PRELIMINARY PRODUCT INFORMATION MOS INTEGRATED CIRCUIT µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y TM TM V850ES/SA2 , V850ES/SA3 32-BIT SINGLE-CHIP MICROCONTROLLERS DESCRIPTION The µPD703201, 703201Y, 70F3201, and 70F3201Y (V850ES/SA2), µPD703204, 703204Y, 70F3204, and 70F3204Y (V850ES/SA3) are products in the V850 Family TM of 32-bit single-chip microcontrollers, and include peripheral functions such as ROM/RAM, timer/counters, serial interfaces, an A/D converter, a D/A converter, and a DMA controller. In addition to their high real-time responsiveness and one-clock-pitch execution of instructions, the V850ES/SA2 and V850ES/SA3 include instructions suited to digital servo control applications such as multiplication instructions executed via a hardware multiplier, saturation instructions, and bit manipulation instructions. As a real-time control system, this device provides a high-level cost performance ideal for ultra-low-power DVC and portable audio applications. Detailed function descriptions are provided in the following user’s manuals. Be sure to read them before designing. V850ES/SA2, V850ES/SA3 User’s Manual Hardware: To be prepared V850ES User’s Manual Architecture: To be prepared FEATURES { Number of instructions: 83 { Minimum instruction execution time: 59 ns (@ 17 MHz operation with main system clock (fXX)) 74 ns (@ 13.5 MHz operation with main system clock (fXX)) { Interrupts and exceptions Non-maskable interrupts: 2 sources Maskable interrupts: 38 sources (µPD703201, 70F3201) { General-purpose registers: 32 bits × 32 registers 39 sources (µPD703201Y, 70F3201Y) { Instruction set: 39 sources (µPD703204, 70F3204) Signed multiplication, saturation operations, 32-bit shift instructions, bit manipulation instructions, load/store instructions 40 sources (µPD703204Y, 70F3204Y) Software exceptions: 32 sources Exception trap: 1 source { I/O lines Total: 82 (V850ES/SA2) { Memory space: 102 (V850ES/SA3) 64 MB linear address space Memory block division function: 2 MB, 2 MB, 4 MB, 8 MB = Total four blocks { External bus interface: 16-bit data bus Address bus: Separate output enabled { Internal memory Mask ROM: { Timer/counters 16-bit timer: 2 channels 8-bit timer: 4 channels { Real-time counter (for watch): 1 channel { Watchdog timer: 1 channel 256 KB (µPD703201, 703201Y, 703204, 703204Y) Flash memory: 256 KB (µPD70F3201, 70F3201Y, 70F3204, 70F3204Y) RAM: 16 KB The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. U15436EJ1V0PM00 (1st edition) Date Published June 2001 N CP(K) Printed in Japan © 2001 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y { D/A converter: 8-bit resolution × 2 channels { Serial interface (SIO) Asynchronous serial interface (UART): 2 channels { DMA controller: 4 channels Clocked serial interface (CSI): { Power save functions: HALT/IDLE/STOP/Backup 4 channels (V850ES/SA2), modes { ROM correction: Four points can be corrected 5 channels (V850ES/SA3) { Packages: 100-pin plastic LQFP (14 × 14) 2 I C bus interface: 1 channel (µPD703201Y, 703204Y, 70F3201Y, 70F3204Y) (V850ES/SA2) 121-pin plastic FBGA (12 × 12) { A/D converter: 10-bit resolution × 12 channels (V850ES/SA2) (V850ES/SA3) 10-bit resolution × 16 channels (V850ES/SA3) APPLICATIONS { Low-power portable devices DVCs, portable audios ORDERING INFORMATION Part Number Internal ROM µPD703201GC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14) 256 KB (mask ROM) µPD703201YGC-×××-8EU 100-pin plastic LQFP (fine pitch) (14 × 14) 256 KB (mask ROM) µPD703204F1-×××-EA6 121-pin plastic FBGA (12 × 12) 256 KB (mask ROM) µPD703204YF1-×××-EA6 121-pin plastic FBGA (12 × 12) 256 KB (mask ROM) µPD70F3201GC-8EU 100-pin plastic LQFP (fine pitch) (14 × 14) 256 KB (flash memory) µPD70F3201YGC-8EU 100-pin plastic LQFP (fine pitch) (14 × 14) 256 KB (flash memory) µPD70F3204F1-EA6 121-pin plastic FBGA (12 × 12) 256 KB (flash memory) µPD70F3204YF1-EA6 121-pin plastic FBGA (12 × 12) 256 KB (flash memory) Remark 2 Package ××× indicates ROM code suffix. Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y PIN CONFIGURATION • V850ES/SA2 100-pin plastic LQFP (fine-pitch) (14 × 14) µPD703201GC-×××-8EU µPD703201YGC-×××-8EU µPD70F3201GC-8EU 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P70/ANI0 P71/ANI1 P72/ANI2 P73/ANI3 P74/ANI4 P75/ANI5 P76/ANI6 P77/ANI7 P78/ANI8 P79/ANI9 P710/ANI10 P711/ANI11 P05/INTP4 P04/INTP3/TI5 P03/INTP2/TI4 P02/INTP1/TI3 P01/INTP0/TI2 P46/INTP11/TO1 P45/INTP10/TI1/TCLR1 P44/INTP01/TO0 P43/INTP00/TI0/TCLR0 P42/SCK0/SCLNote 1 P41/SO0/SDANote 1 P40/SI0 PDH5/A21 µPD70F3201YGC-8EU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PDH4/A20 PDH3/A19 PDH2/A18 PDH1/A17 PDH0/A16 PDL15/AD15 PDL14/AD14 PDL13/AD13 PDL12/AD12 PDL11/AD11 PDL10/AD10 EVDD EVSS IC/FLMD0Notes 2, 3 PDL9/AD9 PDL8/AD8 PDL7/AD7 PDL6/AD6 PDL5/AD5/FLMD1Note 2 PDL4/AD4 PDL3/AD3 PDL2/AD2 PDL1/AD1 PDL0/AD0 PCT7 P96/A6/TO4 P97/A7/TO5 P98/A8/RXD1 P99/A9/TXD1 P910/A10/SI2 P911/A11/SO2 P912/A12/SCK2 P913/A13/SI3 P914/A14/SO3 P915/A15/SCK3 EVSS EVDD PCS0/CS0 PCS1/CS1 PCS2/CS2 PCS3/CS3 PCM0/WAIT PCM1/CLKOUT PCM2/HLDAK PCM3/HLDRQ PCT0/WR0 PCT1/WR1 PCT4/RD PCT5 PCT6/ASTB 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 AVREF0 AVDD AVSS P80/ANO0 P81/ANO1 AVREF1 P00/NMI P30/SI1/RXD0 P31/SO1/TXD0 P32/SCK1 VDD VSS X1 X2 RESET XT1 XT2 VSSBU VDDBU P90/A0 P91/A1 P92/A2/INTP5 P93/A3/INTP6 P94/A4/TO2 P95/A5/TO3 Notes 1. SCL and SDA are valid only for the µPD703201Y and 70F3201Y. 2. FLMD0 and FLMD1 are valid only for the µPD70F3201 and 70F3201Y. 3. IC: Connect directly to VSS (µPD703201, 703201Y). FLMD0: Connect to VSS in normal mode (µPD70F3201, 70F3201Y). Preliminary Product Information U15436EJ1V0PM 3 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y • V850ES/SA3 121-pin plastic FBGA (12 × 12) µPD703204F1-×××-EA6 µPD70F3204F1-EA6 µPD703204YF1-×××-EA6 µPD70F3204YF1-EA6 (1/2) Top View Bottom View 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N Pin No. Pin Name N M L K J H G F E D C B A Pin No. Pin Name Pin No. A1 P70/ANI0 B8 PCD3 D2 AVREF1 A2 P71/ANI1 B9 P02/INTP1/TI3 D3 P00/NMI A3 P73/ANI3 B10 P46/INTP11/TO1 D11 PDH0/A16 Note A4 P713/ANI13 B11 P42/SCK0/SCL D12 PDH2/A18 A5 P76/ANI6 B12 P40/SI0 D13 PDH1/A17 A6 P78/ANI8 B13 PDH4/A20 E1 P30/SI1/RXD0 A7 P711/ANI11 C1 P80/ANO0 E2 P31/SO1/TXD0 A8 P04/INTP3/TI5 C2 AVSS E3 P32/SCK1 A9 PCD2 C3 P74/ANI4 E11 PDL14/AD14 A10 P45/INTP10/TI1/TCLR1 C4 P714/ANI14 E12 PDH6/A22 A11 P43/INTP00/TI0/TCLR0 C5 P715/ANI15 E13 PDL15/AD15 Note A12 P41/SO0/SDA C6 P79/ANI9 F1 VSS A13 PDH5/A21 C7 P05/INTP4 F2 X1 B1 AVDD C8 P03/INTP2/TI4 F3 VDD B2 AVREF0 C9 PCD1 F11 PDL11/AD11 B3 P72/ANI2 C10 P01/INTP0/TI2 F12 PDL13/AD13 B4 P712/ANI12 C11 P44/INTP01/TO0 F13 PDL12/AD12 B5 P75/ANI5 C12 PDH3/A19 G1 RESET B6 P77/ANI7 C13 PDH7/A23 G2 XT1 B7 P710/ANI10 D1 P81/ANO1 G3 X2 Note SCL and SDA are valid only for µPD703204Y and 70F3204Y. Remark 4 Pin Name Connect the D4 pin directly to VSS. Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (2/2) Pin No. Pin Name G11 EVSS G12 PDL10/AD10 G13 Pin No. K13 Pin Name Pin No. Pin Name PDL3/AD3 M7 PCS4 L1 P93/A3/INTP6 M8 PCM0/WAIT EVDD L2 P94/A4/TO2 M9 PCM2/HLDAK H1 VSSBU L3 P911/A11/SO2 M10 PCT3 H2 VDDBU L4 P914/A14/SO3 M11 PCT4/RD H3 XT2 L5 P915/A15/SCK3 M12 PCT7 H11 PDL8/AD8 L6 EVDD M13 PDL0/AD0 Notes 1, 2 H12 IC/FLMD0 L7 PCS0/CS0 N1 P96/A6/TO4 H13 PDL9/AD9 L8 PCS2/CS2 N2 P98/A8/RXD1 J1 P20/SI4 L9 PCM4 N3 P910/A10/SI2 J2 P91/A1 L10 PCT2 N4 P912/A12/SCK2 J3 P90/A0 L11 PCT0/WR0 N5 PCS7 Note 1 J11 PDL5/AD5/FLMD1 L12 PDL1/AD1 N6 PCS6 J12 PDL7/AD7 L13 PDL2/AD2 N7 PCS1/CS1 J13 PDL6/AD6 M1 P95/A5/TO3 N8 PCS3/CS3 K1 P22/SCK4 M2 P97/A7/TO5 N9 PCM5 K2 P92/A2/INTP5 M3 P99/A9/TXD1 N10 PCM3/HLDRQ K3 P21/SO4 M4 P913/A13/SI3 N11 PCT1/WR1 K11 PCM1/CLKOUT M5 EVSS N12 PCT5 K12 PDL4/AD4 M6 PCS5 N13 PCT6/ASTB Notes 1. FLMD0 and FLMD1 are valid only for µPD70F3204Y and 70F3204Y. 2. IC: Connect directly to VSS (µPD703204, 703204Y). FLMD0: Connect to VSS in normal mode (µPD70F3204, 70F3204Y). Preliminary Product Information U15436EJ1V0PM 5 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y PIN IDENTIFICATION A0 to A23: Address bus PCD1 to PCD3: Port CD AD0 to AD15: Address/data bus PCM0 to PCM5: Port CM ADTRG: AD trigger input PCS0 to PCS7: Port CS ANI0 to ANI15: Analog input PCT0 to PCT7: Port CT ANO0, ANO1: Analog output PDH0 to PDH7: Port DH ASTB: Address strobe PDL0 to PDL15: Port DL AVDD: Analog VDD RD: Read AVREF0, AVREF1: Analog reference voltage RESET: Reset AVSS: Analog VSS RXD0, RXD1: Receive data CLKOUT: Clock output SCK0 to SCK4: Serial clock CS0 to CS3: Chip select SCL: Serial clock EVDD: Power supply for port SDA: Serial data EVSS: Ground for port SI0 to SI4: Serial input FLMD0, FLMD1: Flash programming mode SO0 to SO4: Serial output HLDAK: Hold acknowledge TCLR0, TCLR1: Timer clear input HLDRQ: Hold request TI0 to TI5: Timer input IC: Internally connected TO0 to TO5: Timer output INTP0 to INTP6: Interrupt request from peripherals TXD0, TXD1: Transmit data INTP00, INTP01,: Interrupt request to timer INTP10, INTP11 VDD: Power supply VDDBU: Power supply for backup NMI: Non-maskable interrupt request VSS: Ground P00 to P05: Port 0 VSSBU: Ground for backup P20 to P22: Port 2 WAIT: Wait P30 to P32: Port 3 WR0: Write strobe low level data P40 to P46: Port 4 WR1: Write strobe high level data P70 to P715: Port 7 X1, X2: Crystal for main clock P80, P81: Port 8 XT1, XT2: Crystal for subclock P90 to P915: Port 9 6 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y INTERNAL BLOCK DIAGRAM • V850ES/SA2 NMI INTP0 to INTP6 INTP00, INTP01, INTP10, INTP11 TCLR0, TCLR1 TI0, TI1 ROM CPU INTC Timer/counter 16-bit timer: 2 ch Note 1 PC RAM 32-bit barrel shifter 16 KB System registers TO0, TO1 Instruction queue Multiplier 16 × 16 → 32 BCU ALU General-purpose TI2 to TI5 TO2 to TO5 ROM correction Timer/counter 8-bit timer: 4 ch registers 32-bits × 32 HLDRQ HLDAK ASTB RD WAIT WR0, WR1 CS0 to CS3 A0 to A21 AD0 to AD15 DMAC SIO SO0 to SO3 SI0 to SI3 SCK0 to SCK3 CSI: 4 ch Ports D/A converter TXD0, TXD1 X1 CG I2CNote 2: 1 ch Note 2 SCL Real-time counter Watchdog timer Notes 1. µPD703201, 703201Y: µPD70F3201, 70F3201Y: AVDD AVREF0 AVSS ANI0 to ANI11 Note 2 X2 XT1 ANO0, ANO1 AVREF1 PCS0 to PCS3 PCM0 to PCM3 PCT0, PCT1, PCT4 to PCT7 PDH0 to PDH5 PDL0 to PDL15 P90 to P915 P80, P81 P70 to P711 P40 to P46 P30 to P32 P00 to P05 UART: 2 ch RXD0, RXD1 SDA CLKOUT A/D converter XT2 RG RESET ICNote 3 FLMD0Note 4, FLMD1Note 4 VDD VSS VDDBU VSSBU EVDD EVSS 256 KB (mask ROM) 256 KB (flash memory) 2. Applies to the µPD703201Y and 70F3201Y only. 3. Applies to the µPD703201 and 703201Y only. 4. Applies to the µPD70F3201 and 70F3201Y only. Preliminary Product Information U15436EJ1V0PM 7 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y • V850ES/SA3 NMI INTP0 to INTP6 INTP00, INTP01, INTP10, INTP11 TCLR0, TCLR1 TI0, TI1 ROM CPU INTC Timer/counter 16-bit timer: 2 ch Note 1 PC RAM 32-bit barrel shifter 16 KB System registers TO0, TO1 Instruction queue HLDRQ HLDAK ASTB RD WAIT WR0, WR1 CS0 to CS3 A0 to A23 AD0 to AD15 Multiplier 16 × 16 → 32 BCU ALU General-purpose TI2 to TI5 TO2 to TO5 Timer/counter 8-bit timer: 4 ch ROM correction registers 32-bits × 32 DMAC SIO SO0 to SO4 SI0 to SI4 SCK0 to SCK4 CSI: 5 ch Ports D/A converter TXD0, TXD1 Real-time counter Watchdog timer Notes 1. µPD703204, 703204Y: 256 KB (mask ROM) µPD70F3204, 70F3204Y: 256 KB (flash memory) 2. Applies to the µPD703204Y and 70F3204Y only. 3. Applies to the µPD703204 and 703204Y only. 4. Applies to the µPD70F3204 and 70F3204Y only. 8 X2 Preliminary Product Information U15436EJ1V0PM AVDD AVREF0 AVSS ANI0 to ANI15 XT1 ANO0, ANO1 AVREF1 I2CNote 2:1 ch Note 2 PCS0 to PCS7 PCM0 to PCM5 PCT0 to PCT7 PDH0 to PDH7 PDL0 to PDL15 PCD1 to PCD3 P90 to P915 P80, P81 P70 to P715 P40 to P46 P30 to P32 P20 to P22 P00 to P05 RXD0, RXD1 SCL X1 CG UART: 2 ch SDANote 2 CLKOUT A/D converter XT2 RG RESET ICNote 3 FLMD0Note 4, FLMD1Note 4 VDD VSS VDDBU VSSBU EVDD EVSS µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y CONTENTS 1. 2. PIN FUNCTIONS ................................................................................................................................11 1.1 Port Pins ................................................................................................................................................... 11 1.2 Non-Port Pins........................................................................................................................................... 14 1.3 Pin I/O Circuits and Recommended Connection of Unused Pins ....................................................... 18 FUNCTION BLOCKS .........................................................................................................................22 2.1 Internal Units............................................................................................................................................ 22 3. CPU FUNCTIONS................................................................................................................................25 4. MEMORY MAP ...................................................................................................................................26 5. EXTERNAL BUS INTERFACE FUNCTION.....................................................................................28 6. INTERRUPT SERVICING/EXCEPTION PROCESSING FUNCTION ..............................................31 7. CLOCK GENERATION FUNCTION..................................................................................................34 8. POWER SAVE FUNCTION ...............................................................................................................35 9. TIMER/COUNTER FUNCTION...........................................................................................................37 10. REAL-TIME COUNTER FUNCTION .................................................................................................40 11. WATCHDOG TIMER FUNCTION......................................................................................................41 12. SERIAL INTERFACE FUNCTION.....................................................................................................42 12.1 3-Wire Serial I/O (CSIn)............................................................................................................................ 