PRELIMINARY PRODUCT INFORMATION MOS INTEGRATED CIRCUIT µPD160083 480-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 256-GRAY SCALES) DESCRIPTION The µ PD160083 is a source driver for TFT-LCDs capable of dealing with displays with 256-gray scales. Data input is based on digital input configured as 8 bits by 3 dots (1 pixel) with double clock edge, which can realize a full-color display of 16,777,216 colors by output of 256 values γ -corrected by an internal D/A converter and 9-by-2 external power modules. Because the output dynamic range is as large as VSS2 + 0.1 V to VDD2 – 0.1 V, level inversion operation of the LCD’s common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a builtin 8-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a clock frequency of 85 MHz when driving at 3.0 V, this driver is applicable to UXGAstandard (1600×1200), SXGA-standard (1280×1024) TFT-LCD panels. FEATURES • RSDSTM (Reduced Swing Differential Signaling) interface • 480 outputs • Input of 8 bits (gradation data) by 3 dots with double clock edge sampling • Capable of outputting 256 values by means of 9-by-2 external power modules (18 units) and a D/A converter • Logic power supply voltage (VDD1): 2.7 to 3.6 V • Driver power supply voltage (VDD2): 10.5 to 13.5 V • Output dynamic range: VSS2 + 0.1 V to VDD2 – 0.1 V • High-speed data transfer: fCLK = 85MHz MAX. (Internal data transfer speed when operating at VDD1 = 3.0 V) • Apply for dot-line inversion, n-line inversion and column line inversion • Output Voltage polarity inversion function (POL) • Input data inversion function (INV) • ControIable output short function (MODE1 to MODE3) Remark RSDSTM is a trademark of National Semiconductor Corporation. ORDERING INFORMATION Part Number Package µ PD160083N-xxx TCP (TAB package) µ PD160083NL-xxx COF (COF package) Remark The TCP/COF’s external shape is customized. To order the required shape, so please contact one of our sales representatives The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production. Not all products and/or types are availabe in every country. Please check with an NEC Electronics sales representative for availability and additional information. Document S16450EJ1V0PM00 Date Published May 2003 CP(K) Printed in Japan 2002 µ PD160083 1. BLOCK DIAGRAM STHR R,/L CLKP, CLKN STB STHL VDD1A VSS1A VDD1D VSS1D 80-bit bidirectional shift register x 2 D00P-D03P, D00N-D03N D10P-D13P, D10N-D13N D20P-D23P, D20N-D23N Data register INV Latch POL VDD2 Level shifter VSS2 V0-V17 D/A converter Voltage follower output MODE1 MODE2 MODE3 LPC S1 S2 S3 S480 (Input pin) TEST RPI1 RPI2 Line repair Amp. Remark /xxx indicates active low signal. 2 Preliminary Product Information S16450EJ1V0PM00 RPO1 RPO2 µ PD160083 2. PIN CONFIGURATION (µPD160083N-××× ×××: ××× TCP) (Copper foil surface, face-up) RPI2 RPO2 VSS2 V17 V16 V15 V14 V13 V12 V11 V10 V9 VDD2 (VSS1A) D23P D23N (VSS1A) D22P D22N (VSS1A) D21P D21N (VSS1A) D20P D20N (VSS1A) D13P D13N (VSS1A) D12P D12N (VSS1A) D11P D11N (VSS1A) D10P D10N (VSS1A) R,/L POL INV VDD1A VDD1D LPC STHL STHR VSS1D VSS1A MODE 1 MODE 2 MODE 3 (VSS1A) CLKP CLKN (VSS1A) STB (VSS1A) D03P D03N (VSS1A) D02P D02N (VSS1A) D01P D01N (VSS1A) D00P D00N (VSS1A) VDD2 V8 V7 V6 V5 V4 V3 V2 V1 V0 VSS2 RPO1 RPI1 S480 S479 S478 S477 Copper foil surface S3 S2 S1 Remark 1. This figure does not specify the TCP package. 2. (VSS1A) is recommended to connect to analog GND on PCB for the return current of transmission line. And please don’t use these pins for power supply terminal with dynamic current. Preliminary Product Information S16450EJ1V0PM00 3 µ PD160083 3. PIN FUNCTIONS (1/2) Pin Symbol Pin Name S1 to S480 Driver D00P to D03P, Display D00N to D03N (RSDS) I/O Description Output The D/A converted 256-gray-scale analog voltage is output. data Input The display data is input with a width of 12 bits by double edge, viz., the gray scale data (8 bits) by 3 dots (1 pixel). D10P to D13P, D10N to D13N D20P to D23P, D20N to D23N R,/L Shift direction (CMOS) control Input These refer to the start pulse input/output pins when driver ICs are connected in cascade. The shift directions of the shift registers are as follows. R,/L = H (VDD1 level): STHR input, S1 → S480, STHL