DATA SHEET MOS INTEGRATED CIRCUIT µPD78C14(A) 8-BIT SINGLE-CHIP MICROCONTROLLER (WITH A/D CONVERTER) The µPD78C14(A) is a single-chip, CMOS 8-bit microcontroller in which a 16-bit ALU, a ROM, a RAM, an A/D converter, a multifunction timer/event counter, and a serial interface are all integrated. Moreover, a 48-Kbyte external expansion memory (ROM/RAM) can be connected. Since the µPD78C14(A) uses the CMOS construction, its operations are performed with low power consumption. By using the standby function, functions such as data retention are performed with lower power consumption. For details on functions, refer to the User’s Manual listed below. Please read it before starting design work. 87AD series µPD78C18 User’s Manual: IEU-1314 FEATURES High reliability as compared with µPD78C14 159 instructions: 87AD instruction set Multiply and divide instructions, 16-bit arithmetic operation instructions Instruction cycle: 0.8 µs at 15 MHz Internal ROM: 16384 W x 8 Internal RAM: 256 W x 8 Direct addressing to an external memory (ROM/RAM) up to 64 Kbytes Highly accurate 8-bit A/D converter: Eight analog inputs General-purpose serial interface: Asynchronous, synchronous, and I/O interface modes Multifunction 16-bit timer/event counter Two 8-bit timers I/O lines: 44 Interrupt functions: Three external, eight internal • Non-maskable interrupt: 1 • Maskable interrupts: 10 Zero-cross detection function (two inputs) Standby functions: HALT mode, Hardware/software STOP mode ORDERING INFORMATION Part number µPD78C14G(A)-xxx-36 µPD78C14GF(A)-xxx-3BE µPD78C14L(A)-xxx Package 64-pin plastic QUIP 64-pin plastic QFP (14 x 20 mm) 68-pin plastic QFJ (950 x 950 mil) Quality grade Special Special Special Remark xxx is a ROM code suffix. Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications. The information in this document is subject to change without notice. Document No. IC-2813B (O.D. No. IC-8242B) Date Published May 1995 P Printed in Japan H The mark * shows revised points. © © 1991 1994 µPD78C14(A) Pin Configuration (Top View) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 VDD STOP PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 ALE WR RD AVDD VAREF AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0 AVSS PD2 PD1 PD0 PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 ALE WR RD AVDD VAREF AN7 AN6 AN5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 µ PD78C14G(A)-XXX-36 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0/TxD PC1/RxD PC2/SCK PC3/INT2 PC4/TO PC5/CI PC6/CO0 PC7/CO1 NMI INT1 MODE1 RESET MODE0 X2 X1 VSS 51 50 49 48 47 46 454443 42 41 40 39 38 37 36 35 34 33 52 32 53 31 54 30 55 29 56 28 57 27 µ PD78C14GF(A)-XXX-3BE 58 26 59 25 60 24 61 23 62 22 63 21 641 2 3 4 5 6 7 8 9 10 11 12 13 14 1516 1718 19 20 PA6 PA7 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0/TxD PC1/RxD PC2/SCK PC3/INT2 PC4/TO PC5/CI PC6/CO0 PC7/CO1 NMI PD3 PD4 PD5 PD6 PD7 STOP VDD PA0 PA1 PA2 PA3 PA4 PA5 2 AN4 AN3 AN2 AN1 AN0 AVSS VSS X1 X2 MODE0 RESET MODE1 INT1 IC PA6 PA5 PA4 PA3 PA2 PA1 PA0 VDD STOP PD7 PD6 PD5 PD4 PD3 PD2 IC µPD78C14(A) 9 8 7 6 5 4 3 2 1 68 67 66 6564 63 62 61 10 60 11 59 12 58 13 57 14 56 15 55 16 54 17 53 18 52 µ PD78C14L(A)-XXX 19 51 20 50 21 49 22 48 23 47 24 46 25 45 44 26 2728 29 30 3132 33 34 35 36 37 38 39 4041 42 43 PD1 PD0 PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 ALE WR RD AVDD IC VAREF AN7 PC7/CO1 NMI INT1 MODE1 RESET MODE0 X2 X1 VSS AVSS AN0 AN1 AN2 AN3 AN4 AN5 AN6 PA7 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PC0/TxD PC1/RxD PC2/SCK PC3/INT2 IC PC4/TO PC5/CI PC6/CO0 3 NMI INT1 INT. CONTROL 8 4 TIMER PC4/TO AN7-0 VAREF VDD AVSS TIMER EVENT COUNTER 8 8 8 8 8 MAIN G.R 16 8 8 PROGRAM MEMORY ALT (16 K-BYTE) G.R Note DATA MEMORY (256-BYTE) 8 8 INTERNAL DATA BUS 16 16 6 LATCH LATCH PSW 8 PD7-0/AD7-0 PC7-0 PB7-0 PA7-0 8 INST.REG 8 PF7-0/AB15-8 8 16 A/D CONVERTER 8 14 8 8 8 8 8 PC5/CI PC6/CO0 PC7/CO1 8 8 8/16 PC3/INT2/TI PORT F SERIAL I/O 8 PORT D PC0/TxD PC1/RxD PC2/SCK PORT C X2 8 PORT B OSC PORT A 16 LATCH INC/DEC PC SP EA V A B C E D H L EA' V' A' B' C' E' D' H' L' BUFFER Block Diagram 4 X1 16 INST. DECODER ALU (8/16) 16 READ/WRITE CONTROL SYSTEM CONTROL STANDBY CONTROL Note DATA MEMORY can only be used when RAE bit of MM register is set to 1. External memory is necessary when 0 is set. VDD VSS µPD78C14(A) RD WR ALE MODE1 MODE0 RESET STOP µPD78C14(A) CONTENTS 1. DIFFERENCES BETWEEN µPD78C14(A) AND µPD78C14 ...................................................6 2. PIN FUNCTIONS ......................................................................................................................7 3. 2.1 Pin Function List .........................................................................................................................7 2.2 Pin Input/Output Circuits ...........................................................................................................9 2.3 Recommended Connections for Unused Pins....................................................................... 13 INSTRUCTION SET ................................................................................................................14 3.1 Operand Expression Format/Description Method .................................................................14 3.2 Instruction Code Description ..................................................................................................16 3.3 Instruction Execution Time......................................................................................................17 4. LIST OF MODE REGISTERS .................................................................................................29 5. ELECTRICAL SPECIFICATIONS ..........................................................................................30 6. CHARACTERISTIC CURVES (reference value) ...................................................................41 7. PACKAGE DRAWINGS .........................................................................................................44 8. RECOMMENDED SOLDERING CONDITIONS .....................................................................47 APPENDIX DEVELOPMENT TOOLS ............................................................................................49 5 µPD78C14(A) 1. DIFFERENCES BETWEEN µPD78C14(A) AND µPD78C14 µPD78C14(A) µPD78C14 Quality grade Special Standard Electrical Input leakage current Input leakage current specifications (AN7-0; ±1 µA (MAX.) AN7-0; ±10 µA (MAX.) Part number Item Package • 64-pin plastic QUIP • 64-pin plastic shrink DIP • 64-pin plastic QFP • 64-pin plastic QUIP (14 x 20 mm, thickness: 2.05 mm) • 68-pin plastic QFJ • 64-pin plastic QUIP (straight) • 64-pin plastic QFP (14 x 20 mm, thickness: 2.05 mm) • 64-pin plastic QFP (14 x 20 mm, thickness: 2.70 mm) • 68-pin plastic QFJ 6 µPD78C14(A) 2. PIN FUNCTIONS 2.1 Pin Function List Pin PA7-PA0 Input/Output Input/Output (Port A) PB7-PB0 PC1/RxD PC2/SCK These 8 pins constitute an 8-bit I/O port and input/output can be specified in bit units. Input/Output (Port B) PC0/TxD Function These 8 pins constitute an 8-bit I/O port and input/output can be specified in bit units. Input/Output, Port C Transmit Data Output These 8 pins constitute an 8-bit I/O This pin outputs serial data. Input/Output, port and input/output can be specified Receive Data Input in bit units. This pin inputs serial data. Input/Output, Serial Clock Input/Output This pin inputs/outputs serial clock. It becomes an output pin when an internal clock is used or an input pin when an external clock is used. PC3/INT2/TI Input/Output, Interrupt Request/Timer Input Input, Input This pin inputs edge triggering (falling edge) maskable interrupt or external clock for timer. This pin is also shared with zero-cross detection pin for AC input. PC4/TO Input/Output, Timer Output Output This pin outputs square waves in which one cycle of the internal clock forms a half cycle, indicating the timer’s counting time. PC5/CI Input/Output, Counter Input Input This pin inputs external pulse for timer/ event counter. PC6/CO0 Input/Output, Counter Output 0,1 PC7/CO1 Output This pin outputs programmable square PD7-PD0/ Input/Output, AD7-AD0 Input/Output wave by timer/event counter. PF7-PF0/ Input/Output, AB15-AB8 Output Port D Address/Data Bus These 8 pins constitute an 8-bit I/O These pins function as multiplexed port and input/output can be address/data bus when using an specified in byte units. external memory. Port F Address Bus These 8 pins constitute an 8-bit I/O These pins function as address bus when port and input/output can be specified using an external memory. in bit units. WR Output This is a strobe signal output to write data in external memory. This signal (Write becomes high level except during the data write machine cycle for external memory. Strobe) This signal becomes output high impedance when the RESET signal is low or in the hardware STOP mode. 7 µPD78C14(A) (Continued) Pin RD Input/Output Output (Read Function This is a strobe signal output to read data from external memory. This signal becomes high level except during the data read machine cycle for external memory. Strobe) This signal becomes output high impedance when the RESET signal is low or in the hardware STOP mode. ALE Output (Address This is a strobe signal to externally latch the low-order address information output to pins PD7-PD0 to access the external memory. This signal becomes Latch output high impedance when the RESET signal is low or in the hardware STOP Enable) mode. MODE0 Input/Output When both pins MODE0 and MODE1 are set to 1Note, these pins synchronize to MODE1 (Mode) NMI Set the MODE0 pin to 0 (low level) and MODE1 pin to 1 (high level)Note. the ALE and a control signal is output. Input This pin inputs the edge triggering (falling edge) nonmaskable interrupt. Input This pin inputs edge triggering (rising edge) maskable interrupt. This pin is also (NonMaskable Interrupt) INT1 (Interrupt shared with zero-cross detection pin for AC input. Request) AN7-AN0 Input (Analog These eight pins input analog signals for the A/D converter. Pins AN7-AN4 can be used as edge detection (falling edge) input. Input) Input VAREF (Reference This pin inputs the reference voltage for the A/D converter and controls the operation for the A/D converter. Voltage) AVDD Power supply pin for the A/D converter (Analog VDD) AVSS Ground pin for the A/D converter (Analog VSS) X1, X2 These are crystal connecting pins for the system clock oscillation. When a clock (Crystal) is externally supplied, input it through pin X1. Input the clock to X1 and its reverse phase to X2. RESET Input This pin inputs the active-low reset input signal. Input This pin inputs control signal of the hardware STOP mode. When the low level (Reset) STOP (Stop) of this signal is input, the oscillator stops to operate. VDD Positive power supply pin VSS Ground pin Note Pull-up with the following external resistor: 4 (kΩ) ≤ R ≤ 0.4 tCYC (kΩ) Example tCYC (unit: ns) 4 (kΩ) ≤ R ≤ 26 (kΩ): tCYC = 66 (ns) at 15 MHz 4 (kΩ) ≤ R ≤ 33 (kΩ): tCYC = 83 (ns) at 12 MHz 8 µPD78C14(A) 2.2 Pin Input/Output Circuits Schematic input/output circuits of the pins are shown in Table 2-1 and figures from (1) to (11). Table 2-1. Name of Type No. Pin Type No. Pin Type No. PA0-7 5 RESET 2 PB0-7 5 RD 4 PC0-1 5 WR 4 PC2/SCK 8 ALE 4 PC3/INT2 10 STOP 2 PC4-7 5 MODE0 11 PD0-7 5 MODE1 11 PF0-7 5 AN0-3 7 NMI 2 AN4-7 12 INT1 9 VAREF 13 9 µPD78C14(A) (1) Type 1 VDD P-ch IN N-ch (2) Type 2 IN (3) Type 4 VDD output data P-ch OUT N-ch output disable (4) Type 5 output data Type 4 output disable Type 1 10 IN/OUT µPD78C14(A) (5) Type 7 AVDD P-ch + IN N-ch – AVDD sampling C AVSS AVSS reference voltage (from voltage tap of serial resistor string) (6) Type 8 output data Type 5 output disable N-ch N-ch IN/OUT Type 2 MCC (7) Type 9 self bias enable IN Type 1 data (8) Type 10 output data output disable Type 5 self bias enable N-ch Type 9 IN/OUT