42 12.2 Asynchronous Serial Interface (UART0 and UART1) ........................................................................... 44 12.3 I C Bus (I C) (µPD703201Y, 703204Y, 70F3201Y, 70F3204Y) ................................................................ 45 2 2 13. A/D CONVERTER...............................................................................................................................46 14. D/A CONVERTER...............................................................................................................................48 15. DMA FUNCTION.................................................................................................................................49 16. ROM CORRECTION FUNCTION ......................................................................................................50 17. RESET FUNCTION.............................................................................................................................51 18. FLASH MEMORY (µPD70F3201, 70F3201Y, 70F3204, 70F3204Y) ............................................52 19. INSTRUCTION SET LIST..................................................................................................................54 19.1 Conventions ............................................................................................................................................. 54 Preliminary Product Information U15436EJ1V0PM 9 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 19.2 Instruction Set (In Alphabetical Order) ..................................................................................................57 20. ELECTRICAL SPECIFICATIONS (TARGET VALUES) ................................................................. 64 21. PACKAGE DRAWINGS..................................................................................................................... 92 APPENDIX DEVELOPMENT TOOLS ..................................................................................................... 94 10 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 1. PIN FUNCTIONS 1.1 Port Pins (1/3) Pin Name P00 I/O I/O PULL Yes P01 Function Port 0 6-bit I/O port Input/output can be specified in 1-bit units. Alternate Function NMI INTP0/TI2 P02 INTP1/TI3 P03 INTP2/TI4 P04 INTP3/TI5 INTP4 P05 [P20] I/O Yes [P21] [P22] P30 I/O Yes P31 P32 P40 I/O Yes P41 P42 Port 2 3-bit I/O port Input/output can be specified in 1-bit units. N-ch open drain can be specified in 1-bit units (P21, P22 only). Port 3 3-bit I/O port Input/output can be specified in 1-bit units. N-ch open drain can be specified in 1-bit units (P31, P32 only). Port 4 7-bit I/O port Input/output can be specified in 1-bit units. N-ch open drain can be specified in 1-bit units (P41, P42 only). [SI4] [SO4] [SCK4] SI1/RXD0 SO1/TXD0 SCK1 SI0 SO0/SDANote SCK0/SCLNote P43 INTP00/TI0/TCLR0 P44 INTP01/TO0 P45 INTP10/TI1/TCLR1 P46 INTP11/TO1 P70 P71 Input No Port 7 12-bit input port (V850ES/SA2) 16-bit input port (V850ES/SA3) ANI0 ANI1 P72 ANI2 P73 ANI3 P74 ANI4 P75 ANI5 P76 ANI6 P77 ANI7 P78 ANI8 P79 ANI9 P710 ANI10 P711 ANI11 [P712] [ANI12] [P713] [ANI13] [P714] [ANI14] [P715] [ANI15] Note Applies to the µPD703201Y, 703204Y, 70F3201Y, and 70F3204Y only. Remarks 1. PULL: On-chip pull-up resistor 2. Pins in brackets ([ ]) are only for the V850ES/SA3. Preliminary Product Information U15436EJ1V0PM 11 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (2/3) Pin Name P80 I/O Input PULL No P81 P90 I/O Yes P91 P92 P93 Function Alternate Function Port 8 2-bit input port ANO0 Port 9 16-bit I/O port Input/output can be specified in 1-bit units. N-ch open drain can be specified in 1-bit units (P911, P912, P914, P915 only). A0 ANO1 A1 A2/INTP5 A3/INTP6 P94 A4/TO2 P95 A5/TO3 P96 A6/TO4 P97 A7/TO5 P98 A8/RXD1 P99 A9/TXD1 P910 A10/SI2 P911 A11/SO2 P912 A12/SCK2 P913 A13/SI3 P914 A14/SO3 P915 A15/SCK3 [PCD1] I/O No [PCD2] Port CD 3-bit I/O port Input/output can be specified in 1-bit units. – – – [PCD3] PCM0 I/O No PCM1 4-bit I/O port (V850ES/SA2) 6-bit I/O port (V850ES/SA3) Input/output can be specified in 1-bit units. WAIT CLKOUT PCM2 HLDAK PCM3 HLDRQ [PCM4] – [PCM5] – PCS0 PCS1 PCS2 I/O No Port 10 4-bit I/O port (V850ES/SA2) 8-bit I/O port (V850ES/SA3) Input/output can be specified in 1-bit units. PCS3 CS0 CS1 CS2 CS3 [PCS4] – [PCS5] – [PCS6] – [PCS7] – Remarks 1. PULL: On-chip pull-up resistor 2. Pins in brackets ([ ]) are only for the V850ES/SA3. 12 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (3/3) Pin Name PCT0 I/O I/O PULL No PCT1 [PCT2] Function Port CT 6-bit I/O port (V850ES/SA2) 8-bit I/O port (V850ES/SA3) Input/output can be specified in 1-bit units. Alternate Function WR0 WR1 – [PCT3] – PCT4 RD PCT5 – PCT6 ASTB – PCT7 PDH0 I/O No PDH1 PDH2 Port DH 6-bit I/O port (V850ES/SA2) 8-bit I/O port (V850ES/SA3) Input/output can be specified in 1-bit units. A16 A17 A18 PDH3 A19 PDH4 A20 PDH5 A21 [PDH6] [A22] [PDH7] [A23] PDL0 PDL1 I/O No Port DL 16-bit I/O port Input/output can be specified in 1-bit units. AD0 AD1 PDL2 AD2 PDL3 AD3 PDL4 AD4 PDL5 AD5/FLMD1Note PDL6 AD6 PDL7 AD7 PDL8 AD8 PDL9 AD9 PDL10 AD10 PDL11 AD11 PDL12 AD12 PDL13 AD13 PDL14 AD14 PDL15 AD15 Note Applies to the µPD70F3201, 70F3201Y, 70F3204, and 70F3204Y only. Remarks 1. PULL: On-chip pull-up resistor 2. Pins in brackets ([ ]) are only for the V850ES/SA3. Preliminary Product Information U15436EJ1V0PM 13 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 1.2 Non-Port Pins (1/4) Pin Name A0 I/O Output PULL Yes Function Address bus for external memory (when using separate bus) Alternate Function P90 A1 P91 A2 P92/INTP5 A3 P93/INTP6 A4 P94/TO2 A5 P95/TO3 A6 P96/TO4 A7 P97/TO5 A8 P98/RXD1 A9 P99/TXD1 A10 P910/SI2 A11 P911/SO2 A12 P912/SCK2 A13 P913/SI3 A14 P914/SO3 A15 P915/SCK3 A16 to A21, [A22, A23] Output No Address bus for external memory PDH0 to PDH5, [PDH6, PDH7] AD0 to AD4 I/O No Address/data bus for external memory PDL0 to PDL4 AD5 PDL5/FLMD1Note AD6 to AD15 PDL6 to PDL15 ANI0 Input No Analog voltage input for A/D converter P70 ANI1 P71 ANI2 P72 ANI3 P73 ANI4 P74 ANI5 P75 ANI6 P76 ANI7 P77 ANI8 P78 ANI9 P79 ANI10 P710 ANI11 P711 [ANI12] [P712] [ANI13] [P713] [ANI14] [P714] [ANI15] [P715] Note Applies to the µPD70F3201, 70F3201Y, 70F3204, and 70F3204Y only. Remarks 1. PULL: On-chip pull-up resistor 2. Pins in brackets ([ ]) are only for the V850ES/SA3. 14 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (2/4) Pin Name I/O ANO0 Output PULL No Function Analog voltage output for D/A converter ANO1 Alternate Function P80 P81 ASTB Output AVDD – AVREF0 Input No – PCT6 – Positive power supply for A/D converter (same potential as VDD) – – Reference voltage input for A/D converter – Reference voltage input for D/A converter – AVREF1 AVSS Address strobe signal output for external memory – Ground potential for A/D, D/A converters (same potential as VSS) – CLKOUT Output No Internal system clock output PCM1 CS0 to CS3 Output No Chip select output PCS0 to PCS3 EVDD EVSS Note 1 FLMD0 – – Positive power supply for external devices (same potential as VDD) – – – Ground potential for external devices (same potential as VSS) – Flash programming mode lead-in pins – Input No Note 1 PDL5/AD5 FLMD1 HLDAK Output No HLDRQ Input No IC – INTP0 to INTP3 Input – Yes INTP4 Bus hold acknowledge output PCM2 Bus hold request input PCM3 Internally connected (directly connect to VSS). (µPD703201, 703201Y, 703204, and 703204Y only) External interrupt request input (maskable, analog noise elimination) – P01/TI2 to P04/TI5 P05 INTP5 P92/A2 INTP6 P93/A3 INTP00 Input Yes Capture trigger input (TM0) INTP01 P43/TI0/TCLR0 P44/TO0 INTP10 Capture trigger input (TM1) P45/TI1/TCLR1 P46/TO1 INTP11 NMI Input Yes External interrupt input (non-maskable, analog noise elimination) P00 RD Output No Read strobe signal output for external memory PCT4 RESET Input – RXD0 Input Yes I/O Yes RXD1 System reset input Serial receive data input (UART0) – P30/SI1 Serial receive data input (UART1) P98/A8 Serial clock I/O (CSI0) P42/SCLNote 2 SCK1 Serial clock I/O (CSI1) P32 SCK2 Serial clock I/O (CSI2) P912/A12 SCK3 Serial clock I/O (CSI3) P915/A15 [SCK4] Serial clock I/O (CSI4) [P22] SCK0 Note 2 2 SCL I/O Yes Serial clock I/O (I C) P42/SCK0 SDANote 2 I/O Yes Serial transmit/receive data I/O (I2C) P41/SO0 Notes 1. Applies to the µPD70F3201, 70F3201Y, 70F3204, and 70F3204Y only. 2. Applies to the µPD703201Y, 703204Y, 70F3201Y, and 70F3204Y only. Remarks 1. PULL: On-chip pull-up resistor 2. Pins in brackets ([ ]) are only for the V850ES/SA3. Preliminary Product Information U15436EJ1V0PM 15 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (3/4) Pin Name SI0 I/O PULL Function Alternate Function Serial receive data input (CSI0) P40 SI1 Serial receive data input (CSI1) P30/RXD0 SI2 Serial receive data input (CSI2) P910/A10 SI3 Serial receive data input (CSI3) P913/A13 [SI4] Serial receive data input (CSI4) [P20] Serial transmit data output (CSI0) P41/SDANote SO1 Serial transmit data output (CSI1) P31/TXD0 SO2 Serial transmit data output (CSI2) P911/A11 SO3 Serial transmit data output (CSI3) P914/A14 [SO4] Serial transmit data output (CSI4) [P21] Timer clear input (TM0) P43/INTP00/TI0 Timer clear input (TM1) P45/INTP10/TI1 External event/clock input (TM0) P43/INTP00/TCLR0 TI1 External event/clock input (TM1) P45/INTP10/TCLR1 TI2 External event/clock input (TM2) P01/INTP0 TI3 External event/clock input (TM3) P02/INTP1 TI4 External event/clock input (TM4) P03/INTP2 TI5 External event/clock input (TM5) P04/INTP3 Timer output (TM0) P44/INTP01 TO1 Timer output (TM1) P46/INTP11 TO2 Timer output (TM2) P94/A4 TO3 Timer output (TM3) P95/A5 TO4 Timer output (TM4) P96/A6 TO5 Timer output (TM5) P97/A7 Serial transmit data output (UART0) P31/SO1 Serial transmit data output (UART1) P99/A9 SO0 TCLR0 Input Output Input Yes Yes Yes TCLR1 TI0 TO0 TXD0 Input Output Output Yes Yes Yes TXD1 VDD – – Positive power supply pin for internal functions (except for subclock oscillator, RTC, and internal RAM) – VDDBU – – Positive power supply pin for backup (for subclock oscillator, RTC and internal RAM) – VSS – – Ground potential for internal functions (except for subclock oscillator, RTC, and internal RAM) – VSSBU – – Ground potential for backup (for subclock oscillator, RTC and internal RAM) – WAIT Input No External wait input PCM0 WR0 Output No Write strobe for external memory (lower 8 bits) PCT0 Write strobe for external memory (higher 8 bits) PCT1 WR1 Note Applies to the µPD703201Y, 703204Y, 70F3201Y, and 70F3204Y only. Remarks 1. PULL: On-chip pull-up resistor 2. Pins in brackets ([ ]) are only for the V850ES/SA3. 16 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (4/4) Pin Name X1 X2 XT1 XT2 Remark I/O Input PULL No Function Connecting resonator for main clock – Input Alternate Function – – No Connecting resonator for subclock – – – PULL: On-chip pull-up resistor Preliminary Product Information U15436EJ1V0PM 17 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 1.3 Pin I/O Circuits and Recommended Connection of Unused Pins The I/O circuit type of each pin and recommended connection of unused pins are show in Table 1-1. For the schematic circuit diagram of each type, refer to Figure 1-1. Table 1-1. Types of Pin I/O Circuits (1/2) Pin Alternate Function I/O Circuit Type Recommended Connection of Unused Pins 5-W Input: Independently connect to EVDD or EVSS via a resistor. Output: Leave open. P00 NMI P01 to P04 INTP0/TI2 to INTP3/TI5 P05 INTP4 [P20] [SI4] 5-W [P21] [SO4] 10-E [P22] [SCK4] 10-F P30 SI1/RXD0 5-W P31 SO1/TXD0 10-E P32 SCK1 10-F P40 SI0 P41 P42 SO0/SDA 5-W Note 10-F Note SCK0/SCL 10-F P43 INTP00/TI0/TCLR0 5-W P44 INTP01/TO0 P45 INTP10/TI1/TCLR1 P46 INTP11/TO1 P70 to P711, [P712 to P715] ANI0 to ANI15 9 P80, P81 ANO0, ANO1 34 P90, P91 A0, A1 5-A P92, P93 A2/INTP5, A3/INTP6 5-W P94 to P97 A4/TO2 to A7/TO5 5-A P98 A8/RXD1 5-W P99 A9/TXD1 5-A P910 A10/SI2 5-W P911 A11/SO2 10-E P912 A12/SCK2 10-F P913 A13/SI3 5-W P914 A14/SO3 10-E P915 A15/SCK3 10-F [PCD1 to PCD3] – PCM0 WAIT PCM1 CLKOUT PCM2 HLDAK Independently connect to AVDD or AVSS via a resistor. Input: Independently connect to EVDD or EVSS via a resistor. Output: Leave open. 5 Note Applies to the µPD703201Y, 703204Y, 70F3201Y, and 70F3204Y only. Remark 18 Pins in brackets ([ ]) are only for the V850ES/SA3. Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Table 1-1. Types of Pin I/O Circuits (2/2) Pin Alternate Function PCM3 5 HLDRQ [PCM4] – [PCM5] – PCS0 to PCS3 I/O Circuit Type Recommended Connection of Unused Pins Input: Independently connect to EVDD or EVSS via a resistor. Output: Leave open. CS0 to CS3 [PCS4 to PCS7] – PCT0, PCT1 WR0, WR1 [PCT2, PCT3] – PCT4 RD PCT5 – PCT6 ASTB PCT7 – PDH0 to PDH5, [PDH6, PDH7] A16 to A21, [A22, A23] PDL0 to PDL4 AD0 to AD4 PDL5 AD5/FLMD1Note 1 PDL6 to PDL15 AD6 to AD15 AVDD – – AVREF0 – – Connect to AVSS via a resistor. – AVREF1 – – Connect to AVSS via a resistor. AVSS – – – EVDD – – – EVSS – – – FLMD0Note 1 – – – Note 2 IC – – – RESET – 2 – VDD – – – VDDBU – – – VSS – – – VSSBU – – – X1 – – – X2 – – – XT1 – 16 Connect to VSSBU via a resistor. XT2 – 16 Leave open. Notes 1. Applies to the µPD70F3201, 70F3201Y, 70F3204, and 70F3204Y only. 2. Applies to the µPD703201, 703201Y, 703204, and 703204Y only. Remark Pins in brackets ([ ]) are only for the V850ES/SA3. Preliminary Product Information U15436EJ1V0PM 19 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Figure 1-1. Pin I/O Circuits (1/2) Type 2 Type 5-W EVDD Pullup enable P-ch EVDD Data P-ch IN IN/OUT Output disable N-ch Schmitt-triggered input with hysteresis characteristics Input enable Type 9 Type 5 EVDD Data P-ch P-ch IN + IN/OUT Output disable N-ch N-ch Comparator – AVREF0 (threshold voltage) Input enable Input enable Type 5-A Pullup enable Data EVDD Type 10-E EVDD Pullup enable P-ch P-ch EVDD EVDD Data P-ch P-ch IN/OUT Output disable Input enable 20 N-ch IN/OUT Open drain Output disable Input enable Preliminary Product Information U15436EJ1V0PM N-ch µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Figure 1-1. Pin I/O Circuits (2/2) Type 10-F Type 34 EVDD Pullup enable P-ch P-ch EVDD Data Analog output voltage IN/OUT N-ch P-ch IN/OUT Open drain N-ch Output disable Input enable Input enable Type 16 Feedback cut-off P-ch XT1 XT2 Preliminary Product Information U15436EJ1V0PM 21 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 2. FUNCTION BLOCKS 2.1 Internal Units Each internal unit of the V850ES/SA2 and V850ES/SA3 is described below. (1) CPU The CPU uses five-stage pipeline control to enable 1-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other instruction processing. Other dedicated on-chip hardware, such as the multiplier (16 bits × 16 bits → 32 bits) and the barrel shifter (32 bits), helps accelerate processing of complex instructions. (2) Bus control unit (BCU) The BCU starts the required external bus cycle based on the physical address obtained by the CPU. When an instruction is fetched from external memory area and the CPU does not send a bus cycle start request, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in an internal instruction queue. (3) ROM This consists of a 256 KB mask ROM or flash memory mapped to the address space 0000000H to 003FFFFH. This area can be accessed by the CPU in 1-clock cycle when an instruction is fetched. (4) RAM This consists of a 16 KB RAM mapped to the address space 3FFB000H to 3FFEFFFH. This area can be accessed by the CPU in 1-clock cycle. (5) Interrupt controller (INTC) This controller services hardware interrupt requests (NMI, INTP0 to INTP6) from on-chip peripheral hardware and external hardware. Eight levels of interrupt priorities can be specified for these interrupt requests, and multiple servicing control can be performed for interrupt sources. (6) Clock generator (CG) The clock generator includes two types of oscillators, one for the main clock (fXX) and one for the subclock (fXT), generates five types of clocks (fXX, fXX/2, fXX/4, fXX/8, fXX/16, and fXX/32), and supplies one of them as the operating clock for the CPU (fCPU). The subclock can only be selected as the operation clock of the real-time counter. (7) Timer/counter A two-channel 16-bit timer/event counter and a four-channel 8-bit timer/event counter are incorporated, which enables measurement of pulse intervals and frequency as well as programmable pulse output. Two channels of the 8-bit timer/event counter can be connected via a cascade connection to enable use as a 16-bit timer. 22 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (8) Real-time counter (for watch) This counter counts the reference time period (1 second) for watch counting by using the 32.768 kHz subclock or the main clock. At the same time, the real-time counter can also be used as an interval timer that uses the main clock as a source clock. This counter includes week, date, hour, minute, and second counters, and is capable of counting up to 4,095 weeks. (9) Watchdog timer This timer detects inadvertent program loops, system abnormalities, etc. It can also be used as an interval timer. When used as a watchdog timer, it generates a non-maskable interrupt request (INTWDT) after an overflow occurs. When used as an interval timer, it generates a maskable interrupt request (INTWDTM) after an overflow occurs. (10)Serial interface (SIO) The V850ES/SA2 and V850ES/SA3 incorporate three kinds of serial interfaces: asynchronous serial interfaces (UART0 and UART1), clocked serial interfaces (V850E/SA2: CSI0 to CSI3, V850ES/SA3: CSI0 to CSI4), and 2 2 an I C bus interface (I C). The V850ES/SA2 is capable of using up to 4 channels and the V850ES/SA3 is capable of using up to 5 channels simultaneously. Among these channels, one channel can be switched 2 between UART and CSI, and other one channel can be switched between CSI and I C. For UART0 and UART1, data is transferred via the TXDO, TXD1, RXD0, and RXD1 pins. For CSI0 to CSI3, data is transferred via the SO0 to SO3, SI0 to SI3, and SCK0 to SCK3 pins. For CSI4, data is transferred via the SO4, SI4, and SCK4 pins (V850ES/SA3 only). 2 For I C, data is transferred via the SDA and SCL pins. I C is incorporated in the µPD703201Y, 703204Y, 70F3201Y and 70F3204Y only. 2 UART includes an on-chip dedicated baud rate generator. (11)A/D converter This high-speed, high-resolution 10-bit A/D converter includes 12 analog input pins for the V850ES/SA2 and 16 for the V850ES/SA3. Conversion is performed using the successive approximation method. (12)D/A converter A two-channel 8-bit resolution D/A converter is incorporated. This D/A converter uses the R string method. (13)DMA controller A 4-channel DMA controller is incorporated. Data is transferred between internal RAM, on-chip peripheral I/O, and external memory based on interrupt requests by the on-chip peripheral I/O. (14)ROM correction This is a function that replaces a part of the program in the mask ROM with a program in the internal RAM for execution. Four points can be corrected. Preliminary Product Information U15436EJ1V0PM 23 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (15)Ports The ports function as both general-purpose ports and control pins, as shown below. Port P0 Note I/O 6-bit I/O Port Function Generalpurpose port Control Function NMI, external interrupt, timer input P2 3-bit I/O Serial interface P3 3-bit I/O Serial interface P4 7-bit I/O Serial interface, timer I/O, timer trigger P7 12-bit input (V850ES/SA2) 16-bit input (V850ES/SA3) A/D converter analog input P8 2-bit input D/A converter analog output P9 16-bit I/O External address bus, serial interface, timer output, external interrupt PCDNote 3-bit I/O – PCM 4-bit I/O (V850ES/SA2) 6-bit I/O (V850ES/SA3) External bus interface PCS 4-bit I/O (V850ES/SA2) 8-bit I/O (V850ES/SA3) Chip select output PCT 6-bit I/O (V850ES/SA2) 8-bit I/O (V850ES/SA3) External bus interface PDH 6-bit I/O (V850ES/SA2) 8-bit I/O (V850ES/SA3) External address bus PDL 16-bit I/O External address/data bus Note V850ES/SA3 only 24 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 3. CPU FUNCTIONS The CPU of the V850ES/SA2 and V850ES/SA3 is based on RISC architecture and executes most instructions in a 1-clock cycle by using a 5-stage pipeline. The features of the CPU are as follows. { Minimum instruction execution time: 59 ns (@ 17 MHz operation with main system clock (fXX)) 74 ns (@ 13.5 MHz operation with main system clock (fXX)) { Address space: 64 MB linear • Memory block division function: 2 MB, 2 MB, 4 MB, 8 MB = Total four blocks { General-purpose registers: 32 bits × 32 { Internal 32-bit architecture { 5-stage pipeline control { Multiplication/division instructions { Saturation operation instructions { 1-clock 32-bit shift instruction { Load/store instructions with long/short format { Internal memory • Mask ROM: 256 KB (µPD703201, 703201Y, 703204, 703204Y) Flash memory: 256 KB (µPD70F3201, 70F3201Y, 70F3204, 70F3204Y) • RAM: 16 KB { Four types of bit manipulation instructions • SET1 • CLR1 • NOT1 • TST1 Preliminary Product Information U15436EJ1V0PM 25 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 4. MEMORY MAP The memory maps of the V850ES/SA2 and V850ES/SA3 are shown below. { Address Space Image 63 4 GB Data space Peripheral I/O area Program space Image 1 Peripheral I/O area Internal RAM area Programmable peripheral I/O areaNote or reserved area Internal RAM area Programmable peripheral I/O area Reserved area 64 MB Reserved area 64 MB Image 0 External memory area External memory area Internal ROM area (external memory area) 16 MB Internal ROM area (external memory area) Note The programmable peripheral I/O area in the data space can only be used for image 4n (n = 0 to 15). It cannot be used for other images (reserved area). Remark Internal ROM: 256 KB (0000000H to 003FFFFH) Internal RAM: 16 KB (3FFB000H to 3FFEFFFH) 26 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y { Data Memory Map 3FFFFFFH On-chip peripheral area (4 KB) (80 KB) 3FFFFFFH 3FFF000H 3FFEFFFH 3FEC000H 3FEBFFFH Internal RAM area (16 KB) 3FFB000H 3FFAFFFH Reserved area Reserved area 1000000H 0FFFFFFH 3FEC000H External memory areaNote 1 (8 MB) CS3 External memory area (4 MB) CS2 0800000H 07FFFFFH 0400000H 03FFFFFH 01FFFFFH External memory area (2 MB) CS1 0200000H 01FFFFFH (2 MB) CS0 External memory area (1 MB) 0100000H 00FFFFFH Internal ROM areaNote 2 (1 MB) 0000000H 0000000H Notes 1. In the V850ES/SA2, this area is the 4 MB space of 0800000H to 0BFFFFFH (0C00000H to 0FFFFFFH is an image of 0800000H to 0BFFFFFH). 2. This area is used as an external memory area during data write access. Preliminary Product Information U15436EJ1V0PM 27 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 5. EXTERNAL BUS INTERFACE FUNCTION The V850ES/SA2 and V850ES/SA3 incorporate an external bus interface function that can be used to connect memories, such as ROM or RAM, and peripheral I/O externally. The external bus interface function has the following features. { Separate bus/multiplexed bus output selectable { 8-bit/16-bit data bus sizing function { Chip select function for four spaces { Wait function • Programmable wait function • External wait function { Idle state function { Bus hold function The following pins are used for the external bus interface. Table 5-1. List of Bus Control Pins (When Multiplexed Bus Is Selected) Bus Control Pin Alternate Function I/O PDL0 to PDL15 I/O A16 to A23 PDH0 to PDH7 Output WAIT PCM0 Input External wait control CLKOUT PCM1 Output Internal system clock CS0 to CS3 PCS0 to PCS3 Output Chip select WR0, WR1 PCT0, PCT1 Output Write strobe signal RD PCT4 Output Read strobe signal ASTB PCT6 Output Address strobe signal HLDRQ PCM3 Input HLDAK PCM2 Output AD0 to AD15 Note Function Address/data bus Address bus Bus hold control Note A16 to A21 in the V850ES/SA2. Table 5-2. List of Bus Control Pins (When Separate Bus Is Selected) Bus Control Pin Alternate Function I/O AD0 to AD15 PDL0 to PDL15 I/O A0 to A15 P90 to P915 Output Address bus A16 to A23 PDH0 to PDH7 Output Address bus WAIT PCM0 Input External wait control CLKOUT PCM1 Output Internal system clock CS0 to CS3 PCS0 to PCS3 Output Chip select WR0, WR1 PCT0, PCT1 Output Write strobe signal RD PCT4 Output Read strobe signal HLDRQ PCM3 Input HLDAK PCM2 Output Note Function Data bus Bus hold control Note A16 to A21 in the V850ES/SA2. 28 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y The number of basic clocks required for accessing each area in the address space is as follows. Table 5-3. Number of Access Clocks Area (Bus Width) Internal ROM (32 Bits) Internal RAM (32 Bits) External Memory (16 Bits) Instruction fetch (normal access) 1 1 or 2 3 + nNote Instruction fetch (branch) 2 1 or 2 3 + nNote Operand data access 3 1 3 + nNote Bus Cycle Type Note 2 + n clocks when the separate bus is selected. n is the number of waits. Figure 5-1. Example of Timing In Separate Bus Mode (Read → Write) T1 T2 T1 T2 CLKOUT (output) A0 to A23 (output) Address Address RD (output) WR0, WR1 (output) AD0 to AD15 (I/O) Data Data WAIT (input) Remark The broken lines indicates the high-impedance state Preliminary Product Information U15436EJ1V0PM 29 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Figure 5-2. Example of Timing In Multiplexed Bus Mode (Read → Write) T1 T2 T3 T1 T2 T3 CLKOUT (output) A0 to A23 (output) AD0 to AD15 (I/O) Address Address Data Address Address ASTB (output) WR0, WR1 (output) RD (output) WAIT (input) Remark The broken lines indicate the high-impedance state. 30 Preliminary Product Information U15436EJ1V0PM Data µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 6. INTERRUPT SERVICING/EXCEPTION PROCESSING FUNCTION The features of the interrupt servicing/exception processing function are as follows. { Interrupt • Non-maskable interrupt: 2 sources • Maskable interrupt µPD703201, 70F3201: External 8, internal 30 sources µPD703201Y, 70F3201Y: External 8, internal 31 sources µPD703204, 70F3204: External 8, internal 31 sources µPD703204Y, 70F3204Y: External 8, internal 32 sources • 8-level programmable priority control • Mask specification for the interrupt request according to priority • Mask specification for each maskable interrupt request • Noise elimination, edge detection, and valid edge specification of an external interrupt request { Exceptions • Software exception: 32 sources • Exception trap: 2 sources (illegal op code exception, debug trap) Table 6-1 shows the interrupt/exception sources. Preliminary Product Information U15436EJ1V0PM 31 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Table 6-1. Interrupt Source List (1/2) Type Classification Default Priority Name Interrupt − RESET NonInterrupt maskable − NMI − INTWDT Reset Trigger RESET pin input Genera- Exception ting Unit Code Handler Address Restored PC Interrupt Control Register 0000H 00000000H Undefined − − 0010H 00000010H nextPC − WDT 0020H Pin WDT overflow (WDTRES) WDT Software Exception exception − NMI pin valid edge input WDT overflow Note TRAP0n TRAP instruction − 00000020H nextPC − Note 00000040H nextPC − Note 004nH − TRAP1n TRAP instruction − 005nH 00000050H nextPC − Exception Exception trap − ILGOP/ DBG0 Illegal op code/ DBTRAP instruction − 0060H 00000060H nextPC − Maskable Interrupt 0 INTWDTM Internal timer overflow WDT 0080H 00000080H nextPC WDTIC 1 INTP0 INTP0 pin valid edge input Pin 0090H 00000090H nextPC PIC0 2 INTP1 INTP1 pin valid edge input Pin 00A0H 000000A0H nextPC PIC1 3 INTP2 INTP2 pin valid edge input Pin 00B0H 000000B0H nextPC PIC2 4 INTP3 INTP3 pin valid edge input Pin 00C0H 000000C0H nextPC PIC3 5 INTP4 INTP4 pin valid edge input Pin 00D0H 000000D0H nextPC PIC4 6 INTP5 INTP5 pin valid edge input Pin 00E0H 000000E0H nextPC PIC5 7 INTP6 INTP6 pin valid edge input Pin 00F0H 000000F0H nextPC PIC6 8 INTRTC RTC interrupt RTC 0100H 00000100H nextPC RTCIC 9 INTCC00 CC00 capture trigger input/match between TM0 and CC00 TM0 0110H 00000110H nextPC CCIC00 10 INTCC01 CC01 capture trigger input/match between TM0 and CC01 TM0 0120H 00000120H nextPC CCIC01 11 INTOVF0 TM0 overflow TM0 0130H 00000130H nextPC OVFIC0 12 INTCC10 CC10 capture trigger input/match between TM1 and CC10 TM1 0140H 00000140H nextPC CCIC10 13 INTCC11 CC11 capture trigger input/match between