output R,/L = L (VSS1 level): STHL input, S480→ S1, STHR output STHR Right shift start (CMOS) pulse STHL Left shift start I/O R,/L = L (VSS1 level): Becomes the start pulse output pin. I/O (CMOS) CLKP, R,/L = H (VDD1 level): Becomes the start pulse input pin. R,/L = H (VDD1 level): Becomes the start pulse output pin. R,/L = L (VSS1 level): Becomes the start pulse input pin. Shift clock Input Refers to the shift register’s shift clock input. The display data is incorporated into CLKN the data register at both of rising and falling edge. (RSDS) At the falling edge of the 160th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. STB Latch Input (CMOS) The contents of the data register are transferred to the latch circuit at the rising edge. And the output timing and output short function are controlled by MODE1 to MODE3. Please refer to 8. RELATIONSHIP BETWEEN STB, POL, MODE1 to MODE3 AND OUTPUT WAVEFORM for more detail. It is necessary to ensure input of one pulse per horizontal period. POL Polarity Input POL = H (VDD1 level): The S2n–1 output uses V0-V8 as the reference supply. (CMOS) The S2n output uses V9-V17 as the reference supply. POL = L (VSS1 level): The S2n–1 output uses V9-V17 as the reference supply. The S2n output uses V0-V8 as the reference supply. S2n-1 indicates the odd output: and S2n indicates the even output. Input of the POL signal is allowed the setup time (tPOL-STB) with respect to STB’s rising edge. INV Data inversion Input Data inversion can invert when display data is loaded. INV = H (VDD1 level): Data inversion loads display data after inverting it. (CMOS) INV = L (VSS1 level): Data inversion does not invert input data. Please input DC signal. For details, refer to 6. DATA INVERSION. LPC Low power control Input LPC = L or open: Normal mode (default) LPC = H: Low power mode (35% lower than noamal mode) This pin is pulled down to the VSS1D inside the IC. MODE1 to MODE3 Output short contro Input This pin controls the output short function. MODE1 MODE2 MODE3 H or open X X L H or open X L H or open L Output Short Remark Non-active Output short circuit OFF Active During STB = H H or open During 34 CLK after STB falling L During 68 CLK after STB falling Remark X: H or L Output short function works only when POL signal is changed from previous line. This pin is pulled up to VDD1D inside the IC. 4 Preliminary Product Information S16450EJ1V0PM00 µ PD160083 (2/2) Pin Symbol RPI1, RPI2 Pin Name Line-repair Amp. I/O Description Input The driver-ability of the line-repair amp is around twice of the normal analog output S1 to S480. Output RPO1, RPO2 And these outputs are changed at the rising edge of STB and don’t have Hi-Z (High impedance) period. RPI1 (RPI2) → impedance changed → RPO1 (RPO2) TEST Test V0-V17 γ -corrected power Input TEST = H or open: Normal operation mode TEST = L: Test mode − supplies Input the γ -corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. VDD2 – 0.1 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2 0.5 VDD2 ≥ V9 > V10 > V11 >V12 > V13 > V14 >V5 > V16 > V17 ≥ VSS2 + 0.1 V VDD1D/A Logic power supply − 2.7 to 3.6 V VDD2 Driver power supply − 10.5 to 13.5 V VSS1D/A Logic ground − Grounding VSS2 Driver ground − Grounding Cautions 1. The power on sequence must be VDD1D, VDD1A, logic input, and VDD2 and V0-V17 in that order. Reverse this sequence to shut down (Simultaneous power application to VDD2 and V0-V17 is possible.). 2. To stabilize the supply voltage, please be sure to insert a 0.1 µ F bypass capacitor between VDD1D, VDD1A-VSS1D, VDD1A and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 µF is also advised between the γ corrected power supply pins (V0, V1, V2, ···, V17) and VSS2. 3. Because of the large power consumption of this driver IC, it is necessary to pay attention to the driver IC's temperature for the Junction Temperature. So, it should be considered to use the suitable mechanical design for the heat spreading and use the LPC function and the output reset function for the power reduction. Especially, it is recommended to measure the temperature of the driver IC surface. Preliminary Product Information S16450EJ1V0PM00 5 µ PD160083 4. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE The µPD160083 incorporates a 8-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD’s counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches. The ladder resistors (r0 to r255) are designed so that the ratio of LCD panel γ -compensated voltages to V0’-V255’ and V0”-V255” is almost equivalent, therefore, each resistance value indicates figure 4−2. For the 2 sets of 9 γ -compensated power supplies, V0-V8 and V9-V17, respectively, input gray scale voltages of the same polarity with respect to the common voltage Figure 4−1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2, VSS2 and 0.5 VDD2, and γ -corrected voltages V0-V17 and the input data. Be sure to maintain the voltage relationships below. VDD2 – 0.1 V ≥ V0 >V1 >V2 >V3 >V4 >V5 >V6 >V7 >V8 ≥ 0.5 VDD2 0.5 VDD2 ≥ V9 >V10 >V11 >V12 >V13 >V14 >V15 >V16 >V17 ≥ VSS2 + 0.1 V Figures 4−2 shows γ -corrected voltages and ladder resistors ratio and figure 4−3 shows relationship between the input data and the output voltage. Figure 4− −1. Relationship Between Input Data and γ -corrected Power Supply VDD2 0.1 V V0 1 V1 31 V2 32 V3 64 V4 V5 V6 64 32 30 1 V7 V8 0.5 VDD2 V9 V10 1 30 V11 V12 V13 32 64 64 V14 32 V15 31 V16 1 0.1 V V17 VSS2 00 01 20 40 80 C0 Input data (HEX.) 6 Preliminary Product Information S16450EJ1V0PM00 E0 FE FF µ PD160083 Figure 4− −2. γ -corrected Voltages and Ladder Resistors Ratio V0 V0’ V9 r0 V1 V255’’ r255 V1’ r1 V2’ r2 r254 V10 r253 V254’’ V253’’ V3’ r252 r3 V252’’ r251 r30 V31’ r31 V2 V32’ r32 r225 V33’ V225’’ r33 r224 V11 V224’’ r223 V223’’ r222 r222 V223’ r223 V6 r224 V224’ r33 V225’ r32 V33’’ V32’’ V15 r31 V31’’ r30 r251 V252’ r252 V253’ r253 V7 r2 V254’ V2’’ r1 r254 V16 r255 V8 rn Ratio Value r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24 r25 r26 r27 r28 r29 r30 r31 r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r46 r47 r48 r49 r50 r51 r52 r53 r54 r55 r56 r57 r58 r59 r60 r61 r62 r63 31.50 27.50 24.00 21.50 19.00 17.50 16.50 15.00 14.00 13.00 12.00 11.00 10.00 9.50 9.50 9.00 8.50 8.00 7.50 7.50 7.00 6.50 6.50 6.00 6.00 5.50 5.50 5.50 5.00 5.00 5.00 4.50 4.50 4.50 4.00 4.00 4.00 4.00 3.75 3.75 3.50 3.50 3.50 3.50 3.25 3.25 3.00 3.00 3.00 3.00 3.00 3.00 2.75 2.75 2.75 2.75 2.50 2.50 2.50 2.50 2.50 2.50 2.25 2.25 630 550 480 430 380 350 330 300 280 260 240 220 200 190 190 180 170 160 150 150 140 130 130 120 120 110 110 110 100 100 100 90 90 90 80 80 80 80 75 75 70 70 70 70 65 65 60 60 60 60 60 60 55 55 55 55 50 50 50 50 50 50 45 45 rn Ratio Value r64 r65 r66 r67 r68 r69 r70 r71 r72 r73 r74 r75 r76 r77 r78 r79 r80 r81 r82 r83 r84 r85 r86 r87 r88 r89 r90 r91 r92 r93 r94 r95 r96 r97 r98 r99 r100 r101 r102 r103 r104 r105 r106 r107 r108 r109 r110 r111 r112 r113 r114 r115 r116 r117 r118 r119 r120 r121 r122 r123 r124 r125 r126 r127 2.25 2.25 2.25 2.25 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.00 1.00 45 45 45 45 40 40 40 40 40 40 40 40 35 35 35 35 35 35 35 35 35 35 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 20 20 rn Ratio Value r128 r129 r130 r131 r132 r133 r134 r135 r136 r137 r138 r139 r140 r141 r142 r143 r144 r145 r146 r147 r148 r149 r150 r151 r152 r153 r154 r155 r156 r157 r158 r159 r160 r161 r162 r163 r164 r165 r166 r167 r168 r169 r170 r171 r172 r173 r174 r175 r176 r177 r178 r179 r180 r181 r182 r183 r184 r185 r186 r187 r188 r189 r190 r191 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 rn Ratio Value r192 r193 r194 r195 r196 r197 r198 r199 r200 r201 r202 r203 r204 r205 r206 r207 r208 r209 r210 r211 r212 r213 r214 r215 r216 r217 r218 r219 r220 r221 r222 r223 r224 r225 r226 r227 r228 r229 r230 r231 r232 r233 r234 r235 r236 r237 r238 r239 r240 r241 r242 r243 r244 r245 r246 r247 r248 r249 r250 r251 r252 r253 r254 r255 1.00 1.00 1.00 1.00 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.50 1.50 1.50 1.50 1.50 1.50 1.50 2.00 2.00 2.00 2.00 2.00 2.50 2.50 2.50 3.00 3.00 3.00 3.50 3.50 4.00 4.00 4.50 5.00 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.50 11.50 12.50 25.00 20 20 20 20 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 30 30 30 30 30 30 30 40 40 40 40 40 50 50 50 60 60 60 70 70 80 80 90 100 100 110 120 130 140 150 160 170 180 190 210 230 250 500 V1’’ r0 V255’ V17 V0’’ Caution There is no connection