Maintenance only UD61256 256K x 1 DRAM Features Description p Dynamic random access memory p p p p p p p p p p 262144 x 1 bit manufactured using a CMOS technology RAS access times 70 ns, 80 ns TTL-compatible Three-state output 256 refresh cycles 4 ms refresh cycle time FAST PAGE MODE Operating modes: Read, Write, Read - Write, RAS only Refresh, Hidden Refresh with address transfer Power Supply Voltage 5 V Packages PDIP16 (300 mil) SOJ20/26 (300 mil) Operating temperature range 0 to 70 °C Quality assessment according to CECC 90000, CECC 90100 and CECC 90112 Addressing The UD61256 is a dynamic WriteRead-memory with random access. FPM facilitates faster data operation with predefined row address. Via 9 address inputs the 18 address bits are transmitted into the internal address memories in a time-multiplex operation. The falling RASedge takes over the row address. During RAS Low, the column address together with the CAS signal are taken over. The selection of one or more memory circuits can be made by activation of the RAS input. Read-Write-Control The choice between Read or Write cycle is made at the W input. HIGH at the W input causes a Read cycle, meanwhile LOW leads to a Write cycle. Both CAS-controlled and W-controlled Write cycles are possible with activated RAS signal. Pin Description Pin Configuration A8 1 26 V D 2 25 CAS W 3 24 Q RAS 4 23 A6 n.c. 5 22 n.c. SOJ n.c. 9 18 n.c. A0 10 17 A3 A2 11 16 A4 A1 12 15 A5 13 14 A7 VCC Signal Name Signal Description A8 1 16 VSS A0 - A8 Address Inputs D 2 15 CAS D Data Input W 3 14 Q W Read, Write Control A6 RAS Row Address Strobe UCC Power Supply Voltage RAS 4 A0 5 A2 PDIP 13 12 A3 6 11 A4 A1 7 10 VCC 8 9 Top View Top View December 12, 1997 Data Output Control The usual state of the data output is the High-Z state. Whenever CAS is inactive (HIGH), Q will float (High-Z). Thus, CAS functions as data output control. After access time, in case of a Read cycle, the output is activated, and it contains the logic „0“ or „1“. Q is then valid until CAS returns into to inactive state (HIGH). The memory cycle being a Read, Read-Write or a Write cycle (W-controlled), Q changes from High-Z state to the active state („0“ or „1“). After the access time the contents of the selected cell is available, except for the Write cycle. The output remains active until CAS becomes inactive, irrespective of RAS becoming inactive or not. The memory cycle being a Write cycle (CAS-controlled), the data output keeps its High-Z state throughout the whole cycle. This configuration makes Q fully controllable by the user merely through the timing of W. The output storaging the data, they remain valid from the end of access time until the start of another cycle. 1 USS Ground CAS Column Address Strobe A5 Q Data Output A7 n.c. no connected UD61256 Block Diagram Data Output Amplifier Output Control CAS D Data Input Amplifier W Write-Read Control Decoder 1 out of 4 Q 4 Write-Read Amplifier Data RAS A1 A8X A3 A4 A5 Address Input A2 M U X A8Y 128 Kbit Array with Sensor Amplifier A0 Column Decoder 128 Kbit Array with Sensor Amplifier Clock Generator Row Decoder Row Decoder A6 A0X to A7X A7 A0Y to A7Y A8 VCC Operation VSS Address Function RAS Stand-by H Read FPM Write FPM Read-Write C D Q X X X High-Z L H Row Column X L L L Row Column Input Data High-Z L L H→L Row Column Input Data Output Data L H→L H Row Column X Output Data L H→L H Column X Output Data 1st cycle