N-ch MCC 11 µPD78C14(A) (9) Type 11 IN/OUT output data N-ch Type 1 (10) Type 12 Type 7 IN edge detection circuit Type 2 (11) Type 13 Type 1 IN STOP Mode P-ch AVSS 12 µPD78C14(A) 2.3 Recommended Connections for Unused Pins Pin Recommended connection PA7-0 PB7-0 PC7-0 Connect to VDD or VSS via resistor. PD7-0 PF7-0 RD WR Leave unconnected. ALE STOP VDD INT1, NMI Connect to VDD or VSS. AVDD Connect to VDD. VAREF Connect to VSS. AVSS AN7-0 Connect to AVSS or AVDD. 13 µPD78C14(A) 3. INSTRUCTION SET 3.1 Operand Expression Format/Description Method Expression format Description method r V, A, B, C, D, E, H, L r1 EAH, EAL, B, C, D, E, H, L r2 A, B, C sr PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TXB, TM0, TM1, ZCM sr1 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CR0, CR1, CR2, CR3 sr2 PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM sr3 ETM0, ETM1 sr4 ECNT, ECPT rp SP, B, D, H rp1 V, B, D, H, EA rp2 SP, B, D, H, EA rp3 B, D, H rpa B, D, H, D+, H+, D–, H– rpa1 B, D, H rpa2 B, D, H, D+, H+, D–, H–, D+byte, H+A, H+B, H+EA, H+byte rpa3 D, H, D++, H++, D+byte, H+A, H+B, H+EA, H+byte wa 8-bit immediate data word 16-bit immediate data byte 8-bit immediate data bit 3-bit immediate data f CY, HC, Z irf NMI Note, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN4, AN5, AN6, AN7, SB Note NMI can be also described as FNMI. 14 µPD78C14(A) Remarks 1. sr to sr4 (special register) PA : PORT A 2. rp to rp3 (register pair) ETMM : TIMER/EVENT CY : CARRY B : BC HC : HALF CARRY D : DE Z : PORT B PC : PORT C PD : PORT D COUNTER OUTPUT H : HL PF : PORT F MODE V : VA MA : MODE A ANM : A/D CHANNEL MODE EA : EXTENDED MB : MODE B CR0 : A/D CONVERSION MC : MODE C to MCC : MODE CONTROL C COUNTER MODE : STACK POINTER PB EOM : TIMER/EVENT ACCUMULATOR RESULT 0 to 3 CR3 4. f (flag) SP : ZERO 5. irf (interrupt flag) NMI : NMI INPUT FT0 : INTFT0 FT1 : INTFT1 3. rpa to rpa3 (rp addressing) F1 : INTF1 : INTF2 MF : MODE F TXB : Tx BUFFER B : (BC) F2 MM : MEMORY MAPPING RXB : Rx BUFFER D : (DE) FE0 : INTFE0 TM0 : TIMER REG0 SMH : SERIAL MODE High H : (HL) FE1 : INTFE1 TM1 : TIMER REG1 SML : SERIAL MODE Low D+ : (DE)+ FEIN: INTFEIN TMM : TIMER MODE MKH : MASK High H+ : (HL)+ FAD : INTFAD ETM0 : TIMER/EVENT MKL : MASK Low D– : (DE)– FSR : INTFSR ZCM : ZERO CROSS MODE COUNTER REG0 ETM1 : TIMER/EVENT COUNTER REG1 ECNT : TIMER/EVENT COUNTER UPCOUNTER ECPT : TIMER/EVENT COUNTER CAPTURE H– : (HL)– FST : INTFST D++ : (DE)++ ER : ERROR H++ : (HL)++ D+byte : (DE+byte) OV : OVERFLOW AN4 : ANALOG INPUT H+A : (HL+A) to H+B : (HL+B) AN7 H+EA : (HL+EA) SB 4 to 7 : STANDBY H+byte : (HL+byte) 15 µPD78C14(A) 3.2 Instruction Code Description r1 r R2 0 0 0 0 1 1 1 1 R1 0 0 1 1 0 0 1 1 reg V A B C D E H L R0 0 1 0 1 0 1 0 1 rpa T2 0 0 0 0 1 1 1 1 r2 r T1 0 0 1 1 0 0 1 1 reg EAH EAL B C D E H L T0 0 1 0 1 0 1 0 1 sr S5 S4 S3 S2 S1 S0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Special-reg PA PB PC PD PF MKH MKL ANM SMH SML EOM ETMM TMM MM MCC MA MB MC MF TXB RXB TM0 TM1 CR0 CR1 CR2 CR3 ZCM sr3 sr1 Special-reg 0 1 ETM0 ETM1 V0 0 1 A0 0 1 0 1 0 1 0 1 1 0 1 0 1 addressing C2 0 0 1 1 0 1 1 1 1 C1 1 1 0 0 1 0 0 1 1 C0 0 1 0 1 1 0 1 0 1 addressing I4 I3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 I2 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 I1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 C3 0 0 0 0 1 1 1 1 1 sr (BC) (DE) (HL) (DE)+ (HL)+ (DE)– (HL)– (DE+byte) (HL+A) (HL+B) (HL+EA) (HL+byte) Special-reg ECNT ECPT rp1 rpa2 INTF NMI FT0 FT1 F1 F2 FE0 FE1 FEIN FAD FSR FST ER OV AN4 AN5 AN6 AN7 SB I0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 f P1 P0 reg-pair Q2 Q1 Q0 reg-pair F2 F1 F0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 SP BC DE HL EA 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 VA BC DE HL EA 0 0 0 1 0 1 1 0 0 0 1 0 rp2 rpa (DE) (HL) (DE)++ (HL)++ (DE+byte) (HL+A) (HL+B) (HL+EA) (HL+byte) P2 rp rpa1 irf rp 16 A1 0 0 1 1 0 0 1 1 1 0 0 1 1 rpa3 sr2 sr4 U0 A2 0 0 0 0 1 1 1 1 0 1 1 1 1 A3 0 0 0 0 0 0 0 0 1 1 1 1 1 rp3 flag — CY HC Z µPD78C14(A) 3.3 Instruction Execution Time In the following table, one state consists of three clock cycles. So, when the 15 MHz clock is used, one state becomes 200 ns (= 3 x 1/15 µs). Execution time of the 4-state instruction, the shortest instruction, becomes 0.8 µs. 17 Instruction group 18 Instruction code Mnemonic State Operand B1 B3 B2 Operation B4 r1, A 0 0 0 1 1 T2 T1 T0 4 r1 ← A A, r1 0 0 0 0 1 T2 T1 T0 4 A ← r1 * sr, A 01001101 1 1 S5 S4 S3 S2 S1 S0 10 sr ← A * A, sr1 01001100 1 1 S5 S4 S3 S2 S1 S0 10 A ← sr1 r, word 01110000 0 1 1 0 1 R2 R1 R0 Low Adrs High Adrs 17 r ← (word) word, r 01110000 0 1 1 1 1 R2 R1 R0 Low Adrs High Adrs 17 (word) ← r r, byte 0 1 1 0 1 R2 R1 R0 7 r ← byte sr2, byte 01100100 Data 14 sr2 ← byte Data 13 (V. wa) ← byte Skip condition MOV * Data S3 0 0 0 0 S2 S1 S0 MVIW * wa, byte 01110001 Offset MVIX * rpa1, byte 0 1 0 0 1 0 A1 A0 Data 10 (rpa1) ← byte STAW * wa 01100011 Offset 10 (V. wa) ← A LDAW * wa 00000001 Offset 10 A ← (V. wa) STAX * rpa2 A3 0 1 1 1 A2 A1 A0 Data LDAX * rpa2 A3 0 1 0 1 A2 A1 A0 Data Note 1 Note 1 Note 3 7/13 Note 3 7/13 (rpa2) ← A A ← (rpa2) EXX 00010001 4 B', C ↔ C', D ↔ D' {BE ↔ ↔ E', H ↔ H', L ↔ L' EXA 00010000 4 V, A ↔ V', A', EA ↔ EA' EXH 01010000 4 H, L ↔ H', L' BLOCK 00110001 13 (C+1) (DE)+ ← (HL)+, C ← C–1 End if borrow rp3, EA 1 0 1 1 0 1 P1 P0 4 rp3L ← EAL, rp3H ← EAH EA, rp3 1 0 1 0 0 1 P1 P0 4 EAL ← rp3L, EAH ← rp3H DMOV µPD78C14(A) 16-bit data transfer 8-bit data transfer MVI Instruction group Instruction code Mnemonic State Operand B1 sr3, EA 01001000 B2 B3 Operation B4 1 1 0 1 0 0 1 U0 14 sr3 ← EA 1 1 0 0 0 0 0 V0 14 EA ← sr4 20 (word) ← C, (word+1) ← B Skip condition DMOV 16-bit data transfer EA, sr4 SBCD word SDED word 00101110 20 (word) ← E, (word+1) ← D SHLD word 00111110 20 (word) ← L, (word+1) ← H SSPD word 00001110 20 (word) ← SPL, (word+1) ← SPH STEAX rpa3 01001000 1 0 0 1 C3 C2 C1 C0 Data LBCD word 01110000 00011111 Low Adrs LDED word LHLD 