between V8 and V9 pin inside the IC. Preliminary Product Information S16450EJ1V0PM00 7 µ PD160083 Figure 4− −3. Relationship between Input Data and Output Voltage (1/2) (Output voltage 1) VDD2 – 0.1 V ≥ V0 > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 ≥ 0.5 VDD2 Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 8 Output Voltage V0' V1' V2' V3' V3' V5' V6' V7' V8' V9' V10' V11' V12' V13' V14' V15' V16' V17' V18' V19' V20' V21' V22' V23' V24' V25' V26' V27' V28' V29' V30' V31' V32' V33' V34' V35' V36' V37' V38' V39' V30' V41' V42' V43' V44' V45' V46' V47' V48' V49' V50' V51' V52' V53' V54' V55' V56' V57' V58' V59' V60' V61' V62' V63' V0 V1 V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V1+(V2-V1) X V2 V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X V2+(V3-V2) X 550 1030 1460 1840 2190 2520 2820 3100 3360 3600 3820 4020 4210 4400 4580 4750 4910 5060 5210 5350 5480 5610 5730 5850 5960 6070 6180 6280 6380 6480 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 90 180 260 340 420 500 575 650 720 790 860 930 995 1060 1120 1180 1240 1300 1360 1420 1475 1530 1585 1640 1690 1740 1790 1840 1890 1940 1985 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 Data 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH 5BH 5CH 5DH 5EH 5FH 60H 61H 62H 63H 64H 65H 66H 67H 68H 69H 6AH 6BH 6CH 6DH 6EH 6FH 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH Output Voltage V64' V65' V66' V67' V68' V69' V70' V71' V72' V73' V74' V75' V76' V77' V78' V79' V80' V81' V82' V83' V84' V85' V86' V87' V88' V89' V90' V91' V92' V93' V94' V95' V96' V97' V98' V99' V100' V101' V102' V103' V104' V105' V106' V107' V108' V109' V110' V111' V112' V113' V114' V115' V116' V117' V118' V119' V120' V121' V122' V123' V124' V125' V126' V127' V3 V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X V3+(V4-V3) X 45 90 135 180 220 260 300 340 380 420 460 500 535 570 605 640 675 710 745 780 815 850 880 910 940 970 1000 1030 1060 1090 1120 1150 1180 1210 1240 1270 1300 1330 1360 1390 1420 1450 1480 1510 1540 1570 1595 1620 1645 1670 1695 1720 1745 1770 1795 1820 1845 1870 1895 1920 1945 1970 1990 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 Data 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9AH 9BH 9CH 9DH 9EH 9FH A0H A1H A2H A3H A4H A5H A6H A7H A8H A9H AAH ABH ACH ADH AEH AFH B0H B1H B2H B3H B4H B5H B6H B7H B8H B9H BAH BBH BCH BDH BEH BFH Output Voltage V128' V129' V130' V131' V132' V133' V134' V135' V136' V137' V138' V139' V140' V141' V142' V143' V144' V145' V146' V147' V148' V149' V150' V151' V152' V153' V154' V155' V156' V157' V158' V159' V160' V161' V162' V163' V164' V165' V166' V167' V168' V169' V170' V171' V172' V173' V174' V175' V176' V177' V178' V179' V180' V181' V182' V183' V184' V185' V186' V187' V188' V189' V190' V191' V4 V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X V4+(V5-V4) X 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260 Preliminary Product Information S16450EJ1V0PM00 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 Data C0H C1H C2H C3H C4H C5H C6H C7H C8H C9H CAH CBH CCH CDH CEH CFH D0H D1H D2H D3H D4H D5H D6H D7H D8H D9H DAH DBH DCH DDH DEH DFH E0H E1H E2H E3H E4H E5H E6H E7H E8H E9H EAH EBH ECH EDH EEH EFH F0H F1H F2H F3H F4H F5H F6H F7H F8H F9H FAH FBH FCH FDH FEH FFH Output Voltage V192' V193' V194' V195' V196' V197' V198' V199' V200' V201' V202' V203' V204' V205' V206' V207' V208' V209' V210' V211' V212' V213' V214' V215' V216' V217' V218' V219' V220' V221' V222' V223' V224' V225' V226' V227' V228' V229' V230' V231' V232' V233' V234' V235' V236' V237' V238' V239' V240' V241' V242' V243' V244' V245' V246' V247' V248' V249' V250' V251' V252' V253' V254' V255' V5 V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V5+(V6-V5) X V6 V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V6+(V7-V6) X V7 V8 20 40 60 80 105 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 505 530 555 580 605 630 660 690 720 750 780 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 30 70 110 150 190 230 280 330 380 440 500 560 630 700 780 860 950 1050 1150 1260 1380 1510 1650 1800 1960 2130 2310 2500 2710 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 µ PD160083 Figure 4− −3. Relationship between Input Data and