L H→L L Column Input Data High-Z 2nd cycle L H→L L Column Input Data High-Z 1st cycle L H→L H→L Column Input Data Output Data 2nd cycle L H→L H→L Column Input Data Output Data L H X Row X High-Z Read L → H → L L H Row Column X Output Data Write L → H → L L L Row Column Input Data High-Z 1st cycle 2nd cycle RAS only Refresh HIDDEN Refresh*) X R L Read-Write Read X Data W Output Data Write FPM CAS Row Row *) Transfer of Refresh Address required 2 December 12, 1997 UD61256 Characteristics All voltages are referenced to VSS = 0 V (ground). All characteristics are valid in the power supply voltage range and operating temperature range indicated below. Absolute Maximum Ratings Symbol Min. Max. Unit Power Supply Voltage VCC -0.5 7.0 V Input Voltage 1) VI -1.0 7.0 V Output Voltage 1) VO -1.0 7.0 V Output Current IO -50 50 mA Power Dissipation PD 1 W Operating Temperature Ta 0 70 °C Storage Temperature Tstg -55 125 °C Symbol Min. Max. Unit VCC 4.5 5.5 V VIL -1.0 0.8 V VIH 2.4 5.5 V Remarks: see page 7 Recommended Operating Conditions Power Supply Voltage 1) Input Low Voltage Input High Voltage Remark: see page 7 Capacitances Input Capacitance A0 to A8, D Input Capacitance RAS, CAS, W Conditions VCC VI f Ta Symbol = 5.0 V = VSS = 1 MHz = 25 °C Output Capacitance Max. Unit CI1 6 pF CI2 7 pF CO 7 pF All pins not under test must be connected with ground by capacitors. December 12, 1997 3 Min. UD61256 Min. Static Characteristics Conditions Unit 07 Power Supply Current (average value of RAS-CAS cycles) 2) Max. Symbol 08 07 08 tcW = tcWmin tcR = tcRmin ICC1 70 60 mA Refresh Current (average value of RAS cycles) 2) tcW = tcWmin tcR = tcRmin CAS = VIH ICC2 70 60 mA FPM Current (average value of FPM cycles) 2) tcPG = tcPGmin RAS = VIL ICC3 50 40 mA Stand-by Current (TTL Level) RAS = CAS = VIH ICC4 2 2 mA Stand-by Current (CMOS Level) RAS = CAS = VCC - 0.2 V ICC5 1 1 mA Output High Voltage IOH = -5 mA VOH Output Low Voltage IOL = 4.2 mA VOL Input Leakage Current at any input, all other pins = 0 V VI = 0 V to 5.5 V II -10 Output Leakage Current Q = High-Z VO = 0 V to 5.5 V RAS = CAS = VIH IO -10 2.4 2.4 V 0.4 0.4 V -10 10 10 µA -10 10 10 µA Remarks: see page 7 4 December 12, 1997 UD61256 Symbol Min. Max. 3) Dynamic Characteristics Unit Alt. IEC 07 08 07 08 p ALL CYCLES 4) Transition Time (Rise and Fall) tT tt RAS Precharge Time CAS Precharge Time tRP tCP Row Address Set-up Time Column Address Set-up Time Row Address Hold Time Column Address Hold Time Column Address Hold Time ref. to RAS Output Buffer Turn-off Delay CAS to RAS Precharge Time RAS to Column Address Delay Time Column Address to RAS Lead Time CAS to Output in Low-Z Refresh Period 5) 6) p READ Random Read Cycle Time Access Time from RAS Access Time from Column Address Access Time from CAS 12) 7), 8) 7), 8) 7), 8) RAS Pulse Width CAS Pulse Width Read Command Set-up Time Read Command Hold Time ref. to RAS Read Command Hold Time RAS to CAS Delay Time CAS Hold Time RAS Hold Time 9) 9) 6) p WRITE Random Write Cycle Time RAS Pulse Width CAS Pulse Width Write Command Pulse Width 12) 3 3 tw(RASH) tw(CASH) 50 10 60 10 ns ns tASR tASC tsu(RA-RAS) tsu(CA-CAS) 0 0 0 0 ns ns t RAH tCAH tAR th(RAS-RA) th(CAS-CA) th(RAS-CA) 10 15 55 10 15 60 ns ns ns tOFF tv(CAS) 0 0 tCRP tRAD tRAL tCLZ tREF tCASH-RASL tRAS-CA tCA-RASH tCASL-QX trf 5 15 35 0 5 15 40 0 tRC tcR 130 tRAC tAA tCAC ta(RAS) ta(CA) ta(CAS) tRAS tCAS tw(RASL) tw(CASL) 70 20 80 20 