L2 Memory
011
Block Base Address
111
128K SRAM
0x0000 0000
256K SRAM (All)
256K Cache (4 Way) [All]
224K SRAM
192K SRAM
128K-Byte SRAM
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
0x0002 0000
128K Cache (4 Way)
64K Cache (4 Way)
32K Cache
(4 Way)
64K-Byte RAM
0x0003 0000
32K-Byte RAM
0x0003 8000
32K-Byte RAM
0x0003 FFFF
0x0004 0000
Figure 2−4. TMS320C6413 L2 Architecture Memory Configuration
April 2004 − Revised May 2005
SPRS247E
21
Memory Map Summary
L2MODE†
011
64K SRAM
010
Block Base Address
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏÏÏÏÏ
0x0000 0000
64K-Byte RAM
128K Cache (4 Way)
64K Cache (4 Way)
96K SRAM
001
32K Cache
(4 Way)
128K SRAM (All)
000
L2 Memory
0x0001 0000
32K-Byte RAM
0x0001 8000
32K-Byte RAM
0x0001 FFFF
0x0002 0000
†
The L2MODE = 111b is not supported on the C6410 device.
Figure 2−5. TMS320C6410 L2 Architecture Memory Configuration
22
SPRS247E
April 2004 − Revised May 2005
Peripheral Register Descriptions
2.6
Peripheral Register Descriptions
Table 2−3 through Table 2−20 identify the peripheral registers for the C6413/C6410 device by their register
names, acronyms, and hex address or hex address range. For more detailed information on the register
contents, bit names and their descriptions, see the specific peripheral reference guide listed in the
TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190).
Table 2−3. EMIFA Registers
HEX ADDRESS RANGE
ACRONYM
0180 0000
GBLCTL
EMIFA global control
REGISTER NAME
0180 0004
CECTL1
EMIFA CE1 space control
EMIFA CE0 space control
0180 0008
CECTL0
0180 000C
−
0180 0010
CECTL2
EMIFA CE2 space control
0180 0014
CECTL3
EMIFA CE3 space control
0180 0018
SDCTL
EMIFA SDRAM control
0180 001C
SDTIM
EMIFA SDRAM refresh control
0180 0020
SDEXT
EMIFA SDRAM extension
0180 0024 − 0180 003C
−
0180 0040
PDTCTL
Peripheral device transfer (PDT) control
0180 0044
CESEC1
EMIFA CE1 space secondary control
0180 0048
CESEC0
EMIFA CE0 space secondary control
COMMENTS
Reserved
Reserved
0180 004C
−
0180 0050
CESEC2
Reserved
EMIFA CE2 space secondary control
0180 0054
CESEC3
EMIFA CE3 space secondary control
0180 0058 − 0183 FFFF
–
Reserved
Table 2−4. L2 Cache Registers (C64x)
HEX ADDRESS RANGE
ACRONYM
0184 0000
CCFG
REGISTER NAME
0184 0004 − 0184 0FFC
−
0184 1000
EDMAWEIGHT
0184 1004 − 0184 1FFC
−
0184 2000
L2ALLOC0
L2 allocation register 0
0184 2004
L2ALLOC1
L2 allocation register 1
Reserved
L2 EDMA access control register
Reserved
0184 2008
L2ALLOC2
L2 allocation register 2
0184 200C
L2ALLOC3
L2 allocation register 3
0184 2010 − 0184 3FFC
−
0184 4000
L2WBAR
L2 writeback base address register
0184 4004
L2WWC
L2 writeback word count register
0184 4010
L2WIBAR
L2 writeback invalidate base address register
0184 4014
L2WIWC
L2 writeback invalidate word count register
0184 4018
L2IBAR
L2 invalidate base address register
0184 401C
L2IWC
L2 invalidate word count register
0184 4020
L1PIBAR
L1P invalidate base address register
0184 4024
L1PIWC
L1P invalidate word count register
0184 4030
L1DWIBAR
April 2004 − Revised May 2005
COMMENTS
Cache configuration register
Reserved
L1D writeback invalidate base address register
SPRS247E
23
Peripheral Register Descriptions
Table 2−4. L2 Cache Registers (C64x) (Continued)
24
HEX ADDRESS RANGE
ACRONYM
0184 4034
L1DWIWC
0184 4038 − 0184 4044
−
REGISTER NAME
L1D writeback invalidate word count register
Reserved
0184 4048
L1DIBAR
L1D invalidate base address register
0184 404C
L1DIWC
L1D invalidate word count register
0184 4050 − 0184 4FFC
−
0184 5000
L2WB
0184 5004
L2WBINV
Reserved
L2 writeback all register
L2 writeback invalidate all register
0184 5008 − 0184 7FFC
−
Reserved
0184 8000 − 0184 81FC
MAR0 to
MAR127
Reserved
0184 8200
MAR128
Controls EMIFA CE0 range 8000 0000 − 80FF FFFF
0184 8204
MAR129
Controls EMIFA CE0 range 8100 0000 − 81FF FFFF
0184 8208
MAR130
Controls EMIFA CE0 range 8200 0000 − 82FF FFFF
0184 820C
MAR131
Controls EMIFA CE0 range 8300 0000 − 83FF FFFF
0184 8210
MAR132
Controls EMIFA CE0 range 8400 0000 − 84FF FFFF
0184 8214
MAR133
Controls EMIFA CE0 range 8500 0000 − 85FF FFFF
0184 8218
MAR134
Controls EMIFA CE0 range 8600 0000 − 86FF FFFF
0184 821C
MAR135
Controls EMIFA CE0 range 8700 0000 − 87FF FFFF
0184 8220
MAR136
Controls EMIFA CE0 range 8800 0000 − 88FF FFFF
0184 8224
MAR137
Controls EMIFA CE0 range 8900 0000 − 89FF FFFF
0184 8228
MAR138
Controls EMIFA CE0 range 8A00 0000 − 8AFF FFFF
0184 822C
MAR139
Controls EMIFA CE0 range 8B00 0000 − 8BFF FFFF
0184 8230
MAR140
Controls EMIFA CE0 range 8C00 0000 − 8CFF FFFF
0184 8234
MAR141
Controls EMIFA CE0 range 8D00 0000 − 8DFF FFFF
0184 8238
MAR142
Controls EMIFA CE0 range 8E00 0000 − 8EFF FFFF
0184 823C
MAR143
Controls EMIFA CE0 range 8F00 0000 − 8FFF FFFF
0184 8240
MAR144
Controls EMIFA CE1 range 9000 0000 − 90FF FFFF
0184 8244
MAR145
Controls EMIFA CE1 range 9100 0000 − 91FF FFFF
0184 8248
MAR146
Controls EMIFA CE1 range 9200 0000 − 92FF FFFF
0184 824C
MAR147
Controls EMIFA CE1 range 9300 0000 − 93FF FFFF
0184 8250
MAR148
Controls EMIFA CE1 range 9400 0000 − 94FF FFFF
0184 8254
MAR149
Controls EMIFA CE1 range 9500 0000 − 95FF FFFF
0184 8258
MAR150
Controls EMIFA CE1 range 9600 0000 − 96FF FFFF
0184 825C
MAR151
Controls EMIFA CE1 range 9700 0000 − 97FF FFFF
0184 8260
MAR152
Controls EMIFA CE1 range 9800 0000 − 98FF FFFF
0184 8264
MAR153
Controls EMIFA CE1 range 9900 0000 − 99FF FFFF
0184 8268
MAR154
Controls EMIFA CE1 range 9A00 0000 − 9AFF FFFF
0184 826C
MAR155
Controls EMIFA CE1 range 9B00 0000 − 9BFF FFFF
0184 8270
MAR156
Controls EMIFA CE1 range 9C00 0000 − 9CFF FFFF
0184 8274
MAR157
Controls EMIFA CE1 range 9D00 0000 − 9DFF FFFF
0184 8278
MAR158
Controls EMIFA CE1 range 9E00 0000 − 9EFF FFFF
0184 827C
MAR159
Controls EMIFA CE1 range 9F00 0000 − 9FFF FFFF
0184 8280
MAR160
Controls EMIFA CE2 range A000 0000 − A0FF FFFF
SPRS247E
COMMENTS
April 2004 − Revised May 2005
Peripheral Register Descriptions
Table 2−4. L2 Cache Registers (C64x) (Continued)
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
0184 8284
MAR161
Controls EMIFA CE2 range A100 0000 − A1FF FFFF
0184 8288
MAR162
Controls EMIFA CE2 range A200 0000 − A2FF FFFF
0184 828C
MAR163
Controls EMIFA CE2 range A300 0000 − A3FF FFFF
0184 8290
MAR164
Controls EMIFA CE2 range A400 0000 − A4FF FFFF
0184 8294
MAR165
Controls EMIFA CE2 range A500 0000 − A5FF FFFF
0184 8298
MAR166
Controls EMIFA CE2 range A600 0000 − A6FF FFFF
0184 829C
MAR167
Controls EMIFA CE2 range A700 0000 − A7FF FFFF
0184 82A0
MAR168
Controls EMIFA CE2 range A800 0000 − A8FF FFFF
0184 82A4
MAR169
Controls EMIFA CE2 range A900 0000 − A9FF FFFF
0184 82A8
MAR170
Controls EMIFA CE2 range AA00 0000 − AAFF FFFF
0184 82AC
MAR171
Controls EMIFA CE2 range AB00 0000 − ABFF FFFF
0184 82B0
MAR172
Controls EMIFA CE2 range AC00 0000 − ACFF FFFF
0184 82B4
MAR173
Controls EMIFA CE2 range AD00 0000 − ADFF FFFF
0184 82B8
MAR174
Controls EMIFA CE2 range AE00 0000 − AEFF FFFF
0184 82BC
MAR175
Controls EMIFA CE2 range AF00 0000 − AFFF FFFF
0184 82C0
MAR176
Controls EMIFA CE3 range B000 0000 − B0FF FFFF
0184 82C4
MAR177
Controls EMIFA CE3 range B100 0000 − B1FF FFFF
0184 82C8
MAR178
Controls EMIFA CE3 range B200 0000 − B2FF FFFF
0184 82CC
MAR179
Controls EMIFA CE3 range B300 0000 − B3FF FFFF
0184 82D0
MAR180
Controls EMIFA CE3 range B400 0000 − B4FF FFFF
0184 82D4
MAR181
Controls EMIFA CE3 range B500 0000 − B5FF FFFF
0184 82D8
MAR182
Controls EMIFA CE3 range B600 0000 − B6FF FFFF
0184 82DC
MAR183
Controls EMIFA CE3 range B700 0000 − B7FF FFFF
0184 82E0
MAR184
Controls EMIFA CE3 range B800 0000 − B8FF FFFF
0184 82E4
MAR185
Controls EMIFA CE3 range B900 0000 − B9FF FFFF
0184 82E8
MAR186
Controls EMIFA CE3 range BA00 0000 − BAFF FFFF
0184 82EC
MAR187
Controls EMIFA CE3 range BB00 0000 − BBFF FFFF
0184 82F0
MAR188
Controls EMIFA CE3 range BC00 0000 − BCFF FFFF
0184 82F4
MAR189
Controls EMIFA CE3 range BD00 0000 − BDFF FFFF
0184 82F8
MAR190
Controls EMIFA CE3 range BE00 0000 − BEFF FFFF
0184 82FC
MAR191
Controls EMIFA CE3 range BF00 0000 − BFFF FFFF
0184 8300 −0184 83FC
MAR192 to
MAR255
Reserved
0184 8400 −0187 FFFF
−
Reserved
April 2004 − Revised May 2005
COMMENTS
SPRS247E
25
Peripheral Register Descriptions
Table 2−5. Quick DMA (QDMA) and Pseudo Registers
HEX ADDRESS RANGE
ACRONYM
0200 0000
QOPT
QDMA options parameter register
0200 0004
QSRC
QDMA source address register
0200 0008
QCNT
QDMA frame count register
0200 000C
QDST
QDMA destination address register
0200 0010
QIDX
QDMA index register
0200 0014 − 0200 001C
REGISTER NAME
Reserved
0200 0020
QSOPT
QDMA pseudo options register
0200 0024
QSSRC
QDMA psuedo source address register
0200 0028
QSCNT
QDMA psuedo frame count register
0200 002C
QSDST
QDMA destination address register
0200 0030
QSIDX
QDMA psuedo index register
Table 2−6. EDMA Registers (C64x)
HEX ADDRESS RANGE
26
ACRONYM
REGISTER NAME
01A0 0800 − 01A0 FF98
−
01A0 FF9C
EPRH
Reserved
Event polarity high register
01A0 FFA4
CIPRH
Channel interrupt pending high register
01A0 FFA8
CIERH
Channel interrupt enable high register
01A0 FFAC
CCERH
Channel chain enable high register
01A0 FFB0
ERH
01A0 FFB4
EERH
Event high register
Event enable high register
01A0 FFB8
ECRH
Event clear high register
01A0 FFBC
ESRH
Event set high register
01A0 FFC0
PQAR0
Priority queue allocation register 0
01A0 FFC4
PQAR1
Priority queue allocation register 1
01A0 FFC8
PQAR2
Priority queue allocation register 2
01A0 FFCC
PQAR3
Priority queue allocation register 3
01A0 FFDC
EPRL
Event polarity low register
01A0 FFE0
PQSR
Priority queue status register
01A0 FFE4
CIPRL
Channel interrupt pending low register
01A0 FFE8
CIERL
Channel interrupt enable low register
01A0 FFEC
CCERL
Channel chain enable low register
01A0 FFF0
ERL
01A0 FFF4
EERL
Event enable low register
01A0 FFF8
ECRL
Event clear low register
01A0 FFFC
ESRL
Event set low register
01A1 0000 − 01A3 FFFF
–
SPRS247E
Event low register
Reserved
April 2004 − Revised May 2005
Peripheral Register Descriptions
Table 2−7. EDMA Parameter RAM (C64x)†
HEX ADDRESS RANGE
ACRONYM
01A0 0000 − 01A0 0017
−
Parameters for Event 0 (6 words)
01A0 0018 − 01A0 002F
−
Parameters for Event 1 (6 words)
01A0 0030 − 01A0 0047
−
Parameters for Event 2 (6 words)
01A0 0048 − 01A0 005F
−
Parameters for Event 3 (6 words)
01A0 0060 − 01A0 0077
−
Parameters for Event 4 (6 words)
01A0 0078 − 01A0 008F
−
Parameters for Event 5 (6 words)
01A0 0090 − 01A0 00A7
−
Parameters for Event 6 (6 words)
01A0 00A8 − 01A0 00BF
−
Parameters for Event 7 (6 words)
01A0 00C0 − 01A0 00D7
−
Parameters for Event 8 (6 words)
01A0 00D8 − 01A0 00EF
−
Parameters for Event 9 (6 words)
01A0 00F0 − 01A0 00107
−
Parameters for Event 10 (6 words)
01A0 0108 − 01A0 011F
−
Parameters for Event 11 (6 words)
01A0 0120 − 01A0 0137
−
Parameters for Event 12 (6 words)
01A0 0138 − 01A0 014F
−
Parameters for Event 13 (6 words)
01A0 0150 − 01A0 0167
−
Parameters for Event 14 (6 words)
01A0 0168 − 01A0 017F
−
Parameters for Event 15 (6 words)
01A0 0150 − 01A0 0197
−
Parameters for Event 16 (6 words)
01A0 0168 − 01A0 01AF
−
Parameters for Event 17 (6 words)
COMMENTS
Parameters for Event 0
(6 words) or Reload/Link
Parameters for other Event
...
...
01A0 05D0 − 01A0 05E7
−
Parameters for Event 62 (6 words)
01A0 05E8 − 01A0 05FF
−
Parameters for Event 63 (6 words)
01A0 0600 − 01A0 0617
−
Reload/link parameters for Event 0 (6 words)
01A0 0618 − 01A0 062F
−
Reload/link parameters for Event 1 (6 words)
Reload/Link Parameters for
other Event 0−15
...
...
01A0 07E0 − 01A0 07F7
−
Reload/link parameters for Event 20 (6 words)
01A0 07F8 − 01A0 080F
−
Reload/link parameters for Event 21 (6 words)
01A0 0810 − 01A0 0827
−
Reload/link parameters for Event 22 (6 words)
...
...
†
REGISTER NAME
01A0 13C8 − 01A0 13DF
−
Reload/link parameters for Event 147 (6 words)
01A0 13E0 − 01A0 13F7
−
Reload/link parameters for Event 148 (6 words)
01A0 13F8 − 01A0 13FF
−
Scratch pad area (2 words)
01A0 1400 − 01A3 FFFF
−
Reserved
The C6413/C6410 device has 213 EDMA parameters total: 64-Event/Reload channels and 149-Reload only parameter sets [six (6) words each]
that can be used to reload/link EDMA transfers.
April 2004 − Revised May 2005
SPRS247E
27
Peripheral Register Descriptions
Table 2−8. Interrupt Selector Registers (C64x)
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
COMMENTS
019C 0000
MUXH
Interrupt multiplexer high
Selects which interrupts drive CPU
interrupts 10−15 (INT10−INT15)
019C 0004
MUXL
Interrupt multiplexer low
Selects which interrupts drive CPU
interrupts 4−9 (INT04−INT09)
019C 0008
EXTPOL
External interrupt polarity
Sets the polarity of the external
interrupts (EXT_INT4−EXT_INT7)
019C 000C − 019F FFFF
−
Reserved
Table 2−9. Device Configuration Registers
HEX ADDRESS RANGE
28
ACRONYM
REGISTER NAME
COMMENTS
01B3 F000
PERCFG
Peripheral Configuration Register
Enables or disables specific
peripherals. This register is also
used for power-down of disabled
peripherals.
01B3 F004
DEVSTAT
Device Status Register
Read-only. Provides status of
the User’s device configuration
on reset.
01B3 F008
JTAGID
JTAG Identification Register
Read-only. Provides
JTAG ID of the device.
01B3 F00C − 01B3 F014
−
01B3 F018
PCFGLOCK
01B3 F01C − 01B3 FFFF
−
SPRS247E
32-bit
Reserved
Peripheral Configuration Lock Register
Reserved
April 2004 − Revised May 2005
Peripheral Register Descriptions
Table 2−10. McBSP 0 Registers
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
018C 0000
DRR0
McBSP0 data receive register via Configuration Bus
0x3000 0000 − 0x33FF FFFF
DRR0
McBSP0 data receive register via Peripheral Bus
018C 0004
DXR0
McBSP0 data transmit register via Configuration Bus
0x3000 0000 − 0x33FF FFFF
DXR0
McBSP0 data transmit register via Peripheral Bus
018C 0008
SPCR0
018C 000C
RCR0
McBSP0 receive control register
018C 0010
XCR0
McBSP0 transmit control register
018C 0014
SRGR0
018C 0018
MCR0
018C 001C
RCERE00
McBSP0 enhanced receive channel enable register 0
018C 0020
XCERE00
McBSP0 enhanced transmit channel enable register 0
COMMENTS
The CPU and EDMA controller
can only read this register; they
cannot write to it.
McBSP0 serial port control register
McBSP0 sample rate generator register
McBSP0 multichannel control register
018C 0024
PCR0
018C 0028
RCERE10
McBSP0 pin control register
McBSP0 enhanced receive channel enable register 1
018C 002C
XCERE10
McBSP0 enhanced transmit channel enable register 1
018C 0030
RCERE20
McBSP0 enhanced receive channel enable register 2
018C 0034
XCERE20
McBSP0 enhanced transmit channel enable register 2
018C 0038
RCERE30
McBSP0 enhanced receive channel enable register 3
018C 003C
XCERE30
McBSP0 enhanced transmit channel enable register 3
018C 0040 − 018F FFFF
–
Reserved
Table 2−11. McBSP 1 Registers
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
0190 0000
DRR1
McBSP1 data receive register via Configuration Bus
0x3400 0000 − 0x37FF FFFF
DRR1
McBSP1 data receive register via peripheral bus
0190 0004
DXR1
McBSP1 data transmit register via configuration bus
0x3400 0000 − 0x37FF FFFF
DXR1
McBSP1 data transmit register via peripheral bus
0190 0008
SPCR1
0190 000C
RCR1
McBSP1 receive control register
0190 0010
XCR1
McBSP1 transmit control register
0190 0014
SRGR1
The CPU and EDMA controller
can only read this register; they
cannot write to it.
McBSP1 serial port control register
McBSP1 sample rate generator register
0190 0018
MCR1
0190 001C
RCERE01
McBSP1 enhanced receive channel enable register 0
0190 0020
XCERE01
McBSP1 enhanced transmit channel enable register 0
0190 0024
PCR1
0190 0028
RCERE11
McBSP1 enhanced receive channel enable register 1
0190 002C
XCERE11
McBSP1 enhanced transmit channel enable register 1
0190 0030
RCERE21
McBSP1 enhanced receive channel enable register 2
0190 0034
XCERE21
McBSP1 enhanced transmit channel enable register 2
McBSP1 multichannel control register
McBSP1 pin control register
0190 0038
RCERE31
McBSP1 enhanced receive channel enable register 3
0190 003C
XCERE31
McBSP1 enhanced transmit channel enable register 3
0190 0040 − 0193 FFFF
–
April 2004 − Revised May 2005
COMMENTS
Reserved
SPRS247E
29
Peripheral Register Descriptions
Table 2−12. Timer 0 Registers
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
COMMENTS
0194 0000
CTL0
Timer 0 control register
Determines the operating mode of the timer, monitors the
timer status, and controls the function of the TOUT pin.
0194 0004
PRD0
Timer 0 period register
Contains the number of timer input clock cycles to count.
This number controls the TSTAT signal frequency.
0194 0008
CNT0
Timer 0 counter register
Contains the current value of the incrementing counter.
0194 000C − 0197 FFFF
−
Reserved
Table 2−13. Timer 1 Registers
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
COMMENTS
0198 0000
CTL1
Timer 1 control register
Determines the operating mode of the timer, monitors the
timer status, and controls the function of the TOUT pin.
0198 0004
PRD1
Timer 1 period register
Contains the number of timer input clock cycles to count.
This number controls the TSTAT signal frequency.
0198 0008
CNT1
Timer 1 counter register
Contains the current value of the incrementing counter.
0198 000C − 019B FFFF
−
Reserved
Table 2−14. Timer 2 Registers
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
COMMENTS
01AC 0000
CTL2
Timer 2 control register
Determines the operating mode of the timer, monitors the
timer status.
01AC 0004
PRD2
Timer 2 period register
Contains the number of timer input clock cycles to count.
This number controls the TSTAT signal frequency.
01AC 0008
CNT2
Timer 2 counter register
Contains the current value of the incrementing counter.
01AC 000C − 01AF FFFF
−
30
SPRS247E
Reserved
April 2004 − Revised May 2005
Peripheral Register Descriptions
Table 2−15. HPI Registers
†
HEX ADDRESS RANGE
ACRONYM
−
HPID
HPI data register
REGISTER NAME
Host read/write access only
COMMENTS
0188 0000
HPIC
HPI control register
HPIC has both Host/CPU read/write access
0188 0004
HPIA
(HPIAW)†
HPI address register
(Write)
0188 0008
HPIA
(HPIAR)†
HPI address register
(Read)
0188 000C − 0189 FFFF
−
018A 0000
HPI_TRCTL
018A 0004 − 018B FFFF
−
HPIA has both Host/CPU read/write access
Reserved
HPI transfer request control
register
Reserved
Host access to the HPIA register updates both the HPIAW and HPIAR registers. The CPU can access HPIAW and HPIAR independently.
Table 2−16. GP0 Registers
HEX ADDRESS RANGE
ACRONYM
01B0 0000
GPEN
GP0 enable register
REGISTER NAME
01B0 0004
GPDIR
GP0 direction register
01B0 0008
GPVAL
GP0 value register
01B0 000C
−
Reserved
01B0 0010
GPDH
GP0 delta high register
01B0 0014
GPHM
GP0 high mask register
01B0 0018
GPDL
GP0 delta low register
01B0 001C
GPLM
GP0 low mask register
01B0 0020
GPGC
GP0 global control register
01B0 0024
GPPOL
GP0 interrupt polarity register
01B0 0028 − 01B3 EFFF
−
April 2004 − Revised May 2005
Reserved
SPRS247E
31
Peripheral Register Descriptions
Table 2−17. McASP0 and McASP1 Control Registers
HEX ADDRESS RANGE
ACRONYM
McASP0
McASP1
01B4 C000
01B5 0000
PID
01B4 C004
01B5 0004
PWRDEMU
Peripheral Identification register
[Register value: 0x0010 0101]
Power down and emulation management register
01B4 C008
01B5 0008
−
Reserved
01B4 C00C
01B5 000C
−
Reserved
01B4 C010
01B5 0010
PFUNC
Pin function register
01B4 C014
01B5 0014
PDIR
Pin direction register
01B4 C018
01B5 0018
PDOUT
Pin data out register
01B4 C01C
01B5 001C
PDIN/PDSET
Pin data in / data set register
Read returns: PDIN
Writes affect: PDSET
01B4 C020
01B5 0020
PDCLR
01B4 C024 − 01B4 C040
01B5 0024 − 01B5 0040
−
01B4 C044
01B5 0044
GBLCTL
Global control register
01B4 C048
01B5 0048
AMUTE
Mute control register
01B4 C04C
01B5 004C
DLBCTL
Digital Loop-back control register
DIT mode control register
01B4 C050
01B5 0050
DITCTL
01B4 C054 − 01B4 C05C
01B5 0054 − 01B5 005C
−
01B4 C060
01B5 0060
RGBLCTL
01B4 C064
01B5 0064
RMASK
Pin data clear register
Reserved
Reserved
Alias of GBLCTL containing only Receiver Reset bits,
allows transmit to be reset independently from receive.
Receiver format unit bit mask register
01B4 C068
01B5 0068
RFMT
01B4 C06C
01B5 006C
AFSRCTL
01B4 C070
01B5 0070
ACLKRCTL
01B4 C074
01B5 0074
AHCLKRCTL
01B4 C078
01B5 0078
RTDM
01B4 C07C
01B5 007C
RINTCTL
01B4 C080
01B5 0080
RSTAT
Status register − Receiver
01B4 C084
01B5 0084
RSLOT
Current receive TDM slot register
01B4 C088
01B5 0088
RCLKCHK
01B4 C08C − 01B4 C09C
01B5 008C − 01B5 009C
−
01B4 C0A0
01B5 00A0
XGBLCTL
01B4 C0A4
01B5 00A4
XMASK
32
REGISTER NAME
Receive bit stream format register
Receive frame sync control register
Receive clock control register
High-frequency receive clock control register
Receive TDM slot 0−31 register
Receiver interrupt control register
Receiver clock check control register
Reserved
Alias of GBLCTL containing only Transmitter Reset bits,
allows transmit to be reset independently from receive.