TM1 and CC11 TM1 0150H 00000150H nextPC CCIC11 14 INTOVF1 TM1 overflow TM1 0160H 00000160H nextPC OVFIC1 15 INTTM2 Match between TM2 and TM2 CR2/TM2 overflow 0170H 00000170H nextPC TMIC2 16 INTTM3 Match between TM3 and TM3 CR3/TM3 overflow 0180H 00000180H nextPC TMIC3 Note Note n: Value of 0 to FH 32 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Table 6-1. Interrupt Source List (2/2) Type Classification Maskable Interrupt Default Priority Name Trigger Genera- Exception ting Unit Code Handler Address Restored Interrupt PC Control Register 17 INTTM4 Match between TM4 and TM4 CR4/TM4 overflow 0190H 00000190H nextPC TMIC4 18 INTTM5 Match between TM5 and TM5 CR5/TM5 overflow 01A0H 000001A0H nextPC TMIC5 19 INTCSI0 CSI0 transfer end 01B0H 000001B0H nextPC CSIIC0 Note 1 2 CSI0 2 20 INTIIC I C transfer end IC 01C0H 000001C0H nextPC IICIC0 21 INTCSI1 CSI1 transfer end CSI1 01D0H 000001D0H nextPC CSIIC1 22 INTSRE0 UART0 receive error UART0 01E0H 000001E0H nextPC SREIC0 23 INTSR0 UART0 receive end UART0 01F0H 000001F0H nextPC SRIC0 24 INTST0 UART0 transfer end UART0 0200H 00000200H nextPC STIC0 25 INTCSI2 CSI2 transfer end CSI2 0210H 00000210H nextPC CSIIC2 26 INTSRE1 UART1 receive error UART1 0220H 00000220H nextPC SREIC1 27 INTSR1 UART1 receive end UART1 0230H 00000230H nextPC SRIC1 28 INTST1 UART1 transmit end UART1 0240H 00000240H nextPC STIC1 29 INTCSI3 CSI3 transfer end CSI3 0250H 00000250H nextPC CSIIC3 30 INTCSI4Note 2 CSI4 transfer end CSI4 0260H 00000260H nextPC CSIIC4 31 INTAD A/D conversion end ADC 0270H 00000270H nextPC ADIC 32 INTDMA0 DMA0 transfer end DMA 0280H 00000280H nextPC DMAIC0 33 INTDMA1 DMA1 transfer end DMA 0290H 00000290H nextPC DMAIC1 34 INTDMA2 DMA2 transfer end DMA 02A0H 000002A0H nextPC DMAIC2 35 INTDMA3 DMA3 transfer end DMA 02B0H 000002B0H nextPC DMAIC3 36 INTROV RTC overflow RTC 02C0H 000002C0H nextPC ROVIC 37 INTBRG BRG match BRG 02D0H 000002D0H nextPC BRGIC Note 1. Valid for the µPD703201Y, 70F3201Y, 703204Y and 70F3204Y only. 2. Valid for the V850E/SA3 only. Remarks 1. Default Priority: Priority that applies when two or more maskable interrupt requests occur at the same time. The highest priority is 0. Restored PC: The value of the PC saved to EIPC or FEPC when interrupt servicing/exception processing is started. However, the value of the restored PC saved when an interrupt is acknowledged during division instruction (DIV, DIVH, DIVU, DIVHU) execution is the value of the PC of the current instruction (DIV, DIVH, DIVU, DIVHU). nextPC: The value of the PC to be processed after an interrupt/exception. 2. The execution address of the illegal instruction when an illegal op code exception occurs is calculated with (Restored PC − 4). Preliminary Product Information U15436EJ1V0PM 33 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 7. CLOCK GENERATION FUNCTION The clock generation function has the following features. { Main clock oscillator • 2 to 17 MHz (@ VDD = 2.3 to 2.7 V operation) • 2 to 13.5 MHz (@ VDD = 2.2 to 2.7 V operation) { Subclock oscillator • 32.768 kHz (@ VDD = 2.2 to 2.7 V operation) { Internal system clock generation • 6 levels (fXX, fXX/2, fXX/4, fXX/8, fXX/16, fXX/32) { Peripheral clock generation { Clock output function The following figure shows the configuration of the clock generation function. FRC bit XT1 XT2 Subclock oscillator fXT fXT fX/26 to fX/29 Prescaler 3 RTC clock A/D converter IDLE mode MFRC bit CK2 to CK0 bits X2 Main clock oscillator fX IDLE control fXX Prescaler 2 HALT mode fXX/32 fXX/16 Main clock oscillator stop control fXX/8 fXX/4 fXX/2 STOP mode Selector X1 HALT fCPU control fCLK fXX Prescaler 1 WDT clock control CLKOUT Port CM Remark fX, fXX: Main clock frequency fXT: Subclock frequency fCPU: CPU clock frequency fCLK: Internal system clock frequency fXW: Watchdog timer clock frequency 34 Preliminary Product Information U15436EJ1V0PM fXX to fXX/512 fXW CPU clock Internal system clock Peripheral clock WDT clock µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 8. POWER SAVE FUNCTION The V850ES/SA2 and V850ES/SA3 have the following power save functions to realize an effective low-powerconsuming system. { HALT mode: Only the clock of the CPU is stopped in this mode. { IDLE mode: All operations on the chip other than oscillator operation are stopped in this mode. { STOP mode: All operations on the chip other than subclock oscillator operation are stopped in this mode. { Backup mode: The power supply other than for the subclock oscillator, real-time counter, and internal RAM can be disconnected. The following table shows the operating states of the on-chip peripheral functions in each mode. Parameter HALT Mode IDLE Mode VDD, EVDD, AVDD Power supplied VDDBU Power supplied CPU operation Stopped On-chip peripheral function operation Enabled Main clock oscillator operation Enabled Subclock oscillator operation Enabled Real-time counter function, RAM retention Enabled Release condition • Non-maskable interrupt request • Unmasked maskable interrupt request • RESET pin input STOP Mode Backup Mode Power OFF possible Stopped Stopped Preliminary Product Information U15436EJ1V0PM RESET pin input after power is supplied 35 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y • Backup mode overview The V850ES/SA2 and V850ES/SA3 are put in backup mode by stopping supplying power other than the backup power supply (VDDBU) in STOP mode. The backup power supply supplies power only to the subclock oscillator, real-time counter, and internal RAM, as shown in the figure below. Other on-chip functions including the CPU cannot operate since the power supply is stopped. Power supply for backup VDDBU Backup power supply status flag (BPSF) Power supply for operation VDD CPU AVDD A/D converter EVDD Connect to VSS in backup mode I/O function ROM RAM Real-time counter Peripheral function Subclock oscillator Main clock oscillator VSSBU D/A converter VSS AVSS EVSS In backup mode, subclock oscillator operation, real-time counter count operation, and internal RAM data retention are enabled. If the voltage is lower than the data retention voltage in backup mode, a backup power supply status flag (BPSF) is set and that internal RAM retention data can be detected as invalid. When this flag is set, the real-time counter and the RAM should be initialized at reset start. RESET (input) VDD, EVDD, AVDD VDDBU (VDDBU is lower than data retention voltage) Backup power supply status flag (BPSF) CPU status Normal STOP Reset operation mode mode Backup mode Reset Oscillation mode stabilization BPSF STOP clear execution 36 Preliminary Product Information U15436EJ1V0PM Normal operation BPSF confirmed BPSF (set → initialization) cleared µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 9. TIMER/COUNTER FUNCTION The timer/counter function has the following features. { 16-bit timer/counter (TM0, TM1) • Capture/compare common registers: 2 for each • Interrupt request sources • Capture/match interrupt requests: 2 sources for each • Overflow interrupt requests: 1 source for each • Timer/counter count clock sources: 2 types (Selection of external pulse input or internal system clock division) • Either free-running mode or overflow stop mode can be selected as the operation mode when the timer/counter overflows • Timer/counter can be cleared by a match of the timer/counter and a compare register • External pulse outputs: 1 for each { 8-bit timers (TM2 to TM5) • Stand-alone mode (mode in which a single timer is used) • Interval timer • External event counter • Square-wave output • PWM output • Cascade connection mode (mode in which two timers are used connected in cascade: 16-bit resolution) • 16-bit resolution interval timer • 16-bit resolution external event counter • 16-bit resolution square-wave output Preliminary Product Information U15436EJ1V0PM 37 µ !! " # fXX Selector fXX/2 fXX/4 fXX/8 fXX/16 fXX/32 fXX/64 fXX/128 fXX/256 Clear & start TMn (16 bits) TCLRn TCLRn/TIn/INTPn0 INTPn1 Note 1 Note 2 INTPn0 INTOVn Note 3 Note 3 Note 3 Note 2 CCn0 CCn1 S Note 4 R Q Q Selector TIn TOnNote 1 INTCCn0 INTCCn1 $ % ! ! ! & %# $! '! % ( ) **+ , - µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (2) TM2 to TM5 Mask circuit 8-bit compare register n (CRn) Selector Match TIn Count clockNote 8-bit counter n OVF (TMn) Selector INTTMn S INV Q Selector Internal bus R TOn Clear 3 S Q R Selector TCLn2 TCLn1 TCLn0 Invert level TCEn TMCn6 TMCn4 LVSn LVRn TMCn1 TOEn Timer clock select register n (TCLn) Timer mode control register n (TMCn) Internal bus Note The count clock is set by the TCLn register. • When n = 2, 3 • When n = 4, 5 fXX/4 fXX/4 fXX/8 fXX/8 fXX/16 fXX/16 fXX/32 fXX/32 fXX/128 fXX/128 fXX/512 fXX/256 Remarks 1. “ ]” is a signal that can be directly connected to a port. 2. n = 2 to 5 Preliminary Product Information U15436EJ1V0PM 39 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 10. REAL-TIME COUNTER FUNCTION The real-time counter function has the following features. { Includes counters of weeks, days, hours, minutes, and seconds, and can count up to 4,095 weeks. { Counters of weeks, days, hours, minutes, and seconds can be read during operation and while operation is stopped. { Week counter overflow interrupt request occurrence (INTROV) { Interval interrupt request occurrence (INTRTC) at a fixed interval (can be selected from the following) 0.015625 seconds, 0.03125 seconds, 0.0625 seconds, 0.125 seconds, 0.25 seconds, 0.5 seconds, 1 second, 1 minute, 1 hour, 1 day { When subclock (fXT) is selected, operable only with power supply to VDDBU. The following figure shows the configuration of the real-time counter function. fXT 6 fX/2 to fX/29 Selector Count clock = 32.768 kHz Subcounter (15 bits) 1 second Second counter (6 bits) 1 minute 1 hour Minute counter (6 bits) Selector 0.015625 seconds/0.03125 seconds/0.0625 seconds/0.125 seconds/ 0.25 seconds/0.5 seconds INTRTC Week counter (12 bits) INTROV 1 day Hour counter (5 bits) Day counter (3 bits) Count enable/ disable circuit Second counter write buffer Minute counter write buffer Hour counter write buffer Day counter write buffer Internal bus Remark fX: Main clock frequency fXT: Subclock frequency 40 Preliminary Product Information U15436EJ1V0PM Week counter write buffer µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 11. WATCHDOG TIMER FUNCTION The watchdog timer has the following functions. { Watchdog timer { Interval timer { Timer for oscillation stabilization The following figure shows the configuration of the watchdog timer function. OSCMD RUN Clear 13-bit divider fXW/213 fXW/212 fXW/211 fXW/210 fXW/29 fXW/28 fXW/27 fXW/26 fXW/25 Clear Selector fXW 8-bit counter INTWDTM OVF Output control INTWDT WDTRES OSTOVF OSTS0 to OSTS2, WDCS0 to WDCS2 WDTM3, WDTM4 Remarks 1. WDTRES: Reset signal triggered by WDT overflow OSTOVF: Overflow signal for oscillation stabilization OSCMD: Timer mode signal for oscillation stabilization fXW: Watchdog timer clock frequency 2. During counting of oscillation stabilization time: fXW = fX/2 Other than above: fXW = fXX/2 Preliminary Product Information U15436EJ1V0PM 41 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 12. SERIAL INTERFACE FUNCTION The V850ES/SA2 and V850ES/SA3 include the following three types of serial interfaces. Type V850ES/SA2 V850ES/SA3 3-wire serial I/O 4 channels (CSI0 to CSI3) 5 channels (CSI0 to CSI4) Asynchronous serial interface 2 channels (UART0, UART1) I2C busNote 1 channel (I2C)Note Note Available only in the µPD703201Y, 703204Y, 70F3201Y, and 70F3204Y. Some functions are used alternately as follows. • CSI0/I C 2 • CSI1/UART0 • CSI2 • UART1 • CSI3 • CSI4 (V850ES/SA3 only) 12.1 3-Wire Serial I/O (CSIn) Remark In this section, the value of n is as follows. n = 0 to 3 (V850ES/SA2) n = 0 to 4 (V850ES/SA3) The 3-wire serial I/O (CSIn) transfers data using following three lines. • SCKn (serial clock) • SOn (serial data output) • SIn (serial data input) The 3-wire serial I/O (CSIn) has the following features. { Transfer data length: Fixed to 8 bits { Transfer data MSB/LSB first can be switched { Transfer clock can be selected from eight clocks (seven master clocks, one slave clock) { Transmit/receive mode or receive-only mode can be specified { On-chip 8-bit transmit buffer { Transfer data transmit/receive timing with respect to the transfer clock can be changed 42 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y The following figure shows the configuration of the 3-wire serial I/O (CSIn). CKSn0 to CKSn2 Selector fXX/2 fXX/4 fXX/8 fXX/16 fXX/32 fXX/64 TOFm INTCSIn Transfer clock controller CSOTn SCKn Transfer mode controller CSIEn, TRMDn, DIRn, CKPn, DAPn Transfer data controller Transmit buffer (SOTBn) SIn Selector SOn SOn latch Shift register (SIOn) Remarks 1. When n = 0: m = 2 When n = 1: m = 3 When n = 2: m = 4 When n = 3: m = 5 When n = 4: m = 5 (V850ES/SA3 only) 2. fXX: Main clock frequency Preliminary Product Information U15436EJ1V0PM 43 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 12.2 Asynchronous Serial Interface (UART0 and UART1) The asynchronous serial interface (UART0 and UART1) has the following features. { Two modes • Operation stop mode (used when serial transfers are not performed to enable a reduction in power consumption) • Asynchronous serial interface mode { Full-duplex transmission { 2-pin configuration • TXD0 and TXD1: Transmit data output pins • RXD0 and RXD1: Receive data input pins { 3 types of interrupt sources • Receive error interrupt (INTSRE0 and INTSRE1) • Receive end interrupt (INTSR0 and INTSR1) • Transmit end interrupt (INTST0 and INTST1) { Character length: 7 bits/8 bits { Parity function: Odd, even, 0, none { Transmission stop bit: 1 bit/2 bits { On-chip baud rate generator The following figure shows the configuration of the asynchronous serial interface (UART0 and UART1). Internal bus Asynchronous serial interface mode register n (ASIMn) RXDn Receive buffer (RXBn) Transmit buffer (TXBn) Receive shift register Transmit shift register Reception control parity check Addition of transmission control parity TXDn INTSTn INTSRn Parity Framing Overrun INTSREn BRGn Remark n = 0, 1 44 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 12.3 I C Bus (I C) (µPD703201Y, 703204Y, 70F3201Y, 70F3204Y) 2 2 2 The I C bus has the following features. { Two modes • Operation stop mode (used when serial transfers are not performed to enable a reduction in power consumption) • I C bus mode (supporting multi masters) 2 2 The following figure shows the configuration of the I C bus Internal bus IIC status register 0 (IICS) MSTS ALD EXC COI TRC ACKD STD SPD IIC control register (IICC) Slave address register (SVA) SDA IICE Match signal Noise eliminator LREL WREL SPIE WTIM ACKE STT SPT CLEAR SET SO latch IIC shift register (IIC) D Q CL1, CL0 Data hold time correction circuit N-ch open drain output ACK detector Wake up controller ACK detector Start condition detector Stop condition detector SCL Noise eliminator Interrupt request signal generator Serial clock counter INTIIC Serial clock wait controller Serial clock controller N-ch open drain output fxx Prescaler TM4 output CLD DAD SMC DFC CL1 CL0 IIC clock select register (IICCL) CLX IIC function expansion register (IICX) Internal bus Remark fXX: Main clock frequency Preliminary Product Information U15436EJ1V0PM 45 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 13. A/D CONVERTER The A/D converter has the following features. { 10-bit resolution { 12 channels (V850ES/SA2) 16 channels (V850ES/SA3) { Successive comparison approximation method { Power fail detection function available { Operation voltage: AVDD = AVREF0 = 2.2 to 2.7 V { Analog input voltage: AVSS to AVREF0 { Conversion rate: 9.5 to 1.50 µs The following figure shows the configuration of the A/D converter. ADS0 to ADS3 ANI0 ANI1 ANI2 Analog input side C array Selector ANI3 ANI4 ANI5 ANI6 ANI7 ANI8 ANI9 ANI10 ANI11 INTAD Controller Successive approximation register (SAR) Reference side C array Comparator A/D conversion result register (ADCR) ANI12Note AVREF0 ANI13Note AVDD ANI14Note AVSS ANI15Note Note V850ES/SA3 only 46 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y The following figure shows the configuration of the power fail detection function. ADS0 to ADS3 PFCM PFEN ANI0 ANI1 ANI6 ANI7 ANI8 ANI9 Selector ANI4 ANI5 A/D converter Comparator Selector ANI2 ANI3 INTAD ANI10 ANI11 ANI12Note Power-fail comparison threshold value register (PFT) ANI13Note ANI14Note ANI15Note Note V850ES/SA3 only Preliminary Product Information U15436EJ1V0PM 47 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 14. D/A CONVERTER The D/A converter has the following features. { 8-bit resolution × 2 channels (DAC0, DAC1) { R string method { Conversion time: 20 µs max. (AVREF1 = 2.2 to 2.7 V) { Analog output voltage: AVREF1 × m/256 (m = 0 to 255; Value set in the DACSn register) { Operation mode: Normal mode/real-time output mode Remark n = 0, 1 The following figure shows the configuration of the D/A converter. DACS0 DACS0 write DAMD0 INTTM2 DACE0 AVREF1 R string resistor ANO0 AVSS DACS1 DACS1 write DAMD1 INTTM3 DACE1 R string resistor 48 Preliminary Product Information U15436EJ1V0PM ANO1 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 15. DMA FUNCTION The DMA function has the following features. { Transfer unit: 8 bits/16 bits 16 { Maximum transfer count: 65,536 (2 ) times { Transfer type: 2-cycle transfer { Transfer mode: Single transfer { Transfer request: Request via interrupt from on-chip peripheral I/O or external pins, request via software trigger { Transfer object: On-chip peripheral I/O, internal RAM, external memory The relationship between the transfer type and transfer object is shown below (√: Transfer enabled, ×: Transfer disabled). Transfer Destination On-Chip Peripheral I/O Internal RAM External Memory On-chip peripheral I/O √ √ √ Internal RAM √ × √ External memory √ √ √ Transfer Source The following figure shows the configuration of the DMA function. V850ES core CPU IRIF Internal RAM On-chip peripheral I/O BCU On-chip peripheral I/O bus Data control block Address control block DSAnH/ DSAnL DDAnH/ DDAnL INTDMAn DMARQn DMACTVn Count control block Channel control block External bus External I/O External RAM DBCn DCHCn DADCn DMAC External ROM Remark n = 0 to 3 Preliminary Product Information U15436EJ1V0PM 49 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 16. ROM CORRECTION FUNCTION The ROM correction function is a function that replaces part of a program in the mask ROM with a program in the internal RAM for execution. First, the address where the program replacement should start (correction address) is set in the correction address register (CORADn). When the CPU reads the instruction of the address set in CORADn, the instruction is replaced with the DBTRAP instruction and the program jumps to 00000060H. A value that is the address saved in the DBPC minus 2 (address to which ROM correction generated) is compared with the address set in CORADn, and the program jumps to the correction program on the corresponding RAM. After executing the correction program, a restore address is set in the DBPC, the DBRET instruction is executed, and then execution is restored to the normal program. Up to four correction addresses can be specified in CORADn. Remark n = 3 The following figure shows the configuration of ROM correction. Instruction address bus Correction address register (CORADn) Comparator Correction control register (CORENn bit) DBTRAP instruction generation block ROM (1 MB space) Instruction replacement block Remark n = 0 to 3 50 Preliminary Product Information U15436EJ1V0PM Instruction data bus µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 17. RESET FUNCTION When a low-level signal is input to the RESET pin or the watchdog timer overflows (WDTRES), a system reset is applied and the various on-chip hardware devices are reset to their initial states. When the RESET pin goes from low level to high level, or when the WDTRES signal is automatically canceled, the reset state is released. When reset is released via RESET pin input, the CPU starts execution of the program after securing the oscillation 19 stabilization time (OSTS register reset value: 2 /fXX). When reset is released by the WDTRES signal, the main clock oscillator does not stop and oscillation stabilization time is not inserted. The following figure shows the configuration of the reset function. RESET Count clock Reset signal Reset controller Watchdog timer Overflow Interrupt function Stop Preliminary Product Information U15436EJ1V0PM 51 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 18. FLASH MEMORY (µPD70F3201, 70F3201Y, 70F3204, 70F3204Y) The µPD70F3201 and 70F3201Y, and 70F3204 and 70F3204Y are the flash memory versions of the V850ES/SA2 and V850ES/SA3, respectively, and incorporate 256 KB of flash memory. Writing to flash memory can be performed while the device is mounted on the target system (on board). Writing is performed using a dedicated flash programmer connected to the target system or to a writing adapter. The flash memory has the following features. { Flash memory: 256 KB (4 KB × 4 blocks, 60 KB × 4 blocks) { Erasure/writing possible using single power supply (VDD = 2.2 to 2.7 V) { Erasure unit • Overall area batch erasure (256 KB) • Block units erasure (4 KB/block, 60 KB/block) { Erasure/writing method • Serial mode (using CSI0 or UART0) • Self-programming mode 52 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y An overview of flash memory programming is shown below. { Pins used in programming • Power supply pins (VDD, EVDD, AVDD, VSS, EVSS, AVSS, VDDBU, VSSBU) • Mode pins (FLMD0, FLMD1) • Clock supply pins (X1, X2) • Serial communication pins (SCK0, SO0, SI0 or RXD0, TXD0) • RESET pin { Programming timing The following figure shows the programming timing (overview) when using UART. VDD VDD 0V VDD RESET (input) 0V VDD FLMD1 (input) 0V VDD FLMD0 (input) 0V (UART mode only) VDD RXD0 (input) 0V VDD TXD0 (output) 0V Oscillation stabilization Power ON Reset release Communication mode selection Flash control command communication (erasure, writing, etc.) Preliminary Product Information U15436EJ1V0PM 53 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 19. INSTRUCTION SET LIST 19.1 Conventions (1) Register symbols used to describe operands Register Symbol Explanation reg1 General-purpose register: Used as source register. reg2 General-purpose register: Used mainly as destination register. Also used as source register in some instructions. reg3 General-purpose register: Used mainly to store the remainder of division results and the higher 32 bits of multiplication results. bit#3 3-bit data for specifying the bit number immX X bit immediate data dispX X bit displacement data regID System register number vector 5-bit data that specifies the trap vector (00H to 1FH) cccc 4-bit data that shows the condition code sp Stack pointer (r3) ep Element pointer (r30) listX X item register list (2) Register symbols used to describe opcodes Register Symbol Explanation R 1-bit data of the code that specifies reg1 or regID r 1-bit data of the code that specifies reg2 w 1-bit data of the code that specifies reg3 d 1-bit displacement data I 1-bit immediate data (indicates the higher bits of immediate data) i 1-bit immediate data cccc 4-bit data that shows the condition codes CCCC 4-bit data that shows the condition codes of the Bcond instruction bbb 3-bit data for specifying the bit number L 1-bit data that specifies a program register in the register list S 1-bit data that specifies a system register in the register list 54 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (3) Register symbols used in operation Register Symbol Explanation ← Input for GR [ ] General-purpose register SR [ ] System register zero-extend (n) Expand n with zeros until word length. sign-extend (n) Expand n with signs until word length. load-memory (a, b) Read size b data from address a. store-memory (a, b, c) Write data b into address a in size c. load-memory-bit (a, b) Read bit b of address a. store-memory-bit (a, b, c) Write c to bit b of address a. saturated (n) Execute saturated processing of n (n is a 2’s complement). If, as a result of calculations, n ≥ 7FFFFFFFH, let it be 7FFFFFFFH. n ≤ 80000000H, let it be 80000000H. result Reflects the results in a flag. Byte Byte (8 bits) Half-word Halfword (16 bits) Word Word (32 bits) + Addition – Subtraction ll Bit concatenation × Multiplication ÷ Division % Remainder from division results AND Logical product OR Logical sum XOR Exclusive OR NOT Logical negation logically shift left by Logical shift left logically shift right by Logical shift right arithmetically shift right by Arithmetic shift right (4) Register symbols used in an execution clock Register Symbol Explanation i If executing another instruction immediately after executing the first instruction (issue). r If repeating execution of the same instruction immediately after executing the first instruction (repeat). l If using the results of instruction execution in the instruction immediately after the execution (latency). Preliminary Product Information U15436EJ1V0PM 55 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (5) Register symbols used in flag operations Identifier Explanation (Blank) No change 0 Clear to 0 X Set or cleared in accordance with the results. R Previously saved values are restored. (6) Condition codes Condition Name (cond) Condition Expression Condition Code (cccc) Explanation V 0 0 0 0 OV = 1 Overflow NV 1 0 0 0 OV = 0 No overflow C/L 0 0 0 1 CY = 1 Carry Lower (less than) NC/NL 1 0 0 1 CY = 0 No carry Not lower (greater than or equal) Z/E 0 0 1 0 Z=1 Zero Equal NZ/NE 1 0 1 0 Z=0 Not zero Not equal NH 0 0 1 1 (CY or Z) = 1 Not higher (less than or equal) H 1 0 1 1 (CY or Z) = 0 Higher (greater than) N 0 1 0 0 S=1 Negative P 1 1 0 0 S=0 Positive T 0 1 0 1 SA 1 1 0 1 SAT = 1 Saturated LT 0 1 1 0 (S xor OV) = 1 Less than signed GE 1 1 1 0 (S xor OV) = 0 Greater than or equal signed — Always (unconditional) LE 0 1 1 1 ((S xor OV) or Z) = 1 Less than or equal signed GT 1 1 1 1 ((S xor OV) or Z) = 0 Greater than signed 56 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 19.2 Instruction Set (In Alphabetical Order) (1/6) Mnemonic Operand Opcode Operation Flags Execution Clock ADD ADDI i r l CY OV S Z SAT reg1,reg2 rrrrr001110RRRRR GR[reg2]←GR[reg2]+GR[reg1] 1 1 1 × × × × imm5,reg2 rrrrr010010iiiii GR[reg2]←GR[reg2]+sign-extend(imm5) 1 1 1 × × × × imm16,reg1,reg2 rrrrr110000RRRRR GR[reg2]←GR[reg1]+sign-extend(imm16) 1 1 1 × × × × i i i i i i i i i i i i i i i i AND reg1,reg2 rrrrr001010RRRRR GR[reg2]←GR[reg2]AND GR[reg1] 1 1 1 0 × × ANDI imm16,reg1,reg2 rrrrr110110RRRRR GR[reg2]←GR[reg1]AND zero-extend(imm16) 1 1 1 0 0 × 2 2 2 i i i i i i i i i i i i i i i i Bcond disp9 ddddd1011dddc ccc if conditions are satisfied Note 1 then PC←PC+sign-extend(disp9) When conditions are satisfied When conditions Note 2 Note 2 Note 2 1 1 1 1 1 1 × 0 × × 1 1 1 × 0 × × 4 4 4 3 3 3 are not satisfied BSH reg2,reg3 rrrrr11111100000 GR[reg3]←GR[reg2] (23 : 16) ll GR[reg2] (31 : 24) ll wwwww01101000010 GR[reg2] (7 : 0) ll GR[reg2] (15 : 8) BSW reg2,reg3 rrrrr11111100000 GR[reg3]←GR[reg2] (7 : 0) ll GR[reg2] (15 : 8) ll GR wwwww01101000000 [reg2] (23 : 16) ll GR[reg2] (31 : 24) CALLT imm6 0000001000iiiiii CTPC←PC+2(return PC) CTPSW←PSW adr←CTBP+zero-extend(imm6 logically shift left by 1) PC←CTBP+zero-extend(Load-memory(adr,Half-word)) CLR1 bit#3, disp16[reg1] 10bbb111110RRRRR adr←GR[reg1]+sign-extend(disp16) dddddddddddddddd Z flag←Not(Load-memory-bit(adr,bit#3)) × Note 3 Note 3 Note 3 Store-memory-bit(adr,bit#3,0) reg2,[reg1] rrrrr111111RRRRR adr←GR[reg1] 0000000011100100 Z flag←Not(Load-memory-bit(adr,reg2)) 3 3 × 3 Note 3 Note 3 Note 3 Store-memory-bit(adr,reg2,0) CMOV cccc,imm5,reg2,reg3 rrrrr111111iiiii if conditions are satisfied wwwww011000cccc0 then GR[reg3]←sign-extended(imm5) 1 1 1 1 1 1 else GR[reg3]←GR[reg2] cccc,reg1,reg2,reg3 r r r r r 1 1 1 1 1 1 R R R R if conditions are satisfied wwwww011001cccc0 then GR[reg3]←GR[reg1] else GR[reg3]←GR[reg2] CMP reg1,reg2 imm5,reg2 CTRET DBRET rrrrr001111RRRRR result←GR[reg2]–GR[reg1] 1 1 1 × × × × rrrrr010011iiiii result←GR[reg2]–sign-extend(imm5) 1 1 1 × × × × 0000011111100000 PC←CTPC 3 3 3 R R R R R 0000000101000100 PSW←CTPSW 0000011111100000 PC←DBPC 3 