tRCS tRRH tRCH tsu(R-CAS) th(RAS-R) th(CAS-R) 0 0 0 0 0 0 tRCD tCSH tRSH tRASL-CASL tRASL-CASH tCASL-RASH 20 70 20 20 80 20 tRC tcW 130 150 tRAS tCAS tWP tw(RASL) tw(CASL) tw(W) 70 20 15 80 20 15 Remarks: see page 7 December 12, 1997 5 50 50 20 20 35 40 4 4 150 ns ns ns ns ns ns ms ns 70 35 20 80 40 20 ns ns ns 10000 10000 10000 10000 ns ns ns ns ns 50 60 ns ns ns ns 10000 10000 10000 10000 ns ns ns UD61256 Symbol Dynamic Characteristics Min. Max. 3) Unit Alt. IEC 07 08 07 08 tWCS tDS tDS tsu(W-CAS) tsu(D-CAS) tsu(D-W) 0 0 0 0 0 0 ns ns ns tWCH tRWL tCWL tDHR tDH tDH th(CAS-W) th(W-RAS) th(W-CAS) th(RAS-D) th(CAS-D) th(W-D) 15 20 20 55 15 15 15 20 20 60 15 15 ns ns ns ns ns ns 6) tRCD tCSH tRSH tRASL-CASL tRASL-CASH tCASL-RASH 20 70 20 20 80 20 12) tRWC tcRW 155 175 tRAS tCAS tw(RASL)RW tw(CASL)RW 95 45 105 45 t(RASL- 95 105 ns 80 20 40 ns ns ns p WRITE (continuation) Write Command Set-up Time Data Set-up Time ref. to CAS Data Set-up Time ref. to W 10) 11) 11) Write Command Hold Time Write Command to RAS Lead Time Write Command to CAS Lead Time Data Hold Time ref. to RAS Data Hold Time ref. to CAS Data Hold Time ref. to W RAS to CAS Delay Time CAS Hold Time RAS Hold Time p READ-WRITE Read-Write Cycle Time RAS Pulse Width CAS Pulse Width CAS Hold Time tCSH RAS to WRITE Delay Time CAS to WRITE Delay Time Column to WRITE Delay Time 10) 10) Fast Page Mode Cycle Time RAS Pulse Width 12) 50 60 ns ns ns ns 10000 10000 10000 10000 ns ns CASH)RW tRAS-W tCAS-W tRWD tCWD tAWD t(CA-W)RW 70 20 35 tPC tRASP tcPG tw(RASL) 50 70 50 80 Access Time from CAS Precharge tCPA ta(CASH) 35 40 ns CAS Hold Time (CAS before RAS Cycle) tCHR tRASL-CASH 15 15 ns 10) p FPM p HIDDEN-REFRESH 100000 100000 ns ns Remarks: see page 7 6 December 12, 1997 UD61256 Remarks: 1) 2) 3) 4) 5) 6) 7) The Input Low Voltage must not drop below -0.3 V for more than 40 ns. tRASL-CASLmax and tRAS-CA are given as reference points only; they do not represent restrictive conditions. December 12, 1997 - if none of these conditions is satisfied, the condition of the data output (at access time) is indeterminate, since a WRITE cycle (W-controlled) is carried out. - if tRASL-CASL > tRASL-CASLmax and tsu(CA-CAS) < (ta(CA)max - ta(CAS)max) t a(CA) is valid, For test conditions see test configuration for functional test and timing diagrams. tv(CAS) and tv(RAS) define the time at which the data output goes to High-Z; this time is not related to any level. - if tCAS-W > tCAS-Wmin, tRAS-W > tRAS-Wmin and tsu(CA-W)RW > tsu(CA-W)RWmin, the cycle is a READ-WRITE cycle and the content of the cell is available at the data output, - if tRASL-CASL < tRASL-CASLmax and tRAS-CA < tRAS-CAmax ta(RAS) is valid, The current is inversely proportional to the cycle time; the max. current is measured in the shortest cycle time. VIHmin and VILmax are reference levels for time measurement of the input signals; transition times are measured between VIH and VIL. The access time is determined by the three times ta(RAS), ta(CAS) and ta(CA): - if tRASL-CASL > tRASL-CASLmax and tsu(CA-CAS) > (ta(CA)max - ta(CAS)max) t a(CAS) is valid. 8) Measured with a load equivalent to 2 TTL loads. 