Transmit format unit bit mask register
01B4 C0A8
01B5 00A8
XFMT
01B4 C0AC
01B5 00AC
AFSXCTL
01B4 C0B0
01B5 00B0
ACLKXCTL
01B4 C0B4
01B5 00B4
AHCLKXCTL
01B4 C0B8
01B5 00B8
XTDM
Transmit TDM slot 0−31 register
01B4 C0BC
01B5 00BC
XINTCTL
Transmit interrupt control register
01B4 C0C0
01B5 00C0
XSTAT
Status register − Transmitter
01B4 C0C4
01B5 00C4
XSLOT
Current transmit TDM slot
01B4 C0C8
01B5 00C8
XCLKCHK
SPRS247E
Transmit bit stream format register
Transmit frame sync control register
Transmit clock control register
High-frequency Transmit clock control register
Transmit clock check control register
April 2004 − Revised May 2005
Peripheral Register Descriptions
Table 2−17. McASP0 and McASP1 Control Registers (Continued)
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
McASP0
McASP1
01B4 C0CC − 01B4 C0FC
01B5 00CC − 01B5 00FC
−
01B4 C100
01B5 0100
DITCSRA0
Left (even TDM slot) channel status register file
01B4 C104
01B5 0104
DITCSRA1
Left (even TDM slot) channel status register file
01B4 C108
01B5 0108
DITCSRA2
Left (even TDM slot) channel status register file
01B4 C10C
01B5 010C
DITCSRA3
Left (even TDM slot) channel status register file
01B4 C110
01B5 0110
DITCSRA4
Left (even TDM slot) channel status register file
01B4 C114
01B5 0114
DITCSRA5
Left (even TDM slot) channel status register file
Reserved
01B4 C118
01B5 0118
DITCSRB0
Right (odd TDM slot) channel status register file
01B4 C11C
01B5 011C
DITCSRB1
Right (odd TDM slot) channel status register file
01B4 C120
01B5 0120
DITCSRB2
Right (odd TDM slot) channel status register file
01B4 C124
01B5 0124
DITCSRB3
Right (odd TDM slot) channel status register file
01B4 C128
01B5 0128
DITCSRB4
Right (odd TDM slot) channel status register file
01B4 C12C
01B5 012C
DITCSRB5
Right (odd TDM slot) channel status register file
01B4 C130
01B5 0130
DITUDRA0
Left (even TDM slot) user data register file
01B4 C134
01B5 0134
DITUDRA1
Left (even TDM slot) user data register file
01B4 C138
01B5 0138
DITUDRA2
Left (even TDM slot) user data register file
01B4 C13C
01B5 013C
DITUDRA3
Left (even TDM slot) user data register file
01B4 C140
01B5 0140
DITUDRA4
Left (even TDM slot) user data register file
01B4 C144
01B5 0144
DITUDRA5
Left (even TDM slot) user data register file
01B4 C148
01B5 0148
DITUDRB0
Right (odd TDM slot) user data register file
01B4 C14C
01B5 014C
DITUDRB1
Right (odd TDM slot) user data register file
01B4 C150
01B5 0150
DITUDRB2
Right (odd TDM slot) user data register file
01B4 C154
01B5 0154
DITUDRB3
Right (odd TDM slot) user data register file
01B4 C158
01B5 0158
DITUDRB4
Right (odd TDM slot) user data register file
01B4 C15C
01B5 015C
DITUDRB5
Right (odd TDM slot) user data register file
01B4 C160 − 01B4 C17C
01B5 0160 − 01B5 017C
−
01B4 C180
01B5 0180
SRCTL0
Serializer 0 control register
01B4 C184
01B5 0184
SRCTL1
Serializer 1 control register
Reserved
01B4 C188
01B5 0188
SRCTL2
Serializer 2 control register
01B4 C18C
01B5 018C
SRCTL3
Serializer 3 control register
01B4 C190
01B5 0190
SRCTL4
Serializer 4 control register
01B4 C194
01B5 0194
SRCTL5
Serializer 5 control register
01B4 C198
01B5 0198
−
Reserved
01B4 C19C
01B5 019C
−
Reserved
01B4 C1A0 − 01B4 C1FC
01B5 01A0 − 01B5 01FC
−
Reserved
01B4 C200
01B5 0200
XBUF0
Transmit Buffer for Serializer 0
01B4 C204
01B5 0204
XBUF1
Transmit Buffer for Serializer 1
01B4 C208
01B5 0208
XBUF2
Transmit Buffer for Serializer 2
01B4 C20C
01B5 020C
XBUF3
Transmit Buffer for Serializer 3
01B4 C210
01B5 0210
XBUF4
Transmit Buffer for Serializer 4
01B4 C214
01B5 0214
XBUF5
Transmit Buffer for Serializer 5
April 2004 − Revised May 2005
SPRS247E
33
Peripheral Register Descriptions
Table 2−17. McASP0 and McASP1 Control Registers (Continued)
HEX ADDRESS RANGE
McASP0
McASP1
ACRONYM
REGISTER NAME
01B4 C218
01B5 0218
−
Reserved
01B4 C21C
01B5 021C
−
Reserved
01B4 C220 − 01B4 C27C
01B5 0220 − 01B5 027C
−
Reserved
01B4 C280
01B5 0280
RBUF0
Receive Buffer for Serializer 0
01B4 C284
01B5 0284
RBUF1
Receive Buffer for Serializer 1
01B4 C288
01B5 0288
RBUF2
Receive Buffer for Serializer 2
01B4 C28C
01B5 028C
RBUF3
Receive Buffer for Serializer 3
01B4 C290
01B5 0290
RBUF4
Receive Buffer for Serializer 4
01B4 C294
01B5 0294
RBUF5
Receive Buffer for Serializer 5
01B4 C298
01B5 0298
−
Reserved
01B4 C29C
01B5 029C
−
Reserved
01B4 C2A0 − 01B4 FFFF
01B5 02A0 − 01B5 3FFF
−
Reserved
Table 2−18. McASP0 Data Registers
HEX ADDRESS RANGE
ACRONYM
3C00 0000 − 3C0F FFFF
RBUF/XBUFx
REGISTER NAME
McASPx receive buffers or McASPx transmit buffers via
the Peripheral Data Bus.
COMMENTS
(Used when RSEL or XSEL
bits = 0 [these bits are located
in the RFMT or XFMT
registers, respectively].)
Table 2−19. McASP1 Data Registers
HEX ADDRESS RANGE
3C10 0000 − 3C1F FFFF
34
SPRS247E
ACRONYM
RBUF/XBUFx
REGISTER NAME
McASPx receive buffers or McASPx transmit buffers via
the Peripheral Data Bus.
COMMENTS
(Used when RSEL or XSEL
bits = 0 [these bits are located
in the RFMT or XFMT
registers, respectively].)
April 2004 − Revised May 2005
Peripheral Register Descriptions
Table 2−20. I2C0 and I2C1 Registers
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
I2C0
I2C1
01B4 0000
01B4 4000
I2COARx
I2Cx own address register
01B4 0004
01B4 4004
I2CIMRx
I2Cx interrupt mask/status register
01B4 0008
01B4 4008
I2CSTRx
I2Cx interrupt status register
01B4 000C
01B4 400C
I2CCLKLx
I2Cx clock low-time divider register
01B4 0010
01B4 4010
I2CCLKHx
I2Cx clock high-time divider register
01B4 0014
01B4 4014
I2CCNTx
I2Cx data count register
01B4 0018
01B4 4018
I2CDRRx
I2Cx data receive register
01B4 001C
01B4 401C
I2CSARx
I2Cx slave address register
01B4 0020
01B4 4020
I2CDXRx
I2Cx data transmit register
01B4 0024
01B4 4024
I2CMDRx
I2Cx mode register
01B4 0028
01B4 4028
I2CIVRx
I2Cx interrupt vector register
01B4 002C
01B4 402C
I2CEMDRx
I2Cx Extended mode register
01B4 0030
01B4 4030
I2CPSCx
I2Cx prescaler register
01B4 0034
01B4 4034
I2CPID1x
I2Cx Peripheral Identification register 1
[Value: 0x0000 0105]
01B4 0038
01B4 4038
I2CPID2x
I2Cx Peripheral Identification register 2
[Value: 0x0000 0005]
01B4 003C − 01B4 0044
01B4 403C − 01B4 4044
−
01B4 0048
01B4 4048
I2CPFUNCx
I2Cx pin function register
01B4 004C
01B4 404C
I2CPDIRx
I2Cx pin direction register
01B4 0050
01B4 4050
I2CPDINx
I2Cx pin data in register
01B4 0054
01B4 4054
I2CPDOUTx
I2Cx pin data out register
Reserved
01B4 0058
01B4 4058
I2CPDSETx
I2Cx pin data set register
01B4 005C
01B4 405C
I2CPDCLRx
I2Cx pin data clear register
01B4 0060 − 01B4 3FFF
01B4 4060 − 01B4 7FFF
−
April 2004 − Revised May 2005
Reserved
SPRS247E
35
EDMA Channel Synchronization Events
2.7
EDMA Channel Synchronization Events
The C64x EDMA supports up to 64 EDMA channels which service peripheral devices and external memory.
Table 2−21 lists the source of C64x EDMA synchronization events associated with each of the programmable
EDMA channels. For the C6413/C6410 device, the association of an event to a channel is fixed; each of the
EDMA channels has one specific event associated with it. These specific events are captured in the EDMA
event registers (ERL, ERH) even if the events are disabled by the EDMA event enable registers (EERL,
EERH). The priority of each event can be specified independently in the transfer parameters stored in the
EDMA parameter RAM. For more detailed information on the EDMA module and how EDMA events are
enabled, captured, processed, linked, chained, and cleared, etc., see the TMS320C6000 DSP Enhanced
Direct Memory Access (EDMA) Controller Reference Guide (literature number SPRU234).
Table 2−21. TMS320C6413/C6410 EDMA Channel Synchronization Events†
†
36
EDMA
CHANNEL
EVENT NAME
0
DSP_INT
1
TINT0
Timer 0 interrupt
2
TINT1
Timer 1 interrupt
3
SD_INTA
4
GPINT4/EXT_INT4
GP0 event 4/External interrupt pin 4
5
GPINT5/EXT_INT5
GP0 event 5/External interrupt pin 5
6
GPINT6/EXT_INT6
GP0 event 6/External interrupt pin 6
7
GPINT7/EXT_INT7
GP0 event 7/External interrupt pin 7
8
GPINT0
GP0 event 0
9
GPINT1
GP0 event 1
10
GPINT2
GP0 event 2
11
GPINT3
GP0 event 3
12
XEVT0
McBSP0 transmit event
13
REVT0
McBSP0 receive event
14
XEVT1
McBSP1 transmit event
McBSP1 receive event
EVENT DESCRIPTION
HPI-to-DSP interrupt
EMIFA SDRAM timer interrupt
15
REVT1
16−18
–
19
TINT2
20−27
–
None
28
–
None
None
Timer 2 interrupt
29
–
None
30−31
–
None
32
AXEVTE0
McASP0 transmit even event
33
AXEVTO0
McASP0 transmit odd event
34
AXEVT0
McASP0 transmit event
35
AREVTE0
McASP0 receive even event
36
AREVTO0
McASP0 receive odd event
37
AREVT0
McASP0 receive event
38
AXEVTE1
McASP1 transmit even event
39
AXEVTO1
McASP1 transmit odd event
40
AXEVT1
McASP1 transmit event
In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer
completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000 DSP Enhanced Direct Memory
Access (EDMA) Controller Reference Guide (literature number SPRU234).
SPRS247E
April 2004 − Revised May 2005
Interrupt Sources and Interrupt Selector
Table 2−21. TMS320C6413/C6410 EDMA Channel Synchronization Events† (Continued)
EDMA
CHANNEL
†
EVENT NAME
EVENT DESCRIPTION
41
AREVTE1
McASP1 receive even event
42
AREVTO1
McASP1 receive odd event
43
AREVT1
McASP1 receive event
44
ICREVT0
I2C0 receive event
45
ICXEVT0
I2C0 transmit event
46
ICREVT1
I2C1 receive event
47
ICXEVT1
I2C1 transmit event
48
GPINT8
GP0 event 8
49
GPINT9
GP0 event 9
50
GPINT10
GP0 event 10
51
GPINT11
GP0 event 11
52
GPINT12
GP0 event 12
53
GPINT13
GP0 event 13
54
GPINT14
GP0 event 14
55
GPINT15
GP0 event 15
56−63
–
None
In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer
completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000 DSP Enhanced Direct Memory
Access (EDMA) Controller Reference Guide (literature number SPRU234).
2.8
Interrupt Sources and Interrupt Selector
The C64x DSP core supports 16 prioritized interrupts, which are listed in Table 2−22. The highest-priority
interrupt is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts
(INT_00−INT_03) are non-maskable and fixed. The remaining interrupts (INT_04−INT_15) are maskable and
default to the interrupt source specified in Table 2−22. The interrupt source for interrupts 4−15 can be
programmed by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector
Control registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004).
April 2004 − Revised May 2005
SPRS247E
37
Interrupt Sources and Interrupt Selector
Table 2−22. C6413/C6410 DSP Interrupts
CPU
INTERRUPT
NUMBER
INTERRUPT
SELECTOR
CONTROL
REGISTER
SELECTOR
VALUE
(BINARY)
INTERRUPT
EVENT
INT_00†
−
−
RESET
INT_01†
−
−
NMI
INT_02†
−
−
Reserved
Reserved. Do not use.
INT_03†
−
−
Reserved
Reserved. Do not use.
INT_04‡
MUXL[4:0]
00100
GPINT4/EXT_INT4
GP0 interrupt 4/External interrupt pin 4
INT_05‡
MUXL[9:5]
00101
GPINT5/EXT_INT5
GP0 interrupt 5/External interrupt pin 5
INT_06‡
MUXL[14:10]
00110
GPINT6/EXT_INT6
GP0 interrupt 6/External interrupt pin 6
INT_07‡
MUXL[20:16]
00111
GPINT7/EXT_INT7
GP0 interrupt 7/External interrupt pin 7
INT_08‡
MUXL[25:21]
01000
EDMA_INT
EDMA channel (0 through 63) interrupt
INT_09‡
MUXL[30:26]
01001
EMU_DTDMA
INT_10‡
MUXH[4:0]
00011
SD_INTA
INT_11‡
MUXH[9:5]
01010
EMU_RTDXRX
EMU real-time data exchange (RTDX) receive
INT_12‡
MUXH[14:10]
01011
EMU_RTDXTX
EMU RTDX transmit
INT_13‡
MUXH[20:16]
00000
DSP_INT
HPI-to-DSP interrupt
INT_14‡
MUXH[25:21]
00001
TINT0
Timer 0 interrupt
INT_15‡
MUXH[30:26]
00010
TINT1
Timer 1 interrupt
−
−
01100
XINT0
McBSP0 transmit interrupt
−
−
01101
RINT0
McBSP0 receive interrupt
−
−
01110
XINT1
McBSP1 transmit interrupt
−
−
01111
RINT1
McBSP1 receive interrupt
−
−
10000
GPINT0
−
−
10001
Reserved
Reserved. Do not use.
−
−
10010
Reserved
Reserved. Do not use.
−
−
10011
TINT2
−
−
10100
Reserved
Reserved. Do not use.
−
−
10101
Reserved
Reserved. Do not use.
−
−
10110
ICINT0
I2C0 interrupt
−
−
10111
ICINT1
I2C1 interrupt
−
−
11000
AXINT1
McASP1 transmit interrupt
−
−
11001
ARINT1
McASP1 receive interrupt
−
−
11010
Reserved
Reserved. Do not use.
−
−
11011
Reserved
Reserved. Do not use.
−
−
11100
AXINT0
McASP0 transmit interrupt
−
−
11101
ARINT0
McASP0 receive interrupt
−
−
11110
Reserved
Reserved. Do not use.
−
−
11111
Reserved
Reserved. Do not use.
INTERRUPT SOURCE
EMU DTDMA
EMIFA SDRAM timer interrupt
GP0 interrupt 0
Timer 2 interrupt
†
Interrupts INT_00 through INT_03 are non-maskable and fixed.
‡ Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control registers fields.
Table 2−22 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information on interrupt sources and
selection, see the TMS320C6000 DSP Interrupt Selector Reference Guide (literature number SPRU646).
38
SPRS247E
April 2004 − Revised May 2005
Signal Groups Description
2.9
Signal Groups Description
CLKINSEL
CLKIN
CLKOUT4/GP0[1]†
CLKOUT6/GP0[2]†
CLKMODE3
CLKMODE2
CLKMODE1
CLKMODE0
PLLV
OSCIN
OSCOUT
OSCVDD
OSCVSS
OSC_DIS
TMS
TDO
TDI
TCK
TRST
EMU0
EMU1
EMU2
EMU3
EMU4
EMU5
EMU6
EMU7
EMU8
EMU9
EMU10
EMU11
HD15/GP0[15]§
HD14/GP0[14]§
HD13/GP0[13]§
HD12/GP0[12]§
HD11/GP0[11]§
HD10/GP0[10]§
HD9/GP0[9]§
HD8/GP0[8]§
Reset and
Interrupts
Clock/PLL
and
Oscillator
RESET
NMI
GP0[7]/EXT_INT7‡
GP0[6]/EXT_INT6‡
GP0[5]/EXT_INT5‡
GP0[4]/EXT_INT4‡
RSV
RSV
RSV
RSV
RSV
RSV
Reserved
IEEE Standard
1149.1
(JTAG)
Emulation
w
w
w
RSV
RSV
RSV
Control/Status
GP0
GP0[7]/EXT_INT7‡
GP0[6]/EXT_INT6‡
GP0[5]/EXT_INT5‡
GP0[4]/EXT_INT4‡
GP0[3]
CLKOUT6/GP0[2]†
CLKOUT4/GP0[1]†
GP0[0]
General-Purpose Input/Output 0 (GP0) Port
†
These pins are muxed with the GP0 pins and by default these signals function as clocks (CLKOUT4 or CLKOUT6). To use these muxed
pins as GPIO signals, the appropriate GPIO register bits (GPxEN and GPxDIR) must be properly enabled and configured. For more
details, see the Device Configurations section of this data sheet.
‡ These pins are GP0 pins that can also function as external interrupt sources (EXT_INT[7:4]). Default after reset is EXT_INTx or GPIO
as input-only.
§ These pins are muxed with the HPI peripheral pins and by default these signals function as HPI. For more details on these muxed pins,
see the Device Configurations section of this data sheet.
Figure 2−6. CPU and Peripheral Signals
April 2004 − Revised May 2005
SPRS247E
39
Signal Groups Description
32
AED[31:0]
Data
AECLKIN
ACE3
ACE2
Memory Map
Space Select
ACE1
ACE0
20
AEA[22:3]
ABE3
ABE2
ABE1
ABE0
External
Memory I/F
Control
Address
Byte Enables
Bus
Arbitration
AECLKOUT1
AECLKOUT2
ASDCKE
AARE/ASDCAS/ASADS/ASRE
AAOE/ASDRAS/ASOE
AAWE/ASDWE/ASWE
AARDY
ASOE3
APDT
AHOLD
AHOLDA
ABUSREQ
EMIFA (32-bit)
HD[31,30]
HD[29:16]/McASP1†
HD[15:8]/GP0[15:8]†
HD[7:0]
HCNTL0/AFSR1[1]†
HCNTL1
HHWIL/AFSR1[2]†
(HPI16 ONLY)
†
32
Data
HPI†
(Host-Port Interface)
Register Select
Control
Half-Word
Select
HAS/ACLKR1[1]†
HR/W/AFSR1[3]†
HCS/ACLKR1[2]†
HDS1/ACLKR1[3]†
HDS2
HRDY
HINT
These HPI pins are muxed with the McASP1 or GP0 peripherals. By default, these signals function as HPI and no function,
respectively. For more details on these muxed pins, see the Device Configurations section of this data sheet.
Figure 2−7. Peripheral Signals
40
SPRS247E
April 2004 − Revised May 2005
Signal Groups Description
McBSP1
McBSP0
CLKX1
FSX1
DX1
Transmit
Transmit
CLKR1
FSR1
DR1
Receive
Receive
CLKS1
Clock
CLKX0
FSX0
DX0
CLKR0
FSR0
DR0
Clock
CLKS0
McBSPs
(Multichannel Buffered
Serial Ports)
TOUT1/LENDIAN
TINP1
Timer 0
Timer 1
TOUT0
TINP0
Timer 2
Timers
SCL1
SDA1
I2C1
I2C0
SCL0
SDA0
I2Cs
Figure 2−7. Peripheral Signals (Continued)
April 2004 − Revised May 2005
SPRS247E
41
Signal Groups Description
(Transmit/Receive Data Pins)
(Transmit/Receive Data Pins)
AXR0[0]
AXR0[1]
AXR0[2]
AXR0[3]
(Transmit Bit Clock)
(Receive Bit Clock)
ACLKR0
AHCLKR0
AXR0[4]
AXR0[5]
6-Serial Ports
Flexible
Partitioning
Tx, Rx, OFF
Receive Clock
Generator
Transmit
Clock
Generator
(Receive Master Clock)
AFSR0
(Receive Frame Sync or
Left/Right Clock)
ACLKX0
AHCLKX0
(Transmit Master Clock)
Receive Clock
Check Circuit
Transmit
Clock Check
Circuit
Receive
Frame Sync
Transmit
Frame Sync
Error Detect
(see Note A)
Auto Mute
Logic
AFSX0
(Transmit Frame Sync or
Left/Right Clock)
AMUTE0
AMUTEIN0
McASP0
(Multichannel Audio Serial Port 0)
NOTES: A. The McASPs’ Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute input.
B. Bolded and italicized text within parentheses denotes the function of the pins in an audio system.
Figure 2−7. Peripheral Signals (Continued)
42
SPRS247E
April 2004 − Revised May 2005
Signal Groups Description
(Transmit/Receive Data Pins)
(Transmit/Receive Data Pins)
HD16/AXR1[0]
HD17/AXR1[1]
HD18/AXR1[2]
HD19/AXR1[3]
HD20/AXR1[4]
HD21/AXR1[5]
6-Serial Ports
Flexible
Partitioning
Tx, Rx, OFF
(Receive Bit Clock)
AFCMUX[1:0]
(PERCFG[10:9])
HD25/ACLKR1
HAS/ACLKR1[1]
HCS/ACLKR1[2]
HDS1/ACLKR1[3]
(Transmit Bit Clock)
Receive Clock
Generator
Transmit
Clock
Generator
AFCMUX[1:0]
(PERCFG[10:9])
(Receive Frame Sync or
Left/Right Clock)
HD27/AHCLKX1
(Transmit Master Clock)
HD26/AHCLKR1
(Receive Master Clock)
HD23/AFSR1
HCNTL0/AFSR1[1]
HHWIL/AFSR1[2]
HR/W/AFSR1[3]
HD24/ACLKX1
Receive Clock
Check Circuit
Transmit
Clock Check
Circuit
Receive
Frame Sync
Transmit
Frame Sync
Error Detect
(see Note A)
Auto Mute
Logic
HD22/AFSX1
(Transmit Frame Sync or
Left/Right Clock)
HD28/AMUTE1
HD29/AMUTEIN1
McASP1
(Multichannel Audio Serial Port 1)
NOTES: A. The McASPs’ Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute input.
B. Bolded and italicized text within parentheses denotes the function of the pins in an audio system.
Figure 2−7. Peripheral Signals (Continued)
April 2004 − Revised May 2005
SPRS247E
43
Device Configurations
3
Device Configurations
On the C6413/C6410 device, bootmode and certain device configurations/peripheral selections are
determined at device reset, while other device configurations/peripheral selections are software-configurable
via the peripheral configurations register (PERCFG) [address location 0x01B3F000] after device reset.
3.1
Device Configuration at Device Reset
Table 3−1 describes the C6413/C6410 device configuration pins. The logic level of the AEA[22:19],
TOUT1/LENDIAN, TOUT0/HPI_EN, and HD5 pins is latched at reset to determine the device configuration.
The logic level on the device configuration pins can be set by using external pullup/pulldown resistors or by
using some control device (e.g., FPGA/CPLD) to intelligently drive these pins. When using a control device,
care should be taken to ensure there is no contention on the lines when the device is out of reset. The
CLKINSEL and OSC_DIS configuration pins should remain driven to the correct levels during device operation
and must only be changed when RESET is low. The device configuration pins are sampled during reset and
are driven after the reset is removed. At this time, the control device should ensure it has stopped driving the
device configuration pins of the DSP to again avoid contention.
Table 3−1. C6413/C6410 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN,
HD5, CLKINSEL, and OSC_DIS)
CONFIGURATION
PIN
NO.
IPD/IPU†
TOUT1/LENDIAN
AA1
IPU
Device Endian mode (LEND)
0 – System operates in Big Endian mode
1 − System operates in Little Endian mode (default)
AEA[22:21]
[M21,
N21]
IPD
Bootmode [1:0]
00 – No boot (default mode)
01 − HPI boot (based on HPI_EN pin)
10 − Reserved
11 − EMIFA 8-bit ROM boot
IPD
EMIFA input clock select
Clock mode select for EMIFA (AECLKIN_SEL[1:0])
00 – AECLKIN (default mode)
01 − CPU/4 Clock Rate
10 − CPU/6 Clock Rate
11 − Reserved
IPD
HPI, McASP1, GP0[15:8] select
Selects whether the HPI peripheral or McASP1 peripheral, and GP0[15:8] pins are
functionally enabled
0 – HPI is enabled and the McASP1 peripheral and GP0 [15:8] pins are disabled
(default mode);
[HPI32, if HD5 = 1; HPI16 if HD5 = 0]
1 − HPI I is disabled and the McASP1 peripheral and GP0 [15:8] pins are enabled
For more detail on the peripherals (McASP1 and GP0[15:8] pins) muxed with HPI, see the
Table 3−2.
IPU
HPI peripheral bus width (HPI_WIDTH) select
0 − HPI operates as an HPI16.
(HPI bus is 16 bits wide. HD[15:0] pins are used for HPI and the remaining
HD[31:16] muxed
pins function as McASP1 peripheral pins or are reserved pins in the Hi-Z state.)
1 − HPI operates as an HPI32.
(HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.)
For more detail on the peripherals (McASP1 and GP0[15:8] pins) muxed with HPI, see the
Table 3−2.
AEA[20:19]
TOUT0/HPI_EN
HD5
44
SPRS247E
[P22,
N22]
AA2
Y13
FUNCTIONAL DESCRIPTION
April 2004 − Revised May 2005
Device Configurations
Table 3−1. C6413/C6410 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN,
HD5, CLKINSEL, and OSC_DIS) (Continued)
CONFIGURATION
PIN
IPD/IPU†
NO.