00011110 Low Adrs High Adrs Note 3 Note 2 14/20 (rpa3) ← EAL, (rpa3+1) ← EAH 20 C ← (word), B ← (word+1) 00101111 20 E ← (word), D ← (word+1) word 00111111 20 L ← (word), H ← (word+1) LSPD word 00001111 20 SPL ← (word), SPH ← (word+1) LDEAX rpa3 01001000 PUSH rp1 1 0 1 1 0 Q2 Q1 Q0 13 (SP–1)← rp1H, (SP–2)← rp1L SP ← SP–2 POP rp1 1 0 1 0 0 Q2 Q1 Q0 10 rp1L ← (SP), rp1H ← (SP+1) SP ← SP+2 rp2, word 0 P2 P1 P0 0 1 0 0 10 rp2 ← word LXI * 1 0 0 0 C3 C2 C1 C0 Low Byte Note 2 Data High Byte High Adrs Note 3 14/20 EAL ← (rpa3), EAH ← (rpa3+1) 10101000 17 C ← (PC+3+A) B ← (PC+3+A+1) 01100000 1 1 0 0 0 R2 R1 R0 8 A ← A+r r, A 0100 8 r ← r+A A, r 1101 8 A ← A+r+CY r, A 0101 8 r ← r+A+CY A, r ADD ADC 19 µPD78C14(A) 01001000 TABLE 8-bit arithmetic operation (register) 01110000 Instruction group 20 Instruction code Mnemonic State Operand B1 B2 B3 Operation B4 Skip condition 1 0 1 0 0 R2 R1 R0 8 A ← A+r No Carry r, A 0010 8 r ← r+A No Carry A, r 1110 8 A ← A–r r, A 0110 8 r ← r–A A, r 1111 8 A ← A–r–CY r, A 0111 8 r ← r–A–CY A, r 1011 8 A ← A–r No Borrow r, A 0011 8 r ← r–A No Borrow A, r 1 0 0 0 1 R2 R1 R0 8 A←A r r, A 0000 8 r←r A A, r 1001 8 A←A r r, A 0001 8 r←r A A, r 1 0 0 1 0 R2 R1 R0 8 A←A r r, A 0001 8 r←r A A, r 1 0 1 0 1 R2 R1 R0 8 A–r–1 r, A 0010 8 r–A–1 A, r 1011 8 A–r Borrow r, A 0011 8 r–A Borrow A, r 1110 8 A–r No Zero r, A 0110 8 r–A No Zero A, r 01100000 ADDNC SUB SBB < ANA < > ORA > XRA > 8-bit arithmetic operation (register) SUBNB > GTA No Borrow No Borrow LTA µPD78C14(A) NEA Instruction group B1 B2 B3 Operation B4 Skip condition 8 A–r Zero r, A 0111 8 r–A Zero ONA A, r 1100 8 A r No Zero OFFA A, r 1101 8 A r Zero ADDX rpa 1 1 0 0 0 A2 A1 A0 11 A ← A+(rpa) ADCX rpa 1101 11 A ← A+(rpa)+CY ADDNCX rpa 1010 11 A ← A+(rpa) SUBX rpa 1110 11 A ← A–(rpa) SBBX rpa 1111 11 A ← A–(rpa)–CY SUBNBX rpa 1011 11 A ← A–(rpa) ANAX rpa 1 0 0 0 1 A2 A1 A0 11 A ← A (rpa) ORAX rpa 1001 11 A ← A (rpa) XRAX rpa 1 0 0 1 0 A2 A1 A0 11 A ← A (rpa) GTAX rpa 1 0 1 0 1 A2 A1 A0 11 A–(rpa)–1 No Borrow LTAX rpa 1011 11 A–(rpa) Borrow NEAX rpa 1110 11 A–(rpa) No Zero EQAX rpa 1111 11 A–(rpa) Zero ONAX rpa 1100 11 A (rpa) No Zero OFFAX rpa 1101 11 A (rpa) Zero 01100000 EQA 01110000 No Carry No Borrow < > > < µPD78C14(A) < 21 1 1 1 1 1 R2 R1 R0 A, r < 8-bit arithmetic operation (register) State Operand < 8-bit arithmetic operation (memory) Instruction code Mnemonic Instruction group 22 Instruction code Mnemonic B1 * ADI * ACI * Arithmetic operation of immediate data State Operand ADINC * SUI * SBI * SUINB r, byte 01110100 0 1 0 0 0 R2 R1 R0 sr2, byte 0110 S3 1 0 0 0 S2 S1 S0 A, byte 01010110 r, byte 01110100 0 1 0 1 0 R2 R1 R0 sr2, byte 0110 S3 1 0 1 0 S2 S1 S0 A, byte 00100110 r, byte 01110100 0 0 1 0 0 R2 R1 R0 sr2, byte 0110 S3 0 1 0 0 S2 S1 S0 A, byte 01100110 r, byte 01110100 0 1 1 0 0 R2 R1 R0 sr2, byte 0110 S3 1 1 0 0 S2 S1 S0 A, byte 01110110 r, byte 01110100 0 1 1 1 0 R2 R1 R0 sr2, byte 0110 S3 1 1 1 0 S2 S1 S0 A, byte 00110110 r, byte 01110100 0 0 1 1 0 R2 R1 R0 sr2, byte 0110 S3 0 1 1 0 S2 S1 S0 A, byte 00000111 r, byte 01110100 Data Data Data Data Data Data Data Data Data Data Data Data Data 0 0 0 0 1 R2 R1 R0 Data Skip condition 7 A ← A+byte 11 r ← r+byte 20 sr2 ← sr2+byte 7 A ← A+byte+CY 11 r ← r+byte+CY 20 sr2 ← sr2+byte+CY 7 A ← A+byte No Carry 11 r ← r+byte No Carry 20 sr2 ← sr2+byte No Carry 7 A ← A–byte 11 r ← r–byte 20 sr2 ← sr2–byte 7 A ← A–byte–CY 11 r ← r–byte–CY 20 sr2 ← sr2–byte–CY 7 A ← A–byte No Borrow 11 r ← r–byte No Borrow 20 sr2 ← sr2–byte No Borrow 7 A← A 11 r←r < 01000110 Operation B4 byte byte µPD78C14(A) * A, byte B3 < ANI B2 Instruction group Instruction code Mnemonic B1 * LTI * NEI EQI 23 0 0 0 1 1 R2 R1 R0 sr2, byte 0110 S3 0 0 1 1 S2 S1 S0 A, byte 00010110 r, byte 01110100 0 0 0 1 0 R2 R1 R0 sr2, byte 0110 S3 0 0 1 0 S2 S1 S0 A, byte 00100111 r, byte 01110100 0 0 1 0 1 R2 R1 R0 sr2, byte 0110 S3 0 1 0 1 S2 S1 S0 A, byte 00110111 r, byte 01110100 0 0 1 1 1 R2 R1 R0 sr2, byte 0110 S3 0 1 1 1 S2 S1 S0 A, byte 01100111 r, byte 01110100 0 1 1 0 1 R2 R1 R0 sr2, byte 0110 S3 1 1 0 1 S2 S1 S0 A, byte 01110111 r, byte 01110100 0 1 1 1 1 R2 R1 R0 sr2, byte 0110 S3 1 1 1 1 S2 S1 S0 Data Data Data Data Data Data Data Data Data Data Data 7 A ← A byte 11 r ← r byte 20 sr2 ← sr2 byte 7 A ← A byte 11 r ← r byte 20 sr2 ← sr2 byte 7 A–byte–1 No Borrow 11 r–byte–1 No Borrow 14 sr2–byte–1 No Borrow 7 A–byte Borrow 11 r–byte Borrow 14 sr2–byte Borrow 7 A–byte No Zero 11 r–byte No Zero 14 sr2–byte No Zero 7 A–byte Zero 11 r–byte Zero 14 sr2–byte Zero µPD78C14(A) * 01110100 sr2 ← sr2 byte < GTI r, byte Data 20 < * 00010111 Data < XRI A, byte S3 0 0 0 1 S2 S1 S0 < * 01100100 B4 < ORI sr2, byte B3 Skip condition < * B2 Operation < ANI Arithmetic operation of immediate data State Operand Instruction group 24 Instruction code Mnemonic B1 B3 Operation B4 Skip condition 7 A byte No Zero 11 r byte < No Zero 14 sr2 byte < No Zero 7 A byte Zero 11 r byte < Zero 14 sr2 byte Zero 14 A ← A+(V.wa) 1101 14 A ← A+(V.wa)+CY wa 1010 14 A ← A+(V.wa) SUBW wa 1110 14 A ← A–(V.wa) SBBW wa 1111 14 A ← A–(V.wa)–CY SUBNBW wa 1011 14 A ← A–(V.wa) ANAW wa 10001000 14 A ← A (V.wa) ORAW wa 1001 14 A ← A (V.wa) XRAW wa 10010000 14 A ← A (V.wa) GTAW wa 10101000 14 A–(V.wa)–1 No Borrow LTAW wa 1011 14 A–(V.wa) Borrow NEAW wa 1110 14 A–(V.wa) No Zero EQAW wa 1111 14 A–(V.wa) Zero ONAW wa 1100 14 A (V.wa) No Zero 01110100 0 1 0 0 1 R2 R1 R0 sr2, byte 0110 S3 1 0 0 1 S2 S1 S0 A, byte 01010111 r, byte 01110100 0 1 0 1 1 R2 R1 R0 sr2, byte 0110 S3 1 0 1 1 S2 S1 S0 ADDW wa 01110100 11000000 ADCW wa ADDNCW * OFFI Data Data Data offset < r, byte ONI Data < 01000111 < Arithmetic operation of immediate data B2 A, byte * No Carry No Borrow < > > Arithmetic operation of working register State Operand µPD78C14(A) < Instruction group Instruction code Mnemonic B1 01110100 11011000 B3 Operation B4 Skip condition Zero Offset 14 A (V.wa) Data 19 (V.wa) ← (V.wa) byte * wa, byte 00000101 ORIW * wa, byte 0001 19 (V.wa) ← (V.wa) byte