3 3 R R R R R 0000000101000110 PSW←DBPSW Preliminary Product Information U15436EJ1V0PM 57 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (2/6) Mnemonic Operand Opcode Operation Execution Flags Clock DBTRAP 1111100001000000 DBPC←PC+2 (restored PC) i r l 3 3 3 1 1 1 CY OV S Z SAT DBPSW←PSW PSW.NP←1 PSW.EP←1 PSW.ID←1 PC←00000060H DI 0000011111100000 PSW.ID←1 0000000101100000 DISPOSE imm5,list12 0000011001iiiiiL sp←sp+zero-extend(imm5 logically shift left by 2) n+1 n+1 n+1 LLLLLLLLLLL00000 GR[reg in list12]←Load-memory(sp,Word) Note 4 Note 4 Note 4 sp←sp+4 repeat 2 steps above until all regs in list12 is loaded imm5,list12,[reg1] 0000011001iiiiiL sp←sp+zero-extend(imm5 logically shift left by 2) LLLLLLLLLLLRRRRR R[reg in list12]←Load-memory(sp,Word) n+3 n+3 n+3 Note 4 Note 4 Note 4 Note 5 sp←sp+4 repeat 2 steps above until all regs in list12 is loaded PC←GR[reg1] DIV reg1,reg2,reg3 rrrrr111111RRRRR GR[reg2]←GR[reg2}÷GR[reg1] 35 35 35 wwwww01011000000 GR[reg3]←GR[reg2]%GR[reg1] DIVH reg1,reg2 reg1,reg2,reg3 rrrrr000010RRRRR GR[reg2]←GR[reg2]÷GR[reg1]Note 6 35 35 35 × × × rrrrr111111RRRRR Note 6 35 35 35 × × × 34 34 34 × × × 34 34 34 × × × 0 × × GR[reg2]←GR[reg2]÷GR[reg1] wwwww01010000000 GR[reg3]←GR[reg2]%GR[reg1] DIVHU reg1,reg2,reg3 rrrrr111111RRRRR GR[reg2]←GR[reg2]÷GR[reg1]Note 6 wwwww01010000010 GR[reg3]←GR[reg2]%GR[reg1] DIVU reg1,reg2,reg3 rrrrr111111RRRRR GR[reg2]←GR[reg2]÷GR[reg1] wwwww01011000010 GR[reg3]←GR[reg2]%GR[reg1] EI 1000011111100000 PSW.ID←0 1 1 1 Stop 1 1 1 GR[reg3]←GR[reg2](15 : 0) ll GR[reg2] (31 : 16) 1 1 1 rrrrr11110dddddd GR[reg2]←PC+4 2 2 2 ddddddddddddddd0 PC←PC+sign-extend(disp22) 0000000101100000 HALT 0000011111100000 0000000100100000 HSW reg2,reg3 rrrrr11111100000 wwwww01101000100 JARL disp22,reg2 Note 7 JMP [reg1] 00000000011RRRRR PC←GR[reg1] 3 3 3 JR disp22 0000011110dddddd PC←PC+sign-extend(disp22) 2 2 2 rrrrr111000RRRRR adr←GR[reg1]+sign-extend(disp16) 1 1 Note dddddddddddddddd GR[reg2]←sign-extend(Load-memory(adr,Byte)) rrrrr11110bRRRRR adr←GR[reg1]+sign-extend(disp16) dddddddddddddd1 GR[reg2]←zero-extend(Load-memory(adr,Byte)) ddddddddddddddd0 Note 7 LD.B LD.BU disp16[reg1],reg2 disp16[reg1],reg2 Notes 8, 10 58 Preliminary Product Information U15436EJ1V0PM 11 1 1 Note 11 × µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (3/6) Mnemonic Operand Opcode Operation Execution Flags Clock LD.H disp16[reg1],reg2 rrrrr111001RRRRR adr←GR[reg1]+sign-extend(disp16) ddddddddddddddd0 GR[reg2]←sign-extend(Load-memory(adr,Half- i r l 1 1 Note CY OV S Z SAT 11 Note 8 word)) LDSR reg2,regID rrrrr111111RRRRR SR[regID]←GR[reg2] 0000000000100000 Other than regID = PSW 1 1 1 regID = PSW 1 1 1 1 1 Note × × × × 0 × × × Note 12 LD.HU disp16[reg1],reg2 rrrrr111111RRRRR adr←GR[reg1]+sign-exend(disp16) ddddddddddddddd1 GR[reg2]←zero-extend(Load-memory(adr,half-word) 11 Note 8 LD.W disp16[reg1],reg2 rrrrr111001RRRRR adr←GR[reg1]+sign-exend(disp16) ddddddddddddddd1 GR[reg2]←Load-memory(adr,Word) 1 1 Note 11 Note 8 MOV reg1,reg2 rrrrr000000RRRRR GR[reg2]←GR[reg1] 1 1 1 imm5,reg2 rrrrr010000iiiii GR[reg2]←sign-extend(imm5) 1 1 1 imm32,reg1 00000110001RRRRR GR[reg1]←imm32 2 2 2 1 1 1 GR[reg2]←GR[reg1]+(imm16 ll 0 ) 1 1 1 GR[reg3] ll GR[reg2]←GR[reg2]xGR[reg1] 1 4 5 GR[reg3] ll GR[reg2]←GR[reg2]xsign-extend(imm9) 1 4 5 GR[reg2]←GR[reg2]Note 6xGR[reg1]Note 6 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i MOVEA imm16,reg1,reg2 rrrrr110001RRRRR GR[reg2]←GR[reg1]+sign-extend(imm16) i i i i i i i i i i i i i i i i MOVHI imm16,reg1,reg2 rrrrr110010RRRRR 16 i i i i i i i i i i i i i i i i MUL reg1,reg2,reg3 rrrrr111111RRRRR wwwww01000100000 imm9,reg2,reg3 rrrrr111111iiiii wwwww01001IIII00 Note 13 MULH reg1,reg2 imm5,reg2 MULHI imm16,reg1,reg2 rrrrr000111RRRRR 1 1 2 GR[reg2]←GR[reg2] Note 6 1 1 2 GR[reg2]←GR[reg1] Note 6 1 1 2 GR[reg3] ll GR[reg2]←GR[reg2]xGR[reg1] 1 4 5 GR[reg3] ll GR[reg2]←GR[reg2]xzero-extend(imm9) 1 4 5 0000000000000000 Pass at least one clock cycle doing nothing. 1 1 1 1 1 1 3 3 3 rrrrr010111iiiii rrrrr110111RRRRR xsign-extend(imm5) ximm16 i i i i i i i i i i i i i i i i MULU reg1,reg2,reg3 rrrrr111111RRRRR wwwww01000100010 imm9,reg2,reg3 rrrrr111111iiiii wwwww01001IIII10 Note 13 NOP NOT reg1,reg2 rrrrr000001RRRRR NOT1 bit#3,disp16[reg1] 01bbb111110RRRRR adr←GR[reg1]+sign-extend(disp16) dddddddddddddddd GR[reg2]←NOT(GR[reg1]) Z flag←Not(Load-memory-bit(adr,bit#3)) × Note 3 Note 3 Note 3 Store-memory-bit(adr,bit#3,Z flag) reg2,[reg1] rrrrr111111RRRRR adr←GR[reg1] 0000000011100010 Z flag←Not(Load-memory-bit(adr,reg2)) 3 3 3 × Note 3 Note 3 Note 3 Store-memory-bit(adr,reg2,Z flag) Preliminary Product Information U15436EJ1V0PM 59 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (4/6) Mnemonic Operand Opcode Operation Execution Flags Clock i r l CY OV S Z SAT OR reg1,reg2 rrrrr001000RRRRR GR[reg2]←GR[reg2]OR GR[reg1] 1 1 1 0 × × ORI imm16,reg1,reg2 rrrrr110100RRRRR GR[reg2]←GR[reg1]OR zero-extend(imm16) 1 1 1 0 × × i i i i i i i i i i i i i i i i PREPARE list12,imm5 0000011110iiiiiL Store-memory(sp–4,GR[reg in list12],Word) LLLLLLLLLLL00001 sp←sp–4 n+1 n+1 n+1 Note 4 Note 4 Note 4 repeat 1 step above until all regs in list12 is stored sp←sp-zero-extend(imm5) list12,imm5, Note 14 sp/imm 0000011110iiiiiL Store-memory(sp–4,GR[reg in list12],Word) LLLLLLLLLLLff011 sp←sp–4 imm16/imm32 repeat 1 step above until all regs in list12 is stored Note 4 Note 4 Note 4 Note16 Note16 Note16 Note 15 sp←sp-zero-extend(imm5) ep←sp/imm RETI 0000011111100000 if PSW.EP=1 0000000101000000 then PC n+2 n+2 n+2 3 3 3 R R R R 1 1 1 × 0 × × 1 1 1 × 0 × × 1 1 1 × × × × R ←EIPC PSW ←EIPSW else if PSW.NP=1 then PC ←FEPC PSW ←FEPSW else PC ←EIPC PSW ←EIPSW SAR reg1,reg2 rrrrr111111RRRRR GR[reg2]←GR[reg2]arithmetically shift right 0000000010100000 imm5,reg2 rrrrr010101iiiii by GR[reg1] GR[reg2]←GR[reg2]arithmetically shift right by zero-extend (imm5) SASF cccc,reg2 rrrrr1111110cccc if conditions are satisfied 0000001000000000 then GR[reg2]←(GR[reg2]Logically shift left by 1) OR 00000001H else GR[reg2]←(GR[reg2]Logically shift left by 1) OR 00000000H SATADD reg1,reg2 SATSUB SATSUBI imm16,reg1,reg2 × rrrrr000110RRRRR GR[reg2]←saturated(GR[reg2]+GR[reg1]) 1 1 1 imm5,reg2 rrrrr010001iiiii GR[reg2]←saturated(GR[reg2]+sign-extend(imm5) 1 1 1 × × × × × reg1,reg2 rrrrr000101RRRRR GR[reg2]←saturated(GR[reg2]–GR[reg1]) 1 1 1 × × × × × rrrrr110011RRRRR GR[reg2]←saturated(GR[reg1]–sign-extend(imm16) 1 1 1 × × × × × rrrrr000100RRRRR GR[reg2]←saturated(GR[reg1]–GR[reg2]) 1 1 1 × × × × × rrrrr1111110cccc If conditions are satisfied 1 1 1 0000000000000000 then GR[reg2]←00000001H 3 3 3 i i i i i i i i i i i i i i i i SATSUBR reg1,reg2 SETF cccc,reg2 else GR[reg2]←00000000H SET1 bit#3,disp16[reg1] 00bbb111110RRRRR adr←GR[reg1]+sign-extend(disp16) dddddddddddddddd Z flag←Not (Load-memory-bit(adr,bit#3)) × Note 3 Note 3 Note 3 Store-memory-bit(adr,bit#3,1) reg2,[reg1] rrrrr111111RRRRR adr←GR[reg1] 0000000011100000 Z flag←Not(Load-memory-bit(adr,reg2)) Store-memory-bit(adr,reg2,1) 60 Preliminary Product Information U15436EJ1V0PM 3 3 3 Note 3 Note 3 Note 3 × µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (5/6) Mnemonic Operand Opcode Operation Execution Flags Clock SHL reg1,reg2 rrrrr111111RRRRR i r l CY OV S Z SAT GR[reg2]←GR[reg2] logically shift left by GR[reg1] 1 1 1 × 0 × × GR[reg2]←GR[reg2] logically shift left 1 1 1 × 0 × × GR[reg2]←GR[reg2] logically shift right by GR[reg1] 1 1 1 × 0 × × GR[reg2]←GR[reg2] logically shift right 1 1 1 × 0 × × 1 1 Note 9 1 1 Note 9 1 1 Note 9 1 1 Note 9 1 1 Note 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 GR[reg2]←SR[regID] 1 1 1 0000000011000000 imm5,reg2 rrrrr010110iiiii by zero-extend(imm5) SHR reg1,reg2 rrrrr111111RRRRR 0000000010000000 imm5,reg2 rrrrr010100iiiii by zero-extend(imm5) SLD.B disp7[ep],reg2 rrrrr0110ddddddd adr←ep+zero-extend(disp7) GR[reg2]←sign-extend(Load-memory(adr,Byte)) SLD.BU disp4[ep],reg2 rrrrr0000110dddd adr←ep+zero-extend(disp4) Note 17 GR[reg2]←zero-extend(Load-memory(adr,Byte)) SLD.H disp8[ep],reg2 rrrrr1000ddddddd adr←ep+zero-extend(disp8) Note 18 GR[reg2]←sign-extend(Load-memory(adr,Halfword)) SLD.HU disp5[ep],reg2 r r r r r 0 0 0 0 1 1 1 d d d d adr←ep+zero-extend(disp5) Notes 17, 19 GR[reg2]←zero-extend(Load-memory(adr,Halfword)) SLD.W disp8[ep],reg2 rrrrr1010dddddd0 adr←ep+zero-extend(disp8) Note 20 GR[reg2]←Load-memory(adr,Word) SST.B reg2,disp7[ep] rrrrr0111ddddddd adr←ep+zero-extend(disp7) Store-memory(adr,GR[reg2],Byte) SST.H reg2,disp8[ep] rrrrr1001ddddddd adr←ep+zero-extend(disp8) Note 18 Store-memory(adr,GR[reg2],Half-word) SST.W reg2,disp8[ep] rrrrr1010dddddd1 adr←ep+zero-extend(disp8) Note 20 Store-memory(adr,GR[reg2],Word) ST.B ST.H reg2,disp16[reg1] reg2,disp16[reg1] rrrrr111010RRRRR adr←GR[reg1]+sign-extend(disp16) dddddddddddddddd Store-memory(adr,GR[reg2],Byte) rrrrr111011RRRRR adr←GR[reg1]+sign-extend(disp16) ddddddddddddddd0 Store-memory (adr,GR[reg2], Half-word) Note 8 ST.W reg2,disp16[reg1] rrrrr111011RRRRR adr←GR[reg1]+sign-extend(disp16) ddddddddddddddd1 Store-memory (adr,GR[reg2], Word) Note 8 STSR regID,reg2 rrrrr111111RRRRR 0000000001000000 SUB reg1,reg2 rrrrr001101RRRRR GR[reg2]←GR[reg2]–GR[reg1] 1 1 1 × × × × SUBR reg1,reg2 rrrrr001100RRRRR GR[reg2]←GR[reg1]–GR[reg2] 1 1 1 × × × × SWITCH reg1 00000000010RRRRR adr←(PC+2) + (GR [reg1] logically shift left by 1) 5 5 5 PC←(PC+2) + (sign-extend (Load-memory (adr,Half-word))) logically shift left by 1 Preliminary Product Information U15436EJ1V0PM 61 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (6/6) Mnemonic Operand Opcode Operation Execution Flags Clock SXB reg1 00000000101RRRRR GR[reg1]←sign-extend i r l 1 1 1 1 1 1 3 3 3 1 1 1 3 3 3 CY OV S Z SAT (GR[reg1] (7 : 0)) SXH reg1 00000000111RRRRR GR[reg1]←sign-extend (GR[reg1] (15 : 0)) TRAP vector 00000111111iiiii EIPC ←PC+4 (Restored PC) 0000000100000000 EIPSW ←PSW ECR.EICC ←Interrupt Code PSW.EP ←1 PSW.ID ←1 PC ←00000040H (when vector is 00H to 0FH) 00000050H (when vector is 10H to 1FH) TST reg1,reg2 rrrrr001011RRRRR TST1 bit#3,disp16[reg1] 11bbb111110RRRRR adr←GR[reg1]+sign-extend(disp16) reg2, [reg1] result←GR[reg2] AND GR[reg1] dddddddddddddddd Z flag←Not (Load-memory-bit (adr,bit#3)) rrrrr111111RRRRR adr←GR[reg1] 0000000011100110 Z flag←Not (Load-memory-bit (adr,reg2)) 0 × × × Note 3 Note 3 Note 3 3 3 × 3 Note 3 Note 3 Note 3 XOR reg1,reg2 rrrrr001001RRRRR GR[reg2]←GR[reg2] XOR GR[reg1] 1 1 1 0 × × XORI imm16,reg1,reg2 rrrrr110101RRRRR GR[reg2]←GR[reg1] XOR zero-extend (imm16) 1 1 1 0 × × i i i i i i i i i i i i i i i i ZXB reg1 00000000100RRRRR GR[reg1]←zero-extend (GR[reg1] (7 : 0)) 1 1 1 ZXH reg1 00000000110RRRRR GR[reg1]←zero-extend (GR[reg1] (15 : 0)) 1 1 1 Notes 1. dddddddd: Higher 8 bits of disp9. 2. 3 clocks if the final instruction includes the PSW write access. 3. If there is no wait state (3 + the number of read access wait states). 4. n is the total number of list X load registers. (According to the number of wait states. Also, if there are no wait states, n is the number of list X registers.) 5. RRRRR: Other than 00000. 6. The lower halfword data only is valid. 7. ddddddddddddddddddddd: The higher 21 bits of disp22. 8. ddddddddddddddd: The higher 15 bits of disp16. 9. According to the number of wait states (1 if there are no wait states). 10. b: Bit 0 of disp16. 11. According to the number of wait states (2 if there are no wait states). 12. In this instruction, for convenience of mnemonic description, the source register is made reg2, but the reg1 field is used in the opcode. Therefore, the meaning of register specification in the mnemonic description and in the opcode differs from other instructions. rrrrr = regID specification RRRRR = reg2 specification 13. i i i i i : Lower 5 bits of imm9. I I I I : Lower 4 bits of imm9. 14. sp/imm: Specified by bits 19 and 20 of the sub-opcode. 62 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Notes 15. ff = 00: Load sp in ep. 01: Load sign expanded 16-bit immediate data (bits 47 to 32) in ep. 10: Load 16-bit logically left shifted 16-bit immediate data (bits 47 to 32) in ep. 11: Load 32-bit immediate data (bits 63 to 32) in ep. 16. If imm = imm32, n + 3 clocks. 17. r r r r r : Other than 00000. 18. ddddddd: Higher 7 bits of disp8. 19. dddd: Higher 4 bits of disp5. 20. dddddd: Higher 6 bits of disp8. Preliminary Product Information U15436EJ1V0PM 63 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 20. ELECTRICAL SPECIFICATIONS (TARGET VALUES) Absolute Maximum Ratings (TA = 25°C, VSS = 0 V) Parameter Supply voltage Input voltage Symbol Ratings Unit VDD –0.5 to +3.6 V AVDD –0.5 to +3.6 V EVDD –0.5 to +3.6 V VDDBU –0.5 to +3.6 V AVSS –0.5 to +0.5 V EVSS –0.5 to +0.5 V VSSBU –0.5 to +0.5 V VI Clock input voltage VK VKT Analog input voltage VIAN Conditions Other than X1, XT1, and port 7 XT1, VDDBU = 2.2 to 2.7 V Port 7 AVREF AVREF0, AVREF1 Output current, low IOL Per pin IOH Note X1, VDD = 2.2 to 2.7 V Analog reference voltage Output current, high –0.5 to EVDD + 0.3Note –0.5 to VDD + 0.3 Note –0.5 to VDDBU + 0.3 V V V Note V Note V –0.5 to AVDD + 0.3 –0.5 to AVDD + 0.3 4 mA Total for all pins 100 mA Per pin –4 mA –100 mA –0.5 to VDD + 0.3 V V –40 to +85 °C T.B.D. °C –65 to +150 °C T.B.D. °C Total for all pins Output voltage VO VDD = 2.5 V ±0.2 V Operating ambient temperature TA Normal operation mode Storage temperature Tstg Flash programming mode µPD703201, 703201Y, 703204, 703204Y µPD70F3201, 70F3201Y, 70F3204, 70F3204Y Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage. Cautions 1. Do not directly connect the output (or I/O) pins of IC products to each other, or to VDD, VCC, and GND. Open-drain pins or open-collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict. 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation. 