A11
CLKINSEL
IPU
FUNCTIONAL DESCRIPTION
PLL input clock source select
Selects whether the PLL input clock is CLKIN [pin high] or directly from the crystal oscillator
(OSCIN and OSCOUT) [pin low]. For proper device operation, this pin must be used in
conjunction with the OSC_DIS pin.
0 − Oscillator pads (OSCIN, OSCOUT directly from the crystal oscillator)
For proper device operation, OSC_DIS must be 0
1 − CLKIN square wave (default)
For proper device operation, OSC_DIS must be 1
This pin must be pulled to the correct level even after reset.
B7
OSC_DIS
IPU
Oscillator disable
Selects whether the Oscillator is enabled or disabled. For proper device operation, this pin
must follow the CLKINSEL pin operation.
0 − OSC enabled
1 − OSC disabled (default)
This pin must be pulled to the correct level even after reset.
†
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
3.2
Peripheral Configuration at Device Reset
Some C6413/C6410 peripherals share the same pins (internally muxed) and are mutually exclusive (i.e., HPI,
general-purpose input/output 0 pins GP0[15:8], and McASP1).
•
HPI, McASP1, and GP0 peripherals
The TOUT0/HPI_EN (AA2 pin) is latched at reset. This pin selects whether the HPI peripheral or McASP1
peripheral, and GP0[15:8] pins are functionally enabled (see Table 3−2).
Table 3−2. TOUT0/HPI_EN and HD5 Peripheral Selection (HPI or McASP1 and Select GP0 Pins)†
PERIPHERAL SELECTION
HPI_EN
(AA2)
0
0
1
PERIPHERALS SELECTED
HD5
[HPI_WIDTH]
(Y13)
0
1
HPI
McASP1
GP0 [15:8]
DESCRIPTION
16-bit HPI
Available
N/A‡
HPI_EN = 0, HD5 = 0
HPI16 is enabled and McASP1 peripheral is enabled
and GP0 [15:8] pins are disabled. All multiplexed
HPI/McASP1 pins function as McASP1 pins. All
multiplexed HPI/GP0 are reserved pins in the Hi-Z state.
32-bit HPI
N/A‡
N/A‡
HPI_EN = 0, HD5 = 1
HPI32 is enabled and McASP1 peripheral and GP0
[15:8] pins are disabled. All multiplexed HPI/McASP1
and HPI/GP0 pins function as HPI pins.
x
N/A‡
Available
Available
HPI_EN = 1, HD5 = x (don’t care)
HPI is disabled and the McASP1 peripheral and GP0
[15:8] pins are enabled. All multiplexed HPI/McASP1
and HPI/GP0 pins function as McASP1 and GP0 pins,
respectively. To use the GP0 pins, the appropriate bits
in the GP0EN and GP0DIR registers need to be set. All
standalone HPI pins are reserved pins in the Hi-Z state
†
The TOUT0/HPI_EN pin has an internal pulldown that enables the HPI by default. The TOUT0/HPI_EN pin can disable the HPI via an external
pullup resistor or be driven high during reset. The TOUT0/HPI_EN pin is not software-controllable.
‡ N/A = Not available
April 2004 − Revised May 2005
SPRS247E
45
Device Configurations
3.3
Peripheral Selection After Device Reset
HPI, McBSP1, McBSP0, McASP1, McASP0, I2C1, and I2C0
The C6413/C6410 device has designated registers for peripheral configuration (PERCFG), device status
(DEVSTAT), and JTAG identification (JTAGID). These registers are part of the Device Configuration module
and are mapped to a 4K block memory starting at 0x01B3F000. The CPU accesses these registers via the
CFGBUS.
The peripheral configuration register (PERCFG), allows the user to control the peripheral selection of the
McASP1, McASP0, I2C1, and I2C0 peripherals. For more detailed information on the PERCFG register
control bits, see Figure 3−1 and Table 3−3.
31
28
27
24
Reserved†
Reserved†
R-0
R-0
16
23
Reserved†
R-0
15
11
7
10
9
8
Reserved†
AFCMUX[1:0]
MCASP1EN
R-0
R/W-0
R/W-0
6
5
4
3
2
1
I2C1EN
Reserved†
Reserved†
Reserved†
I2C0EN
MCBSP1EN
MCBSP0EN
MCASP0EN
R/W-0
R-0
R-0
R-0
R/W-0
R-1
R-1
R/W-0
0
Legend: R = Read only; R/W = Read/Write; -n = value after reset
†
For proper device operation, all reserved bits have to be written with “0”.
Figure 3−1. Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000]
46
SPRS247E
April 2004 − Revised May 2005
Device Configurations
Table 3−3. Peripheral Configuration (PERCFG) Register Selection Bit Descriptions
BIT
NAME
31:11
Reserved
10:9
AFCMUX[1:0]
DESCRIPTION
Reserved. Read-only, for proper device operation, all reserved bits have to be written with “0”.
Clocks and frame syncs select bits.
Determines which of the clock and frame sync pairs are input to McASP1.
00 = ACLKR1, AFSR1 pins (default).
01 = ACLKR1[1], AFSR1[1] pins
10 = ACLKR1[2], AFSR1[2] pins
11 = ACLKR1[3], AFSR1[3] pins
[designed for multiple non-simultaneous I2S sources with different clock sources].
MCASP1EN
McASP1 select bit.
Selects whether the McASP1 peripheral is enabled or disabled (default).
(This feature allows power savings by disabling the peripheral when not in use.)
0 = McASP1 is disabled and the module is powered down [default].
1 = McASP1 is enabled.
7
I2C1EN
Inter-integrated circuit 1 (I2C1) enable bit.
Selects whether I2C1 peripheral is enabled or disabled (default).
(This feature allows power savings by disabling the peripheral when not in use.)
0 = I2C1 is disabled, and the module is powered down (default).
1 = I2C1 is enabled.
6:4
Reserved
8
Reserved. Read-only, for proper device operation, all reserved bits have to be written with “0”.
Inter-integrated circuit 0 (I2C0) enable bit.
Selects whether I2C0 peripheral is enabled or disabled (default).
(This feature allows power savings by disabling the peripheral when not in use.)
0 = I2C0 is disabled, and the module is powered down (default).
1 = I2C0 is enabled.
3
I2C0EN
2
MCBSP1EN
McBSP1 enable bit.
This bit is read-only as a “1” (McBSP1 always enabled).
1
MCBSP0EN
McBSP0 enable bit .
This bit is read-only as a “1” (McBSP0 always enabled).
MCASP0EN
McASP0 select bit.
Selects whether the McASP0 peripheral is enabled or disabled.
(This feature allows power savings by disabling the peripheral when not in use.)
0 = McASP0 is disabled.
1 = McASP0 is enabled.
0
April 2004 − Revised May 2005
SPRS247E
47
Device Configurations
3.4
Peripheral Configuration Lock
By default, the McASP1, McASP0, I2C1, and I2C0 peripherals are disabled on power up. In order to use these
peripherals on the C6413/C6410 device, the peripheral must first be enabled in the Peripheral Configuration
register (PERCFG). Software muxed pins should not be programmed to switch functionalities during
run-time. Care should also be taken to ensure that no accesses are being performed before disabling
the peripherals. To help minimize power consumption in the C6413/C6410 device, unused peripherals may
be disabled..
Figure 3−2 shows the flow needed to enable (or disable) a given peripheral on the C6413/C6410 device.
Unlock the PERCFG Register
Using the PCFGLOCK Register
Write to
PERCFG Register
to Enable/Disable Peripherals
Read from
PERCFG Register
Wait 128 CPU Cycles Before
Accessing Enabled Peripherals
Figure 3−2. Peripheral Enable/Disable Flow Diagram
A 32-bit key (value = 0x10C0010C) must be written to the Peripheral Configuration Lock register
(PCFGLOCK) in order to unlock access to the PERCFG register. Reading the PCFGLOCK register
determines whether the PERCFG register is currently locked (LOCKSTAT bit = 1) or unlocked (LOCKSTAT
bit = 0), see Figure 3−3. A peripheral can only be enabled when the PERCFG register is “unlocked”
(LOCKSTAT bit = 0).
48
SPRS247E
April 2004 − Revised May 2005
Device Configurations
Read Accesses
31
1
0
Reserved
LOCKSTAT
R-0
R-1
Write Accesses
31
0
LOCK
W-0
Legend: R = Read only; R/W = Read/Write; -n = value after reset
Figure 3−3. PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] − Read/Write Accesses
Table 3−4. PCFGLOCK Register Selection Bit Descriptions − Read Accesses
BIT
NAME
31:1
Reserved
0
LOCKSTAT
DESCRIPTION
Reserved. Read-only, writes have no effect.
Lock status bit.
Determines whether the PERCFG register is locked or unlocked.
0 = Unlocked, read accesses to the PERCFG register allowed.
1 = Locked, write accesses to the PERCFG register do not modify the register state [default].
Reads are unaffected by Lock Status.
Table 3−5. PCFGLOCK Register Selection Bit Descriptions − Write Accesses
BIT
NAME
31:0
LOCK
DESCRIPTION
Lock bits.
0x10C0010C = Unlocks PERCFG register accesses.
Any write to the PERCFG register will automatically relock the register. In order to avoid the unnecessary
overhead of multiple unlock/enable sequences, all peripherals should be enabled with a single write to the
PERCFG register with the necessary enable bits set.
Prior to waiting 128 CPU cycles, the PERCFG register should be read. There is no direct correlation between
the CPU issuing a write to the PERCFG register and the write actually occurring. Reading the PERCFG
register after the write is issued forces the CPU to wait for the write to the PERCFG register to occur.
Once a peripheral is enabled, the DSP (or other peripherals such as the HPI) must wait a minimum of 128 CPU
cycles before accessing the enabled peripheral. The user must ensure that no accesses are performed to a
peripheral while it is disabled.
In addition to the normal usage, the PCFGLOCK register can be used to override the power saver settings
specified in the PERCFG register. When the power saver feature is disabled (PCFGLOCK written with
0xC0100C01), all peripherals controlled by PERCFG are enabled. If the power saver is returned to normal
operation (PCFGLOCK written with 0x0C01 C010), then the peripherals return to the operating condition
specified by PERCFG. Turning off the power saver settings will add a worst-case 50 mW of power to the overall
DSP power consumption.
Note: overriding the settings of the PERCFG register will not cause a conflict on the multiplexed pins. For
example, with the HPI and McASP1 peripherals, the HPI will still have control over the multiplexed pins
provided the TOUT0/HPI_EN pin was “0” at reset.
April 2004 − Revised May 2005
SPRS247E
49
Device Configurations
3.5
Device Status Register Description
The device status register depicts the status of the device peripheral selection. Once set, these bits will remain
set until a device reset; therefore, these bits should be masked when reading the DEVSTAT register since their
values can change. For the actual register bit names and their associated bit field descriptions, see Figure 3−4
and Table 3−6.
31
24
Reserved
R-100x0111
23
18
17
16
Reserved
OSC EXT RES
CLKINSEL
19
PLLM
R-xxxxx
R-1
R-x
R-x
12
11
10
9
8
Reserved
CLKMODE3
Reserved
HPI-WIDTH
Reserved
HPI_EN
R-000
R-x
R-0
R-x
R-0
R-x
15
14
13
7
6
5
4
3
2
1
0
CLKMODE2
CLKMODE1
CLKMODE0
LENDIAN
BOOTMODE1
BOOTMODE0
AECLKINSEL1
AECLKINSEL0
R-x
R-x
R-x
R-x
R-x
R-x
R-x
R-x
Legend: R = Read only; R/W = Read/Write; -n = value after reset
Figure 3−4. Device Status Register (DEVSTAT) Description − 0x01B3 F004
Table 3−6. Device Status (DEVSTAT) Register Selection Bit Descriptions
BIT
NAME
31:24
Reserved
23:19
PLLM
18
Reserved
17
OSC EXT RES
DESCRIPTION
Reserved. Read-only, writes have no effect.
PLL multiply factor status bits.
Shows the status of the PLL multiply mode selected; whether the CPU clock frequency equals the input
clock frequency x1 (Bypass), x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24.
For more detailed information on the PLL multiply factors, see the Clock PLL and Oscillator section of this
data sheet.
Reserved. Read-only, writes have no effect.
Oscillator external resistor status bit.
Shows the status internal or external of the OSC bias resistor.
0 = Normal functional mode with internal bias resistor.
1 = Normal functional mode with external bias resistor [default; internally tied high].
16
CLKINSEL
PLL input clock select status bit.
Shows the status of whether the PLL input clock is CLKIN [pin high] or directly from the crystal oscillator
(OSCIN and OSCOUT) [pin low]
0 = Crystal oscillator (OSCIN and OSCOUT).
1 = CLKIN (default).
15:13
Reserved
Reserved. Read-only, writes have no effect.
11
Reserved
Reserved. Read-only, writes have no effect.
10
HPI_WIDTH
9
Reserved
8
50
HPI_EN
SPRS247E
HPI bus width control bit.
Shows the status of whether the HPI bus operates in 32-bit mode or in 16-bit mode (default).
0 = HPI operates in 16-bit mode. (default).
1 = HPI operates in 32-bit mode.
Reserved. Read-only, writes have no effect.
HPI_EN pin status bit.
Shows the status at device reset of the HPI_EN pin, which controls the HPI peripheral as enabled [default]
or disabled.
0 = HPI_EN pin is low, meaning the HPI peripheral is enabled (default).
1 = HPI_EN pin is high, meaning the HPI peripheral is disabled.
April 2004 − Revised May 2005
Device Configurations
Table 3−6. Device Status (DEVSTAT) Register Selection Bit Descriptions (Continued)
BIT
NAME
12
CLKMODE3
7
CLKMODE2
6
CLKMODE1
5
CLKMODE0
4
LENDIAN
3
BOOTMODE1
2
BOOTMODE0
1
AECLKINSEL1
0
AECLKINSEL0
3.6
DESCRIPTION
Clock mode select status bits
Shows the status (”1 or 0”) of the CLKMODE[3:0] select bits:
Clock mode select for CPU clock frequency (CLKMODE[3:0])
(CLKMODE[3:0]), for example:
y
0000– Bypass
(x1) (default mode)
F more details
For
d t il on the
th CLKMODE pins
i and
d the
th PLL multiply
lti l factors,
f t
see the
th Clock
Cl k PLL section
ti off this
thi
data sheet.
Device Endian mode (LENDIAN)
Shows the status of whether the system is operating in Big Endian mode or Little Endian mode (default).
0 – System is operating in Big Endian mode
1 − System is operating in Little Endian mode (default)
Bootmode configuration bits (AEA[22:21] pins)
Shows the status of what device bootmode configuration is operational.
Bootmode [1:0]
00 – No boot (default mode)
01 − HPI boot (based on HPI_EN pin)
10 − Reserved
11 − EMIFA 8-bit ROM boot
EMIFA input clock select (AEA[20:19] pins)
Shows the status of what clock mode is enabled or disabled for the EMIF.
Clock mode select for EMIFA (AECLKIN_SEL[1:0])
00 – AECLKIN (default mode)
01 − CPU/4 Clock Rate
10 − CPU/6 Clock Rate
11 − Reserved
JTAG ID Register Description
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the
C6413/C6410 device, the JTAG ID register resides at address location 0x01B3 F008. The register hex value
for the C6413/C6410 device is: 0x0007 902F. For the actual register bit names and their associated bit field
descriptions, see Figure 3−5 and Table 3−7.
31−28
27−12
11−1
0
VARIANT (4-Bit)
PART NUMBER (16-Bit)
MANUFACTURER (11-Bit)
LSB
R-0000
R-0000 0000 1000 0100
R-0000 0010 111
R-1
Legend: R = Read only; -n = value after reset
Figure 3−5. JTAG ID Register Description − TMS320C6413/C6410 Register Value − 0x0007 902F
Table 3−7. JTAG ID Register Selection Bit Descriptions
BIT
NAME
31:28
VARIANT
27:12
PART NUMBER
11−1
MANUFACTURER
0
LSB
April 2004 − Revised May 2005
DESCRIPTION
Variant (4-Bit) value. C6413/C6410 value: 0000.
Part Number (16-Bit) value. C6413/C6410 value: 0000 0000 1000 0100.
Manufacturer (11-Bit) value. C6413/C6410 value: 0000 0010 111.
LSB. This bit is read as a “1” for C6413/C6410.
SPRS247E
51
Device Configurations
3.7
Multiplexed Pins
Multiplexed pins are pins that are shared by more than one peripheral and are internally multiplexed. Some
of these pins are configured by software, and the others are configured by external pullup/pulldown resistors
only at reset. Those muxed pins that are configured by software should not be programmed to switch
functionalities during run-time. Those muxed pins that are configured by external pullup/pulldown resistors
are mutually exclusive; only one peripheral has primary control of the function of these pins after reset.
Table 3−8 identifies the multiplexed pins on the C6413/C6410 device; shows the default (primary) function and
the default settings after reset; and describes the pins, registers, etc. necessary to configure specific
multiplexed functions.
Table 3−8. C6413/C6410 Device Multiplexed Pins
MULTIPLEXED PINS
NAME
NO.
IPD/IPU†
DEFAULT
FUNCTION
DEFAULT
SETTING
CLKOUT4/GP0[1]
A2
IPU
CLKOUT4
GP1EN = 0 (disabled)
CLKOUT6/GP0[2]
B3
IPU
CLKOUT6
GP2EN = 0 (disabled)
HCNTL0/AFSR1[1]
Y6
HHWIL/AFSR1[2]
Y7
HR/W/AFSR1[3]
AA5
HAS/ACLKR1[1]
Y5
HCS/ACLKR1[2]
AA11
HDS1/ACLKR1[3]
AB11
HD29/AMUTEIN1
W11
HD28/AMUTE1
W10
HD27/AHCLKX1
Y4
HD26/AHCLKR1
AB4
HD25/ACLKR1
AA9
HD24/ACLKX1
AA4
HD23/AFSR1
AB9
HD22/AFSX1
AB5
HD21/AXR1[5]
Y9
HD20/AXR1[4]
AB8
HD19/AXR1[3]
AA6
AB7
HD17/AXR1[1]
AA7
HD16/AXR1[0]
AB6
52
SPRS247E
These pins are software-configurable. To use
these pins as GPIO pins, the GPxEN bits in the
GPIO Enable Register and the GPxDIR bits in
the GPIO Direction Register must be properly
configured.
GPxEN = 1:
GPx pin enabled
GPxDIR = 0:
GPx pin is an input
GPxDIR = 1:
GPx pin is an output
By default,
B
d f lt HPI32 is
i enabled
bl d upon resett
(McASP1 is disabled)
disabled).
To enable the McASP1 peripheral, the
TOUT0/HPI_EN pin must be high at reset either
via
i an external
t
l pullup
ll
(PU) resistor
i t (1 kΩ) or
driven by a control device (disabling the HPI)
HPI).
HPI pin
function
IPU
HHWIL pin
(HPI16 only)
TOUT0/HPI_EN = 0,
HD5 = 1
(32-Bit
32 Bit HPI enabled)
McASP1 pins disabled.
or the McASP1 peripheral pins can be used if the
HPI is used as a 16-bit
0,
16 bit width [HPI_EN
[HPI EN = 0
HD5 = 0].
The clocks and frame syncs select bits
(AFCMUX[1:0]) located in the PERCFG register
determine which of the clock and frame sync
pa
e input
pu to
o McASP1.
c S
o more
o e de
a ed
pairss a
are
For
detailed
information, see the Device Configuration
section of this data sheet.
sheet
TOUT0/HPI_EN = 0,
IPU
HD18/AXR1[2]
DESCRIPTION
HPI pin
function
HD5 = 1
(32-Bit
32 Bit HPI enabled)
McASP1 pins disabled.
By default, HPI32 is enabled upon reset
(McASP1 is disabled).
To enable the McASP1 peripheral, the
TOUT0/HPI_EN pin must be high at reset either
via an external pullup (PU) resistor (1 kΩ) or
driven by a control device (disabling the HPI).
or the McASP1 peripheral pins can be used if the
HPI is used as a 16-bit width [HPI_EN = 0,
HD5 = 0].
0]
McASP1 pin direction is controlled by the
PDIR[x] bits in the McASP1PDIR register.
McASP1PDIR = 0 input, = 1 output
April 2004 − Revised May 2005
Configuration Examples
Table 3−8. C6413/C6410 Device Multiplexed Pins (Continued)
MULTIPLEXED PINS
NAME
‡
NO.
HD15/GP0[15]
Y12
HD14/GP0[14]
AA12
HD13/GP0[13]
AB13
HD12/GP0[12]
Y14
HD11/GP0[11]
AB14
HD10/GP0[10]
AA15
HD9/GP0[9]
Y16
HD8/GP0[8]
AB16
IPD/IPU†
IPU
DEFAULT
FUNCTION
HPI pin
function
DEFAULT
SETTING
HPI_EN
HPI
EN = 0, HD5 = 1
(32-Bit HPI enabled)
i disabled.
di bl d
GPIO pins
DESCRIPTION
By default, HPI is enabled upon reset (GP0[15:9]
pins are disabled).
p
)
T use GP0[15:9]
To
GP [
] as GPIO pins,
i
the
h HPI needs
d
to be disabled (HPI
(HPI_EN
EN = 1, HD5 = x (don’t care)),
)
the GPxEN bits in the GPIO Enable Register and
the GPxDIR bits in the GPIO Direction Register
g
b properly
l configured.
fi
d
mustt be
GPxEN = 1:
GPx pin enabled
GPxDIR = 0:
GPx pin is an input
GPxDIR = 1:
GPx pin is an output
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
3.8
Debugging Considerations
It is recommended that external connections be provided to device configuration pins, including
TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN, CLKINSEL, and OSC_DIS. Although internal
pullup/pulldown resistors exist on these pins, providing external connectivity adds convenience to the user
in debugging and flexibility in switching operating modes.
Internal pullup/pulldown resistors also exist on the non-configuration pins on the AEA bus (AEA[18:3]). Do not
oppose the internal pullup/pulldown resistors on these non-configuration pins with external pullup/pulldown
resistors. If an external controller provides signals to these non-configuration pins, these signals must be
driven to the default state of the pins at reset, or not be driven at all.
For the internal pullup/pulldown resistors for all device pins, see the terminal functions table.
3.9
Configuration Examples
Figure 3−6 illustrates an example of peripheral selections/options that are configurable on the C6413/C610
device.
April 2004 − Revised May 2005
SPRS247E
53
Configuration Examples
32
CLKOUT4, CLKOUT6,
PLLV, CLKIN,
CLKMODE[3:0], OSC_DIS,
CLKINSEL, OSCIN,
OSCOUT, OSCVDD,
OSCVSS
Clock and
System
AED[31:0]
EMIFA
AECLKIN, AARDY, AHOLD
AEA[22:3], ACE[3:0], ABE[3:0],
AECLKOUT1, AECLKOUT2,
ASDCKE, ASOE3, APDT,
AHOLDA, ABUSREQ,
AARE/ASDCAS/ASADS/ASRE,
AAOE/ASDRAS/ASOE,
AAWE/ASDWE/ASWE
AHCLKX0, AFSX0,
ACLKX0, AMUTE0,
AMUTEIN0,
AHCLKR0, AFSR0,
ACLKR0
McASP0
TIMER2
AXR0[5:0]
TINP1
AHCLKX1, AFSX1,
ACLKX1, AMUTE1,
AMUTEIN1, AHCLKR1,
AFSR1, AFSR1[1],
AFSR1[2], AFSR1[3],
ACLKR1, ACLKR1[1],
ACLKR1[2], ACLKR1[3]
TIMER1
TOUT1/LENDIAN
TINP0
McASP1
AXR1[5:0]
TIMER0
TOUT0
16
HD[15:0]
HPI
(16-Bit)
GP0
and
EXT_INT
CLKR0, FSR0, DR0,
CLKS0, DX0, FSX0,
CLKX0
McBSP0
I2C0
CLKR1, FSR1, DR1,
CLKS1, DX1, FSX1,
CLKX1
McBSP1
HCNTL0, HCNTL1,
HHWIL, HAS, HR/W,
HCS, HDS1, HDS2
GP0[ 3:0]
GP0[7:4]
SCL0
SDA0
I2C1
SCL1
SDA1
PERCFG Register Value:
External Pins:
0x0000_018F [CPU/4 option [default] and AFSR1, ACLKR1 pins selected]
TOUT0/HPI_EN = 0; HD5 = 0 (IPU)
Figure 3−6. Configuration Example A
(HPI16 + 2 McASPs + 2 McBSPs +2 I2Cs + EMIF + 3 Timers + GPIO)
54
SPRS247E
April 2004 − Revised May 2005
Terminal Functions
3.10 Terminal Functions
The terminal functions table (Table 3−9) identifies the external signal names, the associated pin (ball) numbers
along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal
pullup/pulldown resistors and a functional pin description. For more detailed information on device
configuration, peripheral selection, multiplexed/shared pins, and debugging considerations, see the Device
Configurations section of this data sheet.
April 2004 − Revised May 2005
SPRS247E
55
Terminal Functions
Table 3−9. Terminal Functions
SIGNAL
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
CLOCK/PLL CONFIGURATION
CLKIN
A12
I
IPD
Clock Input. This clock is the input to the on-chip PLL.
CLKOUT4/GP0[1]§
A2
I/O/Z
IPU
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as
a GP0 1 pin (I/O/Z).
CLKOUT6/GP0[2]§
B3
I/O/Z
IPU
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as
a GP0 2 pin (I/O/Z).
CLKIN select. Selects whether the PLL input clock is CLKIN [pin high] or directly from
the crystal oscillator (OSCIN and OSCOUT) [pin low].
For proper device operation, this pin must be used in conjunction with the OSC_DIS
pin.
CLKINSEL
A11
I
IPU
CLKMODE3
C11
I
IPD
CLKMODE2
B10
I
IPD
CLKMODE1
A13
I
IPD
CLKMODE0
C13
I
IPD
PLLV¶
C12
A
OSCIN
A6
I
—
Crystal oscillator Input (XI)
OSCOUT
A7
O
—
Crystal oscillator output (XO)
OSCVDD
B6
S
—
Power for crystal oscillator (1.2 V), Do not connect to board power 1.4 V; for optimum
performance, connected internally. If CLKIN is used instead of the oscillator, then this
pin can be left open or connected to CVDD.
OSCVSS
C6
GND
—
Ground for crystal oscillator, Do not connect to board ground; for optimum
performance, connected internally. If CLKIN is used instead of the oscillator, then this
pin can be left open or connected to VSS.
OSC_DIS
B7
I
IPU
Oscillator disable select.
For proper device operation, this pin must follow the CLKINSEL pin operation.