GTIW * wa, byte 0010 13 (V.wa)–byte–1 No Borrow LTIW * wa, byte 0011 13 (V.wa)–byte Borrow NEIW * wa, byte 0110 13 (V.wa)–byte No Zero EQIW * wa, byte 0111 13 (V.wa)–byte Zero ONIW * wa, byte 0100 13 (V.wa) byte No Zero OFFIW * wa, byte 0101 13 (V.wa) byte Zero EADD EA, r2 01110000 0 1 0 0 0 0 R1 R0 11 EA ← EA+r2 DADD EA, rp3 0100 1 1 0 0 0 1 P1 P0 11 EA ← EA+rp3 DADC EA, rp3 1101 11 EA ← EA+rp3+CY DADDNC EA, rp3 1010 11 EA ← EA+rp3 ESUB EA, r2 0000 0 1 1 0 0 0 R1 R0 11 EA ← EA–r2 DSUB EA, rp3 0100 1 1 1 0 0 1 P1 P0 11 EA ← EA–rp3 DSBB EA, rp3 1111 11 EA ← EA–rp3–CY DSUBNB EA, rp3 1011 11 EA ← EA–rp3 DAN EA, rp3 1 0 0 0 1 1 P1 P0 11 EA ← EA rp3 DOR EA, rp3 1001 11 EA ← EA rp3 DXR EA, rp3 1 0 0 1 0 1 P1 P0 11 EA ← EA rp3 Offset < ANIW > < Arithmetic operation of working register wa B2 < OFFAW < No Carry No Borrow < > < 25 µPD78C14(A) 16-bit arithmetic operation State Operand Instruction group 16-bit arithmetic operation B3 Operation B4 Skip condition 1 0 1 0 1 1 P1 P0 11 EA–rp3–1 No Borrow EA, rp3 1011 11 EA–rp3 Borrow DNE EA, rp3 1110 11 EA–rp3 No Zero DEQ EA, rp3 1111 11 EA–rp3 Zero DON EA, rp3 1100 11 EA rp3 No Zero DOFF EA, rp3 1101 11 EA rp3 Zero MUL r2 0 0 1 0 1 1 R1 R0 32 EA ← A×r2 DIV r2 0011 59 EA ← EA÷r2, r2 ← The Remainder INR r2 0 1 0 0 0 0 R1 R0 4 r2 ← r2+1 Carry wa 00100000 16 (V.wa) ← (V.wa)+1 Carry rp 0 0 P1 P0 0 0 1 0 7 rp ← rp+1 EA 10101000 7 EA ← EA+1 r2 0 1 0 1 0 0 R1 R0 4 r2 ← r2–1 Borrow wa 00110000 16 (V.wa) ← (V.wa)–1 Borrow rp 0 0 P1 P0 0 0 1 1 7 rp ← rp–1 EA 10101001 7 EA ← EA–1 DAA 01100001 4 Decimal Adjust Accumulator STC 01001000 00101011 8 CY ← 1 CLC 00101010 8 CY ← 0 NEGA 00111010 8 A ← A+1 DGT EA, rp3 DLT * 01110100 01001000 Offset < Multiply/ divide B2 < Decrement/Increment State Operand B1 INRW INX DCR DCRW * Offset DCX µPD78C14(A) Other arithmetic operation 26 Instruction code Mnemonic Instruction group Instruction code Mnemonic State Operand B1 01001000 RLD B2 17 Rotate Left Digit 1001 17 Rotate Right Digit Rotation shift Skip condition r2 0 1 R1 R0 8 r2m+1 ← r2m, r20 ← CY, CY ← r27 RLR r2 0 0 R1 R0 8 r2m—1 ← r2m, r27 ← CY, CY ← r20 SLL r2 0 0 1 0 0 1 R1 R0 8 r2m+1 ← r2m, r20 ← 0, CY ← r27 SLR r2 0 0 R1 R0 8 r2m—1 ← r2m, r27 ← 0, CY ← r20 SLLC r2 0 0 0 0 0 1 R1 R0 8 r2m+1 ← r2m, r20 ← 0, CY ← r27 Carry SLRC r2 0 0 R1 R0 8 r2m—1 ← r2m, r27 ← 0, CY ← r20 Carry DRLL EA 10110100 8 EAn+1 ← EAn, EA0 ← CY, CY ← EA15 DRLR EA 0000 8 EAn—1 ← EAn, EA15 ← CY, CY ← EA0 DSLL EA 10100100 8 EAn+1 ← EAn, EA0 ← 0, CY ← EA15 DSLR EA 0000 8 EAn—1 ← EAn, EA15 ← 0, CY ← EA0 10 PC ← word 00100001 4 PCH ← B, PCL ← C word 11 10 PC ← PC+1+jdisp 1 word 0100111 10 PC ← PC+2+jdisp 8 PC ← EA 16 (SP–1) ← (PC+3)H, (SP–2) ← (PC+3)L PC ← word, SP ← SP–2 17 (SP–1) ← (PC+2)H, (SP–2)← (PC+2)L PCH ← B, PCL ← C, SP ← SP–2 13 (SP–1) ← (PC+2)H, (SP–2) ← (PC+2)L PC15–11 ← 00001, PC10–0 ← fa, SP ← SP–2 * word JB JR JRE * JEA CALL * word CALB CALF * word 01010100 Low Adrs High Adrs jdisp 1 jdisp 01001000 00101000 01000000 Low Adrs 01001000 00101001 01111 fa High Adrs 27 µPD78C14(A) RLL JMP Jump Operation B4 00111000 RRD Call B3 Return Call Instruction group 28 Instruction code Mnemonic B1 B3 Operation B4 Skip condition 16 (SP–1) ← (PC+1)H, (SP– 2) ← (PC+1)L, PCL ← (128+2ta), PCH ← (129+2ta), SP ← SP–2 SOFT1 01110010 16 (SP–1) ← PSW, (SP–2) ← (PC+1)H, (SP–3) ← (PC+1)L, PC ← 0060H, SP ← SP–3 RET 10111000 10 PCL ← (SP), PCH ← (SP+1) SP ← SP+2 1001 10 PCL ← (SP), PCH ← (SP+1), SP ← SP+2 PC ← PC+n 01100010 13 PCL ← (SP), PCH ← (SP+1) PSW← (SP+2), SP ← SP+3 10 Skip if (V.wa) bit = 1 (V.wa) bit = 1 0 0 0 0 1 F2 F1 F0 8 Skip if f = 1 f=1 RETS 100 Unconditional bit, wa 0 1 0 1 1 B2 B1 B0 SK f 01001000 SKN f 0001 8 Skip if f = 0 f=0 SKIT irf 0 1 0 I4 I3 I2 I1 I0 8 Skip if irf = 1, then reset irf irf = 1 SKNIT irf 0 1 1 I4 I3 I2 I1 I0 8 Skip if irf = 0 Reset irf, if irf = 1 irf = 0 BIT Skip B2 ta word CALT RETI CPU operation State Operand * Offset NOP 00000000 4 No Operation EI 10101010 4 Enable Interrupt DI 10111010 4 Disable Interrupt HLT 01001000 00111011 12 Set Halt Mode STOP 01001000 10111011 12 Set Stop Mode Notes 1. B2 (Data) is applied for rpa2 = D + byte or H + byte. 2. B3 (Data) is applied for rpa3 = D + byte or H + byte. 3. In the "state" column, data to the right of the slash applies when rpa2 or rpa3 is D + byte, H + A, H + B, H + EA, or H + byte. µPD78C14(A) Remark When the instructions below are skipped, the number of idle states is as listed below and differs from the number of execution states. 3-byte instruction (with *) : 10-state 1-byte instruction : 4-state : 11-state 3-byte : 7-state 2-byte (with *) : 14-state 4-byte : 8-state 2-byte µPD78C14(A) 4. LIST OF MODE REGISTERS Name of mode register Read/Write Function MA MODE A W Specifies input/output of Port A in bit units MB MODE B W Specifies input/output of Port B in bit units MCC MODE CONTROL C W Specifies port/control mode of Port C in bit units MC MODE C W Specifies input/output of Port C set in the port mode in bit units MM MEMORY MAPPING W Specifies port/expansion mode of Ports D and F MF MODE F W Specifies input/output of Port F set in the port mode in bit units TMM Timer mode R/W Specifies operation mode of the timer ETMM Timer/Event W Specifies operation mode of the Timer Event Counter R/W Controls output level of CO0 and CO1 W Specifies operation mode of the serial interface Counter Mode EOM Timer/Event Counter Output Mode SML Serial Mode SMH MKL R/W Interrupt Mask R/W Specifies interrupt request enable/disable ANM A/D Channel Mode R/W Specifies operation mode of the A/D converter ZCM Zero-cross Mode W Specifies operation mode of the zero-cross detection circuit MKH 29 µPD78C14(A) 5. ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS (TA = 25 ˚C) Parameter Symbol Power Supply Voltage Input Voltage Ratings Unit VDD –0.5 to +7.0 V AVDD AVSS to VDD + 0.5 V AVSS –0.5 to +0.5 V VI –0.5 to VDD + 0.5 V Output Voltage VO Output Current Low IOL Output Current High IOH A/D Converter VAREF Test Condition –0.5 to VDD + 0.5 V All Output Pin 4.0 mA All Output Pin Total 100 mA All Output Pin –2.0 mA All Output Pin Total –50 mA –0.5 to AVDD + 0.3 V TA –40 to +85 ˚C Tstg –65 to +150 ˚C Reference Input Voltage Operating Ambient Temperature Storage Temperature * Caution If any of the parameters exceeds the absolute maximum ratings even for a moment, this may damage product quality. The absolute maximum ratings are values that may physically damage the product. You must use the product within the specified ratings. 30 µPD78C14(A) Oscillation Characteristics (TA = –40 to +85 ˚C, VDD = AVDD = +5.0 V ± 10 %, VSS = AVSS = 0 V, VDD – 0.8 V ≤ AVDD ≤ VDD, 3.4 V ≤ VAREF ≤ AVDD) Resonator Recommended Circuits Ceramic Parameter Test Conditions Oscillation Frequency (fxx) A/D Converter Resonator MIN. MAX. UNIT 4 15 MHz 5.8 15 MHz 4 15 MHz 5.8 15 MHz 0 20 ns 20 250 ns Not used or X1 X2 Crystal ResonatorNote A/D Converter C1 Used C2 External X1 Input Frequency A/D Converter Clock (fx) Not used X1 X2 A/D Converter Used X1 Input Rise, Fall Time (tr, tf) HCMOS Inverter X1 Input High, Low Level Width (tøH, tøL) Cautions 1. Oscillator circuit should be in the nearest area from X1 and X2 pins. 2. Do not place other signal lines within the area enclosed with broken lines. Note For a crystal resonator, the following external capacitances are recommended: C1 = C2 = 10 pF CAPACITANCE (TA = 25 ˚C, VDD = VSS = 0 V) Parameter Symbol Test Condition MIN. TYP. MAX. UNIT Input Capacitance CI fC = 1 MHz 10 pF Output Capacitance CO Unmeasured pins returned to 0 V 20 pF I/O Capacitance CIO 20 pF 31 µPD78C14(A) DC CHARACTERISTICS (TA = –40 to +85 ˚C, VDD = AVDD = +5.0 V ± 10 %, VSS = AVSS = 0 V) Parameter Symbol Test Condition MIN. Input Low Voltage VIL1 All except RESET, STOP, NMI, SCK, INT1, 0 TYP. MAX. UNIT 0.8 V TI, AN7 to AN4 Input High Voltage VIL2 RESET, STOP, NMI, SCK, INT1, TI, AN7 to AN4 0 0.2VDD V VIH1 All except RESET, STOP, NMI, SCK, INT1, 2.2 VDD V 0.8VDD VDD V 0.45 V TI, AN7 to AN4, X1, X2 VIH2 RESET, STOP, NMI, SCK, INT1, TI, AN7 to AN4, X1, X2 Output Low Voltage VOL Output High Voltage VOH IOL = 2.0 mA IOH = –1.0 mA VDD – 1.0 V IOH = –100 µA VDD – 0.5 V Input Current II INT1 ±200 µA Input Leakage ILI All except INT1, TI (PC3), AN7 to AN0; 0 V ≤ VI ≤ VDD ±10 µA Note 1 , TI (PC3) ; 0 V ≤ VI ≤ VDD Note 2 AN7 to AN0; 0 V ≤ VI ≤ VDD ±1 µA ILO 0 V ≤ VO ≤ VDD ±10 µA AIDD1 Operation Mode fxx = 15 MHz 0.5 1.3 mA Current AIDD2 STOP Mode 10 20 µA VDD Supply Current IDD1 Operation mode fxx = 15 MHz 16 30 mA IDD2 HALT Mode fxx = 15 MHz 8 15 mA VDDDR Hardware/Software STOP Mode IDDDR Hardware/Software Note 3 VDDDR = 2.5 V 1 15 µA STOP Mode VDDDR = 5 V ± 10 % 10 50 µA Current Output Leakage Current AVDD Supply Data Retention 2.5 V Voltage Data Retention Current Notes 1. 32 When self-bias is generated by ZCM register. 2. When set in the control mode by MCC register and self-bias is generated by ZCM register. 3. When self-bias is not generated. µPD78C14(A) AC CHARACTERISTICS (TA = –40 to +85 ˚C, VDD = AVDD = +5.0 V ± 10 %, VSS = AVSS = 0 V) READ/WRITE OPERATION: Parameter Symbol X1 Input Cycle Time tCYC Address Setup Time to ALE tAL Test Condition fxx = 15 MHz, CL = 150 pF MIN. MAX. UNIT 66 250 ns 30 ns Address Hold Time after ALE ↓ tLA 35 ns Address → RD ↓ Delay Time tAR 100 ns RD ↓ → Address Floating Time tAFR CL = 150 pF 20 ns Address → Data Input Time tAD fxx = 15 MHz, CL = 150 pF 250 ns ALE ↓ → Data Input Time tLDR 135 ns RD ↓ → Data Input Time tRD 120 ns ALE ↓ → RD ↓ Delay Time tLR 15 ns Data Hold Time after RD ↑ tRDH CL = 150 pF 0 ns RD ↑ → ALE ↑ Delay Time tRL fxx = 15 MHz, CL = 150 pF 80 ns RD Width Low tRR Data Read 215 ns 415 ns 90 ns fxx = 15 MHz, CL = 150 pF OP code Fetch fxx = 15 MHz, CL = 150 pF ALE Width High tLL fxx = 15 MHz, CL = 150 pF M1 Setup Time to ALE ↓ tML fxx = 15 MHz 30 ns M1 Hold Time after ALE ↓ tLM 35 ns IO/M Setup Time to ALE ↓ tIL 30 ns IO/M Hold Time after ALE ↓ tLI 35 ns Address → WR ↓ Delay Time tAW ALE ↓ → Data Output Time tLDW WR ↓ → Data Output Time tWD CL = 150 pF ALE ↓ → WR ↓ Delay Time tLW fxx = 15 MHz, CL = 150 pF Data Setup Time to WR ↑ Data Hold Time after WR ↑ fxx = 15 MHz, CL = 150 pF 100 ns 180 ns 100 ns 15 ns tDW 165 ns tWDH 60 ns WR ↑ → ALE ↑ Delay Time tWL 80 ns WR Width Low tWW 215 ns 33 µPD78C14(A) SERIAL OPERATION: Parameter Symbol Test Condition SCK Cycle Time tCYK SCK Input MIN. SCK Input tKKL 800 ns Note 2 400 ns 1.6 µs Note 1 335 ns Note 2 160 ns 700 ns Note 1 335 ns Note 2 160 ns SCK Output SCK Width High SCK Input tKKH UNIT Note 1 SCK Output SCK Width Low MAX. SCK Output 700 ns RxD Setup Time to SCK ↑ tRXK Note 1 80 ns RxD Hold Time After SCK ↑ tKRX Note 1 80 SCK ↓ → TxD Delay Time tKTX Note 1 Notes 1. 2. ns 210 ns In case of x1 clock rate in asynchronous mode, synchronous mode, or I/O interface mode. In case of x16 or x64 clock rate in asynchronous mode. Remark The numeric values in the table apply when fXX = 15 MHz, CL = 150 pF. ZERO-CROSS CHARACTERISTICS: Parameter Symbol Test Condition MIN. MAX. UNIT Zero-Cross Detection Input VZX AC Coupled 1 1.8 VACP–P Zero-Cross Accuracy AZX 60-Hz Sine Wave ±135 mV Zero-Cross Detection Input Frequency fZX 1 kHz 0.05 OTHER OPERATION: Parameter Symbol Test Condition MIN. MAX. UNIT TI Width High, Low tTIH, tTIL 6 tCYC CI Width High, Low tCI1H, tCI1L Event Counter Mode 6 tCYC tCI2H, tCI2L Pulse Width Measurement Mode 48 tCYC NMI Width High, Low tNIH, tNIL 10 µs INT1 Width High, Low tI1H, tI1L 36 tCYC INT2 Width High, Low tI2H, tI2L 36 tCYC AN7-4 Width High, Low tANH, tANL 36 tCYC RESET Width High, Low tRSH, tRSL 10 µs 34 µPD78C14(A) A/D CONVERTER CHARACTERISTICS: (TA = –40 to +85 ˚C, VDD = +5.0 V ± 10 %, VSS = AVSS = 0 V, VDD – 0.5 V ≤ AVDD ≤ VDD, 3.4 V ≤ VAREF ≤ AVDD) Parameter Symbol Test Condition MIN. Resolution TYP. MAX. 8 Absolute Accuracy Note UNIT Bits 3.4 V ≤ VAREF ≤ AVDD, 66 ns ≤ tCYC ≤ 170 ns ±0.8 % FSR 4.0 V ≤ VAREF ≤ AVDD, 66 ns ≤ tCYC ≤ 170 ns ±0.6 % FSR TA = –10 to +70 ˚C, ±0.4 % FSR 4.0 V ≤ VAREF ≤ AVDD, 