9) In a READ cycle either th(RAS-R) or th(CAS-R) must be kept. 10) tsu(W-CAS), tRAS-W, tCAS-W and tsu(A) do not represent restrictive parameters: - if tsu(W-CAS) ≥ tsu(W-CAS)min, the cycle is a WRITE cycle (CAScontrolled) and the data output remains in High-Z throughout the whole CAS cycle, 7 11) These parameters refer to CAS in the WRITE cycle (CAS-controlled) and to W during WRITE (W-controlled) or to W in the READ-WRITE cycle, resp. 12) The values of tcmin are used for indication of the particular cycle time in which full function is guaranteed in the temperature range from 0 to 70 °C. Values below the one shown above may cause permanent damage to the component. UD61256 Test Configuration for Functional Check VIL A0 A1 A2 A3 A4 A5 A6 A7 A8 VCC 1,2 K Q 100 pF RAS CAS W D 680 VSS Output voltage check according to timing diagrams VIH Input voltage according to timing diagrams (at least 8 operating cycles before measurement). All addresses are to be checked. 5V IC Code Numbers UD61256 D C 07 Type Package D = PDIP J = SOJ Access Time 07 = 70 ns 08 = 80 ns Operating Temperature Range C = 0 to 70 °C The date of manufacture is given by the 4 last digits of the mark, the 2 first digits indicating the year, and the last 2 digits the calendar week. 8 December 12, 1997 UD61256 Read tcR tw(RASH) tw(RASL) RAS VIH VIL tCA SL-RASH tCA SH-RA SL tRA SL-CA SH tCA SH-RA SL CAS tRA SL-CA SL tw(CASL) VIH VIL tsu(R-CAS) tsu(CA -CAS) W th(RA S-R) th(CA S-R) AAAAAAAAAA VIH AAAA AAAAAAAAAAAAAA VIL AAAAAAAAAAAAAA AAAAAAAAAAA AAAA AAAAAAAA AAAAAAA AAA tCA-RASH tsu(RA-RAS) th(RAS-CA ) th(RAS-RA ) V A A0-A8 VIH AAAA IL AAAA AAAAA At AAA AAA AAA RAS-CA ta(CA ) th(CAS-CA ) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAA ta(RA S) tv(CA S) ta(CA S) Q VOH VOL AAAAAA AAAA AAAAAA AA tCA SL-QX Write (CAS-controlled) tcW tw(RA SL) RAS VIH VIL tRASL-CASH tCA SH-RA SL CAS tw(RASH) tCASL-RASH tw(CASL) tRASL-CASL VIH VIL tCA SH-RA SL th(W-CAS) th(W-RA S) tsu(W-CAS) W VIH AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAA AAA AAA VIL AAAAAAAAAAAAAAAA th(RAS-CA) tsu(RA -RA S) V AAAAAA A0-A8 VIH AAAA IL AAAAA th(RAS-RA ) AAA AAA AAA tsu(CA -CA S) tsu(D-CAS) D VIH VIL Q VOH VOL tw(W) AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAA A th(CAS-W) tCA-RASH AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA AA th(CA S-CA) th(RA S-D) th(CAS-D) AAAA AAAA AAAA AAAAAAAA AAAAAAAA AAAAA A AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAA A December 12, 1997 AAAA AAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA AA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA AA High-Z 9 UD61256 Read-Write tcRW tw(RASL)RW RAS tw(RA SH) VIH VIL tRASL-CASH tCA SH-RA SL CAS tCASH-RASL tRASL-CASL tCASL-RASH tw(CA SL)RW VIH VIL tsu(R-CAS) th(W-CAS) th(W-RA S) tCAS-W tRAS-W W VIH AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA AA VIL AAAAAAAAAAAAAAAAAA th(RAS-CA ) th(RAS-RA ) tsu(RA -RAS) V A A0-A8 VIH AAAA IL AAAA AAAAA A th(CAS-CA) AAAA AAAA AAAA tsu(CA-CAS) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA AA t(CA-W)RW tsu(D-W) D AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA tw(W) th(W-D) VIH AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA VIL AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAA AAAAAA AA t AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAA AAA a(CA S) ta(CA ) tv(CA S) ta(RAS) Q VOH VOL tCA SL-QX AAAAAAAA AAAA AAAAAAAA AAAA FPM Read tw(RA SH) tw(RA SL) RAS VIH VIL tcPG tRA SL-CASH tRA SL-CA SL tw(CASL) tCASH-RASL CAS tcPG tw(CASH) tw(CA SL) tCA SL-RA SH tw(CASL tw(CASH) VIH VIL tsu(R-CA S) tsu(R-CA S) W VIH AAAA AAAAAAAA AAAAAAAA AAAAAAA AAA VIL AAAAAAAAAAAAAAA AAAA A AAAA AAAAA A th(RAS-RA ) tRAS-CA Q