0 − OSC enabled; CLKINSEL must be 0
1 − OSC disabled (default); CLKINSEL must be 1
TMS
U3
I
IPU
JTAG test-port mode select
TDO
T4
O/Z
IPU
JTAG test-port data out
TDI
T1
I
IPU
JTAG test-port data in
TCK
T2
I
IPU
JTAG test-port clock
TRST
U1
I
IPD
JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see the IEEE 1149.1 JTAG
compatibility statement portion of this data sheet.
EMU0
R1
I/O/Z
IPU
Emulation pin 0#
EMU1
T3
I/O/Z
IPU
Emulation pin 1#
Clock mode selects
• Selects whether the CPU clock frequency = input clock frequency x1 (Bypass), x5,
x6 x7,
x6,
x7 x8,
x8 x9,
x9 x10,
x10 x11,
x11 x12,
x12 x16,
x16 x18,
x18 x19,
x19 x20
x20, x21
x21, x22
x22, or x24
x24.
For more details on the CLKMODE pins and the PLL multiply factors, see the Clock
PLL section of this data sheet.
PLL voltage supply
JTAG EMULATION
†
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
§ These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
¶ PLLV is not part of external voltage supply. See the Clock PLL and Oscillator section for information on how to connect this pin.
# The EMU0 and EMU1 pins are internally pulled up with 30-kΩ resistors; therefore, for emulation and normal operation, no external
pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ
resistor.
‡
56
SPRS247E
April 2004 − Revised May 2005
Terminal Functions
Table 3−9. Terminal Functions (Continued)
NAME
TYPE†
NO.
IPD/
IPU‡
DESCRIPTION
JTAG EMULATION (CONTINUED)
EMU2
R2
I/O/Z
IPU
Emulation pin 2. Reserved for future use, leave unconnected.
EMU3
U2
I/O/Z
IPU
Emulation pin 3. Reserved for future use, leave unconnected.
EMU4
R3
I/O/Z
IPU
Emulation pin 4. Reserved for future use, leave unconnected.
EMU5
P2
I/O/Z
IPU
Emulation pin 5. Reserved for future use, leave unconnected.
EMU6
R4
I/O/Z
IPU
Emulation pin 6. Reserved for future use, leave unconnected.
EMU7
V2
I/O/Z
IPU
Emulation pin 7. Reserved for future use, leave unconnected.
EMU8
V1
I/O/Z
IPU
Emulation pin 8. Reserved for future use, leave unconnected.
EMU9
V3
I/O/Z
IPU
Emulation pin 9. Reserved for future use, leave unconnected.
EMU10
W3
I/O/Z
IPU
Emulation pin 10. Reserved for future use, leave unconnected.
EMU11
W2
I/O/Z
IPU
Emulation pin 11. Reserved for future use, leave unconnected.
RESET
C9
I
NMI
B9
I
IPD
Nonmaskable interrupt, edge-driven (rising edge)
GP0[7]/EXT_INT7
Y1
I/O/Z
IPU
GP0[6]/EXT_INT6
C4
I/O/Z
IPU
GP0[5]/EXT_INT5
B4
I/O/Z
IPU
GP0[4]/EXT_INT4
A4
I/O/Z
IPU
General-purpose
p p
input/output
p
p (GPIO)
(
)p
pins (I/O/Z)
(
) or external interrupts
p (input
( p only).
y)
Th default
The
d f l after
f reset setting
i is
i GPIO enabled
bl d as input-only.
i
l
• When these pins function as External Interrupts [by selecting the corresponding
interrupt enable register bit (IER.[7:4])], they are edge-driven and the polarity can be
independently selected via the External Interrupt Polarity Register bits
(EXTPOL.[3:0]).
I/O/Z
IPU
Host-port
p data p
pins ((I/O/Z)) [[default]] or General-purpose
p p
input/output
p
p (GP0)
(
) [[15:8]] p
pins
(I/O/Z)
GP0 [3:0] pins (I/O/Z)
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed
g
as
a GP0 2 pin
i (I/O/Z).
(I/O/Z)
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as
a GP0 1 pin (I/O/Z).
RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS
HD15/GP0[15]
Y12
HD14/GP0[14]
AA12
HD13/GP0[13]
AB13
HD12/GP0[12]
Y14
HD11/GP0[11]
AB14
HD10/GP0[10]
AA15
HD9/GP0[9]
Y16
HD8/GP0[8]
AB16
Device reset
GP0[3]
B13
I/O/Z
IPD
CLKOUT6/GP0[2]§
B3
I/O/Z
IPU
A2
I/O/Z
IPU
D13
I/O/Z
IPD
CLKOUT4/GP0[1]§
GP0[0]
†
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
§ These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
April 2004 − Revised May 2005
SPRS247E
57
Terminal Functions
Table 3−9. Terminal Functions (Continued)
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
EMIFA (32-BIT) − CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY
ACE3
H19
O/Z
IPU
ACE2
N20
O/Z
IPU
ACE1
R20
O/Z
IPU
ACE0
F20
O/Z
IPU
ABE3
AB21
O/Z
IPU
ABE2
P21
O/Z
IPU
ABE1
A22
O/Z
IPU
ABE0
D16
O/Z
IPU
byte-enable
EMIFA byte
enable control
• Decoded from the low-order address bits. The number of address bits or byte
enables used depends on the width of external memory.
memory
• Byte-write enables for most types of memory
• Can be directly connected to SDRAM read and write mask signal (SDQM)
APDT
T19
O/Z
IPU
EMIFA peripheral data transfer, allows direct transfer between external peripherals
EMIFA memory space enables
• Enabled by bits 28 through 31 of the word address
• Only one pin is asserted during any external data access
EMIFA (32-BIT) − BUS ARBITRATION
AHOLDA
J21
O
IPU
EMIFA hold-request-acknowledge to the host
AHOLD
J22
I
IPU
EMIFA hold request from the host
ABUSREQ
R19
O
IPU
EMIFA bus request output
EMIFA (32-BIT) − ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL
AECLKIN
K22
I
IPD
EMIFA external input clock. The EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6
clock) is selected at reset via the pullup/pulldown resistors on the AEA[20:19] pins.
AECLKIN is the default for the EMIFA input clock.
AECLKOUT2
U22
O/Z
IPD
EMIFA output clock 2. Programmable to be EMIFA input clock (AECLKIN, CPU/4 clock,
or CPU/6 clock) frequency divided-by-1, -2, or -4.
AECLKOUT1
F22
O/Z
IPD
EMIFA output clock 1 [at EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock)
frequency].
AARE/
ASDCAS/
ASADS/ASRE
D20
O/Z
IPU
EMIFA asynchronous memory read-enable/SDRAM column-address
strobe/programmable synchronous interface-address strobe or read-enable
• For programmable synchronous interface, the RENEN field in the CE Space
Secondary Control Register (CExSEC) selects between ASADS and ASRE:
If RENEN = 0, then the ASADS/ASRE signal functions as the ASADS signal.
If RENEN = 1, then the ASADS/ASRE signal functions as the ASRE signal.
AAOE/
ASDRAS/
ASOE
E20
O/Z
IPU
EMIFA asynchronous memory output-enable/SDRAM row-address
strobe/programmable synchronous interface output-enable
AAWE/
ASDWE/
ASWE
C20
O/Z
IPU
EMIFA asynchronous memory write-enable/SDRAM write-enable/programmable
synchronous interface write-enable
ASDCKE
K21
O/Z
IPU
EMIFA SDRAM clock-enable (used for self-refresh mode).
• If SDRAM is not in system, ASDCKE can be used as a general-purpose output.
ASOE3
P19
O/Z
IPU
EMIFA synchronous memory output-enable for ACE3 (for glueless FIFO interface)
AARDY
L21
I
IPU
Asynchronous memory ready input
†
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
§ These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
58
SPRS247E
April 2004 − Revised May 2005
Terminal Functions
Table 3−9. Terminal Functions (Continued)
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
EMIFA (32-BIT) − ADDRESS
AEA22
M21
AEA21
N21
AEA20
P22
AEA19
N22
AEA18
H22
AEA17
H21
EMIFA external address (word address)
Note: EMIF address numbering for the C6413/C6410 devices starts with AEA3 to
maintain signal name compatibility with other C64x™ devices (e.g., C6411, C6414,
C6415,, and C6416)) [see
the 64-bit EMIF adressing
[
g scheme in the TMS320C6000 DSP
External Memory Interface (EMIF) Reference Guide (literature number SPRU266)].
AEA16
J20
AEA15
H20
•
AEA14
G20
AEA13
K20
AEA12
B21
AEA11
B22
AEA10
D21
AEA9
D22
AEA8
E21
AEA7
E22
AEA6
F21
AEA5
M20
AEA4
J19
AEA3
L20
I/O/Z
O/Z
IPD
IPD
Also controls initialization of DSP modes at reset (I) via pullup/pulldown resistors
− Boot mode ((AEA[22:21]):
[
])
00 – No boot (default mode)
HPI EN pin)
01 − HPI boot (based on HPI_EN
10 − Reserved
11 − EMIFA 8-bit ROM boot
− EMIF clock select
− AEA[20:19]:
[
] Clock mode select for EMIFA ((AECLKIN_SEL[1:0])
_
[ ])
(d f lt mode)
d )
00 – AECLKIN (default
01 − CPU/4 Clock Rate
10 − CPU/6 Clock Rate
11 − Reserved
For more details
details, see the Device Configurations section of this data sheet
sheet.
EMIFA (32-BIT) − DATA
AED31
W21
AED30
W22
AED29
V20
AED28
W20
AED27
AA22
AED26
Y20
AED25
AA21
AED24
AB22
AED23
P20
AED22
R22
AED21
R21
AED20
U21
AED19
V21
AED18
T20
AED17
V22
AED16
U20
AED15
A18
AED14
D17
I/O/Z
IPU
EMIFA external data
†
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
§ These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
‡
April 2004 − Revised May 2005
SPRS247E
59
Terminal Functions
Table 3−9. Terminal Functions (Continued)
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
EMIFA (32-BIT) − DATA (CONTINUED)
AED13
B18
AED12
C18
AED11
A19
AED10
C19
AED9
B19
AED8
A21
AED7
D15
AED6
A15
AED5
B15
AED4
C15
AED3
A16
AED2
C16
AED1
B16
AED0
C17
I/O/Z
IPU
EMIFA external data
TIMER 2
−
No external pins. The timer 2 peripheral pins are not pinned out as external pins.
TIMER 1
TOUT1/LENDIAN
AA1
I/O/Z
IPU
Timer 1 output (O/Z) or device endian mode (I).
Also controls initialization of DSP modes at reset via pullup/pulldown resistors
− Device Endian mode
0 – Big Endian
1 − Little Endian (default)
For more details on LENDIAN, see the Device Configurations section of this data sheet.
TINP1
AB1
I
IPD
Timer 1 or general-purpose input
TIMER 0
TOUT0/HPI_EN
AA2
I/O/Z
IPD
Timer 0 output pin and HPI enable HPI_EN pin function
The HPI_EN pin function selects whether the HPI peripheral or McASP1 peripheral,
and GP0[15:8] pins are functionally enabled
0 – HPI is enabled and the McASP1 peripheral and GP0 [15:8] pins are disabled
(default mode); [HPI32, if HD5 = 1; HPI16 if HD5 = 0]
1 − HPI I is disabled and the McASP1 peripheral and GP0 [15:8] pins are
enabled
For more details, see the Device Configurations section of this data sheet.
TINP0
AB2
I
IPD
Timer 0 or general-purpose input
INTER-INTEGRATED CIRCUIT 1 (I2C1)
SCL1
AA18
I/O/Z
—
I2C1 clock. When the I2C module is used, use an external pullup resistor on this pin.
SDA1
AA19
I/O/Z
—
I2C1 data. When I2C is used, ensure there is an external pullup resistors on this pin.
INTER-INTEGRATED CIRCUIT 0 (I2C0)
SCL0
AB18
I/O/Z
—
I2C0 clock. When I2C is used, ensure there is an external pullup resistors on this pin.
SDA0
AB19
I/O/Z
—
I2C0 data. When I2C is used, ensure there is an external pullup resistors on this pin.
†
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
§ These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
60
SPRS247E
April 2004 − Revised May 2005
Terminal Functions
Table 3−9. Terminal Functions (Continued)
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)
CLKR1
G3
I/O/Z
IPD
McBSP1 receive clock
FSR1
G2
I/O/Z
IPD
McBSP1 receive frame sync
DR1
F1
I
IPD
McBSP1 receive data
CLKS1
G1
I
IPD
McBSP1 external clock source (as opposed to internal)
DX1
H2
O/Z
IPD
McBSP1 transmit data
FSX1
H3
I/O/Z
IPD
McBSP1 transmit frame sync
CLKX1
H1
I/O/Z
IPD
McBSP1 transmit clock
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)
CLKR0
C2
I/O/Z
IPD
McBSP0 receive clock
FSR0
D1
I/O/Z
IPD
McBSP0 receive frame sync
DR0
D2
I
IPD
McBSP0 receive data
CLKS0
D3
I
IPD
McBSP0 external clock source (as opposed to internal)
DX0
E2
O/Z
IPD
McBSP0 transmit data
FSX0
E4
I/O/Z
IPD
McBSP0 transmit frame sync
CLKX0
E3
I/O/Z
IPD
McBSP0 transmit clock
MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0)
AHCLKX0
N1
I/O/Z
IPD
McASP0 transmit high-frequency master clock.
AFSX0
M2
I/O/Z
IPD
McASP0 transmit frame sync or left/right clock (LRCLK).
ACLKX0
M1
I/O/Z
IPD
McASP0 transmit bit clock.
AMUTE0
K4
I/O/Z
IPD
McASP0 mute output.
AMUTEIN0
J4
I
IPD
McASP0 mute input.
AHCLKR0
L1
I/O/Z
IPD
McASP0 receive high-frequency master clock.
AFSR0
K2
I/O/Z
IPD
McASP0 receive frame sync or left/right clock (LRCLK).
ACLKR0
K1
I/O/Z
IPD
McASP0 receive bit clock.
AXR0[5]
P3
McASP0 TX/RX data pin [5].
AXR0[4]
N3
McASP0 TX/RX data pin [4].
AXR0[3]
M3
AXR0[2]
L3
AXR0[1]
K3
McASP0 TX/RX data pin [1].
AXR0[0]
L2
McASP0 TX/RX data pins[0].
I/O/Z
IPD
McASP0 TX/RX data pins [3].
McASP0 TX/RX data pin [2].
†
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
§ These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
April 2004 − Revised May 2005
SPRS247E
61
Terminal Functions
Table 3−9. Terminal Functions (Continued)
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
MCASP1
HCNTL0/AFSR1[1]
Y6
Host control − selects between control, address, or data registers (I) [default] or
McASP1 receive frame sync input 1 (I).
HHWIL/AFSR1[2]
Y7
Host half-word select − first or second half-word (not necessarily high or low order)
[For HPI16 bus width selection only] (I) [default] oror McASP1 receive frame sync
input 2 (I) .
HR/W/AFSR1[3]
AA5
I
IPU
Host read or write select (I) [default] or McASP1 receive frame sync input 3 (I).
HAS/ACLKR1[1]
Y5
HCS/ACLKR1[2]
AA11
Host chip select (I) [default] or McASP1 receive clock input 2 (I).
HDS1/ACLKR1[3]
AB11
Host data strobe 1 (I) [default] or McASP1 receive clock input 3 (I).
HD27/AHCLKX1
Y4
I/O/Z
IPU
Host-port data pin 27 (I/O/Z) [default] or McASP1 transmit high-frequency master clock
(I/O/Z).
HD22/AFSX1
AB5
I/O/Z
IPU
Host-port data pin 22 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock
(LRCLK) (I/O/Z) .
HD24/ACLKX1
AA4
I/O/Z
IPU
Host-port data pin 24 (I/O/Z) [default] or McASP1 transmit bit clock (I/O/Z).
HD28/AMUTE1
W10
I/O/Z
IPU
Host-port data pin 28 (I/O/Z) [default] or McASP1 mute output (I/O/Z).
HD29/AMUTEIN1
W11
I
IPU
Host-port data pin 29 (I/O/Z) [default] or McASP1 mute input (I).
HD26/AHCLKR1
AB4
I/O/Z
IPU
Host-port data pin 26 (I/O/Z) [default] or McASP1 receive high-frequency master clock
(I/O/Z).
HD23/AFSR1
AB9
I/O/Z
IPU
Host-port data pin 23 (I/O/Z) [default] or McASP1 receive frame sync or left/right clock
(LRCLK) (I/O/Z).
HD25/ACLKR1
AA9
I/O/Z
IPU
Host-port data pin 25 (I/O/Z) [default] or McASP1 receive bit clock (I/O/Z).
I/O/Z
IPU
Host port data pins [21:16] (I/O/Z) [default] or McASP1 TX/RX data pins [5:0] (I/O/Z).
Host-port
(I/O/Z)
HD21/AXR1[5]
Y9
HD20/AXR1[4]
AB8
HD19/AXR1[3]
AA6
HD18/AXR1[2]
AB7
HD17/AXR1[1]
AA7
HD16/AXR1[0]
AB6
Host address strobe (I) [default] or McASP1 receive clock input 1 (I).
HOST-PORT INTERFACE (HPI)
HINT
AA8
O/Z
IPU
Host interrupt from DSP to host (O)
HCNTL1
W7
I
IPU
Host control − selects between control, address, or data registers (I)
HCNTL0/AFSR1[1]
Y6
Host control − selects between control, address, or data registers (I) [default] or
McASP1 receive frame sync input 1 (I).
HHWIL/AFSR1[2]
Y7
Host half-word select − first or second half-word (not necessarily high or low order)
[For HPI16 bus width selection only] (I) [default] or McASP1 receive frame sync
input 2 (I).
HR/W/AFSR1[3]
AA5
HAS/ACLKR1[1]
Y5
HCS/ACLKR1[2]
AA11
Host chip select (I) [default] or McASP1 receive clock input 2 (I).
HDS1/ACLKR1[3]
AB11
Host data strobe 1 (I) [default] or McASP1 receive clock input 3 (I).
HDS2
AB12
I
IPU
Host data strobe 2 (I)
HRDY
Y10
O/Z
IPU
Host ready from DSP to host (O)
I
IPU
Host read or write select (I) [default] or McASP1 receive frame sync input 3 (I).
Host address strobe (I) [default] or McASP1 receive clock input 1 (I).
†
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
§ These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
62
SPRS247E
April 2004 − Revised May 2005
Terminal Functions
Table 3−9. Terminal Functions (Continued)
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
HOST-PORT INTERFACE (HPI) (CONTINUED)
HD31
Y8
I/O/Z
IPU
Host-port data pin 31 (I/O/Z)
HD30
Y11
I/O/Z
IPU
Host-port data pin 30 (I/O/Z)
HD29/AMUTEIN1
W11
I
IPU
Host-port data pin 29 (I/O/Z) [default] or McASP1 mute input (I).
HD28/AMUTE1
W10
I/O/Z
IPU
Host-port data pin 28 (I/O/Z) [default] or McASP1 mute output (I/O/Z).
HD27/AHCLKX1
Y4
I/O/Z
IPU
Host-port data pin 27 (I/O/Z) [default] or McASP1 transmit high-frequency master clock
(I/O/Z).
HD26/AHCLKR1
AB4
I/O/Z
IPU
Host-port data pin 26 (I/O/Z) [default] or McASP1 receive high-frequency master clock
(I/O/Z).
HD25/ACLKR1
AA9
I/O/Z
IPU
Host-port data pin 25 (I/O/Z) [default] or McASP1 receive bit clock (I/O/Z).
HD24/ACLKX1
AA4
I/O/Z
IPU
Host-port data pin 24 (I/O/Z) [default] or McASP1 transmit bit clock (I/O/Z).
HD23/AFSR1
AB9
I/O/Z
IPU
Host-port data pin 23 (I/O/Z) [default] or McASP1 receive frame sync or left/right clock
(LRCLK) (I/O/Z).
HD22/AFSX1
AB5
I/O/Z
IPU
Host-port data pin 22 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock
(LRCLK) (I/O/Z).
I/O/Z
IPU
Host port data [21:16] pin (I/O/Z) [default] or McASP1 TX/RX data pins [5:0] (I/O/Z).
Host-port
(I/O/Z)
I/O/Z
IPU
Host port data [15:8] pins (I/O/Z) [default] or General
Host-port
General-purpose
purpose input/output (GP0) [15:8]
pins (I/O/Z).
HD21/AXR1[5]
Y9
HD20/AXR1[4]
AB8
HD19/AXR1[3]
AA6
HD18/AXR1[2]
AB7
HD17/AXR1[1]
AA7
HD16/AXR1[0]
AB6
HD15/GP0[15]
Y12
HD14/GP0[14]
AA12
HD13/GP0[13]
AB13
HD12/GP0[12]
Y14
HD11/GP0[11]
AB14
HD10/GP0[10]
AA15
HD9/GP0[9]
Y16
HD8/GP0[8]
AB16
HD7
W12
HD6
AA13
HD5
Y13
HD4
AA14
HD3
AB15
HD2
AA16
HD1
Y15
HD0
W15
Host-port
Host
port data [7:0] pins (I/O/Z)
Host-Port
Host Port bus width user-configurable
user configurable at device reset via a 1-kΩ
1 kΩ pullup/
pulldown resistor on the HD5 pin (I):
I/O/Z
IPU
HD5 pin = 0: HPI operates as an HPI16.
HPI16
(HPI bus is 16 bits wide. HD[15:0] pins are used and the remaining HD[31:16] pins
are reserved p
pins in the high-impedance
g
p
state.))
HD5 pin = 1: HPI operates as an HPI32.
(HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.)
†
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
§ These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
‡
April 2004 − Revised May 2005
SPRS247E
63
Terminal Functions
Table 3−9. Terminal Functions (Continued)
SIGNAL
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
RESERVED FOR TEST
RSV
U4
A
—
Reserved. This pin must be connected directly to CVDD for proper device operation.
RSV
F3
A
—
Reserved. This pin must be connected directly to DVDD for proper device operation.
RSV
C8
I
IPD
B11
A
—
B12
I
—
C10
O
IPU
D7
O/Z
—
D8
O/Z
—
RSV
Reserved. This pin must be connected directly to VSS for proper device operation.
Reserved (leave unconnected, do not connect to power or ground)
SUPPLY VOLTAGE PINS
A3
A5
A8
A9
A14
A17
A20
B1
C22
E1
G22
J1
DVDD
S
3.3-V
3.3
V supply voltage
M22
P1
T22
W1
Y2
Y17
Y19
Y22
AB3
AB10
AB17
AB20
†
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
‡ IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
64
SPRS247E
April 2004 − Revised May 2005
Terminal Functions
Table 3−9. Terminal Functions (Continued)
SIGNAL
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
SUPPLY VOLTAGE PINS (CONTINUED)
D5
D6
D9
D11
D12
D14
D18
E19
F19
G4
CVDD
H4
L19
S
1 2 V supply voltage ((-400,
1.2-V
400 -500
500 devices)
M4
M19
N4
V4
V19
W5
W9
W13
W16
W18
GROUND PINS
A1
A10
B2
B5
B8
VSS
B14
B17
GND
Ground pins
B20
C1
C3
C5
C7
†
‡
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
April 2004 − Revised May 2005
SPRS247E
65
Terminal Functions
Table 3−9. Terminal Functions (Continued)
SIGNAL
NAME
NO.
TYPE†
IPD/
IPU‡
DESCRIPTION
GROUND PINS (CONTINUED)
C14
C21
D4
D10
D19
F2
F4
G19
G21
J2
J3
K19
L4
L22
N2
N19
VSS
P4
GND
Ground pins
T21
U19
W4
W6
W8
W14
W17
W19
Y3
Y18
Y21
AA3
AA10
AA17
AA20
†
‡
66
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kΩ IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kΩ resistor should be used.)
SPRS247E
April 2004 − Revised May 2005
Development Support
3.11
Development Support
In case the customer would like to develop their own features and software on the TMS320C6413/C6410
device, TI offers an extensive line of development tools for the TMS320C6000™ DSP platform, including tools
to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully
integrate and debug software and hardware modules. The tool’s support documentation is electronically
available within the Code Composer Studio™ Integrated Development Environment (IDE).
The following products support development of C6000™ DSP-based applications:
Software Development Tools:
Code Composer Studio™ Integrated Development Environment (IDE): including Editor
C/C++/Assembly Code Generation, and Debug plus additional development tools
Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software
needed to support any DSP application.
Hardware Development Tools:
Extended Development System (XDS™) Emulator (supports C6000™ DSP multiprocessor system debug)
EVM (Evaluation Module)
For a complete listing of development-support tools for the TMS320C6000™ DSP platform, visit the Texas
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For
information on pricing and availability, contact the nearest TI field sales office or authorized distributor.
Code Composer Studio, DSP/BIOS, and XDS are trademarks of Texas Instruments.
April 2004 − Revised May 2005
SPRS247E
67
Device Support
3.12 Device Support
3.12.1
Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP
devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS
(e.g., TMS320C6412GDK600). Texas Instruments recommends two of three possible prefix designators for
its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development
from engineering prototypes (TMX / TMDX) through fully qualified production devices/tools (TMS / TMDS).
Device development evolutionary flow:
TMX
Experimental device that is not necessarily representative of the final device’s electrical
specifications.
TMP
Final silicon die that conforms to the device’s electrical specifications but has not completed quality
and reliability verification.
TMS
Fully qualified production device.
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal qualification
testing.
TMDS Fully qualified development-support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:
“Developmental product is intended for internal evaluation purposes.”
TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI’s standard warranty applies.
Predictions show that prototype devices ( TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package
type (for example, GTS), the temperature range (for example, “A” is the extended temperature range), and
the device speed range in megahertz (for example, -500 is 500 MHz). Figure 3−7 provides a legend for
reading the complete device name for any TMS320C6000™ DSP platform member.
The ZTS package, like the GTS package, is a 288-ball plastic BGA only with PB-free balls. For device part
numbers and further ordering information for TMS320C6413/C6410 in the GTS and ZTS package types, see
the TI website (http://www.ti.com) or contact your TI sales representative.
68
SPRS247E
April 2004 − Revised May 2005
Device Support
TMS 320 C6413 GTS
PREFIX
TMX = Experimental device
TMP = Prototype device
TMS = Qualified device
SMX= Experimental device, MIL
SMJ = MIL-PRF-38535, QML
SM = High Rel (non-38535)
DEVICE FAMILY
320 = TMS320t DSP family
(A)
500
DEVICE SPEED RANGE
500 (500-MHz CPU, 100-MHz EMIF) [C6413]
400 (400-MHz CPU, 100-MHz EMIF) [C6410]
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)†
Blank = 0°C to 90°C, commercial temperature
A
= −40°C to 105°C, extended temperature
PACKAGE TYPE‡§
GTS = 288-pin plastic BGA
ZTS = 288-pin plastic BGA, with Pb-free soldered balls
DEVICE¶
C64x DSP:
6413
6410
†
The extended temperature “A version” devices may have different operating conditions than the commercial temperature devices.