64 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Capacitance (TA = 25°C, VDD = AVDD = EVDD = VDDBU = VSS = AVSS = EVSS = VSSBU = 0 V) Parameter Symbol Input capacitance CI I/O capacitance CIO Output capacitance CO Conditions MIN. TYP. fX = 1 MHz Unmeasured pins returned to 0 V MAX. Unit 10 pF 10 pF 10 pF MAX. Unit Operating Conditions (VDD = AVDD = EVDD = VDDBU) Parameter Internal system clock frequency Symbol fCLK Conditions MIN. TYP. @ VDD = 2.3 to 2.7 V, operation with main clock 0.0625 17 MHz @ VDD = 2.2 to 2.7 V, operation with main clock 0.0625 13.5 MHz Preliminary Product Information U15436EJ1V0PM 65 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Recommended Oscillator (1) Main clock oscillator (TA = –40 to +85°C) (a) Connection of ceramic resonator or crystal resonator X1 Parameter Oscillation frequency Symbol fX (fXX) Oscillation stabilization time X2 Conditions MIN. VDD = 2.3 to 2.7 V 2 VDD = 2.2 to 2.7 V 2 TYP. MAX. Unit 17 MHz 13.5 MHz 19 Upon reset release 2 /fX s Upon STOP mode release Note s Note The TYP. value differs depending on the setting of the oscillation stabilization time select register (OSTS). Caution Ensure that the duty of the oscillation waveform is between 45% and 55%. Remarks 1. Connect the oscillator as close as possible to the X1 and X2 pins. 2. Do not route the wiring near broken lines. 3. For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation. (b) External clock input X1 X2 Open High-speed CMOS inverter External clock Cautions 1. Connect the high-speed CMOS inverter as close as possible to the X1 pin. 2. Sufficiently evaluate the matching between the V850ES/SA2, V850ES/SA3 and the highspeed CMOS inverter. 66 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (2) Subclock oscillator (TA = –40 to +85°C) (a) Connection of crystal resonator XT1 Parameter Oscillation frequency Symbol XT2 Conditions MIN. TYP. MAX. Unit 32 32.768 35 kHz fXT Oscillation stabilization time 10 s Caution Ensure that the duty of the oscillation waveform is between 45% and 55%. Remarks 1. Connect the oscillator as close as possible to the XT1 and XT2 pins. 2. Do not route the wiring near broken lines. 3. For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation. Preliminary Product Information U15436EJ1V0PM 67 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y DC Characteristics (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V) (1/2) Parameter Input voltage, high Symbol Conditions MIN. TYP. MAX. Unit VIH1 Note 1 0.7EVDD EVDD V VIH2 Note 2 T.B.D. EVDD V VIH3 Note 3 0.7AVDD AVDD V VIH4 X1 0.8VDD VDD V VIH5 XT1, XT2 0.8VDDBU VDDBU V VIL1 Note 1 EVSS 0.3EVDD V VIL2 Note 2 EVSS T.B.D. V VIL3 Note 3 AVSS 0.3AVDD V VIL4 X1 VSS 0.2VDD V VIL5 XT1, XT2 VSSBU 0.2VDDBU V VOH1 Note 4 IOH = –1 mA 0.8EVDD V VOH2 Note 5 IOH = –3 mA 0.8EVDD V VOL1 Note 4 (Except pins P40 and P42) IOL = 1.6 mA 0.4 V VOL2 P40, P42 IOL = 3 mA 0.4 V VOL3 Note 5 IOL = 1.6 mA 0.4 V Input leakage current, high ILIH VIN = VDD = EVDD = VDDBU 5 µA Input leakage current, low ILIL VIN = 0 V –5 µA Output leakage current, high ILOH VO = VDD = EVDD = VDDBU 5 µA Output leakage current, low ILOL VO = 0 V –5 µA Input voltage, low Output voltage, high Output voltage, low Notes 1. P21, P31, P90, P91, P94 to P97, P99, P911, P914, PCD1 to PCD3, PCM0 to PCM5, PCS0 to PCS7, PCT0 to PCT7, PDH0 to PDH7, PDL0 to PDL15 (and their alternate-function pins) 2. RESET, P00 to P05, P20, P22, P30, P32, P40 to P46, P92, P93, P98, P910, P912, P913, P915 (and their alternate-function pins) 3. P70 to P715, P80, P81 (and their alternate-function pins) 4. P00 to P05, P20 to P22, P30 to P32, P40 to P46, PCD1 to PCD3, PCM4 to PCM5, PCS4 to PCS7, PCT2, PCT3, PCT5, PCT7 (and their alternate-function pins) 5. P90 to P915, PCM0 to PCM3, PCS0 to PCS3, PCT0, PCT1, PCT4, PCT6, PDH0 to PDH7, PDL0 to PDL15 (and their alternate-function pins) 68 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V) (2/2) Parameter Supply current Symbol IDD1 IDD2 IDD3 IDD4 IDD5 Pull-up resistance RL Conditions MIN. TYP. MAX. Unit Normal operation All peripheral functions operating VDD = 2.3 to 2.7 V, fXX = fCLK = 17 MHz T.B.D. T.B.D. mA fXX = fCLK = 13.5 MHz T.B.D. T.B.D. mA HALT mode All peripheral functions operating VDD = 2.3 to 2.7 V, fXX = fCLK = 17 MHz T.B.D. T.B.D. mA fXX = fCLK = 13.5 MHz T.B.D. T.B.D. mA IDLE mode RTC operating VDD = 2.3 to 2.7 V, fXX = fCLK = 17 MHz T.B.D. T.B.D. mA fXX = fCLK = 13.5 MHz T.B.D. T.B.D. mA Subclock oscillator, RTC operating T.B.D. T.B.D. µA Subclock oscillator stopped (XT1 = VSS) T.B.D. T.B.D. µA fXT = 32.768 kHz, RTC operating T.B.D. T.B.D. µA Subclock oscillation stopped (XT1 = VSS) T.B.D. T.B.D. µA 30 100 kΩ STOP mode Backup mode VIN = 0 V Preliminary Product Information U15436EJ1V0PM 10 69 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Data Retention Characteristics (1) In STOP mode (TA = –40 to +85°C, VSS = AVSS = EVSS = VSSBU = 0 V) Parameter Symbol Conditions MIN. TYP. 1.8 MAX. Unit 2.7 V T.B.D. µA Data retention voltage VDDDR1 STOP mode Data retention current IDDDR1 VDD = AVDD = EVDD = VDDBU = VDDDR1 Supply voltage rise time tRVD1 200 µs Supply voltage fall time tFVD1 200 µs Supply voltage hold time (from STOP mode setting) tHVD1 0 ms STOP release signal input time tDREL1 0 ms Data retention high-level input voltage VIHDR1 All input ports VIHn VDDDR1 V Data retention low-level input voltage VILDR1 All input ports 0 VILn V T.B.D. Remark n = 1 to 5 Setting STOP mode tFVD1 tRVD1 VDD tHVD1 RESET (input) VIHDR1 NMI, INTP0 to INTP6 (input) VIHDR1 NMI, INTP0 to INTP6 (input) (when STOP mode is released at rising edge) Caution VDDDR1 VILDR1 Shifting to STOP mode and restoring from STOP mode must be performed at VDD = 2.3 V min. (fCLK = 17 MHz) and VDD = 2.2 V min. (fCLK = 13.5 MHz), respectively. 70 tDREL1 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (2) In backup mode (TA = –40 to +85°°C, VSS = AVSS = EVSS = VSSBU = VDD = AVDD = EVDD = 0 V) Parameter Symbol Conditions MIN. TYP. 1.6 MAX. Unit 2.7 V T.B.D. µA Data retention voltage VDDDR2 Backup mode Data retention current IDDDR2 VDDBU = VDDDR2 Backup supply voltage rise time tRVD2 T.B.D. µs Backup supply voltage fall time tFVD2 T.B.D. µs Mode setting time from RESET↓ to VDD↓ tHVD2 T.B.D. ms Mode release signal input time from VDD↑ to RESET↑ tDREL2 T.B.D. ms T.B.D. Caution Shifting to backup mode and restoring from backup mode must be performed at VDD = 2.3 V min. (fCLK = 17 MHz) and VDD = 2.2 V min. (fCLK = 13.5 MHz), respectively. Setting STOP mode Note VDD, EVDD, AVDD tHVD1 tHVD2 tDREL2 0V tHVD2 tFVD2 VDDBU VDDDR2 0.8EVDD RESET (input) 0.2EVDD Note Shifting to backup mode and restoring from backup mode must be performed at VDD = 2.3 V min. (fCLK = 17 MHz) and VDD = 2.2 V min. (fCLK = 13.5 MHz), respectively. Preliminary Product Information U15436EJ1V0PM 71 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y AC Characteristics AC test input measurement points (VDD, AVDD, EVDD, VDDBU) VDD VIH VIH Measurement points 0V VIL VIL AC test output measurement points VOH VOH Measurement points VOL VOL Load conditions DUT (Device under test) CL = 50 pF Caution If the load capacitance exceeds 50 pF due to the circuit configuration, reduce the load capacitance of the device to 50 pF or less by inserting a buffer or by some other means. 72 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Clock Timing (1) Operating conditions (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.3 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter X1 input cycle Symbol tCYX Conditions <1> XT1 input cycle X1 input high-level width tWXH <2> XT1 input high-level width X1 input low-level width tWXL <3> XT1 input low-level width MIN. MAX. Unit 58.8 ns 28.5 µs 26.4 ns 12.8 µs 26.4 ns 12.8 µs X1 input rise time tXR <4> 0.5 (tCYX – tWXH – tWXL) ns X1 input fall time tXF <5> 0.5 (tCYX – tWXH – tWXL) ns CLKOUT output cycle tCYK <6> 58.8 ns CLKOUT high-level width tWKH <7> 0.5tCYK – 5 ns CLKOUT low-level width tWKL <8> 0.5tCYK – 5 ns CLKOUT rise time tKR <9> 5 ns CLKOUT fall time tKF <10> 5 ns 16 µs Remark Ensure that the duty for the X1 and XT1 input waveforms is between 45% and 55%. (2) Operating conditions (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter X1 input cycle Symbol tCYX Conditions <1> XT1 input cycle X1 input high-level width tWXH <2> XT1 input high-level width X1 input low-level width tWXL <3> XT1 input low-level width MIN. MAX. Unit T.B.D. ns T.B.D. µs T.B.D. ns T.B.D. µs T.B.D. ns T.B.D. µs X1 input rise time tXR <4> T.B.D. ns X1 input fall time tXF <5> T.B.D. ns CLKOUT output cycle tCYK <6> T.B.D. CLKOUT high-level width tWKH <7> T.B.D. ns CLKOUT low-level width tWKL <8> T.B.D. ns CLKOUT rise time tKR <9> T.B.D. ns CLKOUT fall time tKF <10> T.B.D. ns T.B.D. Remark Ensure that the duty for the X1 and XT1 input waveforms is between 45% and 55%. Preliminary Product Information U15436EJ1V0PM 73 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Clock timing <1> <2> <3> X1, XT1 (input) <4> <5> <6> <7> <8> CLKOUT (output) <9> 74 Preliminary Product Information U15436EJ1V0PM <10> µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Bus Timing (1) Multiplexed bus mode (a) CLKOUT asynchronous: In multiplexed bus mode (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Symbol Conditions MIN. MAX. Unit Address setup time (to ASTB↓) tSAST <11> 0.5T – 15 ns Address hold time (from ASTB↓) tHSTA <12> 0.5T – 15 ns Delay time from RD↓ to address float tFRDA <13> 2 ns Data input setup time from address tSAID <14> (2 + n)T – 25 ns Data input setup time from RD↓ tSRID <15> (1 + n)T – 25 ns Delay time from ASTB↓ to RD↓, WRm↓ tDSTRDWR <16> 0.5T – 15 ns Data input hold time (from RD↑) tHRDID <17> 0 ns Address output time from RD↑ tDRDA <18> (1 + i)T – 15 ns Delay time from RD, WRm↑ to ASTB↑ tDRDWRST <19> 0.5T – 15 ns Delay time from RD↑ to ASTB↓ tDRDST <20> (1.5 + i)T – 15 ns RD, WRm low-level width tWRDWRL <21> (1 + n)T – 15 ns ASTB high-level width tWSTH <22> T – 15 ns Data output time from WRm↓ tDWROD <23> Data output setup time (to WRm↑) tSODWR <24> (1 + n)T – 20 ns Data output hold time (from WRm↑) tHWROD <25> T – 15 ns WAIT setup time (to address) tSAWT1 <26> n≥1 1.5T – 25 ns tSAWT2 <27> n≥1 (1.5 + n)T – 25 ns tHAWT1 <28> n≥1 (0.5 + n)T ns tHAWT2 <29> n≥1 (1.5 + n)T ns tSSTWT1 <30> n≥1 T – 25 ns tSSTWT2 <31> n≥1 (1 + n)T – 25 ns tHSTWT1 <32> n≥1 nT ns tHSTWT2 <33> n≥1 (1 + n)T ns HLDRQ high-level width tWHQH <34> T + 10 ns HLDAK low-level width tWHAL <35> T – 15 ns Delay time from HLDAK↑ to bus output tDHAC <36> –3 ns Delay time from HLDRQ↓ to HLDAK↓ tDHQHA1 <37> 1.5T (2n + 7.5)T + 25 ns Delay time from HLDRQ↑ to HLDAK↑ tDHQHA2 <38> 0.5T 1.5T + 25 ns WAIT hold time (from address) WAIT setup time (to ASTB↓) WAIT hold time (from ASTB↓) 15 ns Remarks 1. T = 1/fCPU (fCPU: CPU operation clock frequency) 2. n: Number of wait clocks inserted in the bus cycle. The sampling timing changes when a programmable wait is inserted. 3. m = 0, 1 4. i: Number of idle states inserted after the read cycle (0 or 1). 5. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1. Preliminary Product Information U15436EJ1V0PM 75 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (b) CLKOUT synchronous: In multiplexed bus mode (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Delay time from CLKOUT↑ to address Symbol Conditions MIN. MAX. Unit tDKA <39> 0 19 ns Delay time from CLKOUT↑ to address float tFKA <40> –12 7 ns Delay time from CLKOUT↓ to ASTB tDKST <41> –12 7 ns Delay time from CLKOUT↑ to RD, WRm tDKRDWR <42> –5 14 ns Data input setup time (to CLKOUT↑) tSIDK <43> 15 ns Data input hold time (from CLKOUT↑) tHKID <44> 5 ns Data output delay time from CLKOUT↑ tDKOD <45> WAIT setup time (to CLKOUT↓) tSWTK <46> 15 ns WAIT hold time (from CLKOUT↓) tHKWT <47> 5 ns HLDRQ setup time (to CLKOUT↓) tSHQK <48> 15 ns HLDRQ hold time (from CLKOUT↓) tHKHQ <49> 5 ns Delay time from CLKOUT↑ to bus float tDKF <50> 19 ns Delay time from CLKOUT↑ to HLDAK tDKHA <51> 19 ns 19 ns Remarks 1. m = 0, 1 2. The values in the above specifications are values for when clocks with a 1:1 duty ratio are input from X1. 76 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Read Cycle (CLKOUT Synchronous/Asynchronous, 1 Wait): In Multiplexed Bus Mode T1 T2 TW T3 CLKOUT (output) <39> A16 to A23 (output), A0 to A15 (output) <14> <43> <44> <40> AD0 to AD15 (I/O) Hi-Z Address Data <41> <12> <11> <41> <17> ASTB (output) <22> <42> <16> <19> <13> <15> <42> <18> <20> RD (output) <30> <46> <32> <31> <33> <47> <21> <46> <47> WAIT (input) <26> <28> <27> <29> Remark WR0 and WR1are high level. Preliminary Product Information U15436EJ1V0PM 77 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Write Cycle (CLKOUT Synchronous/Asynchronous, 1 Wait): In Multiplexed Bus Mode T1 T2 TW T3 CLKOUT (output) <39> A16 to A23 (output), A0 to A15 (output) <45> AD0 to AD15 (I/O) Address Data <41> <12> <11> <41> ASTB (output) <22> <19> <42> <16> <23> <42> <24> <25> WR0 (output), WR1 (output) <30> <46> <32> <31> <33> <47> <21> <46> <47> WAIT (input) <26> <28> <27> <29> Remark RD is high level. 78 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Bus Hold: In Multiplexed Bus Mode TH TH TH TI CLKOUT (output) <48> <48> <49> <34> HLDRQ (input) <51> <51> <37> <38> HLDAK (output) <50> <35> <36> Hi-Z A16 to A23 (output) A0 to A15 (output) AD0 to AD15 (I/O) ASTB (output) RD (output), WR0 (output), WR1 (output) Data Hi-Z Hi-Z Hi-Z Preliminary Product Information U15436EJ1V0PM 79 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (2) In separate bus mode (a) Read cycle (CLKOUT asynchronous): In separate bus mode (TA = –40 to +85°°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Symbol Conditions MIN. MAX. Unit Address setup time (to RD↓) tSARD <52> 0.5T – 15 ns Address hold time (from RD↑) tHARD <53> 2 ns RD low-level width tWRDL <54> (1.5 + n) T – 10 ns Data setup time (to RD↑) tSISD <55> 20 ns Data hold time (from RD↑) tHISD <56> 0 ns Data setup time (to address) tSAID <57> (2 + n) T – 25 ns WAIT setup time (to RD↓) tSRDWT1 <58> 0.5T – 20 ns tSRDWT2 <59> (0.5 + n) T – 20 ns tHRDWT1 <60> 0.5T ns tHRDWT2 <61> (0.5 + n) T ns tSAWT1 <62> T – 20 ns tSAWT2 <63> (1 + n) T – 20 ns tHAWT1 <64> T ns tHAWT2 <65> (1 + n) T ns WAIT hold time (from RD↓) WAIT setup time (to address) WAIT hold time (from address) Remarks 1. T = 1/fCPU (fCPU: CPU operation clock frequency) 2. n: Number of wait clocks inserted in bus cycle The sampling timing changes when a programmable wait is inserted. 