VOH VOL AAAA AAA AAAA AAAAAAA AAA ta(CAS) tCA SL-QX ta(RA S) th(CAS-CA ) AAAA AA AAAA AAAAAA AA th(RAS-CA ) ta(CA) AAAA A AAAA AAAAA A AAAA AAA AAAA AAAAAAA AAA tsu(CA-CAS) th(CAS-CA) tsu(RA-RAS) V A0-A8 VIH IL tsu(CA-CAS) AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAA ta(CAS) ta(CAS) ta(CA ) tCASL-QX AAAA AAAA AAAA tv(CAS) AAAA AAAAAAAA AAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAA tCA-RASH tsu(CA-CAS) th(CA S-CA) AAAA AAAAAA AAAA AAAAAAAA AAAAAA AA ta(CA) tCASL-QX th(RA S-R) th(CAS-R) tsu(R-CA S) th(CAS-R) th(CAS-R) ta(CASH) AAAA A AAAA AAAAAA tv(CAS) tv(CA S) ta(CASH) 10 December 12, 1997 UD61256 FPM Write (CAS-controlled) tw(RASL) tw(RASH) tRA SL-CASH RAS VIH VIL tcPG tw(CA SL) tcPG tCASH-RASL CAS tRA SL-CA SL tw(CASL) tw(W) th(CA S-W) VIH VIL AAAAAAAAAAAAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAA AAAAAAAAAAAAAAAA AA A0-A8 VIH AAAA VIL AAAA AAAAAA AA th(RAS-RA ) tsu(CA-CAS) th(RA S-CA) tsu(CA-CAS) Q th(RA S-D) tsu(D-CAS) AAAAAAAA AAAA AAAAAAAA AAAA th(W-RAS) AAAA AAAAAA AAAAA tsu(W-CA S) AAAAAAAAAAAAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAA AAAAAAAAAAAAAAAA tsu(CA-CAS) tCA -RA SH AAAAAA AAAA AAAAAA AA th(CA SL-D) VIH VIL tsu(W-CA S) th(CAS-CA ) tCA SL-RASH tw(CASL) tw(W) th(CA S-W) tw(W) th(CAS-W) AAAA AAAAAA AAAAA th(CA S-CA) tsu(RA-RAS) D tw(CA SH) VIH VIL tsu(W-CAS) W tw(CASH) AAAAAAAAA AAAA AAAAAAAA AAAAAA th(CA SL-D) tsu(D-CA S) VOH VOL AAAAAAAA AAAA AAAAAAAA AAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA t h(CA S-CA) th(CA SL-D) tsu(D-CAS) AAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAA AAA High-Z RAS only Refresh tcR tw(RA SL) RAS tw(RASH) VIH VIL tCA SH-RA SL CAS VIH VIL W VIH AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAA AAAAAAAA VIL AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAA AAA tsu(RA-RAS) V A0-A8 VIH AAAA AAAAAA AA IL AAAAAA th(RA S-RA) AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAA D VIH AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAA AAA VIL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Q VOH VOL December 12, 1997 High-Z 11 UD61256 HIDDEN-Refresh with address transfer tcR tw(RA SL) RAS VIH VIL CAS VIH VIL tCASH-RASL tRASL-CASL tw(RASH) tCASL-RASH tcR tw(RA SL) tRA SL-CA SH tw(RASH) tCASH-RASL tsu(R-CAS) th(RA S-R) W VIH AAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAA VIL AAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAA th(RA S-CA) tsu(RA-RAS) AAAAAAAA A0-A8 VIH AAAA AAAAAAAA AAAA VIL th(RA S-RA) AAAAA AAAA AAAAA A tRAS-CA th(RAS-RA ) tsu(RA -RA S) tCA -RA SH AAAAAAAAA AAAA AAAAAAAA AAAAAA ta(CA) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAA AAA ta(CA S) tCASL-QX Q VOH VOL ta(RAS) tv(CAS) AAAAAA AAAA AAAAAA AA 12 December 12, 1997 Memory Products 1998 256K x 1 DRAM UD61256 LIFE SUPPORT POLICY ZMD products are not designed, intended, or authorized for use as components in systems intend for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the ZMD product could create a situation where personal injury or death may occur. Components used in life-support devices or systems must be expressly authorized by ZMD for such purpose. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Zentrum Mikroelektronik Dresden GmbH Grenzstraße 28 • D-01109 Dresden • P. O. B. 80 01 34 • D-01101 Dresden • Germany Phone: +49 351 88 22-3 06 • Fax: +49 351 88 22-3 37 • Email: [email protected] Internet Web Site: http://www.zmd.de