For more details, see the recommended operating conditions portion of this data sheet.
‡ BGA =
Ball Grid Array
§ The ZTS mechanical package designator represents the version of the GTS package with Pb-free balls. For more detailed
information, see the Mechanical Data section of this document.
¶ For actual device part numbers (P/Ns) and ordering information, see the TI website (www.ti.com).
Figure 3−7. TMS320C6413/C6410 DSP Device Nomenclature
For additional information, see the TMS320C6413, TMS320C6410 Digital Signal Processors Silicon Errata
(literature number SPRZ219)
April 2004 − Revised May 2005
SPRS247E
69
Device Support
3.12.2
Documentation Support
Extensive documentation supports all TMS320™ DSP family generations of devices from product
announcement through applications development. The types of documentation available include: data
sheets, such as this document, with design specifications; complete user’s reference guides for all devices
and tools; technical briefs; development-support tools; on-line help; and hardware and software applications.
The following is a brief, descriptive list of support documentation specific to the C6000™ DSP devices:
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the
C6000™ DSP CPU (core) architecture, instruction set, pipeline, and associated interrupts.
The TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190) provides an
overview and briefly describes the functionality of the peripherals available on the C6000™ DSP platform of
devices. This document also includes a table listing the peripherals available on the C6000 devices along with
literature numbers and hyperlinks to the associated peripheral documents.
The TMS320C64x Technical Overview (literature number SPRU395) gives an introduction to the C64x™
digital signal processor, and discusses the application areas that are enhanced by the C64x™ DSP
VelociTI.2™ VLIW architecture.
The TMS320C6000 DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number
SPRU041) describes the functionality of the McASP peripheral.
TMS320C6000 DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number SPRU175)
describes the functionality of the I2C peripherals available on the C6413/C6410 device except for the
additional interrupt and new GPIO capability. For more detailed information on the additional interrupt and
GPIO capability, see the I2C section of this data manual and the TMS320C6410/C6413 DSP Inter-Integrated
Circuit (I2C) Module Reference Guide (literature number SPRZ221).
The TMS320C6413, TMS320C6410 Digital Signal Processors Silicon Errata (literature number SPRZ219)
describes the known exceptions to the functional specifications for particular silicon revisions of the
TMS320C6413 and TMS320C6410 devices.
The Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how to
properly use IBIS models to attain accurate timing analysis for a given system.
The tools support documentation is electronically available within the Code Composer Studio™ Integrated
Development Environment (IDE). For a complete listing of C6000™ DSP latest documentation, visit the Texas
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL).
TMS320 is a trademark of Texas Instruments.
70
SPRS247E
April 2004 − Revised May 2005
Peripherals Detailed Description (Device-Specific)
4
Peripherals Detailed Description (Device-Specific)
4.1
Clock PLL and Oscillator
Most of the internal C64x™ DSP clocks are generated from a single source through the CLKIN pin. This source
clock either drives the PLL, which multiplies the source clock frequency to generate the internal CPU clock,
or bypasses the PLL to become the internal CPU clock.
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 4−1
shows the external PLL circuitry for either x1 (PLL bypass) or other PLL multiply modes.
To minimize the clock jitter, a single clean power supply should power both the C64x™ DSP device and the
external clock oscillator circuit. The minimum CLKIN rise and fall times should also be observed. For the input
clock timing requirements, see the input and output clocks electricals section.
Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock source
must meet the DSP requirements in this data sheet (see the electrical characteristics over recommended
ranges of supply voltage and operating case temperature table and the input and output clocks electricals
section).
April 2004 − Revised May 2005
SPRS247E
71
Clock PLL and Oscillator
3.3 V
CPU Clock
EMI
Filter
C1
C2
10 µF
0.1 µF
PLLV
/2
Peripheral Bus, EDMA
Clock
/8
Timer Internal Clock
/4
CLKOUT4, Peripheral Clock
/6
CLKOUT6
CLKMODE0
CLKMODE1
CLKMODE2
CLKMODE3
PLLMULT
PLL
x5, x6−x12, x16,
x18−x22, x24
PLLCLK
1
00 01 10
/4
0
/2
CLKINSEL
CLKIN
C5
470 pF
1
OSCIN
†
C8†
00 01 10
EK2RATE
(GBLCTL.[19,18])
OSCVDD‡
C7†
‡
EMIF
RS †
C6
470 pF
RB †
OSCOUT
0
AUXCLK
for McASPs
Osc.
OSCVSS‡
OSC_DIS
AECLKIN
AEA[20:19]
Internal to C6413/10
(For the PLL options, CLKMODE pins setup, and PLL clock frequency ranges,
see Table 4−1 and Table 4−2.)
ECLKOUT1 ECLKOUT2
Exact values for these components depend on choice of crystal. For recommended crystal and component values, see Table 4−3.
‡ Do not connect any of these nodes to board power or ground if the oscillator is used. They are internally connected for proper operation.
If CLKIN is being used instead of the oscillator, then OSCVDD and OSCVSS may either be left open, or OSCVDD may be tied to CVDD and
OSCVSS may be tied to ground.
†
NOTES: A. Place all PLL external components (C1, C2, and the EMI Filter) as close to the C6000™ DSP device as possible. For the best
performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or
components other than the ones shown.
B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (C1, C2, and the EMI
Filter).
C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD.
D. EMI filter manufacturer TDK part number ACF451832-333, -223, -153, -103. Panasonic part number EXCCET103U.
E. If CLKIN is used instead of OSCIN, tie OSCIN to Ground to minimize noise and current. (Do not leave OSCIN floating.)
Figure 4−1. External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode
72
SPRS247E
April 2004 − Revised May 2005
Clock PLL and Oscillator
For proper C6413/C6410 device operation, the CLKINSEL pin must be used in conjunction with the OSC_DIS
pin. The OSC_DIS pin must follow the CLKINSEL pin operation. For more details on these two configuration
pins, see the Device Configuration at Device Reset section of this data sheet.
Table 4−1. TMS320C6413 PLL Multiply Factor Options, Clock Frequency Ranges,
and Typical Lock Time for −500 Devices†
GTS and ZTS PACKAGES − 23 x 23 mm BGA
CLKMODE[3:0]
CLKMODE
(PLL MULTIPLY FACTORS)
CLKIN
RANGE
(MHz)
CPU CLOCK
FREQUENCY
RANGE
(MHz)
OSCIN
RANGE
(MHz)
CPU CLOCK
FREQUENCY
RANGE
(MHz)
TYPICAL
LOCK TIME
(µs)‡
N/A
0
0
0
0
Bypass (x1)
12−100
12−100
12−30
12−30
0
0
0
1
x5
28−100
140−500
28−30
140−150
0
0
1
0
x6
23−83
140−500
23−30
140−180
0
0
1
1
x7
20−71
140−500
20−30
140−210
0
1
0
0
x8
17−63
140−500
17−30
140−240
0
1
0
1
x9
15−56
140−500
15−30
140−270
0
1
1
0
x10
14−50
140−500
14−30
140−300
0
1
1
1
x11
12−45
140−500
12−30
140−330
1
0
0
0
x12
12−42
144−500
12−30
144−360
1
0
0
1
x16
12−31
192−500
12−30
192−480
1
0
1
0
x18
12−28
216−500
12−28
216−500
1
0
1
1
x19
12−26
228−500
12−26
228−500
1
1
0
0
x20
12−25
240−500
12−25
240−500
1
1
0
1
x21
12−24
252−500
12−24
252−500
1
1
1
0
x22
12−23
264−500
12−23
264−500
1
1
1
1
x24
12−21
288−500
12−21
288−500
75
†
Use external pullup resistors on the CLKMODE pins (CLKMODE1 and CLKMODE0) to set the C6413/C6410 device to one of the valid PLL
multiply clock modes (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24). With internal pulldown resistors on the CLKMODE
pins (CLKMODE3, CLKMODE2, CLKMODE1, CLKMODE0), the default clock mode is x1 (bypass).
‡ Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if
the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.
April 2004 − Revised May 2005
SPRS247E
73
Clock PLL and Oscillator
Table 4−2. TMS320C6410 PLL Multiply Factor Options, Clock Frequency Ranges,
and Typical Lock Time for −400 Devices†
GTS and ZTS PACKAGES − 23 x 23 mm BGA
CLKMODE[3:0]
CLKMODE
(PLL MULTIPLY FACTORS)
CLKIN
RANGE
(MHz)
CPU CLOCK
FREQUENCY
RANGE
(MHz)
OSCIN
RANGE
(MHz)
CPU CLOCK
FREQUENCY
RANGE
(MHz)
TYPICAL
LOCK TIME
(µs)‡
N/A
0
0
0
0
Bypass (x1)
12−100
12−100
12−30
12−30
0
0
0
1
x5
28−80
140−400
28−30
140−150
0
0
1
0
x6
23−67
140−400
23−30
140−180
0
0
1
1
x7
20−57
140−400
20−30
140−210
0
1
0
0
x8
17−50
140−400
17−30
140−240
0
1
0
1
x9
15−44
140−400
15−30
140−270
0
1
1
0
x10
14−40
140−400
14−30
140−300
0
1
1
1
x11
12−36
140−400
12−30
140−330
1
0
0
0
x12
12−33
144−400
12−30
144−360
1
0
0
1
x16
12−25
192−400
12−25
192−400
1
0
1
0
x18
12−22
216−400
12−22
216−400
1
0
1
1
x19
12−21
228−400
12−21
228−400
1
1
0
0
x20
12−20
240−400
12−20
240−400
1
1
0
1
x21
12−19
252−400
12−19
252−400
1
1
1
0
x22
12−18
264−400
12−18
264−400
1
1
1
1
x24
12−17
288−400
12−17
288−400
75
†
Use external pullup resistors on the CLKMODE pins (CLKMODE1 and CLKMODE0) to set the C6413/C6410 device to one of the valid PLL
multiply clock modes (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24). With internal pulldown resistors on the CLKMODE
pins (CLKMODE3, CLKMODE2, CLKMODE1, CLKMODE0), the default clock mode is x1 (bypass).
‡ Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if
the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.
For the lowest jitter on the oscillator circuit, it is recommended that a pair of 470-pF capacitors be connected
between isolated (not directly connected to the board supply) OSCVDD and OSCVSS pins. This helps to cancel
out switching noise from other circuits on the DSP device.
Table 4−3 shows a recommended crystal and tank circuit values for the C6413/C6410 PLL circuitry.
Table 4−3. Crystal and Tank Circuit Recommendations
Components
RECOMMENDED PART NUMBERS or VALUES
24 576 MHz
24.576
Crystal
22 5792 MHz
22.5792
74
MANUFACTURER
1AS245766AHA (SMD-49)
1AF245766AAA (AT-49)
1AS225796AG (SMD-49)
Corp
KDS™ Diashinku Corp.
1AF225796A (AT-49)
RB
1 MΩ
—
RS
0Ω
—
C7
C8
8 pF
—
SPRS247E
April 2004 − Revised May 2005
Host-Port Interface (HPI) Peripheral
4.2
Host-Port Interface (HPI) Peripheral
The TMS320C6413/C6410 device includes a user-configurable 16-bit or 32-bit Host-port interface
(HPI16/HPI32). On the C6413/C6410 device the HPI peripheral pins are muxed with the McASP1 and GP0
peripheral pins. By default, the HPI peripheral pin functions are enabled. For more detailed information on the
C6413/C6410 device pin muxing, see the Device Configurations section of this data sheet.
The HPI peripheral can be disabled or enabled at reset through the HPI enable function of the TOUT0/HPI_EN
pin. The HPI is enabled when the TOUT0/HPI_EN pin is sampled low at reset and it is disabled if the pin is
sample high at reset. The TOUT0/HPI_EN pin has an internal pulldown that enables the HPI by default.
However, the HPI can be disabled via an external pullup resistor or by having an external device such as an
FPGA/CPLD drive that pin high at reset. In the latter case, the external device should ensure it has stopped
driving this pin to avoid contention. The HPI enable function can only be set a reset and cannot be changed
via software.
The HD5 pin controls the HPI_WIDTH, allowing the user to configure the HPI as a 16-bit or 32-bit peripheral.
For more details on HPI peripheral configuration and the associated pins, see the Device Configurations
section of this data sheet.
April 2004 − Revised May 2005
SPRS247E
75
Multichannel Audio Serial Port (McASP) Peripheral
4.3
Multichannel Audio Serial Port (McASP) Peripheral
The TMS320C6413/C6410 device includes two multichannel audio serial port (McASP) interface peripheral
(McASP0 and McASP1). On the C6413/C6410 device the McASP1 peripheral pins are muxed with the HPI
peripheral pins. By default, the HPI peripheral pin functions are enabled. For the C6413/C6410 device
McASP1 is a standalone peripheral, not muxed. For more detailed information on the C6413/C6410 device
pin muxing, see the Device Configurations section of this data sheet.
The McASP is a serial port optimized for the needs of multichannel audio applications.
The McASP consists of a transmit and receive section. These sections can operate completely independently
with different data formats, separate master clocks, bit clocks, and frame syncs or alternatively, the transmit
and receive sections may be synchronized. The McASP module also includes a pool of 16 shift registers that
may be configured to operate as either transmit data, receive data, or general-purpose I/O (GPIO).
The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM) synchronous
serial format or in a digital audio interface (DIT) format where the bit stream is encoded for S/PDIF, AES-3,
IEC-60958, CP-430 transmission. The receive section of the McASP supports the TDM synchronous serial
format.
The McASP can support one transmit data format (either a TDM format or DIT format) and one receive format
at a time. All transmit shift registers use the same format and all receive shift registers use the same format.
However, the transmit and receive formats need not be the same.
Both the transmit and receive sections of the McASP also support burst mode which is useful for non-audio
data (for example, passing control information between two DSPs).
The McASP peripheral has additional capability for flexible clock generation, and error detection/handling, as
well as error management.
For more detailed information on and the functionality of the McASP peripheral, see the TMS320C6000 DSP
Multichannel Audio Serial Port (McASP) Reference Guide (literature number SPRU041).
4.3.1
McASP Block Diagram
Figure 4−2 illustrates the major blocks along with external signals of the TMS320C6413/C6410 McASP
peripheral; and shows the 6 serial data [AXRx] pins. The McASP also includes full general-purpose I/O (GPIO)
control, so any pins not needed for serial transfers can be used for general-purpose I/O.
76
SPRS247E
April 2004 − Revised May 2005
Multichannel Audio Serial Port (McASP) Peripheral
McASPx
DIT
RAM
Transmit
Frame Sync
Generator
Transmit
Clock Check
(HighFrequency)
Transmit
Clock
Generator
Receive
Clock Check
(HighFrequency)
Receive
Clock
Generator
Transmit
Data
Formatter
Receive
Frame Sync
Generator
INDIVIDUALLY PROGRAMMABLE TX/RX/GPIO
DMA Transmit
DMA Receive
AHCLKXx
ACLKXx
AMUTEx
AMUTEINx
Error
Detect
Receive
Data
Formatter
AFSXx
AHCLKRx
ACLKRx†
AFSRx†
Serializer 0
AXRx[0]
Serializer 1
AXRx[1]
Serializer 2
AXRx[2]
Serializer 3
AXRx[3]
Serializer 4
AXRx[4]
Serializer 5
AXRx[5]
Serializer 6
Serializer 7
GPIO
Control
†
On the C6413/C6410 device, the McASP1 peripheral has some additional pins muxed with AFSR1 and with ACLKR1 pins (i.e.,
AFSR1[1], AFSR1[2], AFSR1[3] and ACLKR1[1]. ACLKR1[2], ACLKR1[3], respectively).
‡ On the C6413/C6410 device, the McASP0 peripheral is standalone, not muxed and the McASP1 peripheral is muxed with the HPI
peripheral. For more detailed information on multiplexed pins, see the Device Configurations section of this data sheet.
Figure 4−2. McASP0 and McASP1‡ Configuration
April 2004 − Revised May 2005
SPRS247E
77
I2C
4.4
I2C
The TMS320C6413/C6410 device includes two I2C peripheral modules (I2C0 and I2C1). NOTE: when using
the I2C modules (any mode), ensure there are external pullup resistors on the SDAx and SCLx pins.
One of the I2C modules on the TMS320C6413/C6410 may be used by the DSP to control local peripherals
ICs (DACs, ADCs, etc.) while the other module may be used to communicate with other controllers in a system
or to implement a user interface.
The I2Cx port supports:
•
•
•
•
•
•
•
•
Compatible with Philips I2C Specification Revision 2.1 (January 2000)
Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
Noise Filter to remove noise 50 ns or less
7- and 10-Bit Device Addressing Modes
Multi-Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
Events: DMA, Interrupt, or Polling
Slew-Rate Limited Open-Drain Output Buffers
General-purpose input and output (GPIO) functionality for I2C pins
For more detailed information on C6413/6410 I2C additional features, such as GPIO capability, etc., see the
TMS320C6000 DSP Inter−Integrated Circuit (I2C) Module Reference Guide (literature number SPRU175)
and the TMS320C6410/C6413/C6418 DSP Inter−Integrated Circuit (I2C) Module Reference Guide (literature
number SPRZ221) addendum.
78
SPRS247E
April 2004 − Revised May 2005
General-Purpose Input/Output (GPIO)
Figure 4−3 is a block diagram of the I2C0 and I2C1 modules.
I2Cx Module
Peripheral Clock
(CPU/4)
Clock
Prescale
I2CPSCx
SCL
Noise
Filter
I2C Clock
GPIO Control
I2CPFUNCx
Pin
Function
I2CPDIRx
Pin
Direction
I2CPDINx
Pin Data
In
I2CPDOUTx
Pin Data
Out
I2CPDSETx
I2CPDCLRx
Pin Data
Set
Pin Data
Clear
Bit Clock
Generator
I2CCLKHx
I2CCLKLx
Noise
Filter
I2C Data
I2CXSRx
Transmit
Shift
I2CDXRx
Transmit
Buffer
Receive
I2CRSRx
I2COARx
Own
Address
I2CSARx
Slave
Address
I2CMDRx
Mode
I2CCNTx
Data
Count
Extended
Mode
I2CEMDRx
Transmit
I2CDRRx
SDA
Control
Receive
Buffer
Receive
Shift
Interrupt/DMA
I2CIERx
Interrupt
Enable
I2CSTRx
Interrupt
Status
I2CISRCx
Interrupt
Source
NOTE A: Shading denotes control/status registers.
Figure 4−3. I2Cx Module Block Diagram
4.5
General-Purpose Input/Output (GPIO)
On the C6413/C6410 device the GPIO peripheral pins GP0[15:9] are muxed with the HPI peripheral pins
HD[15:9], respectively. By default, the HPI peripheral pin functions are enabled [TOUT0/HPI_EN pin internall
pulled low]. For more detailed information on device/peripheral configuration and the C6413/C6410 device
pin muxing, see the Device Configurations section of this data sheet.
To use the GP0[15:0] software-configurable GPIO pins, the GPxEN bits in the GP Enable (GPEN) Register
and the GPxDIR bits in the GP Direction (GPDIR) Register must be properly configured.
GPxEN =
1
GP[x] pin is enabled
GPxDIR =
0
GP[x] pin is an input
GPxDIR =
1
GP[x] pin is an output
where “x” represents one of the 15 through 0 GPIO pins
Figure 4−4 shows the GPIO enable bits in the GPEN register for the C6413/C6410 device. To use any of the
GPx pins as general-purpose input/output functions, the corresponding GPxEN bit must be set to “1”
(enabled). Default values are device-specific, so refer to Figure 4−4 for the C6413/C6410 default
configuration.
April 2004 − Revised May 2005
SPRS247E
79
General-Purpose Input/Output (GPIO)
31
24 23
16
Reserved
R-0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
GP15
EN
GP14
EN
GP13
EN
GP12
EN
GP11
EN
GP10
EN
GP9
EN
GP8
EN
GP7
EN
GP6
EN
GP5
EN
GP4
EN
GP3
EN
GP2
EN
GP1
EN
GP0
EN
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-0
R/W-0
R/W-1
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset
Figure 4−4. GPIO Enable Register (GPEN) [Hex Address: 01B0 0000]
80
SPRS247E
April 2004 − Revised May 2005
General-Purpose Input/Output (GPIO)
Figure 4−5 shows the GPIO direction bits in the GPDIR register. This register determines if a given GPIO pin
is an input or an output providing the corresponding GPxEN bit is enabled (set to “1”) in the GPEN register.
By default, all the GPIO pins are configured as input pins.
31
24 23
16
Reserved
R-0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
GP15
DIR
GP14
DIR
GP13
DIR
GP12
DIR
GP11
DIR
GP10
DIR
GP9
DIR
GP8
DIR
GP7
DIR
GP6
DIR
GP5
DIR
GP4
DIR
GP3
DIR
GP2
DIR
GP1
DIR
GP0
DIR
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset
Figure 4−5. GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004]
For more detailed information on general-purpose inputs/outputs (GPIOs), see the TMS320C6000 DSP
General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).
April 2004 − Revised May 2005
SPRS247E
81
Power-Down Modes Logic
4.6
Power-Down Modes Logic
Figure 4−6 shows the power-down mode logic on the C6413/C6410.
CLKOUT4
CLKOUT6
Internal Clock Tree
Clock
Distribution
and Dividers
PD1
PD2
PowerDown
Logic
Clock
PLL
IFR
IER
Internal
Peripherals
PWRD CSR
CPU
PD3
TMS320C6413/C6410
CLKIN
†
RESET
External input clocks, with the exception of CLKIN, are not gated by the power-down mode logic.
Figure 4−6. Power-Down Mode Logic†
Note: to further save power, the PERCFG register can be used to disable unused peripherals. For more
detailed information on disabling peripherals using the PERCFG register, see the Device Configurations
section of this data sheet.
4.6.1
Triggering, Wake-up, and Effects
The power-down modes and their wake-up methods are programmed by setting the PWRD field (bits 15−10)
of the control status register (CSR). The PWRD field of the CSR is shown in Figure 4−7 and described in
Table 4−4. When writing to the CSR, all bits of the PWRD field should be set at the same time. Logic 0 should
be used when writing to the reserved bit (bit 15) of the PWRD field. The CSR is discussed in detail in the
TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).
82
SPRS247E
April 2004 − Revised May 2005
Power-Down Modes Logic
31
16
15
14
13
12
11
10
Reserved
Enable or
Non-Enabled
Interrupt Wake
Enabled
Interrupt Wake
PD3
PD2
PD1
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
9
8
7
0
Legend: R/W−x = Read/write reset value
NOTE: The shadowed bits are not part of the power-down logic discussion and therefore are not covered here. For information on these other
bit fields in the CSR register, see the TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).
Figure 4−7. PWRD Field of the CSR Register
A delay of up to nine clock cycles may occur after the instruction that sets the PWRD bits in the CSR before the
PD mode takes effect. As best practice, NOPs should be padded after the PWRD bits are set in the CSR to
account for this delay.
If PD1 mode is terminated by a non-enabled interrupt, the program execution returns to the instruction where
PD1 took effect. If PD1 mode is terminated by an enabled interrupt, the interrupt service routine will be executed
first, then the program execution returns to the instruction where PD1 took effect. In the case with an enabled
interrupt, the GIE bit in the CSR and the NMIE bit in the interrupt enable register (IER) must also be set in order
for the interrupt service routine to execute; otherwise, execution returns to the instruction where PD1 took effect
upon PD1 mode termination by an enabled interrupt.
PD2 and PD3 modes can only be aborted by device reset. Table 4−4 summarizes all the power-down modes.
April 2004 − Revised May 2005
SPRS247E
83
Power-Supply Sequencing
Table 4−4. Characteristics of the Power-Down Modes
PRWD FIELD
(BITS 15−10)
POWER-DOWN
MODE
WAKE-UP METHOD
EFFECT ON CHIP’S OPERATION
000000
No power-down
—
—
001001
PD1
Wake by an enabled interrupt
010001
PD1
Wake by an enabled or
non-enabled interrupt
011010
†
PD2†
011100
PD3†
All others
Reserved
CPU halted (except for the interrupt logic)
Power-down
Power
down mode blocks the internal clock inputs at the
boundary of the CPU, preventing most of the CPU’s logic from
switching. During PD1, EDMA transactions can proceed between
peripherals and internal memory.
Wake by a device reset
Output clock from PLL is halted, stopping the internal clock
structure from switching and resulting in the entire chip being
halted. All register and internal RAM contents are preserved. All
functional I/O “freeze” in the last state when the PLL clock is
turned off.
Wake by a device reset
Input clock to the PLL stops generating clocks. All register and
internal RAM contents are preserved. All functional I/O “freeze” in
the last state when the PLL clock is turned off. Following reset, the
PLL needs time to re-lock, just as it does following power-up.
Wake-up from PD3 takes longer than wake-up from PD2 because
the PLL needs to be re-locked, just as it does following power-up.
—
—
When entering PD2 and PD3, all functional I/O remains in the previous state. However, for peripherals which are asynchronous in nature or
peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these conditions,
peripherals will not operate according to specifications.
4.6.2
C64x Power-Down Mode with an Emulator
If user power-down modes are programmed, and an emulator is attached, the modes will be masked to allow
the emulator access to the system. This condition prevails until the emulator is reset or the cable is removed
from the header. If power measurements are to be performed when in a power-down mode, the emulator cable
should be removed.
When the DSP is in power-down mode PD2 or PD3, emulation logic will force any emulation execution
command (such as Step or Run) to spin in IDLE. For this reason, PC writes (such as loading code) will fail.
A DSP reset will be required to get the DSP out of PD2/PD3.
4.7
Power-Supply Sequencing
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,
systems should be designed to ensure that neither supply is powered up for extended periods of time
(>1 second) if the other supply is below the proper operating voltage.
4.7.1
Power-Supply Design Considerations
A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and I/O
power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 4−8).
84
SPRS247E
April 2004 − Revised May 2005
Power-Supply Sequencing
I/O Supply
DVDD
Schottky
Diode
C6000
DSP
Core Supply
CVDD
VSS
GND
Figure 4−8. Schottky Diode Diagram
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize
inductance and resistance in the power delivery path. Additionally, when designing for high-performance
applications utilizing the C6000™ platform of DSPs, the PC board should include separate power planes for
core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,
systems should be designed to ensure that neither supply is powered up for extended periods of time if the
other supply is below the proper operating voltage.
4.8
Power-Supply Decoupling
In order to properly decouple the supply planes from system noise, place as many capacitors (caps) as
possible close to the DSP. Assuming 0603 caps, the user should be able to fit a total of 60 caps, 30 for the
core supply and 30 for the I/O supply. These caps need to be close to the DSP power pins, no more than
1.25 cm maximum distance to be effective. Physically smaller caps, such as 0402, are better because of their
lower parasitic inductance. Proper capacitance values are also important. Small bypass caps (near 560 pF)
should be closest to the power pins. Medium bypass caps (220 nF or as large as can be obtained in a small
package) should be next closest. TI recommends no less than 8 small and 8 medium caps per supply (32 total)
be placed immediately next to the BGA vias, using the “interior” BGA space and at least the corners of the
“exterior”.