Output Voltage (2/2) (Output voltage 2) 0.5 VDD2 ≥ V9 > V10 > V11 > V12 > V13 > V14 > V15 > V16 > V17 ≥ VSS2 + 0.1 V Output Voltage Data 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH V0" V1" V2" V3" V4" V5" V6" V7" V8" V9" V10" V11" V12" V13" V14" V15" V16" V17" V18" V19" V20" V21" V22" V23" V24" V25" V26" V27" V28" V29" V30" V31" V32" V33" V34" V35" V36" V37" V38" V39" V40" V41" V42" V43" V44" V45" V46" V47" V48" V49" V50" V51" V52" V53" V54" V55" V56" V57" V58" V59" V60" V61" V62" V17 V16 V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V16+(V15-V16) X V15 V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X V15+(V14-V15) X 3FH V63" V15+(V14-V15) X Output Voltage Data 550 1030 1460 1840 2190 2520 2820 3100 3360 3600 3820 4020 4210 4400 4580 4750 4910 5060 5210 5350 5480 5610 5730 5850 5960 6070 6180 6280 6380 6480 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 6570 90 180 260 340 420 500 575 650 720 790 860 930 995 1060 1120 1180 1240 1300 1360 1420 1475 1530 1585 1640 1690 1740 1790 1840 1890 1940 1985 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 2030 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H 56H 57H 58H 59H 5AH 5BH 5CH 5DH 5EH 5FH 60H 61H 62H 63H 64H 65H 66H 67H 68H 69H 6AH 6BH 6CH 6DH 6EH 6FH 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH V64" V65" V66" V67" V68" V69" V70" V71" V72" V73" V74" V75" V76" V77" V78" V79" V80" V81" V82" V83" V84" V85" V86" V87" V88" V89" V90" V91" V92" V93" V94" V95" V96" V97" V98" V99" V100" V101" V102" V103" V104" V105" V106" V107" V108" V109" V110" V111" V112" V113" V114" V115" V116" V117" V118" V119" V120" V121" V122" V123" V124" V125" V126" V14 V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X V14+(V13-V14) X 7FH V127" V14+(V13-V14) X 45 90 135 180 220 260 300 340 380 420 460 500 535 570 605 640 675 710 745 780 815 850 880 910 940 970 1000 1030 1060 1090 1120 1150 1180 1210 1240 1270 1300 1330 1360 1390 1420 1450 1480 1510 1540 1570 1595 1620 1645 1670 1695 1720 1745 1770 1795 1820 1845 1870 1895 1920 1945 1970 1990 Output Voltage Data / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9AH 9BH 9CH 9DH 9EH 9FH A0H A1H A2H A3H A4H A5H A6H A7H A8H A9H AAH ABH ACH ADH AEH AFH B0H B1H B2H B3H B4H B5H B6H B7H B8H B9H BAH BBH BCH BDH BEH V128" V129" V130" V131" V132" V133" V134" V135" V136" V137" V138" V139" V140" V141" V142" V143" V144" V145" V146" V147" V148" V149" V150" V151" V152" V153" V154" V155" V156" V157" V158" V159" V160" V161" V162" V163" V164" V165" V166" V167" V168" V169" V170" V171" V172" V173" V174" V175" V176" V177" V178" V179" V180" V181" V182" V183" V184" V185" V186" V187" V188" V189" V190" V13 V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X V13+(V12-V13) X BFH V191" V13+(V12-V13) X 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260 Preliminary Product Information S16450EJ1V0PM00 Output Voltage Data / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 C0H C1H C2H C3H C4H C5H C6H C7H C8H C9H CAH CBH CCH CDH CEH CFH D0H D1H D2H D3H D4H D5H D6H D7H D8H D9H DAH DBH DCH DDH DEH DFH E0H E1H E2H E3H E4H E5H E6H E7H E8H E9H EAH EBH ECH EDH EEH EFH F0H F1H F2H F3H F4H F5H F6H F7H F8H F9H FAH FBH FCH FDH FEH V192" V193" V194" V195" V196" V197" V198" V199" V200" V201" V202" V203" V204" V205" V206" V207" V208" V209" V210" V211" V212" V213" V214" V215" V216" V217" V218" V219" V220" V221" V222" V223" V224" V225" V226" V227" V228" V229" V230" V231" V232" V233" V234" V235" V236" V237" V238" V239" V240" V241" V242" V243" V244" V245" V246" V247" V248" V249" V250" V251" V252" V253" V254" V12 V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V12+(V11-V12) X V11 V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V11+(V10-V11) X V10 FFH V255" V9 20 40 60 80 105 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 505 530 555 580 605 630 660 690 720 750 780 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 810 30 70 110 150 190 230 280 330 380 440 500 560 630 700 780 860 950 1050 1150 1260 1380 1510 1650 1800 1960 2130 2310 2500 2710 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 9 µ PD160083 5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN Data format: 8 bits × 1 RGB (3 dots) Input width: 12 bits x double edge (1-pixel data) (1) R,/L = H (Right shift) Output S1 S2 S3 S4 !!! S479 S480 Data D00P-D03P, D10P-D13P, D20P-D23P, D00P-D03P, !!! D10P-D13P, D20P-D23P, D00N-D03N D10N-D13N D20N-D23N D00N-D03N D10N-D13N D20N-D23N (2) R,/L = L (Left shift) Output S1 S2 S3 S4 !!! S479 S480 Data D00P-D03P, D10P-D13P, D20P-D23P, D00P-D03P, !!! D10P-D13P, D20P-D23P, D00N-D03N D10N-D13N D20N-D23N D00N-D03N D10N-D13N D20N-D23N POL S2n–1Note S2nNote H V0-V8 V9-V17 L V9-V17 V0-V8 Note S2n-1 (Odd output), S2n (Even output) , n = 1, 2, … 240 6. DATA INVERSION (INV) INV controls the internal data inversion. When INV = H, the internal data is inverted and CLK is not inverted (See the figure as below). Using the INV pin, the RSDS data bus interface can be changed. D00P D00N D23P D23N CLKP CLKP CLKN CLKN INV = H 10 Preliminary Product Information S16450EJ1V0PM00 INV = L Data register µPD160083 RSDS receiver D23P D23N Data register D00P D00N RSDS receiver µPD160083 µ PD160083 7. TIMING CHART AND RELATIONSHIP BETWEEN 8-BIT DATA AND DATA BUS LINE tHOLD2 tSETUP2 tHOLD1 tHOLD1 tSETUP1 tSETUP1 CLK (Differential) STHR D00 (Differential) S1 (0) S1 (1) S4 (0) S4 (1) S7 (0) S7 (1) D01 (Differential) S1 (2) S1 (3) S4 (2) S4 (3) S7 (2) S7 (3) D02 (Differential) S1 (4) S1 (5) S4 (4) S4 (5) S7 (4) S7 (5) D03 (Differential) S1 (6) S1 (7) S4 (6) S4 (7) S7 (6) S7 (7) D10 (Differential) S2 (0) S2 (1) S5 (0) S5 (1) S8 (0) S8 (1) D11 (Differential) S2 (2) S2 (3) S5 (2) S5 (3) S8 (2) S8 (3) D12 (Differential) S2 (4) S2 (5) S5 (4) S5 (5) S8 (4) S8 (5) D13 (Differential) S2 (6) S2 (7) S5 (6) S5 (7) S8 (6) S8 (7) D20 (Differential) S3 (0) S3 (1) S6 (0) S6 (1) S9 (0) S9 (1) D21 (Differential) S3 (2) S3 (3) S6 (2) S6 (3) S9 (2) S9 (3) D22 (Differential) S3 (4) S3 (5) S6 (4) S6 (5) S9 (4) S9 (5) D23 (Differential) S3 (6) S3 (7) S6 (6) S6 (7) S9 (6) S9 (7) Remark Sn(0): LSB, Sn(7): MSB Preliminary Product Information S16450EJ1V0PM00 11 µ PD160083 8. RELATIONSHIP BETWEEN MODE, STB, POL, MODE1 to MODE3 AND OUTPUT WAVEFORM The µPD160083 has a various kind of output short function that can be controlled by MODE1 to MODE3. Please refer to the following description of each function and decide MODE1 to MODE3 after considering the suitable driving method. MODE1 MODE2 H or open X L MODE3 Charge Sharing Description of Output Short X Non-active Output short doesn’t work H or open X Active During STB = H L H or open Active During 34 CLKs after falling edge of STB L Active During 68 CLKs after falling edge of STB Remark X: H or L (1) MODE1 = H or open All outputs always become Hi-Z condition during STB = H at this mode. And output short function doesn’t work and all output always start at the falling edge of STB (See figure 8−1). Figure 8− −1. MODE1 = H or open STB POL V0 -V8 V9 -V17 V9 -V17 V9 -V17 V0 -V8 V0 -V8 VOUT (Odd) VOUT (Even) Hi-Z Remark 12 Hi-Z : Repair Amp. output Preliminary Product Information S16450EJ1V0PM00 Hi-Z µ PD160083 (2) MODE1 = L, MODE2 = H or open Output short function works during STB = H at this mode. So all outputs are started at the falling edge of STB (See figure 8−2). But output short function works only when POL signal is changed. So All output become Hi-Z condition during STB = H without any change of POL signal (See figure 8−2). Figure 8− −2. MODE1 = L, MODE2 = H or open STB POL V0 - V8 V9 - V17 V9 - V17 V9 - V17 V0 - V8 V0 - V8 VOUT (Odd) VOUT (Even) Output reset Remark Output reset Hi-Z : Repair Amp. output Preliminary Product Information S16450EJ1V0PM00 13 µ PD160083 (3) MODE1 = L, MODE2 = L All output always become Hi-Z condition during STB = H in this mode. And output short function works at the falling edge of STB during requested period by MODE3. At MODE3 = H, the driver IC counts 34 CLKs of output short period by itsself, and count 68 CLKs at MODE = L. After finishing the output short period, the gray-scale voltage to the LCD panel is started. When POL signal is not changed, the gray-scale voltage to the LCD panel is started at the falling edge of STB without any change of POL signal (See figure 8−3). MODE3 Output Short Period H or open 34 CLKs L 68 CLKs Remark MODE1 = L, MODE2 = L Figure 8− −3. MODE1 = L, MODE2 = L STB POL V0 - V8 V9 - V17 V9 - V17 VOUT (Odd) V9 - V17 V0 - V8 V0 - V8 VOUT (Even) Hi-Z Output reset (34/68_CLKs) Remark 14 Hi-Z Output reset (34/68_CLKs) : Repair Amp. output Preliminary Product Information S16450EJ1V0PM00 Hi-Z µ PD160083 9. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = +25 °C, VSS1D, VSS1A = VSS2 = 0 V) Parameter Symbol Ratings Unit Logic Part Supply Voltage VDD1D, VDD1A –0.5 to +4.0 V Driver Part Supply Voltage VDD2 –0.5 to +14.0 V Logic Part Input Voltage VI1 –0.5 to VDD1 + 0.5 V Driver Part Input Voltage VI2 –0.3 to VDD2 + 0.3 V Logic Part Output Voltage VO1 –0.5 to VDD1 + 0.5 V Driver Part Output Voltage VO2 –0.5 to VDD2 + 0.5 V Operating Ambient Temperature TA –10 to +75 °C Storage Temperature Tstg –55 to +125 °C Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended Operating Range (TA = –10 to +75 °C, VSS1D, VSS1A = VSS2 = 0 V) Parameter Symbol Logic Part Supply Voltage Conditions VDD1D, MIN. TYP. MAX. Unit 2.7 3.3 3.6 V 12.0 13.5 V V VDD1A Driver Part Supply Voltage VDD2 10.5 High-Level Input Voltage 1 VIH1 0.7 VDD1 VDD1 Low-Level Input Voltage 1 VIL1 0 0.3 VDD1 High-Level Input Voltage 2 VIH2 (Differential :VRSDSP-VRSDSN) Low-Level Input Voltage 2 VCM = 1.2 V Note CLK, Dxy +100 +200 V mV (x = 0 to 2) (y = 0 to 3) VIL2 –200 –100 mV 1.2 1.4 V 0.1 VDD2 − 0.1 V V (Differential :VRSDSP-VRSDSN) Common Mode Input VOFF = 200 mVp-p Note VCM 0.5 Voltage Driver Part Output Voltage VO S1 to S480, RPO1, RPO2 γ -Corrected Voltage VNv V0-V8 0.5 VDD2 VDD2 – 0.1 V9-V17 0.1 0.5 VDD2 V VDD1 = 2.7 V 70 MHz VDD1 = 3.0 V 85 MHz Clock Frequency fCLK Note VRSDSN (CLKN, DxxN) VCMRSDS VRSDSP (CLKP, DxxP) VIH2 = +100 mV MIN. 0V VRSDSP-VRSDSN (Internal CLK, DATA) Internal Logic VIL2 = −100 mV MAX. L H L H Remark VCM = (VCLKP + VCLKN) /2 or = (VDxxP + VDxxN) /2 (x = 0, 1, 2) VDIFF = (VCLKP − VCLKN) /2 or = (VDxxP − VDxxN) /2 (x = 0, 1, 2) Preliminary Product Information S16450EJ1V0PM00 15 µ PD160083 Electrical Characteristics (TA = –10 to +75 °C, VDD1 = 2.7 to 3.6V, VDD2 = 10.5 to 13.5 V , VSS1 = VSS2 = 0 V) Parameter Input Leak Current Symbol Condition MIN. TYP. IIL MAX. Unit ± 1.0 µA High-Level Output Voltage VOH STHR (STHL), IOH = 0 mA VDD1 − 0.4 VDD1 V Low-Level Output Voltage VOL STHR (STHL), IOL = 0 mA VSS1 VSS1 + 0.4 V γ -Corrected Resistance Rγ VDD2 = 12.0 V, TA = 25°C, 11.91 17.02 22.13 kΩ 80 200 500 kΩ −70 µA V0-V8 = V9-V17 = 5.0 V Pull-up/pull-down RPU VDD1 = 3.3 V, MODE1 to MODE3, LPC, TEST IVOH S1 to S480, RPO1, RPO2, VX = 11 V, Resistance Driver Output Current VDD2 = 12 V VOUT = 10.5 V Note1 VX = 1.0 V, IVOL µA 70 VOUT = 1.5 V Note1 Output Voltage Deviation ∆VO (DVO) VO = 1.5 V to VDD2 – 1.5 V. ± 12 ± 20 mV VO = 0.1 to 1.5 V, ± 40 ± 50 mV VO = 1.5 V to VDD2 – 1.5 V ±6 ± 10 mV VO = 0.1 to 1.5 V, ± 30 ± 50 mV VO = VDD2 – 1.5 V to VDD2 – 0.1 V Output Swing Voltage ∆Vp–p1 Difference Deviation ∆Vp–p2 (DVRMS) VO = VDD2 – 1.5 V to VDD2 – 0.1 V Output Swing Voltage AVO Input data: 80H ±1 ± 7.5 mV IDD11 VDD1 Note1 to note3 2.5 Note2 6.0 Note3 mA IDD12 VDD1, Note1 to note3 2.0 Note4 6.0 Note5 mA IDD2 VDD2 , with no load, 15.0 Note6 45.0 Note7 mA Average Deviation Logic Part Dynamic Current Consumption 1 Logic Part Dynamic Current Consumption 2 Driver Part Dynamic Current Consumption RPI1, RPI2 are not floating Notes 1. VX refers to the otuput voltage of analog output pins S1 to S384. VOUT refers to the voltage applied to analog output pins S1 to S384. 2. fCLKP, fCLKN = 67.5 MHz, fSTB = 80.0 kHz, test pattern = dot inversion, TA = 25°C, VDD1 = 3.0 V 3. fCLKP, fCLKN = 67.5 MHz, fSTB = 80.0 kHz, test pattern = dot inversion, VDD1 = 3.6 V 4. fCLKP, fCLKN = 54.0 MHz, fSTB = 64.9 kHz, test pattern = dot inversion, TA = 25°C, VDD1 = 3.0V 5. fCLKP, fCLKN = 54.0 MHz, fSTB = 64.9 kHz, test pattern = dot inversion, VDD1 = 3.6 V 6. fCLKP, fCLKN = 67.5 MHz, fSTB = 80.0 kHz, test pattern = dot inversion, TA = 25°C, VDD2 = 12.0 V 7. fCLKP, fCLKN = 67.5 MHz, fSTB = 80.0 kHz, test pattern = dot inversion, VDD2 = 13.5 V 16 Preliminary Product Information S16450EJ1V0PM00 µ PD160083 Switching Characteristics (TA = –10 to +75 °C, VDD1 = 2.7 to 3.6V, VDD2 = 10.5 to 13.5 V, VSS1 = VSS2 = 0 V) Parameter Start Pulse Delay Time Driver Output Delay Time Symbol tPLH1 CL = 15 pF MIN. TYP. MAX. Unit VDD1 < 3.0 V 4 12.5 ns VDD1 ≥ 3.0 V 4 10.0 ns tPLH2 Note1 VDD2 = 12.0 V, RPO1, RPO2, 4 5 µs tPLH3 Note2 S1 to S480, RL = 9 kΩ, CL = 80 pF 5 8 µs Note1 4 5 µs tPHL3 Note2 5 8 µs tPLH4 Note1 4 5 µs tPLH5 Note2 5 8 µs tPHL4 Note1 4 5 µs tPHL2 tPHL5 Input Capacitance Condition Note2 5 CI1 Logic input besides STHR (STHL), 8 µs 10 pF 15 pF TA = 25°C STHR (STHL),TA = 25°C CI2 Notes 1. The value is specified when the drive voltage valuw reaches the target output voltage level of ±10%. 2. The value is specified when the drive voltage valuw reaches the target output voltage level of ±0.02 V (Condition: VO = 3.0 V ↔12.0 V). <Test condition> RL2 RL1 RL3 RL4 Measurement point RL5 Output RL1 = 2.6 kΩ CL1 CL2 CL3 CL4 CL5 RL2 to RL5 = 1.6 kΩ CLn = 16 pF VCOM = 0.5 VDD2 Preliminary Product Information S16450EJ1V0PM00 17 µ PD160083 Timing Requirement (TA = –10 to +75°C, VDD1 = 2.7 to 3.6V, VSS1 = 0 V, tr = tf = 3.0 ns (CMOS), tr = tf = 1.0 ns (RSDS)) Parameter Clock Period Symbol PWCLK Condition MIN. TYP. MAX. Unit VDD1 = 2.7 V 14.3 ns VDD1 = 3.0 V 11.8 ns ns Clock Pulse High Period PWCLK(H) 5 Clock Pulse Low Period PWCLK(L) 5 ns Data Setup Time tSETUP1 VDD1 = 2.7 V 3 ns VDD1 = 3.0 V 2 ns Data Hold Time tHOLD1 VDD1 = 2.7 V 1 ns VDD1 = 3.0 V 0 ns Start Pulse Setup Time tSETUP2 1 ns Start Pulse Hold Time tHOLD2 3 ns Start Pulse “H” Width PWSTH 1 STB Pulse “H” Width PWSTB 1 us Last Data Timing tLDT 1 CLKP 2 CLKP STB-CLK Time tSTB-CLK STB ↑ → CLKP, CLKN ↓ 3 ns Time Between STB and Start tSTB-STH STB ↑ → STHR (STHL) ↑ 5 CLKP POL-STB Time tPOL-STB POL ↑ or ↓ → STB ↑ 14 ns STB-POL Time tSTB-POL STB ↓ → POL ↓ or ↑ 10 ns Pulse Remark tr, tf are defined 10 to 90% of each signal amplitude. 18 Preliminary Product Information S16450EJ1V0PM00 0V 0V 2 0V 0V 3 0V 160 0V 161 0V 0V 10% 1 tHOLD2 tr 2 0V 10% tf VDD1 STHR (1st Dr.) 0.7 V DD1 10% PWSTH VSS1 tSTB-STH <D472 to D474> Invalid 10% tSTB-CLK tSETUP1 tHOLD1 Dn0 to Dn3 (Differential) 90% 0.3 VDD1 0.7 V DD1 0V Even Odd Even Odd <D475 to D477> Even Odd Last Data Invalid 0V <D1 to D3 > tPLH1 tPHL1 Preliminary Product Information S16450EJ1V0PM00 VDD1 STHL (1st Dr.) 0.7 V DD1 0.7 VDD1 VSS1 PWSTB tLDT STB VDD1 0.7 VDD1 0.3 VDD1 0.7 VDD1 0.3 VDD1 VSS1 t STB- POL tPOL-STB VDD1 POL 0.7 V DD1 0.3 V DD1 0.7 VDD1 0.3 VDD1 VSS1 tPLH3 Hi-Z tPLH2 S1 to S480 tPHL2 tPHL3 RPO1, RPO2 tPHL4 tPHL5 19 µ PD160083 tPLH5 tPLH4 Switching Characteristics Waveform (R,/L = H) 90% 1 tSETUP2 Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1 at CMOS signal and 0 V at tf differential signal (RSDS). CLK (Differential) tr PWCLK <MODE1 = H> PWCLK(L) PWCLK(H) CLK (Differential) tr PWCLK 90% 0V0V 1 tSETUP2 2 0V 0V 0V 160 3 0V 161 0V 0V 1 0V 10% tHOLD2 0.7 VDD1 0.7 VDD1 10% <D472 to D 474> 0V Even 10% VDD1 VSS1 tSTB-STH tSETUP1 tHOLD1 Invalid tf 90% 0.3 VDD1 tSTB-CLK PWSTH Dn0P to Dn2P (Differential) 2 10% tr STHR (1st Dr.) tf Odd Even Odd <MODE1 = L, MODE2 = H> 20 PWCLK(L) PWCLK(H) <D475 to D477> Even Odd Last da ta Invalid 0V Preliminary Product Information S16450EJ1V0PM00 <D1 to D3 > tPHL1 tPLH1 STHL (1st Dr.) 0.7 VDD1 VDD1 0.7 VDD1 VSS1 PWSTB t LDT STB VDD1 0.7 V DD1 0.3 VDD1 0.7 V DD1 0.3 VDD1 VSS1 tSTB- POL tPO L- STB VDD1 POL 0.7 V DD1 0.3 V DD1 0.7 VDD1 0.3 VDD1 Output reset VSS1 tPLH3 tPLH2 S1 to S480 tPHL2 tPHL3 tPLH5 tPLH4 tPHL4 tPHL5 µ PD160083 RPO1, RPO2 µ PD160083 10. RECOMMENDED MOUNTING CONDITIONS The following conditions must be met for mounting conditions of the µPD160010. For more details, refer to the [Semiconductor Device Mount Manual] (http://www.necel.com/pkg/en/mount/index.html) Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions. µPD160083N-xxx: TCP (TAB Package) Mounting Condition Thermocompression Mounting Method Soldering Condition Heating tool 300 to 350°C, heating for 2 to 3 sec, pressure 100g (per solder). ACF Temporary bonding 70 to 100°C, pressure 3 to 8 kg/cm2, time 3 to 5 sec. (Adhesive Conductive Real bonding 165 to 180°C pressure 25 to 45 kg/cm2, time 30 to 40 sec. Film) (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.) Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time. Preliminary Product Information S16450EJ1V0PM00 21 µ PD160083 NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. 22 Preliminary Product Information S16450EJ1V0PM00