66 ns ≤ tCYC ≤ 170 ns Conversion time Sampling Time Analog Input Voltage tCONV tSAMP VIAN 66 ns ≤ tCYC ≤ 110 ns 576 tCYC 110 ns ≤ tCYC ≤ 170 ns 432 tCYC 66 ns ≤ tCYC ≤ 110 ns 96 tCYC 110 ns ≤ tCYC ≤ 170 ns 72 tCYC AN7-0 (include unused pins) 0 Analog Input Impedance RAN Reference Voltage VAREF VAREF Current IAREF1 Operation mode IAREF2 AIDD1 AIDD2 AVDD Supply Current VAREF 50 3.4 V MΩ AVDD V 1.5 3.0 mA STOP mode 0.7 1.5 mA Operation mode, fxx = 15 MHz 0.5 1.3 mA STOP mode 10 20 µA Note Except quantization error (i.e. ±1/2 LSB). AC TIMING TEST POINTS VDD – 1.0 V 0.45 V 2.2 V 0.8 V Test points 2.2 V 0.8 V 35 * µPD78C14(A) AC CHARACTERISTIC CALCULATING EXPRESSION depending on tCYC Symbol Calculating Expression MIN./MAX. UNIT tAL 2T – 100 MIN. ns tLA T – 30 MIN. ns tAR 3T – 100 MIN. ns tAD 7T – 220 MAX. ns tLDR 5T – 200 MAX. ns tRD 4T – 150 MAX. ns tLR T – 50 MIN. ns tRL 2T – 50 MIN. ns tRR 4T – 50 (Data Read) MIN. ns 7T – 50 (OP Code Fetch) tLL 2T – 40 MIN. ns tML 2T – 100 MIN. ns tLM T – 30 MIN. ns tIL 2T – 100 MIN. ns tLI T – 30 MIN. ns tAW 3T – 100 MIN. ns tLDW T + 110 MAX. ns tLW T – 50 MIN. ns tDW 4T – 100 MIN. ns tWDH 2T – 70 MIN. ns tWL 2T – 50 MIN. ns tWW 4T – 50 MIN. ns MIN. ns MIN. ns MIN. ns 6T (SCK Input) tCYK Note 1 /12T (SCK Input) Note 2 24T (SCK Output) 2.5T + 5 (SCK Input) Note 1 /5T + 5 (SCK Input) Note 2 tKKL 12T – 100 (SCK Output) 2.5T + 5 (SCK Input) Note 1 /5T + 5 (SCK Input) Note 2 tKKH 12T – 100 (SCK Output) Notes 1. 2. Remarks 36 In case of x16 or x64 clock rate in asynchronous mode. In case of x1 clock rate in asynchronous mode, synchronous mode, or I/O interface mode. 1. T = tCYC = 1/fxx 2. Symbols that cannot be found in this table do not depend on the oscillation frequency (fxx). µPD78C14(A) Timing Waveform Read Operation tCYC X1 address (high-order) PF7-0 tAD PD7-0 address (low-order) tLL read data tLDR tLA tRDH tRL tAFR ALE tAL tRD tRR RD tLR tAR MODE1 Note 1 (M1) tML tLM tIL tLI MODE0 (IO/M) Note 2 Write Operation X1 PF7-0 address (high-order) tLDW PD7-0 write data address (low-order) tLL tDW tLA tWDH tWD ALE tWW tAL tWL WR tLW tAW tIL tLI MODE0 (IO/M) Note 3 Notes 1. M1 signal is output to MODE1 pin at first OP code fetch cycle if MODE1 pin is pulled up. 2. IO/M signal is output to MODE0 pin at sr to sr2 register read cycle if MODE0 pin is pulled up. 3. IO/M signal is output to MODE0 pin at sr to sr2 register write cycle if MODE0 pin is pulled up. 37 µPD78C14(A) Serial Operation tCYK tKKL tKKH SCK tKTX TXD RXD tRXK tKRX Timer Input Timing tTIH tTIL TI Timer/Event Counter Input Timing Event Counter Mode tCI1H tCI1L tCI2H tCI2L CI Pulse Width Measurement Mode CI 38 µPD78C14(A) Interrupt Input Timing tNIH tNIL tI1L tI1H tI2H tI2L NMI INT1 INT2 RESET Input Timing tRSH tRSL 0.8VDD RESET 0.2VDD External Clock Timing tφH 0.8VDD X1 0.8 V tf tr tφL tCYC 39 µPD78C14(A) Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85 ˚C) Parameter * Symbol Data retention power supply voltage VDDDR Data retention power supply current IDDDR VDD rise, fall time tRVD, tFVD Test Condition MIN. TYP. 2.5 VDDDR = 2.5 V VDDDR = 5 V ± 10 % MAX. UNIT 5.5 V 1 15 µA 10 50 µA µs 200 STOP setup time to VDD tSSTVD 12T + 0.5 µs STOP hold time to VDD tHVDST 12TNote + 0.5 µs Note Note T = tCYC = 1/fxx Data Retention Timing 90 % VDD 10 % tFVD tSSTVD VDDDR tRVD tHVDST VIH2 STOP VIL2 40 µPD78C14(A) 6. CHARACTERISTIC CURVES (reference value) IDD1, IDD2 vs VDD (TA = 25 ˚C, f XX = 15 MHz) 30 25 VDD Supply Current IDD1 , IDD2 [mA] IDD1 (TYP.) 20 15 10 IDD2 (TYP.) 5 0 0 5.0 5.5 Supply Voltage VDD [V] 6.0 IDD1, IDD2 vs fXX (TA = 25 ˚C, VDD = 5 V) 30 VDD Supply Current IDD1, IDD2 [mA] 4.5 IDD1(TYP.) 20 10 IDD2(TYP.) 0 0 5 10 Oscillation Frequency fXX [MHz] 15 41 µPD78C14(A) IOL vs VOL (TA = 25 ˚C, VDD = 5 V) Output Low Current IOL [mA] 2.5 TYP. 2.0 1.5 1.0 0.5 0 0 0.1 0.2 0.3 Output Low Voltage VOL [V] 0.4 0.5 IOH vs VOH (TA = 25 ˚C, VDD = 5 V) Output High Current IOH [mA] – 1.5 TYP. – 1.0 – 0.5 0 0 42 0.5 0.1 0.2 0.3 0.4 Supply Voltage – Output High Voltage VDD – V OH [V] µPD78C14(A) IDDDR vs VDDDR (TA = 25 ˚C) Data Retention Supply Current IDDDR [ µ A] 10 8 TYP. 6 4 2 0 0 2 3 4 5 Data Retention Supply Voltage VDDDR [V] 6 43 µPD78C14(A) 7. PACKAGE DRAWINGS 64 PIN PLASTIC QUIP A 33 1 32 C 64 W P S X M H I M J N K P64GQ-100-36 NOTE Each lead centerline is located within 0.25 mm (0.010 inch) of its true position (T.P.) at maximum material condition. 44 ITEM MILLIMETERS A 41.5 +0.3 –0.2 INCHES C 16.5 0.650 H – 0.50 +0.10 0.020 +0.004 –0.005 I 0.25 0.010 J 2.54 (T.P.) 0.100 (T.P.) 1.634+0.012 –0.008 K 1.27 (T.P.) 0.050 (T.P.) M 1.1 +0.25 –0.15 0.043+0.011 –0.006 N +0.10 0.25 –0.05 0.010 +0.004 –0.003 P 4.0 – S 3.6 – 0.142 –0.005 W – 24.13 +1.05 0.950 – X – 19.05 +1.05 0.750 – +0.3 +0.1 0.157+0.013 –0.012 +0.004 +0.042 +0.042 µPD78C14(A) 64 PIN PLASTIC QFP (14×20) A B 33 32 64 1 20 19 detail of lead end F Q 5°±5° D C S 51 52 G H I M J M P K N L P64GF-100-3B8,3BE,3BR-1 NOTE Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 23.6 ± 0.4 0.929 ± 0.016 B 20.0 ± 0.2 0.795+0.009 –0.008 C 14.0 ± 0.2 0.551+0.009 –0.008 D 17.6 ± 0.4 0.693 ± 0.016 F 1.0 0.039 G 1.0 0.039 H 0.40 ± 0.10 0.016 +0.004 –0.005 I 0.20 0.008 J 1.0 (T.P.) 0.039 (T.P.) K 1.8 ± 0.2 0.071–0.009 L 0.8 ± 0.2 0.031+0.009 –0.008 M 0.15+0.10 –0.05 0.006+0.004 –0.003 N 0.12 0.005 P 2.7 0.106 Q 0.1 ± 0.1 0.004 ± 0.004 S 3.0 MAX. 0.119 MAX. +0.008 45 µPD78C14(A) 68 PIN PLASTIC QFJ ( 950 mil) A B C D F E H G U J 68 1 I T Q K M N M P P68L-50A1-2 NOTE Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition. 