Eight larger caps (4 for each supply) can be placed further away for bulk decoupling. Large bulk caps (on the
order of 100 µF) should be furthest away (but still as close as possible). No less than 4 large caps per supply
(8 total) should be placed outside of the BGA.
Any cap selection needs to be evaluated from a yield/manufacturing point-of-view. As with the selection of any
component, verification of capacitor availability over the product’s production lifetime should be considered.
April 2004 − Revised May 2005
SPRS247E
85
Peripheral Power-Down Operation
4.9
Peripheral Power-Down Operation
The C6413/C6410 device can be powered down in two ways:
•
•
Power-down due to software configuration − relates to the default state of the peripheral configuration bits
in the PERCFG register.
Power-down during run-time via software configuration
On the C6413/C6410 device, the HPI, McASP1, and GP0 peripherals pin muxing is controlled (selected) at
the pin level during chip reset (e.g., HPI_EN and HD5 pins). If McASP1 pin muxing is selected, then the
MCASP1EN bit in the peripheral configuration register (PERCFG.8) must be configured properly to enable
the McASP1 peripheral.
The McASP1, McASP0, I2C1, and I2C0 peripheral functions are selected via the peripheral configuration
(PERCFG) register bits.
For more detailed information on the peripheral configuration pins and the PERCFG register bits, see the
Device Configurations section of this document.
86
SPRS247E
April 2004 − Revised May 2005
IEEE 1149.1 JTAG Compatibility Statement
4.10 IEEE 1149.1 JTAG Compatibility Statement
The TMS320C6413/C6410 DSP requires that both TRST and RESET be asserted upon power up to be
properly initialized. While RESET initializes the DSP core, TRST initializes the DSP’s emulation logic. Both
resets are required for proper operation.
Note: TRST is synchronous and must be clocked by TCLK; otherwise, BSCAN may not respond as expected
after TRST is asserted.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the
DSP to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface
and DSP’s emulation logic in the reset state. TRST only needs to be released when it is necessary to use a
JTAG controller to debug the DSP or exercise the DSP’s boundary scan functionality. RESET must be
released in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan
instructions work correctly independent of current state of RESET.
For maximum reliability, the TMS320C6413/C6410 DSP includes an internal pulldown (IPD) on the TRST pin
to ensure that TRST will always be asserted upon power up and the DSP’s internal emulation logic will always
be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some
third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When
using this type of JTAG controller, assert TRST to intialize the DSP after powerup and externally drive TRST
high before attempting any emulation or boundary scan operations.
Following the release of RESET, the low-to-high transition of TRST must occur to latch the state of EMU1 and
EMU0. The EMU[1:0] pins configure the device for either Boundary Scan mode or Normal/Emulation mode.
For more detailed information, see the terminal functions section of this data sheet.
Note: The DESIGN_WARNING section of the TMS320C6413/C6410 BSDL file contains information and
constraints regarding proper device operation while in Boundary Scan Mode.
For more detailed information on the C6413/C6410 JTAG emulation, see the TMS320C6000 DSP Designing
for JTAG Emulation Reference Guide (literature number SPRU641).
4.11
EMIF Device Speed
The rated EMIF speed of these devices only applies to the SDRAM interface when in a system that meets the
following requirements:
•
•
•
•
1 chip-enable (CE) space (maximum of 2 chips) of SDRAM connected to EMIF
up to 1 CE space of buffers connected to EMIF
EMIF trace lengths between 1 and 3 inches
143-MHz SDRAM for 100-MHz operation
Other configurations may be possible, but timing analysis must be done to verify all AC timings are met.
Verification of AC timings is mandatory when using configurations other than those specified above. TI
recommends utilizing I/O buffer information specification (IBIS) to analyze all AC timings.
To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models
for Timing Analysis application report (literature number SPRA839).
To maintain signal integrity, serial termination resistors should be inserted into all EMIF output signal lines (see
the Terminal Functions table for the EMIF output signals).
For more detailed information on the C6413/C6410 EMIF peripheral, see the TMS320C6000 DSP External
Memory Interface (EMIF) Reference Guide (literature number SPRU266).
April 2004 − Revised May 2005
SPRS247E
87
Bootmode
4.12 Bootmode
The C6413/C6410 device resets using the active-low signal RESET. While RESET is low, the device is held
in reset and is initialized to the prescribed reset state. Refer to reset timing for reset timing characteristics and
states of device pins during reset. The release of RESET starts the processor running with the prescribed
device configuration and boot mode.
The C6413/C6410 has three types of boot modes:
•
Host boot
If host boot is selected, upon release of RESET, the CPU is internally “stalled” while the remainder of the
device is released. During this period, an external host can initialize the CPU’s memory space as
necessary through the host interface, including internal configuration registers, such as those that control
the EMIF or other peripherals. For the C6413/C6410 device, the HPI peripheral is used for host boot
providing the TOUT0/HPI_EN pin is low, enabling the HPI peripheral [default]. Once the host is finished
with all necessary initialization, it must set the DSPINT bit in the HPIC register to complete the boot
process. This transition causes the boot configuration logic to bring the CPU out of the “stalled” state. The
CPU then begins execution from address 0. The DSPINT condition is not latched by the CPU, because it
occurs while the CPU is still internally “stalled”. Also, DSPINT brings the CPU out of the “stalled” state only
if the host boot process is selected. All memory may be written to and read by the host. This allows for the
host to verify what it sends to the DSP if required. After the CPU is out of the “stalled” state, the CPU needs
to clear the DSPINT, otherwise, no more DSPINTs can be received.
•
EMIF boot (using default ROM timings)
Upon the release of RESET, the 1K-Byte ROM code located in the beginning of CE1 is copied to address 0
by the EDMA using the default ROM timings, while the CPU is internally “stalled”. The data should be
stored in the endian format that the system is using. In this case, the EMIF automatically assembles
consecutive 8-bit bytes to form the 32-bit instruction words to be copied. The transfer is automatically done
by the EDMA as a single-frame block transfer from the ROM to address 0. After completion of the block
transfer, the CPU is released from the “stalled” state and starts running from address 0.
•
No boot
With no boot, the CPU begins direct execution from the memory located at address 0. Note: operation is
undefined if invalid code is located at address 0.
4.13 Reset
A hardware reset (RESET) is required to place the DSP into a known good state out of power-up. The RESET
signal can be asserted (pulled low) prior to ramping the core and I/O voltages or after the core and I/O voltages
have reached their proper operating conditions. As a best practice, reset should be held low during power-up.
Prior to deasserting RESET (low-to-high transition), the core and I/O voltages should be at their proper
operating conditions and CLKIN should also be running at the correct frequency.
88
SPRS247E
April 2004 − Revised May 2005
Device Electrical Specifications
5
Device Electrical Specifications
5.1
Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise
Noted)†
Supply voltage ranges:
CVDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to 1.8 V
DVDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V
Input voltage range:
VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V
Output voltage range:
VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4 V
Operating case temperature range, TC: (default) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0_C to 90_C
(A version) [GTSA and ZTSA] . . . . . . . . . . . . . . . . . −40_C to 105_C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65_C to 150_C
Package Temperature Cycling:
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40_C to 125_C
Number of Cycles (GTS, GTSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000
Number of Cycles (ZTS, ZTSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to VSS.
5.2
Recommended Operating Conditions
device)‡
MIN
NOM
MAX
UNIT
1.14
1.2
1.26
V
3.14
3.3
3.46
V
0
0
V
CVDD
Supply voltage, Core (-400, -500
DVDD
Supply voltage, I/O
VSS
Supply ground
0
VIH
High-level input voltage
2
VIL
Low-level input voltage
VOS
TC
Maximum voltage during overshoot/undershoot
Operating case temperature
Commercial temperature devices
(GTS and ZTS)
Extended temperature devices
(GTSA and ZTSA)
V
0.8
V
−1.0§
4.3§
V
0
90
_C
−40
105
_C
‡
Future variants of the C64x DSPs may operate at voltages ranging from 0.9 V to 1.4 V to provide a range of system power/performance options.
TI highly recommends that users design-in a supply that can handle multiple voltages within this range (i.e., 1.2 V, 1.25 V, 1.3 V, 1.35 V, 1.4 V
with ± 3% tolerances) by implementing simple board changes such as reference resistor values or input pin configuration modifications. Examples
of such supplies include the PT4660, PT5500, PT5520, PT6440, and PT6930 series from Power Trends, a subsidiary of Texas Instruments. Not
incorporating a flexible supply may limit the system’s ability to easily adapt to future versions of C64x devices.
§ The absolute maximum ratings should not be exceeded for more than 30% of the cycle period.
April 2004 − Revised May 2005
SPRS247E
89
Device Electrical Specifications
5.3
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating
Case Temperature (Unless Otherwise Noted)
PARAMETER
TEST CONDITIONS†
VOH
High-level output voltage
DVDD = MIN,
IOH = MAX
VOL
Low-level output voltage
DVDD = MIN,
IOL = MAX
MIN
TYP
2.4
IOH
IOL
Input current
High level output current
High-level
Low-level
Low
level output current
IOZ
Off-state output current
ICDD
Core supply current§
UNIT
V
VI = VSS to DVDD no opposing internal
resistor
II
MAX
0.4
V
±10
uA
VI = VSS to DVDD opposing internal
pullup resistor‡
50
100
150
uA
VI = VSS to DVDD opposing internal
pulldown resistor‡
−150
−100
−50
uA
−16
mA
Timer, TDO, GPIO, McBSP, HPI
EMIF, CLKOUT4, CLKOUT6, EMUx
−8
mA
EMIF, CLKOUT4, CLKOUT6, EMUx
16
mA
Timer, TDO, GPIO, McBSP, HPI
8
mA
SCL1, SDA1, SCL0, and SDA0
3
mA
±10
uA
VO = DVDD or 0 V
CVDD = 1.2 V, CPU clock = 500 MHz
568
mA
CVDD = 1.2 V, CPU clock = 400 MHz
465
mA
DVDD = 3.3 V, CPU clock = 500 MHz
140
mA
DVDD = 3.3 V, CPU clock = 400 MHz
132
IDDD
I/O supply current§
Ci
Input capacitance
10
pF
Co
Output capacitance
10
pF
mA
†
For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.
‡ Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.
§ Measured with average activity (50% high/50% low power) at 25°C case temperature and 100-MHz EMIF for -500 and -400 speeds. This model
represents a device performing high-DSP-activity operations 50% of the time, and the remainder performing low-DSP-activity operations. The
high/low-DSP-activity models are defined as follows:
High-DSP-Activity Model:
CPU: 8 instructions/cycle with 2 LDDW instructions [L1 Data Memory: 128 bits/cycle via LDDW instructions;
L1 Program Memory: 256 bits/cycle; L2/EMIF EDMA: 50% writes, 50% reads to/from SDRAM (50% bit-switching)]
McBSP: 2 channels at E1 rate
Timers: 2 timers at maximum rate
Low-DSP-Activity Model:
CPU: 2 instructions/cycle with 1 LDH instruction [L1 Data Memory: 16 bits/cycle; L1 Program Memory: 256 bits per 4 cycles;
L2/EMIF EDMA: None]
McBSP: 2 channels at E1 rate
Timers: 2 timers at maximum rate
The actual current draw is highly application-dependent. For more details on core and I/O activity, refer to the TMS320C6410/13 Power
Consumption Summary application report (literature number SPRAA59).
5.4
Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic
manner.
90
SPRS247E
April 2004 − Revised May 2005
Device Electrical Specifications
6
Parameter Information
Tester Pin Electronics
42 Ω
3.5 nH
Data Sheet Timing Reference Point
Output
Under
Test
Transmission Line
Z0 = 50 Ω
(see note)
4.0 pF
Device Pin
(see note)
1.85 pF
NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect.
The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from
the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.
Figure 6−1. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. This
load capacitance value does not indicate the maximum load the device is capable of driving.
6.1
Signal Transition Levels
All input and output timing parameters are referenced to 1.5 V for both “0” and “1” logic levels.
Vref = 1.5 V
Figure 6−2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL MAX
and VOH MIN for output clocks.
Vref = VIH MIN (or VOH MIN)
Vref = VIL MAX (or VOL MAX)
Figure 6−3. Rise and Fall Transition Time Voltage Reference Levels
6.2
Signal Transition Rates
All timings are tested with an input edge rate of 4 Volts per nanosecond (4 V/ns).
April 2004 − Revised May 2005
SPRS247E
91
Device Electrical Specifications
6.3
Timing Parameters and Board Routing Analysis
The timing parameter values specified in this data sheet do not include delays by board routings. As a good
board design practice, such delays must always be taken into account. Timing values may be adjusted by
increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification
(IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate
timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature
number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing
differences.
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device
and from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time
margin, but also tends to improve the input hold time margins (see Table 6−1 and Figure 6−4).
Figure 6−4 represents a general transfer between the DSP and an external device. The figure also represents
board route delays and how they are perceived by the DSP and the external device.
Table 6−1. Board-Level Timing Example (see Figure 6−4)
NO.
DESCRIPTION
1
Clock route delay
2
Minimum DSP hold time
3
Minimum DSP setup time
4
External device hold time requirement
5
External device setup time requirement
6
Control signal route delay
7
External device hold time
8
External device access time
9
DSP hold time requirement
10
DSP setup time requirement
11
Data route delay
ECLKOUTx
(Output from DSP)
1
ECLKOUTx
(Input to External Device)
Control Signals†
(Output from DSP)
2
3
5
Control Signals
(Input to External Device)
Data Signals‡
(Output from External Device)
Data Signals‡
(Input to DSP)
4
6
7
8
11
10
9
† Control signals include data for Writes.
‡ Data signals are generated during Reads from an external device.
Figure 6−4. Board-Level Input/Output Timings
92
SPRS247E
April 2004 − Revised May 2005
Peripheral Electrical Specifications
7
Peripheral Electrical Specifications
7.1
Input and Output Clocks
Table 7−1. Timing Requirements for External Crystal Oscillator Input (OSCIN and OSCOUT)
−400
−500
NO.
1
†
fOSC
Input oscillator frequency
UNIT
MIN
MAX
12
30
MHz
The PLL multiplier factors (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x24) further limit the MIN and MAX values for CLKIN and
OSCIN. For more details on these limitations, see Table 4−1 and Table 4−2 of the Clock PLL and Oscillator section of this data sheet.
Table 7−2. Timing Requirements for CLKIN†‡§ (see Figure 7−1)
−400
−500
NO
NO.
PLL MULT MODE
MIN
10†
1
tc(CLKIN)
Cycle time, CLKIN
2
tw(CLKINH)
Pulse duration, CLKIN high
0.45C
3
tw(CLKINL)
Pulse duration, CLKIN low
0.45C
4
tt(CLKIN)
Transition time, CLKIN
5
tJ(CLKIN)
Period jitter, CLKIN
UNIT
x1 (BYPASS)
MAX
MIN
MAX
83.3
10†
83.3
0.45C
ns
ns
0.45C
ns
5
1
ns
0.02C
0.02C
ns
†
The PLL multiplier factors (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x24) further limit the MIN and MAX values for CLKIN and
OSCIN. For more details on these limitations, see Table 4−1 and Table 4−2 of the Clock PLL and Oscillator section of this data sheet.
‡ The reference points for the rise and fall transitions are measured at V MAX and V MIN.
IL
IH
§ C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns.
1
5
4
2
CLKIN
3
4
Figure 7−1. CLKIN Timing
April 2004 − Revised May 2005
SPRS247E
93
Input and Output Clocks
Table 7−3. Switching Characteristics Over Recommended Operating Conditions for CLKOUT4†‡§
(see Figure 7−2)
NO.
−400
−500
PARAMETER
MIN
UNIT
MAX
1
tc(CKO4)
Cycle time, CLKOUT4
4P − 0.7
4P + 0.7
ns
2
tw(CKO4H)
Pulse duration, CLKOUT4 high
2P − 0.7
2P + 0.7
ns
3
tw(CKO4L)
Pulse duration, CLKOUT4 low
2P − 0.7
2P + 0.7
ns
4
tt(CKO4)
Transition time, CLKOUT4
1
ns
†
The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.
‡ PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.
§ P = 1/CPU clock frequency in nanoseconds (ns)
1
4
2
CLKOUT4
3
4
Figure 7−2. CLKOUT4 Timing
Table 7−4. Switching Characteristics Over Recommended Operating Conditions for CLKOUT6†‡§
(see Figure 7−3)
NO.
−400
−500
PARAMETER
MIN
UNIT
MAX
1
tc(CKO6)
Cycle time, CLKOUT6
6P − 0.7
6P + 0.7
ns
2
tw(CKO6H)
Pulse duration, CLKOUT6 high
3P − 0.7
3P + 0.7
ns
3
tw(CKO6L)
Pulse duration, CLKOUT6 low
3P − 0.7
3P + 0.7
ns
4
tt(CKO6)
Transition time, CLKOUT6
1
ns
†
The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.
PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.
§ P = 1/CPU clock frequency in nanoseconds (ns)
‡
1
4
2
CLKOUT6
3
4
Figure 7−3. CLKOUT6 Timing
94
SPRS247E
April 2004 − Revised May 2005
Input and Output Clocks
Table 7−5. Timing Requirements for AECLKIN for EMIFA†‡§ (see Figure 7−4)
−400
−500
NO.
UNIT
MIN
MAX
6¶
16P
1
tc(EKI)
Cycle time, AECLKIN
2
tw(EKIH)
Pulse duration, AECLKIN high
2.7
3
tw(EKIL)
Pulse duration, AECLKIN low
2.7
4
tt(EKI)
Transition time, AECLKIN
5
tJ(EKI)
Period jitter, AECLKIN
ns
ns
ns
3
ns
0.02E
ns
†
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN.
§ E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.
¶ Minimum AECLKIN cycle times must be met, even when AECLKIN is generated by an internal clock source. Minimum AECLKIN times are based
on internal logic speed; the maximum useable speed of the EMIF may be lower due to AC timing requirements. 100-MHz operation is achievable
if the requirements of the EMIF Device Speed section are met.
‡
1
5
4
2
AECLKIN
3
4
Figure 7−4. AECLKIN Timing for EMIFA
Table 7−6. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1 for the
EMIFA Module§#|| (see Figure 7−5)
NO.
−400
−500
PARAMETER
UNIT
MIN
MAX
E − 0.7
E + 0.7
ns
1
tc(EKO1)
Cycle time, AECLKOUT1
2
tw(EKO1H)
Pulse duration, AECLKOUT1 high
EH − 0.7
EH + 0.7
ns
3
tw(EKO1L)
Pulse duration, AECLKOUT1 low
EL − 0.7
EL + 0.7
ns
4
tt(EKO1)
Transition time, AECLKOUT1
1
ns
5
td(EKIH-EKO1H)
Delay time, AECLKIN high to AECLKOUT1 high
1
8
ns
6
td(EKIL-EKO1L)
Delay time, AECLKIN low to AECLKOUT1 low
1
8
ns
§
E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns.
The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.
|| EH is the high period of E (EMIF input clock period) in ns and EL is the low period of E (EMIF input clock period) in ns for EMIFA.
#
AECLKIN
1
5
6
2
3
4
4
AECLKOUT1
Figure 7−5. AECLKOUT1 Timing for the EMIFA Module
April 2004 − Revised May 2005
SPRS247E
95
Input and Output Clocks
Table 7−7. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2 for the
EMIFA Module†‡ (see Figure 7−6)
NO.
−400
−500
PARAMETER
UNIT
MIN
†
‡
MAX
1
tc(EKO2)
Cycle time, AECLKOUT2
NE − 0.7
NE + 0.7
ns
2
tw(EKO2H)
Pulse duration, AECLKOUT2 high
0.5NE − 0.7
0.5NE + 0.7
ns
3
tw(EKO2L)
Pulse duration, AECLKOUT2 low
0.5NE − 0.7
0.5NE + 0.7
ns
4
tt(EKO2)
Transition time, AECLKOUT2
1
ns
5
td(EKIH-EKO2H)
Delay time, ECLKIN high to AECLKOUT2 high
1
8
ns
6
td(EKIH-EKO2L)
Delay time, ECLKIN high to AECLKOUT2 low
1
8
ns
The reference points for the rise and fall transitions are measured at VOL MAX and VOH MIN.
E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.
N = the EMIF input clock divider; N = 1, 2, or 4.
5
6
AECLKIN
1
3
2
4
4
AECLKOUT2
Figure 7−6. AECLKOUT2 Timing for the EMIFA Module
96
SPRS247E
April 2004 − Revised May 2005
Asynchronous Memory Timing
7.2
Asynchronous Memory Timing
Table 7−8. Timing Requirements for Asynchronous Memory Cycles for EMIFA Module†‡
(see Figure 7−7 and Figure 7−8)
−400
−500
NO.
MIN
3
tsu(EDV-AREH)
Setup time, AEDx valid before AARE high
4
th(AREH-EDV)
6
tsu(ARDY-EKO1H)
7
th(EKO1H-ARDY)
UNIT
MAX
6.5
ns
Hold time, AEDx valid after AARE high
1
ns
Setup time, AARDY valid before AECLKOUTx high
3
ns
Hold time, AARDY valid after AECLKOUTx high
3
ns
†
To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. The ARDY signal is recognized in
the cycle for which the setup and hold time is met. The ARDY signal is only recognized two cycles before the end of the programmed strobe time
and while ARDY is low, the strobe time is extended cycle-by-cycle. When ARDY is recognized low, the end of the strobe time is two cycles after
ARDY is recognized high To use ARDY as an asynchronous input, the pulse width of the ARDY signal should be wide enough (e.g., pulse width
= 2E) to ensure setup and hold time is met.
‡ RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are
programmed via the EMIF CE space control registers.
Table 7−9. Switching Characteristics Over Recommended Operating Conditions for Asynchronous
Memory Cycles for EMIFA Module‡§¶ (see Figure 7−7 and Figure 7−8)
NO.
PARAMETER
−400
−500
MIN
1
tosu(SELV-AREL)
Output setup time, select signals valid to AARE low
RS * E − 1.5
2
toh(AREH-SELIV)
Output hold time, AARE high to select signals invalid
RH * E − 1.9
5
td(EKO1H-AREV)
Delay time, AECLKOUTx high to AARE valid
8
tosu(SELV-AWEL)
Output setup time, select signals valid to AAWE low
WS * E − 1.7
9
toh(AWEH-SELIV)
Output hold time, AAWE high to select signals invalid
WH * E − 1.8
10
td(EKO1H-AWEV)
Delay time, AECLKOUTx high to AAWE valid
1
1.3
UNIT
MAX
ns
ns
7
ns
ns
ns
7.1
ns
‡
RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are
programmed via the EMIF CE space control registers.
§ E = ECLKOUT1 period in ns for EMIFA
¶ Select signals for EMIFA include: ACEx, ABE[3.:0], AEA[22:3], AAOE; and for EMIFA writes, include AED[31:0].
April 2004 − Revised May 2005
SPRS247E
97
Asynchronous Memory Timing
Setup = 2
Strobe = 3
Not Ready
Hold = 2
AECLKOUTx
1
2
1
2
ACEx
ABE[3:0]
BE
2
1
AEA[22:3]
Address
3
4
AED[31:0]
1
2
Read Data
AAOE/ASDRAS/ASOE†
5
5
AARE/ASDCAS/ASADS/ASRE†
AAWE/ASDWE/ASWE†
7
7
6
6
AARDY
†
AOE/SDRAS/SOE, ARE/SDCAS/SADS/SRE, and AWE/SDWE/SWE operate as AOE (identified under select signals), ARE, and AWE,
respectively, during asynchronous memory accesses.
Figure 7−7. Asynchronous Memory Read Timing for EMIFA
98
SPRS247E
April 2004 − Revised May 2005
Asynchronous Memory Timing
Setup = 2
Strobe = 3
Hold = 2
Not Ready
AECLKOUTx
9
8
ACEx
9
8
ABE[3:0]
BE
9
8
AEA[22:3]
Address
9
8
AED[31:0]
Write Data
AAOE/ASDRAS/ASOE†
AARE/ASDCAS/ASADS/ASRE†
10
10
AAWE/ASDWE/ASWE†
6
7
7
6
AARDY
†
AOE/SDRAS/SOE, ARE/SDCAS/SADS/SRE, and AWE/SDWE/SWE operate as AOE (identified under select signals), ARE, and AWE,
respectively, during asynchronous memory accesses.
Figure 7−8. Asynchronous Memory Write Timing for EMIFA
April 2004 − Revised May 2005
SPRS247E
99
Programmable Synchronous Interface Timing
7.3
Programmable Synchronous Interface Timing
Table 7−10. Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module
(see Figure 7−9)
−400
−500
NO.
MIN
UNIT
MAX
6
tsu(EDV-EKOxH)
Setup time, read AEDx valid before AECLKOUTx high
3.1
ns
7
th(EKOxH-EDV)
Hold time, read AEDx valid after AECLKOUTx high
1.5
ns
Table 7−11. Switching Characteristics Over Recommended Operating Conditions for Programmable
Synchronous Interface Cycles for EMIFA Module† (see Figure 7−9−Figure 7−11)
NO.
†
PARAMETER
−400
−500
UNIT
MIN
MAX
1.3
6.4
ns
6.4
ns
1
td(EKOxH-CEV)
Delay time, AECLKOUTx high to ACEx valid
2
td(EKOxH-BEV)
Delay time, AECLKOUTx high to ABEx valid
3
td(EKOxH-BEIV)
Delay time, AECLKOUTx high to ABEx invalid
4
td(EKOxH-EAV)
Delay time, AECLKOUTx high to AEAx valid
5
td(EKOxH-EAIV)
Delay time, AECLKOUTx high to AEAx invalid
1.3
8
td(EKOxH-ADSV)
Delay time, AECLKOUTx high to ASADS/ASRE valid
1.3
6.4
ns
9
td(EKOxH-OEV)
Delay time, AECLKOUTx high to, ASOE valid
1.3
6.4
ns
10
td(EKOxH-EDV)
Delay time, AECLKOUTx high to AEDx valid
6.4
ns
11
td(EKOxH-EDIV)
Delay time, AECLKOUTx high to AEDx invalid
1.3
12
td(EKOxH-WEV)
Delay time, AECLKOUTx high to ASWE valid
1.3
1.3
ns
6.4
ns
ns
ns
6.4
ns
The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):
− Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency
− Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency
− ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued
(CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).
− Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles
(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).
− Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2
100
SPRS247E
April 2004 − Revised May 2005
Programmable Synchronous Interface Timing
READ latency = 2
AECLKOUTx
1
1
ACEx
ABE[3:0]
2
BE1
3
BE2
BE3
BE4
4
AEA[22:3]
EA1
5
EA3
EA2
6
AED[31:0]
AARE/ASDCAS/ASADS/
ASRE§
EA4
7
Q1
Q2
Q3
Q4
8
8
9
9
AAOE/ASDRAS/ASOE§
AAWE/ASDWE/ASWE§
†
The read latency and the length of CEx assertion are programmable via the SYNCRL and CEEXT fields, respectively, in the EMIFA CE Space
Secondary Control register (CExSEC). In this figure, SYNCRL = 2 and CEEXT = 0.
‡ The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):
− Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency
− Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency
− ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued
(CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).
− Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles
(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).
− Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2
§ AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE,
respectively, during programmable synchronous interface accesses.
Figure 7−9. Programmable Synchronous Interface Read Timing for EMIFA
(With Read Latency = 2)†‡
April 2004 − Revised May 2005
SPRS247E
101
Programmable Synchronous Interface Timing
AECLKOUTx
1
ACEx
1
ABE[3:0]
2
BE1
AEA[22:3]
4
EA1
EA2
EA3
EA4
10
Q1
Q2
Q3
Q4
10
AED[31:0]
AARE/ASDCAS/ASADS/ASRE§
3
BE2
BE3
BE4
5
11
8
8
AAOE/ASDRAS/ASOE§
12
12
AAWE/ASDWE/ASWE§
†
The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE Space
Secondary Control register (CExSEC). In this figure, SYNCWL = 0 and CEEXT = 0.
‡ The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):
− Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency
− Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency
− ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued
(CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).
− Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles
(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).
− Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2
§ AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE,
respectively, during programmable synchronous interface accesses.
Figure 7−10. Programmable Synchronous Interface Write Timing for EMIFA
(With Write Latency = 0)†‡§
102
SPRS247E
April 2004 − Revised May 2005
Programmable Synchronous Interface Timing
Write
Latency =
1‡
AECLKOUTx
1
1
ACEx
ABE[3:0]
2
BE1
3
BE2
BE3
BE4
EA2
10
EA3
EA4
Q1
Q2
Q3
5
4
AEA[22:3]
EA1
10
AED[31:0]
AARE/ASDCAS/ASADS/
ASRE§
11
Q4
8
8
AAOE/ASDRAS/ASOE§
12
12
AAWE/ASDWE/ASWE§
†
The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE Space
Secondary Control register (CExSEC). In this figure, SYNCWL = 1 and CEEXT = 0.
‡ The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):
− Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency
− Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency
− ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued
(CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).
− Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles
(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).
− Synchronization clock (SNCCLK): Synchronized to ECLKOUT1 or ECLKOUT2
§ AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE,
respectively, during programmable synchronous interface accesses.
Figure 7−11. Programmable Synchronous Interface Write Timing for EMIFA
(With Write Latency = 1)†‡
April 2004 − Revised May 2005
SPRS247E
103
Synchronous DRAM Timing
7.4
Synchronous DRAM Timing
Table 7−12. Timing Requirements for Synchronous DRAM Cycles for EMIFA Module (see Figure 7−12)
−400
−500
NO.
MIN
UNIT
MAX
6
tsu(EDV-EKO1H)
Setup time, read AEDx valid before AECLKOUTx high
2.1
ns
7
th(EKO1H-EDV)
Hold time, read AEDx valid after AECLKOUTx high
2.5
ns
Table 7−13. Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM
Cycles for EMIFA Module (see Figure 7−12−Figure 7−19)
NO.
PARAMETER
−400
−500
UNIT
MIN
MAX
1.3
6.4
ns
6.4
ns
1
td(EKO1H-CEV)
Delay time, AECLKOUTx high to ACEx valid
2
td(EKO1H-BEV)
Delay time, AECLKOUTx high to ABEx valid
3
td(EKO1H-BEIV)
Delay time, AECLKOUTx high to ABEx invalid
4
td(EKO1H-EAV)
Delay time, AECLKOUTx high to AEAx valid
5
td(EKO1H-EAIV)
Delay time, AECLKOUTx high to AEAx invalid
1.3
8
td(EKO1H-CASV)
Delay time, AECLKOUTx high to ASDCAS valid
1.3
9
td(EKO1H-EDV)
Delay time, AECLKOUTx high to AEDx valid
10
td(EKO1H-EDIV)
Delay time, AECLKOUTx high to AEDx invalid
1.3
11
td(EKO1H-WEV)
Delay time, AECLKOUTx high to ASDWE valid
1.3
6.4
ns
12
td(EKO1H-RAS)
Delay time, AECLKOUTx high to ASDRAS valid
1.3
6.4
ns
13
td(EKO1H-ACKEV)
Delay time, AECLKOUTx high to ASDCKE valid
1.3
6.4
ns
14
td(EKO1H-PDTV)
Delay time, AECLKOUTx high to PDT valid
1.3
6.4
ns
104
SPRS247E
1.3
ns
6.4
ns
ns
6.4
ns
6.4
ns
ns
April 2004 − Revised May 2005
Synchronous DRAM Timing
READ
AECLKOUTx
1
1
ACEx
2
BE1
ABE[3:0]
4
Bank
5
AEA[22:14]
4
Column
5
AEA[12:3]
4
3
BE2
BE3
BE4
5
AEA13
6
AED[31:0]
D1
7
D2
D3
D4
AAOE/ASDRAS/ASOE†
AARE/ASDCAS/ASADS/
ASRE†
8
8
AAWE/ASDWE/ASWE†
14
14
PDT‡
†
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,
respectively, during SDRAM accesses.
‡ PDT signal is only asserted when the EDMA is in PDT mode (set the PDTS bit to 1 in the EDMA options parameter RAM). For PDT read, data
is not latched into EMIF. The PDTRL field in the PDT control register (PDTCTL) configures the latency of the PDT signal with respect to the data
phase of a read transaction. The latency of the PDT signal for a read can be programmed to 0, 1, 2, or 3 by setting PDTRL to 00, 01, 10, or 11,
respectively. PDTRL equals 00 (zero latency) in Figure 7−12.
Figure 7−12. SDRAM Read Command (CAS Latency 3) for EMIFA
April 2004 − Revised May 2005
SPRS247E
105
Synchronous DRAM Timing
WRITE
AECLKOUTx
1
2
2
4
ACEx
ABE[3:0]
BE1
4
3
BE2
BE3
BE4
D2
D3
D4
5
Bank
AEA[22:14]
5
4
Column
AEA[12:3]
4
5
AEA13
9
AED[31:0]
10
9
D1
AAOE/ASDRAS/ASOE†
AARE/ASDCAS/ASADS/
ASRE†
8
8
11
11
AAWE/ASDWE/ASWE†
14
14
PDT‡
†
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as AsDCAS, ASDWE, and ASDRAS, respectively,
during SDRAM accesses.
‡ PDT signal is only asserted when the EDMA is in PDT mode (set the PDTD bit to 1 in the EDMA options parameter RAM). For PDT write, data
is not driven (in High-Z). The PDTWL field in the PDT control register (PDTCTL) configures the latency of the PDT signal with respect to the data
phase of a write transaction. The latency of the PDT signal for a write transaction can be programmed to 0, 1, 2, or 3 by setting PDTWL to 00,
01, 10, or 11, respectively. PDTWL equals 00 (zero latency) in Figure 7−13.
Figure 7−13. SDRAM Write Command for EMIFA
106
SPRS247E
April 2004 − Revised May 2005
Synchronous DRAM Timing
ACTV
AECLKOUTx
1
1
ACEx
ABE[3:0]
4
Bank Activate
5
AEA[22:14]
4
Row Address
5
AEA[12:3]
4
Row Address
5
AEA13
AED[31:0]
12
12
AAOE/ASDRAS/ASOE†
AARE/ASDCAS/ASADS/
ASRE†
AAWE/ASDWE/ASWE†
†
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,
respectively, during SDRAM accesses.
Figure 7−14. SDRAM ACTV Command for EMIFA
DCAB
AECLKOUTx
1
1
4
5
12
12
11
11
ACEx
ABE[3:0]
AEA[22:14, 12:3]
AEA13
AED[31:0]
AAOE/ASDRAS/ASOE†
AARE/ASDCAS/ASADS/
ASRE†
AAWE/ASDWE/ASWE†
†
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,
respectively, during SDRAM accesses.
Figure 7−15. SDRAM DCAB Command for EMIFA
April 2004 − Revised May 2005
SPRS247E
107
Synchronous DRAM Timing
DEAC
AECLKOUTx
1
1
ACEx
ABE[7:0]
4
AEA[22:14]
5
Bank
AEA[12:3]
4
5
12
12
11
11
AEA13
AED[31:0]
AAOE/ASDRAS/ASOE†
AARE/ASDCAS/ASADS/
ASRE†
AAWE/ASDWE/ASWE†
†
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,
respectively, during SDRAM accesses.
Figure 7−16. SDRAM DEAC Command for EMIFA
REFR
AECLKOUTx
1
1
12
12
8
8
ACEx
ABE[3:0]
AEA[22:14, 12:3]
AEA13
AED[31:0]]
AAOE/ASDRAS/ASOE†
AARE/ASDCAS/ASADS/
ASRE†
AAWE/ASDWE/ASWE†
†
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,
respectively, during SDRAM accesses.
Figure 7−17. SDRAM REFR Command for EMIFA
108
SPRS247E
April 2004 − Revised May 2005
Synchronous DRAM Timing
MRS
AECLKOUTx
1
1
4
MRS value
5
12
12
8
8
11
11
ACEx
ABE[3:0]
AEA[22:3]
AED[31:0]
AAOE/ASDRAS/
ASOE†
AARE/ASDCAS/ASADS/
ASRE†
AAWE/ASDWE/ASWE†
†
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,
respectively, during SDRAM accesses.
Figure 7−18. SDRAM MRS Command for EMIFA
≥ TRAS cycles
End Self-Refresh
Self Refresh
AECLKOUTx
ACEx
ABE[3:0]
AEA[22:14, 12:3]
AEA13
AED[31:0]
AAOE/ASDRAS/ASOE†
AARE/ASDCAS/ASADS/ASRE†
AAWE/ASDWE/ASWE†
13
13
ASDCKE
†
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,
respectively, during SDRAM accesses.
Figure 7−19. SDRAM Self-Refresh Timing for EMIFA
April 2004 − Revised May 2005
SPRS247E
109
HOLD/HOLDA Timing
7.5
HOLD/HOLDA Timing
Table 7−14. Timing Requirements for the HOLD/HOLDA Cycles for EMIFA Module† (see Figure 7−20)
−400
−500
NO.
MIN
3
†
th(HOLDAL-HOLDL)
Hold time, HOLD low after HOLDA low
UNIT
MAX
E
ns
E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.
Table 7−15. Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA
Cycles for EMIFA Module†‡§ (see Figure 7−20)
NO.
−400
−500
PARAMETER
UNIT
MIN
MAX
1
td(HOLDL-EMHZ)
Delay time, HOLD low to EMIFA Bus high impedance
2E
¶
ns
2
td(EMHZ-HOLDAL)
Delay time, EMIF Bus high impedance to HOLDA low
0
2E
ns
4
td(HOLDH-EMLZ)
Delay time, HOLD high to EMIF Bus low impedance
2E
7E
ns
5
td(EMLZ-HOLDAH)
Delay time, EMIFA Bus low impedance to HOLDA high
0
2E
ns
ns
ns
6
td(HOLDL-EKOHZ)
Delay time, HOLD low to AECLKOUTx high impedance
2E
¶
7
td(HOLDH-EKOLZ)
Delay time, HOLD high to AECLKOUTx low impedance
2E
7E
†
E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.
‡ EMIFA Bus consists of: ACE[3:0], ABE[3:0], AED[31:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and
AAWE/ASDWE/ASWE , ASDCKE, ASOE3, and APDT.
§ The EKxHZ bits in the EMIF Global Control register (GBLCTL) determine the state of the ECLKOUTx signals during HOLDA. If EKxHZ = 0,
ECLKOUTx continues clocking during Hold mode. If EKxHZ = 1, ECLKOUTx goes to high impedance during Hold mode, as shown in Figure 7−20.
¶ All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the minimum delay
time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.
External Requestor
Owns Bus
DSP Owns Bus
DSP Owns Bus
3
HOLD
2
5
HOLDA
EMIF Bus†
1
C6413/C6410
4
6
7
C6413/C6410
AECLKOUTx‡
(EKxHZ = 0)
AECLKOUTx‡
(EKxHZ = 1)
†
EMIFA Bus consists of: ACE[3:0], ABE[3:0], AED[31:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and
AAWE/ASDWE/ASWE, ASDCKE, ASOE3, and APDT.
‡ The EKxHZ bits in the EMIF Global Control register (GBLCTL) determine the state of the ECLKOUTx signals during HOLDA. If EKxHZ = 0,
ECLKOUTx continues clocking during Hold mode. If EKxHZ = 1, ECLKOUTx goes to high impedance during Hold mode, as shown in Figure 7−20.
Figure 7−20. HOLD/HOLDA Timing for EMIFA
110
SPRS247E
April 2004 − Revised May 2005
BUSREQ Timing
7.6
BUSREQ Timing
Table 7−16. Switching Characteristics Over Recommended Operating Conditions for the BUSREQ Cycles
for EMIFA Module (see Figure 7−21)
NO.
1
−400
−500
PARAMETER
td(AEKO1H-ABUSRV)
Delay time, AECLKOUTx high to ABUSREQ valid
UNIT
MIN
MAX
0.6
7.1
ns
AECLKOUTx
1
1
ABUSREQ
Figure 7−21. BUSREQ Timing for EMIFA
April 2004 − Revised May 2005
SPRS247E
111
Reset Timing
7.7
Reset Timing
Table 7−17. Timing Requirements for Reset (see Figure 7−22)
−400
−500
NO.
MIN
1
tw(RST)
Width of the RESET pulse¶
high†
16
tsu(boot)
Setup time, boot configuration bits valid before RESET
17
th(boot)
Hold time, boot configuration bits valid after RESET high†
4E or
UNIT
MAX
250
µs
4C‡
ns
4P§
ns
†
AEA[22:19], LENDIAN, BOOTMODE[1:0], and AECLKIN_SEL[1:0] are the boot configuration pins during device reset.
E = 1/ECLKIN clock frequency in ns. C = 1/CLKIN clock frequency in ns.
Select the MIN parameter value, whichever value is larger.
§ P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
¶ The device must be reset after the oscillator has stabilized. If RESETz is low during power-up, it can be kept low until the oscillator has stabilized.
Note: a device reset does not affect the state of the oscillator.
‡
Table 7−18. Switching Characteristics Over Recommended Operating Conditions During Reset§#k
(see Figure 7−22)
NO
NO.
−400, −500
PARAMETER
MIN
MAX
UNIT
2
td(RSTL-ECKI)
Delay time, RESET low to ECLKIN synchronized internally
2E
3P + 20E
ns
3
td(RSTH-ECKI)
Delay time, RESET high to ECLKIN synchronized internally
2E
8P + 20E
ns
4
td(RSTL-ECKO1HZ)
Delay time, RESET low to ECLKOUT1 high impedance
2E
5
td(RSTH-ECKO1V)
Delay time, RESET high to ECLKOUT1 valid
6
td(RSTL-EMIFZHZ)
Delay time, RESET low to EMIF Z high impedance
7
td(RSTH-EMIFZV)
Delay time, RESET high to EMIF Z valid
8
td(RSTL-EMIFHIV)
Delay time, RESET low to EMIF high group invalid
9
td(RSTH-EMIFHV)
Delay time, RESET high to EMIF high group valid
10
td(RSTL-EMIFLIV)
Delay time, RESET low to EMIF low group invalid
11
td(RSTH-EMIFLV)
Delay time, RESET high to EMIF low group valid
12
td(RSTL-HIGHIV)
Delay time, RESET low to high group invalid
13
td(RSTH-HIGHV)
Delay time, RESET high to high group valid
14
td(RSTL-ZHZ)
Delay time, RESET low to Z group high impedance
15
td(RSTH-ZV)
Delay time, RESET high to Z group valid
18
td(OSCSTART)
Delay time, Internal oscillator startup time||¶
ns
8P + 20E
ns
2E
3P + 4E
ns
16E
8P + 20E
ns
2E
ns
8P + 20E
2E
ns
8P + 20E
0
11P
CLKINSEL = 0
ns
ns
0
2P
ns
ns
ns
8P
ns
41032 x
OSCIN
ns
§
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
The device must be reset after the oscillator has stabilized. If RESETz is low during power-up, it can be kept low until the oscillator has stabilized.
Note: a device reset does not affect the state of the oscillator.
# E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.
|| Assuming core power supply has stabilized at recommended operating conditions.
k EMIF Z group consists of:
AEA[22:3], AED[31:0], ACE[3:0], ABE[3:0], AARE/ASDCAS/ASADS/ASRE,AAWE/ASDWE/ASWE,
and AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, APDT., and AECLKOUT1
EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high)
EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low)
High group consists of:
HRDY (when HPI is enabled, otherwise in Z group)
Z group consists of:
CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKS0, CLKS1, DR0, DR1, CLKR0, CLKR1, FSR0, FSR1,
TOUT0/HPI_EN, TOUT1/LENDIAN, GP0[7:0], HD[7:0], HD[15:8]/GP0[15:8], HD[21:16]/AXR1[5:0],
HD22/AFSX1, HD23/AFSR1, HD24/ACLKX1, HD25/ACLKR1, HD26/AHCLKR1, HD27/AHCLKX1,
HD28/AMUTE1, HD29/AMUTEIN1, HD30, HD31, HRDY, HDS2, HDS1/ACLKR1[3], HCS/ACLKR1[2],
HAS/ACLKR1[1], HR/W/AFSR1[3], HHWIL/AFSR1[2] (16-bit HPI mode only), HCNTL0/AFSR1[1], HCNTL1,
HINT,, ACLKR0, AFSR0, AHCLKR0, AMUTEIN0, AMUTE0, AXR0[5:0], SDA1, SCL1, SDA0, SCL0,
TDO, and EMU[11:0]
¶
112
SPRS247E
April 2004 − Revised May 2005
Reset Timing
CLKOUT4
CLKOUT6
1
RESET
2
3
4
5
6
7
AECLKIN
AECLKOUT1
AECLKOUT2
EMIF Z Group†‡
8
9
10
11
EMIF High Group†
EMIF Low Group†
12
13
14
15
High Group†
Z Group†‡
17
Boot and Device
Configuration Inputs§
†
16
EMIF Z group consists of:
AEA[22:3], AED[31:0], ACE[3:0], ABE[3:0], AARE/ASDCAS/ASADS/ASRE,AAWE/ASDWE/ASWE,
and AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, APDT., and AECLKOUT1
EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high)
EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low)
High group consists of:
HRDY (when HPI is enabled, otherwise in Z group)
Z group consists of:
CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKS0, CLKS1, DR0, DR1, CLKR0, CLKR1, FSR0, FSR1,
TOUT0/HPI_EN, TOUT1/LENDIAN, GP0[7:0], HD[7:0], HD[15:8]/GP0[15:8], HD[21:16]/AXR1[5:0],
HD22/AFSX1, HD23/AFSR1, HD24/ACLKX1, HD25/ACLKR1, HD26/AHCLKR1, HD27/AHCLKX1,
HD28/AMUTE1, HD29/AMUTEIN1, HD30, HD31, HRDY, HDS2, HDS1/ACLKR1[3], HCS/ACLKR1[2],
HAS/ACLKR1[1], HR/W/AFSR1[3], HHWIL/AFSR1[2] (16-bit HPI mode only), HCNTL0/AFSR1[1], HCNTL1,
HINT,, ACLKR0, AFSR0, AHCLKR0, AMUTEIN0, AMUTE0, AXR0[5:0], SDA1,
SCL1, SDA0, SCL0, TDO, and EMU[11:0]
‡ If AEA[22:19], LENDIAN, BOOTMODE[1:0], and AECLKIN_SEL[1:0] pins are actively driven, care must be taken to ensure no timing contention
between parameters 6, 7, 14, 15, 16, and 17.
§ Boot and Device Configurations Inputs (during reset) include: AEA[22:19], LENDIAN, BOOTMODE[1:0], and AECLKIN_SEL[1:0].
Figure 7−22. Reset Timing†
April 2004 − Revised May 2005
SPRS247E
113
External Interrupt Timing
7.8
External Interrupt Timing
Table 7−19. Timing Requirements for External Interrupts† (see Figure 7−23)
−400
−500
NO.
MIN
1
2
†
tw(ILOW)
tw(IHIGH)
UNIT
MAX
Width of the NMI interrupt pulse low
4P
ns
Width of the EXT_INT interrupt pulse low
8P
ns
Width of the NMI interrupt pulse high
4P
ns
Width of the EXT_INT interrupt pulse high
8P
ns
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
1
2
EXT_INTx, NMI
Figure 7−23. External/NMI Interrupt Timing
114
SPRS247E
April 2004 − Revised May 2005
Multichannel Audio Serial Port (McASP) Timing
7.9
Multichannel Audio Serial Port (McASP) Timing
Table 7−20. Timing Requirements for McASP (see Figure 7−24 and Figure 7−25)
−400
−500
NO.
MIN
UNIT
MAX
1
tc(AHCKRX)
Cycle time, AHCLKR/X
20
ns
2
tw(AHCKRX)
Pulse duration, AHCLKR/X high or low
10
ns
3
tc(CKRX)
Cycle time, ACLKR/X
ACLKR/X ext
25
ns
4
tw(CKRX)
Pulse duration, ACLKR/X high or low
ACLKR/X ext
12.25
ns
ACLKR/X int
5
ns
ACLKR/X ext
5
ns
5
tsu(FRXC-KRX)
Setup time,
time AFSR/X input valid before ACLKR/X latches data
6
th(CKRX-FRX)
Hold time,
time AFSR/X input valid after ACLKR/X latches data
7
8
tsu(AXR-CKRX)
th(CKRX-AXR)
time AXR input valid before ACLKR/X latches data
Setup time,
Hold time,
time AXR input valid after ACLKR/X latches data
ACLKR/X int
5
ns
ACLKR/X ext
5
ns
ACLKR/X int
5
ns
ACLKR/X ext
5
ns
ACLKR/X int
5
ns
ACLKR/X ext
5
ns
Table 7−21. Switching Characteristics Over Recommended Operating Conditions for McASP
(see Figure 7−24 and Figure 7−25)
NO.
−400
−500
PARAMETER
MIN
9
tc(AHCKRX)
Cycle time, AHCLKR/X
10
tw(AHCKRX)
Pulse duration, AHCLKR/X high or low
11
tc(CKRX)
Cycle time, ACLKR/X
ACLKR/X int
12
tw(CKRX)
Pulse duration, ACLKR/X high or low
13
td(CKRX-FRX)
Delay time,
time ACLKR/X transmit edge to AFSX/R output valid
14
td(CKRX-AXRV)
Delay time,
time ACLKR/X transmit edge to AXR output valid
15
tdis(CKRX−AXRHZ)
Disable time, AXR high impedance following last data bit from
ACLKR/X transmit edge
April 2004 − Revised May 2005
UNIT
MAX
20
ns
10
ns
33
ns
ACLKR/X int
16.5
ns
ACLKR/X int
−1
5
ns
ACLKR/X ext
2
12
ns
ACLKR/X int
−1
5
ns
ACLKR/X ext
2
12
ns
ACLKR/X int
0
10
ns
ACLKR/X ext
0
10
ns
SPRS247E
115
Multichannel Audio Serial Port (McASP) Timing
2
1
2
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
4
3
4
ACLKR/X (Falling Edge Polarity)
ACLKR/X (Rising Edge Polarity)
6
5
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
8
7
AXR[n] (Data In/Receive)
A0
A1
A30 A31 B0 B1
B30 B31 C0 C1
C2 C3
C31
Figure 7−24. McASP Input Timings
116
SPRS247E
April 2004 − Revised May 2005
Multichannel Audio Serial Port (McASP) Timing
10
9
10
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
12
11
12
ACLKR/X (Falling Edge Polarity)
ACLKR/X (Rising Edge Polarity)
13
13
13
13
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
13
13
13
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
14
AFSR/X (Slot Width, 2 Bit Delay)
14
14
14
14
14
15
AXR[n] (Data Out/Transmit)
A0
A1
A30 A31 B0 B1
B30 B31 C0
C1 C2 C3
C31
Figure 7−25. McASP Output Timings
April 2004 − Revised May 2005
SPRS247E
117
Inter-Integrated Circuits (I2C) Timing
7.10 Inter-Integrated Circuits (I2C) Timing
Table 7−22. Timing Requirements for I2C Timings† (see Figure 7−26)
−400
−500
STANDARD
MODE
NO.
MIN
1
FAST
MODE
MAX
MIN
UNIT
MAX
tc(SCL)
Cycle time, SCL
10
2.5
µs
2
tsu(SCLH-SDAL)
Setup time, SCL high before SDA low (for a repeated START
condition)
4.7
0.6
µs
3
th(SCLL-SDAL)
Hold time, SCL low after SDA low (for a START and a repeated
START condition)
4
0.6
µs
4
tw(SCLL)
Pulse duration, SCL low
4.7
1.3
µs
5
tw(SCLH)
Pulse duration, SCL high
4
0.6
µs
250
100‡
0§
0§
6
tsu(SDAV-SDLH)
Setup time, SDA valid before SCL high
7
th(SDA-SDLL)
Hold time, SDA valid after SCL low (For I2C bus™ devices)
8
tw(SDAH)
Pulse duration, SDA high between STOP and START conditions
9
tr(SDA)
Rise time, SDA
1000
20 + 0.1Cb#
300
ns
10
tr(SCL)
Rise time, SCL
1000
20 + 0.1Cb#
300
ns
#
300
ns
300
4.7
ns
0.9¶
1.3
11
tf(SDA)
Fall time, SDA
300
20 + 0.1Cb
12
tf(SCL)
Fall time, SCL
300
20 + 0.1Cb#
13
tsu(SCLH-SDAH)
Setup time, SCL high before SDA high (for STOP condition)
14
tw(SP)
Pulse duration, spike (must be suppressed)
15
Cb #
Capacitive load for each bus line
4
µs
µs
0.6
ns
µs
0
400
50
ns
400
pF
†
The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down.
A Fast-mode I2C-bus™ device can be used in a Standard-mode I2C-bus™ system, but the requirement tsu(SDA−SCLH) ≥ 250 ns must then be met.
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period
of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA−SCLH) = 1000 + 250 = 1250 ns (according to the Standard-mode
I2C-Bus Specification) before the SCL line is released.
§ A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V
IHmin of the SCL signal) to bridge the undefined
region of the falling edge of SCL.