3. The values in the above specifications are the values for when clocks with a 1:1 duty ratio are input from X1. (b) Read cycle (CLKOUT synchronous): In separate bus mode (TA = –40 to +85°°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Symbol Conditions MIN. MAX. Unit 19 ns Delay time from CLKOUT↑ to address, CS tDKSA <66> 0 Data input setup time (to CLKOUT↑) tSISDK <67> 15 ns Data input hold time (from CLKOUT↑) tHKISD <68> 5 ns Delay time from CLKOUT↓↑ to RD tDKSR <69> 0 WAIT setup time (to CLKOUT↑) tSWTK <70> 15 ns WAIT hold time (from CLKOUT↑) tHKWT <71> 5 ns 19 ns Remark The values in the above specifications are the values for when clocks with a 1:1 duty ratio are input from X1. 80 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y (c) Write cycle (CLKOUT asynchronous): In separate bus mode (TA = –40 to +85°°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Symbol Conditions MIN. MAX. Unit Address setup time (to WRm↓) tSAW <72> T – 15 ns Address hold time (from WRm↑) tHAW <73> 0.5T – 10 ns WRm low-level width tWWRL <74> (0.5 + n) T – 10 ns Data output time from WRm↓ tDOSDW <75> –5 ns Data setup time (to WRm↑) tSOSDW <76> (0.5 + n) T – 10 ns Data hold time (from WRm↑) tHOSDW <77> 0.5T – 10 ns Data setup time (to address) tSAOD <78> T – 25 ns WAIT setup time (to WRm↓) tSWRWT1 <79> 20 ns tSWRWT2 <80> nT – 20 ns tHWRWT1 <81> 0 ns tHWRWT2 <82> nT ns tSAWT1 <83> T – 20 ns tSAWT2 <84> (1 + n) T – 20 ns tHAWT1 <85> T ns tHAWT2 <86> (1 + n) T ns WAIT hold time (from WRm↓) WAIT setup time (to address) WAIT hold time (from address) Remarks 1. m = 0, 1 2. T = 1/fCPU (fCPU: CPU operation clock frequency) 3. n: Number of wait clocks inserted in bus cycle The sampling timing changes when a programmable wait is inserted. 4. The values in the above specifications are the values for when clocks with a 1:1 duty ratio are input from X1. (d) Write cycle (CLKOUT synchronous): In separate bus mode (TA = –40 to +85°°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Symbol Conditions MIN. MAX. Unit Delay time from CLKOUT↑ to address, CS tDKSA <87> 0 19 ns Delay time from CLKOUT↑ to data output tDKSD <88> 0 19 ns Delay time from CLKOUT↑↓ to WRm tDKSW <89> 0 19 ns WAIT setup time (to CLKOUT↑) tSWTK <90> 15 ns WAIT hold time (from CLKOUT↑) tHKWT <91> 5 ns Remarks 1. m = 0, 1 2. The values in the above specifications are the values for when clocks with a 1:1 duty ratio are input from X1. Preliminary Product Information U15436EJ1V0PM 81 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Read Cycle (CLKOUT Asynchronous, 1 Wait): In Separate Bus Mode T1 TW T2 CLKOUT (output) CS0 to CS3 (output) A0 to A23 (output) <53> <57> AD0 to AD15 (I/O) Hi-Z Hi-Z <56> <52> <55> <54> RD (output) <61> <59> <60> <58> WAIT (input) <62> <64> <63> <65> 82 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Read Cycle (CLKOUT Synchronous, 1 Wait): In Separate Bus Mode T1 TW T2 CLKOUT (output) <66> <66> CS0 to CS3 (output) A0 to A23 (output) <67> AD0 to AD15 (I/O) <68> Hi-Z Hi-Z <69> <69> RD (output) <70> <71> <70> <71> WAIT (input) Preliminary Product Information U15436EJ1V0PM 83 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Write Cycle (CLKOUT Asynchronous, 1 Wait): In Separate Bus Mode TW T1 T2 CLKOUT (output) CS0 to CS3 (output) A0 to A23 (output) <73> <78> AD0 to AD15 (I/O) Hi-Z Hi-Z <75> <77> <72> <76> <74> WR0, WR1 (output) <82> <80> <79> <81> WAIT (input) <83> <85> <84> <86> 84 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Write Cycle (CLKOUT Synchronous, 1 Wait): In Separate Bus Mode T1 TW T2 CLKOUT (output) <87> <87> CS0 to CS3 (output) A0 to A23 (output) <88> <88> AD0 to AD15 (I/O) Hi-Z Hi-Z <89> <89> WR0, WR1 (output) <90> <91> <90> <91> WAIT (input) Preliminary Product Information U15436EJ1V0PM 85 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Reset/Interrupt Timing (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Symbol Conditions MIN. MAX. Unit RESET high-level width tWRSH <92> 500 ns RESET low-level width tWRSL <93> 500 ns NMI high-level width tWNIH <94> 500 ns NMI low-level width tWNIL <95> 500 ns INTPn high-level width tWITH <96> n = 0 to 6 (analog noise elimination) 500 ns INTPn low-level width tWITL <97> n = 0 to 6 (analog noise elimination) 500 ns Remark T = 1/fXX Reset <92> <93> RESET (input) Interrupt <94> <95> <96> <97> NMI (input) INTPn (input) Remark n = 0 to 6 86 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Timer Timing (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Symbol TIn high-level width Conditions n = 0, 1 n = 2 to 5 TIn low-level width n = 0, 1 n = 2 to 5 MIN. MAX. Unit 2T + 20 ns 40 ns 2T + 20 ns 40 ns TCLRn high-level width n = 0, 1 2T + 20 ns TCLRn low-level width n = 0, 1 2T + 20 ns INTPnm high-level width tWITH nm = 00, 01, 10, 11 2T + 20 ns INTPnm low-level width tWITL nm = 00, 01, 10, 11 2T + 20 ns Remark T = 1/fXX Preliminary Product Information U15436EJ1V0PM 87 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y CSI Timing (1) Master mode (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Symbol Conditions MIN. MAX. Unit SCKn cycle time tKCY1 <98> Output 200 ns SCKn high-/low-level width tKH1, tKL1 <99> Output tKCY1/2 – 10 ns SIn setup time (to SCKn↑) tSIK1 <100> 30 ns SIn hold time (from SCKn↑) tKSI1 <101> 30 ns Delay time from SCKn↓ to SOn output tKSO1 <102> 30 ns Remark n = 0 to 3 (V850ES/SA2), n = 0 to 4 (V850ES/SA3) (2) Slave mode (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V, CL = 50 pF) Parameter Symbol Conditions MIN. MAX. Unit SCKn cycle time tKCY2 <98> Output 200 ns SCKn high-/low-level width tKH2, tKL2 <99> Output 90 ns SIn setup time (to SCKn↑) tSIK2 <100> 50 ns SIn hold time (from SCKn↑) tKSI2 <101> 50 ns Delay time from SCKn↓ to SOn output tKSO2 <102> 50 Remark n = 0 to 3 (V850ES/SA2), n = 0 to 4 (V850ES/SA3) <98> <99> <99> SCKn (I/O) <100> SIn (input) Hi-Z <101> Input data <102> SOn (output) Output data Remark n = 0 to 3 (V850ES/SA2), n = 0 to 4 (V850ES/SA3) 88 Preliminary Product Information U15436EJ1V0PM Hi-Z ns µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y I C Bus Mode (µPD703201Y, 703204Y, 70F3201Y, 70F3204Y only) 2 (TA = –40 to +85°C, VDD = AVDD = EVDD = VDDBU = 2.2 to 2.7 V, VSS = AVSS = EVSS = VSSBU = 0 V) Parameter Symbol Normal Mode High-Speed Mode Unit MIN. MAX. MIN. MAX. 0 100 0 400 kHz SCL clock frequency fCLK Bus-free time (between stop/start conditions) tBUF <103> 4.7 – 1.3 – µs Hold timeNote 1 tHD:STA <104> 4.0 – 0.6 – µs SCL clock low-level width tLOW <105> 4.7 – 1.3 – µs SCL clock high-level width tHIGH <106> 4.0 – 0.6 – µs Setup time for start/restart conditions tSU:STA <107> 4.7 – 0.6 – µs Data hold time tHD:DAT <108> 5.0 – – – µs 0Note 2 – 0Note 2 0.9Note 3 µs CBUS compatible master I2C mode Data setup time tSU:DAT SDA and SCL signal rise time <109> tR 250 <110> – Note 4 – 100 1,000 – ns Note 5 300 ns Note 5 300 ns 20 + 0.1Cb SDA and SCL signal fall time tF <111> – 300 20 + 0.1Cb Stop condition setup time tSU:STO <112> 4.0 – 0.6 – µs Pulse width with spike suppressed by input filter tSP <113> – – 0 50 ns Capacitance load of each bus line Cb – 400 – 400 pF Notes 1. At the start condition, the first clock pulse is generated after the hold time. 2. The system requires a minimum of 300 ns hold time internally for the SDA signal (at VIHmin.. of SCL signal) in order to occupy the undefined area at the falling edge of SCL. 3. If the system does not extend the SCL signal low hold time (tLOW), only the maximum data hold time (tHD: DAT) needs to be satisfied. 2 2 4. The high-speed-mode I C bus can be used in a normal-mode I C bus system. In this case, set the high2 speed-mode I C bus so that it meets the following conditions. • If the system does not extend the SCL signal's low state hold time: tSU:DAT ≥ 250 ns • If the system extends the SCL signal's low state hold time: Transmit the following data bit to the SDA line prior to releasing the SCL line (tRmax. + tSU:DAT = 1,000 2 + 250 = 1,250 ns: Normal mode I C bus specification). 5. Cb: Total capacitance of one bus line (unit: pF) Preliminary Product Information U15436EJ1V0PM 89 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y I C Bus Mode (µPD703201Y, 703204Y, 70F3201Y, 70F3204Y only) 2 <105> <106> SCL (I/O) <111> <110> <108> <109> <107> <104> <113> <112> <104> SDA (I/O) <103> Stop condition <110> <111> Start condition Restart condition Stop condition A/D Converter (TA = –40 to +85°C, VDD = AVDD = AVREF0 = 2.2 to 2.7 V, AVSS = VSS = 0 V, CL = 50 pF) Parameter Symbol Conditions Resolution MIN. TYP. MAX. Unit 10 10 10 bit T.B.D. %FSR Note 1 Overall error Conversion time tCONV µs T.B.D. Note 1 Zero-scale error T.B.D. %FSR T.B.D. %FSR T.B.D. LSB T.B.D. LSB 2.2 2.7 V AVSS AVREF V Full-scale error Note 1 Integral linearity error Note 2 Differential linearity error Note 2 Analog reference voltage AVREF AVREF0 = AVDD Analog input voltage VIAN AVREF0 current AIREF0 T.B.D. µA AVDD power supply current AIDD T.B.D. mA Notes 1. Excluding quantization error (±0.05 %FSR) 2. Excluding quantization error (±0.5 LSB) Remark LSB: Least Significant Bit FSR: Full Scale Range 90 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y D/A Converter (TA = –40 to +85°°C, VDD = AVDD = AVREF1 = 2.2 to 2.7 V, AVSS = VSS = 0 V, CL = 50 pF) Parameter Symbol Conditions Resolution Note Overall error MIN. TYP. MAX. Unit 8 8 8 bit T.B.D. %FSR T.B.D. µs Load conditions: 2 MΩ, 30 pF AVREF1 = VDD Settling time Output resistance T.B.D. Analog reference voltage AVREF AVREF1 = VDD AVREF1 current AVREF1 Per channel 2.2 kΩ 2.7 T.B.D. V mA Note Excludes quantization error (±0.05%FSR). Preliminary Product Information U15436EJ1V0PM 91 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 21. PACKAGE DRAWINGS 100-PIN PLASTIC LQFP (FINE PITCH) (14x14) A B 75 76 51 50 detail of lead end S C D R Q 26 25 100 1 F G H I J M K P S N S L M NOTE Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS A 16.00±0.20 B 14.00±0.20 C 14.00±0.20 D 16.00±0.20 F 1.00 G 1.00 H 0.22 +0.05 −0.04 I J 0.08 0.50 (T.P.) K 1.00±0.20 L 0.50±0.20 M 0.17 +0.03 −0.07 N 0.08 P 1.40±0.05 Q 0.10±0.05 R 3° +7° −3° S 1.60 MAX. S100GC-50-8EU, 8EA-2 92 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y 121-PIN PLASTIC FBGA (12x12) w E S B ZE ZD B 13 12 11 10 9 8 7 6 5 4 3 2 1 A D NM L K J HG F E DC B A w INDEX MARK S A A y1 A2 S S y S e φb A1 φx M S AB ITEM D MILLIMETERS 12.00±0.10 E 12.00±0.10 w 0.20 A 1.48±0.10 A1 A2 0.35±0.06 1.13 e 0.80 b 0.50 +0.05 −0.10 x y y1 ZD ZE 0.08 0.10 0.20 1.20 1.20 P121F1-80-EA6 Preliminary Product Information U15436EJ1V0PM 93 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y APPENDIX DEVELOPMENT TOOLS (1) Hardware Product Name Description Note In-circuit emulator IE-V850ES-×× (provisional name) In-circuit emulator for V850ES In-circuit emulator option board IE-703204-MC-EM1Note (provisional name) Option board to emulate V850ES/SA2, V850ES/SA3 peripheral functions in combination with in-circuit emulator Emulation probe V850ES/SA2 Note Emulation probe for 100-pin LQFP V850ES/SA3 Note Emulation probe for 121-pin FBGA Power supply unit IE-70000-MC-PS-B Power supply for in-circuit emulator PC interface board IE-70000-CD-IF-A Interface board for connection to PC (for PCMCIA) IE-70000-PCI-IF Interface board for connection to PC (for PCI) Note Flash programmer for writing a program to a singlepower-supply flash memory product. V850ES/SA2 Note Program adapter for 100-pin LQFP V850ES/SA3 Note Program adapter for 121-pin FBGA Flash programmer Program adapter Note Under development (2) Software Product Name Description Compiler CA850 C compiler compliant with ANSI-C Debugger ID850 Debugger used in combination with in-circuit emulator Real-time OS RX850 Real-time OS compliant with µITRON specifications Device file V850ES/SA2 DF703201Note Definition file for V850ES/SA2 V850ES/SA3 Note Definition file for V850ES/SA3 DF703204 Note Under development 94 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y [MEMO] Preliminary Product Information U15436EJ1V0PM 95 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Caution 2 2 Purchase of NEC I C components conveys a license under the Philips I C Patent Rights to use 2 2 these components in an I C system, provided that the system conforms to the I C Standard Specification as defined by Philips. The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such. V850 Family, V850ES/SA2, and V850ES/SA3 are trademarks of NEC Corporation. TRON stands for The Real-time Operating system Nucleus. ITRON is an abbreviation of Industrial TRON. 96 Preliminary Product Information U15436EJ1V0PM µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y Regional Information Some information contained in this document may vary from country to country. Before using any NEC product in your application, pIease contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify: • Device availability • Ordering information • Product release schedule • Availability of related technical literature • Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth) • Network requirements In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country. NEC Electronics Inc. (U.S.) NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd. Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580 Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-3067-5800 Fax: 01-3067-5899 Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411 NEC Electronics (France) S.A. NEC Electronics Singapore Pte. Ltd. Madrid Office Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860 Novena Square, Singapore Tel: 253-8311 Fax: 250-3583 NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490 NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290 NEC Electronics Hong Kong Ltd. NEC Electronics Taiwan Ltd. NEC Electronics Italiana s.r.l. NEC Electronics (Germany) GmbH Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951 NEC do Brasil S.A. Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829 J01.2 Preliminary Product Information U15436EJ1V0PM 97 µPD703201, 703201Y, 703204, 703204Y, 70F3201, 70F3201Y, 70F3204, 70F3204Y The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative. License not needed: µPD70F3201, 70F3201Y, 70F3204, 70F3204Y The customer must judge the need for license: µPD703201, 703201Y, 703204, 703204Y • The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M5 98. 8