46 ITEM MILLIMETERS INCHES A 25.2 ± 0.2 0.992 ± 0.008 B 24.20 0.953 C 24.20 0.953 D 25.2 ± 0.2 0.992 ± 0.008 E 1.94 ± 0.15 0.076+0.007 –0.006 F 0.6 0.024 G 4.4 ± 0.2 0.173+0.009 –0.008 H 2.8 ± 0.2 0.110+0.009 –0.008 I 0.9 MIN. 0.035 MIN. J 3.4 0.134 K 1.27 (T.P.) 0.050 (T.P.) M 0.40 ± 1.0 0.016+0.004 –0.005 N 0.12 0.005 P 23.12 ± 0.20 0.910+0.009 –0.008 Q 0.15 0.006 T R 0.8 R 0.031 U 0.20 +0.10 –0.05 0.008+0.004 –0.002 µPD78C14(A) * 8. RECOMMENDED SOLDERING CONDITIONS Solder the µPD78C14(A) under the recommended conditions listed below. For details of the recommended conditions for soldering, please refer to Semiconductor Device Mounting Technology Manual (IEI-1207). Consult an NEC sales representative about soldering methods and soldering conditions other than listed below. Table 8-1. Soldering Conditions for Surface Mount Type (1) µPD78C14GF(A)-xxx-3BE: 64-pin plastic QFP (14 x 20 mm) Soldering Method Soldering Conditions Recommended Condition Symbol Infrared reflow Package peak temperature: 235 ˚C, Time: Within 30 s (at 210 ˚C or higher), IR35-00-2 Count: Twice or less <Attention> (1) Perform the second reflow when the device temperature has come down to the room temperature from the heating from the first reflow. (2) Do not wash the soldered portion with the flux following the first reflow. VPS Package peak temperature: 215 ˚C, Time: Within 40 s (at 200 ˚C or higher), VP15-00-2 Count: Twice or less <Attention> (1) Perform the second reflow when the device temperature has come down to the room temperature from the heating from the first reflow. (2) Do not wash the soldered portion with the flux following the first reflow. Wave soldering Soldering bath temperature: 260 ˚C or less, Time: Within 10 s, WS60-00-1 Count: Once, Preheating temperature: 120 ˚C MAX. (package surface temperature) Partial heating Pin temperature: 300 ˚C or less, Time: Within 3 s (per pin row) — Caution Do not use several soldering methods together (except partial heating). (2) µPD78C14L (A)-xxx: 68-pin plastic QFJ (950 x 950 mil) Soldering Method Soldering Conditions Recommended Condition Symbol Infrared reflow Package peak temperature: 230 ˚C, Time: Within 30 s (at 210 ˚C or higher), Count: Once, Maximum number of days: Seven Note IR30-107-1 (after seven days, prebaking at 125 ˚C is required for 10 hours) VPS Package peak temperature: 215 ˚C, Time: Within 40 s (at 200 ˚C or higher), VP15-107-1 Count: Once, Maximum number of days: Seven Note (after seven days, prebaking at 125 ˚C is required for 10 hours) Partial heating Note Pin temperature: 300 ˚C or less, Time: Within 3 s (per pin row) — Number of storage days under the storage conditions of 25 ˚C and 65 % RH or less after the dry pack is opened. Caution Do not use several soldering methods together (except partial heating). 47 µPD78C14(A) Table 8-2. Soldering Conditions for Hole-Through Type µPD78C14G(A)-xxx-36: 64-pin plastic QUIP Soldering Method Soldering Conditions Wave Soldering (pin part only) Soldering bath temperature: 260 ˚C or less, Time: Within 10 s Partial heating Pin temperature: 300 ˚C or less, Time: Within 3 s (per pin row) Caution Apply wave soldering only to pins and be careful not to bring solder directly in contact with the package. 48 µPD78C14(A) * APPENDIX DEVELOPMENT TOOLS The following development tools are provided for system development using the µPD78C14(A): Language processor 87AD series This relocatable assembler is a program which converts a program written in mnemonics relocatable assembler into object code that can be executed by microcontroller. (RA87) In addition, it contains the automatic function of symbol table generation and branch instruction optimization processing. Host machine PC-9800 series IBM PC/ATTM Ordering code OS Distribution media (product name) MS-DOSTM 3.5-inch 2HD µS5A13RA87 (Ver. 2.11 to Ver. 5.00A Note) 5-inch 2HD µS5A10RA87 PC DOSTM 3.5-inch 2HC µS7B13RA87 (Ver. 3.1) 5-inch 2HC µS7B10RA87 PROM write tools Hard- PG-1500 ware PG-1500 is a PROM programmer which enables you to program single chip microcontrollers containing PROM by stand-alone or host machine operation by connecting an attached board and optional programmer adapter to PG-1500. It also enables you to program typical PROM devices of 256 Kbits to 4 Mbits. PA-78CP14GQ PROM programmer adapter for the µPD78CP14(A) and connected to PG-1500 for use. Soft- PG-1500 PG-1500 and a host machine are connected by a serial or parallel interface and PG-1500 is ware controller controlled on the host machine. Host machine Ordering code OS PC-9800 series IBM PC/AT Distribution media (product name) MS-DOS 3.5-inch 2HD µS5A13PG1500 (Ver. 2.11 to Ver. 5.00A Note) 5-inch 2HD µS5A10PG1500 PC DOS 3.5-inch 2HD µS7B13PG1500 (Ver. 3.1) 5-inch 2HC µS7B10PG1500 Note Ver. 5.00/500A have task swap function. However, this function is not supported by this software. Remark Operations of the assembler and PG-1500 controller are guaranteed only on the host machines under the operating systems listed above. 49 µPD78C14(A) Debugging tools In-circuit emulator (IE-78C11-M) is provided for µPD78C14(A) program debugging tools. The system configuration is listed below: Hard- IE-78C11-M ware IE-78C11-M is an in-circuit emulator for the 87AD series. IE-78C11-M can be connected to a host machine efficient debugging. Soft- IE-78C11-M IE-78C11-M and a host machine are connected by RS-232-C and IE-78C11-M is controlled ware control program on the host machine. (IE controller) Host machine PC-9800 series IBM PC/AT Ordering code OS Distribution media (product name) MS-DOS 3.5-inch 2HD µS5A13IE78C11 (Ver. 2.11 to Ver. 3.30D) 5-inch 2HD µS5A10IE78C11 PC DOS 5-inch 2HC µS7B10IE78C11 (Ver. 3.1) Remark 50 Operation of IE controller is guaranteed only on the host machine under the operating systems listed above. µPD78C14(A) NOTES FOR CMOS DEVICES (1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. (2) HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. (3) STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. MS-DOS is a trademark of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation. 51 µPD78C14(A) The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: “Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on a customer designated “quality assurance program“ for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance. Anti-radioactive design is not implemented in this product. M4 94.11 52