¶ The maximum t
h(SDA−SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal.
# C = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.
b
‡
11
9
SDA
6
8
14
4
13
5
10
SCL
1
12
3
2
7
3
Stop
Start
Repeated
Start
Stop
Figure 7−26. I2C Receive Timings
118
SPRS247E
April 2004 − Revised May 2005
Inter-Integrated Circuits (I2C) Timing
Table 7−23. Switching Characteristics for I2C Timings† (see Figure 7−27)
−400
−500
NO.
STANDARD
MODE
PARAMETER
MIN
†
MAX
FAST
MODE
MIN
UNIT
MAX
16
tc(SCL)
Cycle time, SCL
10
2.5
µs
17
td(SCLH-SDAL)
Delay time, SCL high to SDA low (for a repeated START condition)
4.7
0.6
µs
18
td(SDAL-SCLL)
Delay time, SDA low to SCL low (for a START and a repeated
START condition)
4
0.6
µs
19
tw(SCLL)
Pulse duration, SCL low
4.7
1.3
µs
20
tw(SCLH)
Pulse duration, SCL high
4
0.6
µs
21
td(SDAV-SDLH)
Delay time, SDA valid to SCL high
250
100
ns
I2C
22
tv(SDLL-SDAV)
Valid time, SDA valid after SCL low (For
23
tw(SDAH)
Pulse duration, SDA high between STOP and START conditions
bus™ devices)
24
tr(SDA)
Rise time, SDA
0
0
4.7
1.3
0.9
µs
µs
1000
20 + 0.1Cb†
300
ns
†
25
tr(SCL)
Rise time, SCL
1000
20 + 0.1Cb
300
ns
26
tf(SDA)
Fall time, SDA
300
20 + 0.1Cb†
300
ns
300
†
300
27
tf(SCL)
Fall time, SCL
28
td(SCLH-SDAH)
Delay time, SCL high to SDA high (for STOP condition)
29
Cp
Capacitance for each I2C pin
4
20 + 0.1Cb
0.6
10
ns
µs
10
pF
Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.
26
24
SDA
21
23
19
28
20
25
SCL
16
27
18
17
22
18
Stop
Start
Repeated
Start
Stop
Figure 7−27. I2C Transmit Timings
April 2004 − Revised May 2005
SPRS247E
119
Host-Port Interface (HPI) Timing
7.11
Host-Port Interface (HPI) Timing
Table 7−24. Timing Requirements for Host-Port Interface Cycles†‡ (see Figure 7−28 through Figure 7−35)
−400
−500
NO.
MIN
UNIT
MAX
1
tsu(SELV-HSTBL)
Setup time, select signals§ valid before HSTROBE low
5
ns
2
th(HSTBL-SELV)
Hold time, select signals§ valid after HSTROBE low
2.4
ns
3
tw(HSTBL)
Pulse duration, HSTROBE low
4P¶
ns
4
tw(HSTBH)
Pulse duration, HSTROBE high between consecutive accesses
4P
ns
10
tsu(SELV-HASL)
Setup time, select signals§ valid before HAS low
5
ns
11
th(HASL-SELV)
Hold time, select signals§ valid after HAS low
2
ns
12
tsu(HDV-HSTBH)
Setup time, host data valid before HSTROBE high
13
th(HSTBH-HDV)
Hold time, host data valid after HSTROBE high
14
th(HRDYL-HSTBL)
18
19
5
ns
2.8
ns
Hold time, HSTROBE low after HRDY low. HSTROBE should not be
inactivated until HRDY is active (low); otherwise, HPI writes will not complete
properly.
2
ns
tsu(HASL-HSTBL)
Setup time, HAS low before HSTROBE low
2
ns
th(HSTBL-HASL)
Hold time, HAS low after HSTROBE low
2.1
ns
†
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
‡ P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
§ Select signals include: HCNTL[1:0] and HR/W. For HPI16 mode only, select signals also include HHWIL.
¶ Select the parameter value of 4P or 12.5 ns, whichever is larger.
Table 7−25. Switching Characteristics Over Recommended Operating Conditions During Host-Port
Interface Cycles†‡ (see Figure 7−28 through Figure 7−35)
NO.
−400
−500
PARAMETER
UNIT
MIN
MAX
1.3
4P + 8
6
td(HSTBL-HRDYH)
Delay time, HSTROBE low to HRDY high#
7
td(HSTBL-HDLZ)
Delay time, HSTROBE low to HD low impedance for an HPI read
2
ns
8
td(HDV-HRDYL)
Delay time, HD valid to HRDY low
−3
ns
1.5
9
toh(HSTBH-HDV)
Output hold time, HD valid after HSTROBE high
15
td(HSTBH-HDHZ)
Delay time, HSTROBE high to HD high impedance
16
td(HSTBL-HDV)
Delay time, HSTROBE low to HD valid (HPI16 mode, 2nd half-word only)
ns
ns
12
ns
2P + 8 or
0P + 8||
ns
†
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
# This parameter is used during HPID reads and writes. For reads, at the beginning of a word transfer (HPI32) or the first half-word transfer (HPI16)
on the falling edge of HSTROBE, the HPI sends the request to the EDMA internal address generation hardware, and HRDY remains high until
the EDMA internal address generation hardware loads the requested data into HPID. For writes, HRDY goes high if the internal write buffer is
full.
|| If preceeding HSTROBE high pulse width > 6P, then this parameter value can be 0P + 8 ns.
‡
120
SPRS247E
April 2004 − Revised May 2005
Host-Port Interface (HPI) Timing
HAS
1
1
2
2
HCNTL[1:0]
1
1
2
2
HR/W
1
1
2
2
HHWIL
4
3
HSTROBE†
3
HCS
15
9
7
15
9
16
HD[15:0] (output)
1st half-word
6
2nd half-word
8
HRDY
†
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
Figure 7−28. HPI16 Read Timing (HAS Not Used, Tied High)
HAS†
19
11
19
10
11
10
HCNTL[1:0]
11
10
11
10
HR/W
11
11
10
10
HHWIL
4
3
HSTROBE‡
18
18
HCS
7
15
9
16
9
15
HD[15:0] (output)
6
1st half-word
8
2nd half-word
HRDY
†
‡
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
Figure 7−29. HPI16 Read Timing (HAS Used)
April 2004 − Revised May 2005
SPRS247E
121
Host-Port Interface (HPI) Timing
HAS
1
1
2
2
HCNTL[1:0]
1
1
2
2
HR/W
1
1
2
2
HHWIL
3
3
4
HSTROBE†
HCS
12
12
13
13
HD[15:0] (input)
1st half-word
HRDY
†
2nd half-word
6
14
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
Figure 7−30. HPI16 Write Timing (HAS Not Used, Tied High)
19
HAS†
19
11
10
11
10
HCNTL[1:0]
11
10
11
10
HR/W
11
10
11
10
HHWIL
3
4
HSTROBE‡
18
18
HCS
12
12
13
13
HD[15:0] (input)
6
1st half-word
14
2nd half-word
HRDY
†
‡
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
Figure 7−31. HPI16 Write Timing (HAS Used)
122
SPRS247E
April 2004 − Revised May 2005
Host-Port Interface (HPI) Timing
HAS
HCNTL[1:0]
HR/W
1
2
1
2
3
HSTROBE†
HCS
7
9
15
HD[31:0] (output)
6
8
HRDY
†
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
Figure 7−32. HPI32 Read Timing (HAS Not Used, Tied High)
19
HAS†
11
10
HCNTL[1:0]
11
10
HR/W
18
3
HSTROBE‡
HCS
7
9
15
HD[31:0] (output)
HRDY
†
‡
6
8
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
Figure 7−33. HPI32 Read Timing (HAS Used)
April 2004 − Revised May 2005
SPRS247E
123
Host-Port Interface (HPI) Timing
HAS
1
2
1
2
HCNTL[1:0]
HR/W
3
HSTROBE†
HCS
12
13
HD[31:0] (input)
6
14
HRDY
†
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
Figure 7−34. HPI32 Write Timing (HAS Not Used, Tied High)
19
HAS†
11
10
HCNTL[1:0]
11
10
HR/W
3
18
HSTROBE‡
HCS
12
13
HD[31:0] (input)
6
HRDY
†
‡
14
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.
Figure 7−35. HPI32 Write Timing (HAS Used)
124
SPRS247E
April 2004 − Revised May 2005
Multichannel Buffered Serial Port (McBSP) Timing
7.12 Multichannel Buffered Serial Port (McBSP) Timing
Table 7−26. Timing Requirements for McBSP†‡ (see Figure 7−36)
−400
−500
NO.
UNIT
MIN
MAX
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X ext
4P or 6.67‡§
ns
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X ext
0.5tc(CKRX) − 1¶
ns
5
tsu(FRH-CKRL)
time external FSR high before CLKR low
Setup time,
6
th(CKRL-FRH)
Hold time,
time external FSR high after CLKR low
7
tsu(DRV-CKRL)
Setup time,
time DR valid before CLKR low
8
th(CKRL-DRV)
Hold time,
time DR valid after CLKR low
10
tsu(FXH-CKXL)
Setup time,
time external FSX high before CLKX low
11
th(CKXL-FXH)
time external FSX high after CLKX low
Hold time,
CLKR int
9
CLKR ext
1.3
CLKR int
6
CLKR ext
3
CLKR int
8
CLKR ext
0.9
CLKR int
3
CLKR ext
3.1
CLKX int
9
CLKX ext
1.3
CLKX int
6
CLKX ext
3
ns
ns
ns
ns
ns
ns
†
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
§ Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The
minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing
requirements.
¶ This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.
‡
April 2004 − Revised May 2005
SPRS247E
125
Multichannel Buffered Serial Port (McBSP) Timing
Table 7−27. Switching Characteristics Over Recommended Operating Conditions for McBSP†‡
(see Figure 7−36)
NO.
−400
−500
PARAMETER
UNIT
MIN
MAX
1.4
10
1
td(CKSH-CKRXH)
Delay time, CLKS high to CLKR/X high for internal CLKR/X generated
from CLKS input
2
tc(CKRX)
Cycle time, CLKR/X
CLKR/X int
4P or 6.67§¶#
3
tw(CKRX)
Pulse duration, CLKR/X high or CLKR/X low
CLKR/X int
C − 1||
C + 1||
ns
4
td(CKRH-FRV)
Delay time, CLKR high to internal FSR valid
CLKR int
−2.1
3
ns
9
td(CKXH-FXV)
Delay time,
time CLKX high to internal FSX valid
CLKX int
−1.7
3
CLKX ext
1.7
9
12
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last data bit CLKX int
from CLKX high
CLKX ext
−3.9
4
2
9
13
td(CKXH-DXV)
Delay time,
time CLKX high to DX valid
CLKX int
−3.9 + D1k
4 + D2k
CLKX ext
2.0 + D1k
9 + D2k
14
td(FXH-DXV)
ns
ns
Delay time, FSX high to DX valid
FSX int
−2.3 + D1h
5.6 + D2h
ONLY applies when in data
delay 0 (XDATDLY = 00b) mode
FSX ext
1.9 + D1h
9 + D2h
ns
ns
ns
ns
†
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.
Minimum delay times also represent minimum output hold times.
§ Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based
on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.
¶ P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
# Use whichever value is greater.
|| C = H or L
S = sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)
= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see ¶ footnote above).
k Extra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 4P, D2 = 8P
h Extra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.
if DXENA = 0, then D1 = D2 = 0
if DXENA = 1, then D1 = 4P, D2 = 8P
‡
126
SPRS247E
April 2004 − Revised May 2005
Multichannel Buffered Serial Port (McBSP) Timing
CLKS
1
2
3
3
CLKR
4
FSR (int)
4
5
6
FSR (ext)
7
DR
2
3
8
Bit(n-1)
(n-2)
(n-3)
3
CLKX
9
FSX (int)
10
11
FSX (ext)
FSX (XDATDLY=00b)
14
13†
Bit(n-1)
12
DX
†
Bit 0
13†
(n-2)
(n-3)
Parameter No. 13 applies to the first data bit only when XDATDLY ≠ 0
Figure 7−36. McBSP Timing
Table 7−28. Timing Requirements for FSR When GSYNC = 1 (see Figure 7−37)
−400
−500
NO.
MIN
UNIT
MAX
1
tsu(FRH-CKSH)
Setup time, FSR high before CLKS high
4
ns
2
th(CKSH-FRH)
Hold time, FSR high after CLKS high
4
ns
CLKS
1
FSR external
2
CLKR/X (no need to resync)
CLKR/X (needs resync)
Figure 7−37. FSR Timing When GSYNC = 1
April 2004 − Revised May 2005
SPRS247E
127
Multichannel Buffered Serial Port (McBSP) Timing
Table 7−29. Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 0†‡ (see Figure 7−38)
−400
−500
NO
NO.
MASTER
MIN
†
‡
4
tsu(DRV-CKXL)
Setup time, DR valid before CLKX low
5
th(CKXL-DRV)
Hold time, DR valid after CLKX low
UNIT
SLAVE
MAX
MIN
MAX
12
2 − 12P
ns
4
5 + 24P
ns
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.
Table 7−30. Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 10b, CLKXP = 0†‡ (see Figure 7−38)
NO
NO.
−400
−500
PARAMETER
MASTER§
UNIT
SLAVE
MIN
MAX
1
th(CKXL-FXL)
Hold time, FSX low after CLKX low¶
T−2
T+3
MIN
MAX
ns
2
td(FXL-CKXH)
Delay time, FSX low to CLKX high#
L−2
L+3
ns
3
td(CKXH-DXV)
Delay time, CLKX high to DX valid
−2
4
6
tdis(CKXL-DXHZ)
Disable time, DX high impedance following last data bit from
CLKX low
L−2
L+3
7
tdis(FXH-DXHZ)
Disable time, DX high impedance following last data bit from
FSX high
8
td(FXL-DXV)
Delay time, FSX low to DX valid
12P + 2.8
20P + 17
ns
ns
4P + 3
12P + 17
ns
8P + 1.8
16P + 17
ns
†
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.
§ S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)
= Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
T = CLKX period = (1 + CLKGDV) * S
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
¶ FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX
and FSR is inverted before being used internally.
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP
# FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock
(CLKX).
‡
CLKX
1
2
FSX
7
6
DX
8
3
Bit 0
Bit(n-1)
4
DR
Bit 0
(n-2)
(n-3)
(n-4)
5
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 7−38. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0
128
SPRS247E
April 2004 − Revised May 2005
Multichannel Buffered Serial Port (McBSP) Timing
Table 7−31. Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 11b, CLKXP = 0†‡ (see Figure 7−39)
−400
−500
NO
NO.
MASTER
MIN
†
‡
4
tsu(DRV-CKXH)
Setup time, DR valid before CLKX high
5
th(CKXH-DRV)
Hold time, DR valid after CLKX high
UNIT
SLAVE
MAX
MIN
MAX
12
2 − 12P
ns
4
5 + 24P
ns
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.
Table 7−32. Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 11b, CLKXP = 0†‡ (see Figure 7−39)
NO
NO.
−400
−500
PARAMETER
MASTER§
MIN
UNIT
SLAVE
MAX
low¶
L−2
L+3
T−2
T+3
MIN
MAX
1
th(CKXL-FXL)
Hold time, FSX low after CLKX
2
td(FXL-CKXH)
Delay time, FSX low to CLKX high#
ns
3
td(CKXL-DXV)
Delay time, CLKX low to DX valid
−2
4
12P + 2.8
20P + 17
ns
6
tdis(CKXL-DXHZ)
Disable time, DX high impedance following last data bit from
CLKX low
−2
4
12P + 3
20P + 17
ns
7
td(FXL-DXV)
Delay time, FSX low to DX valid
H−2
H+4
8P + 2
16P + 17
ns
ns
†
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.
§ S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)
= Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
T = CLKX period = (1 + CLKGDV) * S
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
¶ FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX
and FSR is inverted before being used internally.
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP
# FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock
(CLKX).
‡
CLKX
1
2
6
Bit 0
7
FSX
DX
3
Bit(n-1)
4
DR
Bit 0
(n-2)
(n-3)
(n-4)
5
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 7−39. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0
April 2004 − Revised May 2005
SPRS247E
129
Multichannel Buffered Serial Port (McBSP) Timing
Table 7−33. Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 1†‡ (see Figure 7−40)
−400
−500
NO
NO.
MASTER
MIN
†
‡
4
tsu(DRV-CKXH)
Setup time, DR valid before CLKX high
5
th(CKXH-DRV)
Hold time, DR valid after CLKX high
UNIT
SLAVE
MAX
MIN
MAX
12
2 − 12P
ns
4
5 + 24P
ns
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.
Table 7−34. Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 10b, CLKXP = 1†‡ (see Figure 7−40)
NO
NO.
−400
−500
PARAMETER
MASTER§
MIN
high¶
UNIT
SLAVE
MAX
MIN
MAX
1
th(CKXH-FXL)
Hold time, FSX low after CLKX
2
td(FXL-CKXL)
Delay time, FSX low to CLKX low#
T−2
T+3
ns
H−2
H+3
ns
3
td(CKXL-DXV)
Delay time, CLKX low to DX valid
6
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last data bit from
CLKX high
−2
4
H−2
H+3
7
tdis(FXH-DXHZ)
Disable time, DX high impedance following last data bit from
FSX high
4P + 3
12P + 17
ns
8
td(FXL-DXV)
Delay time, FSX low to DX valid
8P + 2
16P + 17
ns
12P + 2.8
20P + 17
ns
ns
†
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.
§ S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)
= Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
T = CLKX period = (1 + CLKGDV) * S
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
¶ FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX
and FSR is inverted before being used internally.
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP
# FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock
(CLKX).
‡
CLKX
1
2
FSX
7
6
DX
8
3
Bit 0
Bit(n-1)
4
DR
Bit 0
(n-2)
(n-3)
(n-4)
5
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 7−40. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1
130
SPRS247E
April 2004 − Revised May 2005
Multichannel Buffered Serial Port (McBSP) Timing
Table 7−35. Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 11b, CLKXP = 1†‡ (see Figure 7−41)
−400
−500
NO
NO.
MASTER
MIN
†
‡
4
tsu(DRV-CKXH)
Setup time, DR valid before CLKX high
5
th(CKXH-DRV)
Hold time, DR valid after CLKX high
UNIT
SLAVE
MAX
MIN
MAX
12
2 − 12P
ns
4
5 + 24P
ns
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.
Table 7−36. Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 11b, CLKXP = 1†‡ (see Figure 7−41)
NO
NO.
−400
−500
PARAMETER
MASTER§
high¶
UNIT
SLAVE
MIN
MAX
MIN
MAX
1
th(CKXH-FXL)
Hold time, FSX low after CLKX
H−2
H+3
ns
2
td(FXL-CKXL)
Delay time, FSX low to CLKX low#
T−2
T+1
ns
3
td(CKXH-DXV)
Delay time, CLKX high to DX valid
−2
4
12P + 2.8
20P + 17
ns
6
tdis(CKXH-DXHZ)
Disable time, DX high impedance following last data bit from
CLKX high
−2
4
12P + 3
20P + 17
ns
7
td(FXL-DXV)
Delay time, FSX low to DX valid
L−2
L+4
8P + 2
16P + 17
ns
†
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.
§ S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)
= Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
T = CLKX period = (1 + CLKGDV) * S
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
¶ FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX
and FSR is inverted before being used internally.
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP
# FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock
(CLKX).
‡
CLKX
1
2
FSX
6
DX
7
3
Bit 0
Bit(n-1)
4
DR
Bit 0
(n-2)
(n-3)
(n-4)
5
Bit(n-1)
(n-2)
(n-3)
(n-4)
Figure 7−41. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1
April 2004 − Revised May 2005
SPRS247E
131
Timer Timing
7.13 Timer Timing
Table 7−37. Timing Requirements for Timer Inputs† (see Figure 7−42)
−400
−500
NO.
MIN
†
UNIT
MAX
1
tw(TINPH)
Pulse duration, TINP high
8P
ns
2
tw(TINPL)
Pulse duration, TINP low
8P
ns
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
Table 7−38. Switching Characteristics Over Recommended Operating Conditions for Timer Outputs†
(see Figure 7−42)
NO.
−400
−500
PARAMETER
MIN
†
UNIT
MAX
3
tw(TOUTH)
Pulse duration, TOUT high
8P −3
ns
4
tw(TOUTL)
Pulse duration, TOUT low
8P −3
ns
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
2
1
TINPx
4
3
TOUTx
Figure 7−42. Timer Timing
132
SPRS247E
April 2004 − Revised May 2005
General-Purpose Input/Output (GPIO) Port Timing
7.14 General-Purpose Input/Output (GPIO) Port Timing
Table 7−39. Timing Requirements for GPIO Inputs†‡ (see Figure 7−43)
−400
−500
NO.
MIN
†
‡
UNIT
MAX
1
tw(GPIH)
Pulse duration, GPIx high
8P
ns
2
tw(GPIL)
Pulse duration, GPIx low
8P
ns
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the DSP recognize the GPIx
changes through software polling of the GPIO register, the GPIx duration must be extended to at least 12P to allow the DSP enough time to access
the GPIO register through the CFGBUS.
Table 7−40. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs†
(see Figure 7−43)
NO.
−400
−500
PARAMETER
MIN
3
4
tw(GPOH)
tw(GPOL)
Pulse duration, GPOx high
Pulse duration, GPOx low
UNIT
MAX
24P − 8§
ns
8§
ns
24P −
†
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.
§ This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO
is dependent upon internal bus activity.
2
1
GPIx
4
3
GPOx
Figure 7−43. GPIO Port Timing
April 2004 − Revised May 2005
SPRS247E
133
JTAG Test-Port Timing
7.15 JTAG Test-Port Timing
Table 7−41. Timing Requirements for JTAG Test Port (see Figure 7−44)
−400
−500
NO.
MIN
UNIT
MAX
1
tc(TCK)
Cycle time, TCK
35
ns
3
tsu(TDIV-TCKH)
Setup time, TDI/TMS/TRST valid before TCK high
10
ns
4
th(TCKH-TDIV)
Hold time, TDI/TMS/TRST valid after TCK high
9
ns
Table 7−42. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port
(see Figure 7−44)
NO.
2
−400
−500
PARAMETER
td(TCKL-TDOV)
Delay time, TCK low to TDO valid
UNIT
MIN
MAX
0
18
ns
1
TCK
2
2
TDO
3
4
TDI/TMS/TRST
Figure 7−44. JTAG Test-Port Timing
134
SPRS247E
April 2004 − Revised May 2005
Mechanical Data
8
Mechanical Data
8.1
Thermal Data
The following tables show the thermal resistance characteristics for the PBGA − GTS and ZTS mechanical
packages.
Table 8−1. Thermal Resistance Characteristics (S-PBGA Package) [GTS]
NO.
°C/W
Board Type†
Air Flow (m/s‡)
N/A
1
RΘJC
Junction-to-case
5.60
JEDEC Low-K Test Card
2
RΘJB
Junction-to-board
9.37
JEDEC High-K Test Card
N/A
20.8
JEDEC High-K Test Card
0.00
16.8
JEDEC High-K Test Card
0.5
15.4
JEDEC High-K Test Card
1.0
14.1
JEDEC High-K Test Card
2.00
1.87
JEDEC High-K Test Card
0.00
1.98
JEDEC High-K Test Card
0.5
2.03
JEDEC High-K Test Card
1.0
2.12
JEDEC High-K Test Card
2.00
11.1
JEDEC High-K Test Card
0.00
3
4
5
RΘJA
Junction to free air
Junction-to-free
6
7
8
PsiJT
PsiJB
Junction to package top
Junction-to-package
Junction to board
Junction-to-board
10.4
JEDEC High-K Test Card
0.5
10.3
JEDEC High-K Test Card
1.0
10.1
JEDEC High-K Test Card
2.00
†
Board types are as defined by JEDEC. Reference JEDEC Standard JESD51−9. Test Boards for Area Array Surface Mount Package Thermal
Measurements.
‡ m/s = meters per second
Table 8−2. Thermal Resistance Characteristics (S-PBGA Package) [ZTS]
NO.
°C/W
Board Type†
Air Flow (m/s‡)
N/A
1
RΘJC
Junction-to-case
5.60
JEDEC Low-K Test Card
2
RΘJB
Junction-to-board
9.37
JEDEC High-K Test Card
N/A
20.8
JEDEC High-K Test Card
0.00
3
4
5
RΘJA
Junction to free air
Junction-to-free
6
7
8
PsiJT
PsiJB
Junction to package top
Junction-to-package
Junction to board
Junction-to-board
16.8
JEDEC High-K Test Card
0.5
15.4
JEDEC High-K Test Card
1.0
14.1
JEDEC High-K Test Card
2.00
1.87
JEDEC High-K Test Card
0.00
1.98
JEDEC High-K Test Card
0.5
2.03
JEDEC High-K Test Card
1.0
2.12
JEDEC High-K Test Card
2.00
11.1
JEDEC High-K Test Card
0.00
10.4
JEDEC High-K Test Card
0.5
10.3
JEDEC High-K Test Card
1.0
10.1
JEDEC High-K Test Card
2.00
†
Board types are as defined by JEDEC. Reference JEDEC Standard JESD51−9. Test Boards for Area Array Surface Mount Package Thermal
Measurements.
‡ m/s = meters per second
April 2004 − Revised May 2005
SPRS247E
135
Mechanical Data
8.2
Packaging Information
The following packaging information reflects the most current released data available for the designated
device(s). This data is subject to change without notice and without revision of this document.
136
SPRS247E
April 2004 − Revised May 2005
PACKAGE OPTION ADDENDUM
www.ti.com
7-Oct-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TMS320C6410GTS400
ACTIVE
FCBGA
GTS
288
60
TBD
SNPB
Level-4-220C-72HR
TMS320C6410ZTS400
ACTIVE
FCBGA
ZTS
288
60
TBD
SNAGCU
Level-4-260C-72HR
TMS320C6410ZTSA400
ACTIVE
FCBGA
ZTS
288
60
TBD
SNAGCU
Level-4-260C-72HR
TMS320C6413GTS500
ACTIVE
FCBGA
GTS
288
60
TBD
SNPB
Level-4-220C-72HR
TMS320C6413GTSA500
ACTIVE
FCBGA
GTS
288
60
TBD
SNPB
Level-4-220C-72HR
Lead/Ball Finish
MSL Peak Temp (3)
TMS320C6413ZTS500
ACTIVE
FCBGA
ZTS
288
60
TBD
SNAGCU
Level-4-260C-72HR
TMS320C6413ZTSA500
ACTIVE
FCBGA
ZTS
288
60
TBD
SNAGCU
Level-4-260C-72HR
TMX320C6410GTS
ACTIVE
FCBGA
GTS
288
TBD
Call TI
Call TI
TMX320C6413GTS
ACTIVE
FCBGA
GTS
288
TBD
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated