VO3120 Vishay Semiconductors 2.5 A Output Current IGBT and MOSFET Driver FEATURES NC 1 8 VCC A 2 7 VO C 3 6 VO NC 4 5 VEE Shield • 2.5 A minimum peak output current • 25 kV/μs minimum common mode rejection (CMR) at VCM = 1500 V • ICC = 2.5 mA maximum supply current • Under voltage lock-out (UVLO) with hysteresis • Wide operating VCC range: 15 V to 32 V • 0.2 μs maximum pulse width distortion • Industrial temperature range: - 40 °C to 110 °C • 0.5 V maximum low level output voltage (VOL) • Reinforced insulation rated per DIN EN 60747-5-2 • Compliant to RoHS Directive 2002/95/EC 20530_1 V D E 19813 DESCRIPTION APPLICATIONS The VO3120 consists of a LED optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by this optocoupler makes it ideally suited for directly driving IGBTs with ratings up to 800 V/50 A. For IGBTs with higher ratings, the VO3120 can be used to drive a discrete power stage which drives the IGBT gate. • • • • • • Isolated IGBT/MOSFET gate driver AC and brushless DC motor drives Induction stove top Industrial inverters Switch mode power supplies (SMPS) Uninterruptible power supplies (UPS) AGENCY APPROVALS • UL - file no. E52744 system code H, double protection • cUL - file no. E52744, equivalent to CSA bulletin 5A • DIN EN 60747-5-2 (VDE 0884) and reinforced insulation rating available with option 1 ORDERING INFORMATION Option 7 DIP-8 V O 3 1 2 0 - PART NUMBER X 0 # # PACKAGE OPTION PACKAGE T TAPE AND REEL 7.62 mm > 0.7 mm UL, cUL, VDE DIP-8, tubes VO3120 DIP-8, tubes VO3120-X001 SMD-8, option 7, tape and reel VO3120-X007T TRUTH TABLE LED VCC - VEE “POSITIVE GOING” (TURN ON) VCC - VEE “NEGATIVE GOING” (TURN OFF) VO Off 0 V to 32 V 0 V to 32 V Low On 0 V to 11 V 0 V to 9.5 V Low On 11 V to 13.5 V 9.5 V to 12 V Transition On 13.5 V to 32 V 12 V to 32 V High Document Number: 81314 Rev. 1.3, 15-Mar-11 For technical questions, contact: [email protected] www.vishay.com 1 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VO3120 Vishay Semiconductors 2.5 A Output Current IGBT and MOSFET Driver ABSOLUTE MAXIMUM RATINGS (Tamb = 25 °C, unless otherwise specified) PARAMETER TEST CONDITION SYMBOL VALUE UNIT IF 25 mA < 1 μs pulse width, 300 pps IF(TRAN) 1 A VR 5 V Pdiss 45 mW High peak output current (1) IOH(PEAK) 2.5 A Low peak output current (1) IOL(PEAK) 2.5 A Supply voltage (VCC - VEE) 0 to + 35 V Output voltage VO(PEAK) 0 to + VCC V Pdiss 250 mW VISO 5300 VRMS Storage temperature range TS - 55 to + 125 °C Ambient operating temperature range TA - 40 to + 110 °C Ptot 295 mW 260 °C INPUT Input forward current Peak transient input current Reverse input voltage Output power dissipation OUTPUT Output power dissipation OPTOCOUPLER Isolation test voltage (between emitter and detector) t=1s Total power dissipation Lead solder temperature (2) For 10 s, 1.6 mm below seating plane Notes • Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability. (1) Maximum pulse width = 10 μs, maximum duty cycle = 0.2 %. This value is intended to allow for component tolerances for designs with IO peak minimum = 2.5 A. See applications section for additional details on limiting IOH peak. (2) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP). RECOMMENDED OPERATING CONDITION PARAMETER SYMBOL MIN. MAX. UNIT Power supply voltage VCC - VEE 15 32 V Input LED current (on) IF 7 16 mA VF(OFF) -3 0.8 V Tamb - 40 + 110 °C Input voltage (off) Operating temperature www.vishay.com 2 For technical questions, contact: [email protected] Document Number: 81314 Rev. 1.3, 15-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VO3120 2.5 A Output Current IGBT and MOSFET Driver Vishay Semiconductors THERMAL CHARACTERISTICS PARAMETER SYMBOL VALUE UNIT LED power dissipation Pdiss 45 mW Output power dissipation Pdiss 250 mW Total power dissipation Ptot 285 mW Maximum LED junction temperature Tjmax. 125 °C Maximum output die junction temperature Tjmax. 125 °C Thermal resistance, junction emitter to board JEB 169 °C/W Thermal resistance, junction emitter to case JEC 192 °C/W Thermal resistance, junction detector to board Thermal resistance, junction detector to case Thermal resistance, junction emitter to junction detector JDB 82 °C/W JDC 80 °C/W JED 200 °C/W Thermal resistance, case to ambient CA 2645 °C/W TA θCA Package TC θEC θDC θDE TJD TJE θDB θEB TB θBA 19996 TA Note • The thermal characteristics table above were measured at 25 °C and the thermal model is represented in the thermal network below. Each resistance value given in this model can be used to calculate the temperatures at each node for a given operating condition. The thermal resistance from board to ambient will be dependent on the type of PCB, layout and thickness of copper traces. For a detailed explanation of the thermal model, please reference Vishay's Thermal Characteristics of Optocouplers application note. ELECTRICAL CHARACTERISTICS PARAMETER TEST CONDITION SYMBOL MIN. VO = (VCC - 4 V) IOH (1) 0.5 A VO = (VCC - 15 V) IOH (2) 2.5 A VO = (VEE + 2.5 V) IOL (1) 0.5 A VO = (VEE + 15 V) IOL (2) 2.5 A High level output voltage IO = - 100 mA VOH (3) VCC - 4 Low level output voltage IO = 100 mA VOL High level supply current Output open, IF = 7 mA to 16 mA Low level supply current Output open, VF = - 3 V to + 0.8 V Threshold input current low to high IO = 0 mA, VO > 5 V High level output current Low level output current Threshold input voltage high to low TYP. MAX. UNIT V 0.2 0.5 V ICCH 2.5 mA ICCL 2.5 mA 5 mA 1.6 V IFLH VFHL 0.8 1 V Input forward voltage IF = 10 mA VF Temperature coefficient of forward voltage IF = 10 mA VF/TA Input reverse breakdown voltage IR = 10 μA BVR f = 1 MHz, VF = 0 V CIN VO 5 V VUVLO + 11 13.5 V IF = 10 mA VUVLO - 9.5 12 V Input capacitance UVLO threshold UVLO hysteresis - 1.4 mV/°C 60 pF 5 UVLOHYS V 1.6 V Notes • Minimum and maximum values were tested over recommended operating conditions (TA = - 40 °C to 110 °C, IF(ON) = 7 mA to 16 mA, VF(OFF) = - 3 V to 0.8 V, VCC = 15 V to 32 V, VEE = ground) unless otherwise specified. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements. All typical values were measured at Tamb = 25 °C and with VCC - VEE = 32 V. (1) Maximum pulse width = 50 μs, maximum duty cycle = 0.5 %. (2) Maximum pulse width = 10 μs, maximum duty cycle = 0.2 %. This value is intended to allow for component tolerances for designs with IO peak minimum = 2.5 A. (3) In this test V OH is measured with a dc load current. When driving capacitive loads VOH will approach VCC as IOH approaches zero A. Maximum pulse width = 1 ms, maximum duty cycle = 20 %. Document Number: 81314 Rev. 1.3, 15-Mar-11 For technical questions, contact: [email protected] www.vishay.com 3 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VO3120 2.5 A Output Current IGBT and MOSFET Driver Vishay Semiconductors TEST CIRCUITS 8 1 1 8 2 7 0.1 µF 0.1 µF + 7 2 4V IF = 7 mA to 16 mA + + VCC = 15 V to 32 V 6 3 100 mA 3 6 4 5 VOL IOH 5 4 20973-2 VCC = 15 V to 32 V 20974-1 Fig. 1 - IOH Test Circuit Fig. 4 - VOL Test Circuit 8 1 0.1 µF 2 7 3 6 4 5 1 8 2 7 3 6 4 5 0.1 µF I OL + 2.5 V VCC = 15 V to 32 V IF + + VCC = 15 V to 32 V + VCC VO > 5 V 20976-1 20975-1 Fig. 2 - IOL Test Circuit Fig. 5 - IFLH Test Circuit 8 1 8 1 0.1 µF 0.1 µF 2 VOH 7 2 + VCC = 15 V to 32 V I F = 7 mA to 16 mA 3 7 IF = 10 mA VO > 5 V 6 3 6 4 5 100 mA 5 4 20978 20977-1 Fig. 3 - VOH Test Circuit Fig. 6 - UVLO Test Circuit SWITCHING CHARACTERISTICS PARAMETER TEST CONDITION SYMBOL MIN. Propagation delay time to logic low output (1) Rg = 10 , Cg = 10 nF, f = 10 kHz, duty cycle = 50 % tPHL Propagation delay time to logic high output (1) Rg = 10 , Cg = 10 nF, f = 10 kHz, duty cycle = 50 % tPLH Pulse width distortion (2) Rg = 10 , Cg = 10 nF, f = 10 kHz, duty cycle = 50 % PWD Rise time Rg = 10 , Cg = 10 nF, f = 10 kHz, duty cycle = 50 % tr www.vishay.com 4 MAX. UNIT 0.1 0.4 μs 0.1 0.4 μs 0.2 μs For technical questions, contact: [email protected] TYP. 0.1 μs Document Number: 81314 Rev. 1.3, 15-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VO3120 2.5 A Output Current IGBT and MOSFET Driver Vishay Semiconductors SWITCHING CHARACTERISTICS PARAMETER Fall time TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT Rg = 10 , Cg = 10 nF, f = 10 kHz, duty cycle = 50 % tf 0.1 μs UVLO turn on delay VO > 5 V, IF = 10 mA TUVLO-ON 0.8 μs UVLO turn off delay VO < 5 V, IF = 10 mA TUVLO-OFF 0.6 μs Notes (1) This load condition approximates the gate load of a 1200 V/75 A IGBT. (2) Pulse width distortion (PWD) is defined as |t PHL-tPLH| for any given device. (3) The difference between t PHL and tPLH between any two VO3120 parts under the same test condition. 8 1 0.1 µF I F = 7 mA to 16 mA + 500 Ω 10 kHz 50 % Duty Cycle 2 IF + 7 VCC = 15 V to 32 V tf tr VO 3 6 4 5 90 % 10 Ω 50 % 10 nF 10 % OUT t PHL t PLH 20979-1 Fig. 7 - tPLH, tPHL, tr and tf Test Circuit and Waveforms COMMON MODE TRANSIENT IMMUNITY PARAMETER TEST CONDITION SYMBOL MIN. TYP. Common mode transient immunity at logic high output (1)(2) TA = 25 °C, IF = 10 mA to 16 mA, VCM = 1500 V, VCC = 32 V MAX. UNIT |CMH| 25 35 kV/μs Common mode transient immunity at logic low output (1)(3) TA = 25 °C, VCM = 1500 V, VCC = 32 V, VF = 0 V |CML| 25 35 kV/μs Notes (1) Pins 1 and 4 need to be connected to LED common. (2) Common mode transient immunity in the high state is the maximum tolerable |dV CM/dt| of the common mode pulse, VCM, to assure that the output will remain in the high state (i.e., VO > 15 V). (3) Common mode transient immunity in a low state is the maximum tolerable |dV CM/dt| of the common mode pulse, VCM, to assure that the output will remain in a low state (i.e., VO < 1 V). 5V dt 0.1 µF A R dV 8 1 IF VO 3 6 VCM Dt 0V 7 2 + = Dt + VCC = 32 V VO VOH Switch at A: IF = 10 mA 5 4 VO VOL + Switch at B: IF = 0 mA 20980-1 VCM = 1500 V Fig. 8 - CMR Test Circuit and Waveforms Document Number: 81314 Rev. 1.3, 15-Mar-11 For technical questions, contact: [email protected] www.vishay.com 5 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VO3120 2.5 A Output Current IGBT and MOSFET Driver Vishay Semiconductors SAFETY AND INSULATION RATINGS PARAMETER TEST CONDITION SYMBOL MIN. TYP. Climatic classification (according to IEC 68 part 1) MAX. UNIT 40/110/21 Comparative tracking index CTI 175 Peak transient overvoltage VIOTM 8000 399 V Peak insulation voltage VIORM 890 V Safety rating - power output PSO 500 mW Safety rating - input current ISI 300 mA Safety rating - temperature TSI 175 7 °C Creepage distance Standard DIP-8 mm Clearance distance Standard DIP-8 7 mm Creepage distance 400 mil DIP-8 8 mm Clearance distance 400 mil DIP-8 8 mm Note • As per IEC 60747-5-2, §7.4.3.8.1, this optocoupler is reinforced rated and suitable for “safe electrical insulation” only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits. TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified) 0.35 - 0.5 - 1.0 VOL - Output Low Voltage (V) VOH - VCC - High Output Voltage Drop (V) 0.0 IF = 16 mA IOUT = - 100 mA VCC = 32 V VEE = 0 V - 1.5 - 2.0 - 2.5 - 3.0 - 40 - 20 0 20 40 60 IOL - Output Low Current (A) IOH - High Output Current (A) 2 IF = 16 mA Vout = (VCC - 4) V VCC = 15 V VEE = 0 V 0 - 40 - 20 0 20 40 60 80 100 120 Temperature (°C) Fig. 10 - High Output Current vs. Temperature VF = 0.8 V IOUT = 100 mA VCC = 32 V VEE = 0 V 0.10 0.05 3.5 3 www.vishay.com 6 0.15 0 20 40 60 80 100 120 Temperature (°C) Fig. 11 - Output Low Voltage vs. Temperature 4 21746 0.20 21748 Fig. 9 - High Output Voltage Drop vs. Temperature 1 0.25 0.00 - 40 - 20 80 100 120 Temperature (°C) 21745 0.30 2.5 IF = 0 mA Vout = 2.5 V VCC = 15 V VEE = 0 V 1.5 0.5 - 40 - 20 0 20 40 60 80 100 Temperature (°C) 21751 Fig. 12 - Output Low Current vs. Temperature For technical questions, contact: [email protected] Document Number: 81314 Rev. 1.3, 15-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VO3120 2.5 A Output Current IGBT and MOSFET Driver 2.5 IF = 0 mA VCC = 15 V VEE = 0 V 4 110 °C ICC - Supply Current (mA) VOL - Output Low Voltage (V) 5 3 25 °C 2 - 40 °C 1 0 0.5 1.0 1.5 2.0 2.5 2.0 1.5 ICCH 1.0 ICCL 0.5 15 3.0 IOL - Output Low Current (A) 21747 20 25 30 35 VCC - Supply Voltage (V) 21711 Fig. 13 - Output Low Voltage vs. Output Low Current Fig. 16 - Supply Current vs. Supply Voltage 0 5.0 110 °C - 40 °C -4 25 °C -6 -8 IF = 16 mA VCC = 15 V VEE = 0 V - 10 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 - 12 0 VCC = 32 V VEE = 0 V Output = open 4.5 -2 IFLH - Low to High Current Threshold (mA) (VOH - VCC) Output High Voltage Drop (V) IF = 10 mA for ICCH IF = 0 mA for ICCL TA = 25 °C VEE = 0 V 0.0 0.0 21749 Vishay Semiconductors 0.5 1 1.5 2 IOH - Output High Current (A) 0.0 - 40 - 20 2.5 Fig. 14 - Output High Voltage Drop vs. Output High Current 0 20 40 60 80 100 120 Temperature (°C) 21750 Fig. 17 - Low to High Current Threshold vs. Temperature 35 2.5 2.0 1.5 ICCH 1.0 0.5 IF = 16 mA for ICCH IF = 0 mA for ICCL VCC = 32 V VEE = 0 V ICCL VO - Output Voltage (V) ICC - Supply Current (mA) TA = 25 °C 30 25 20 15 10 0 0 - 40 - 20 21754 5 0 20 40 60 80 100 120 Temperature (°C) Fig. 15 - Supply Current vs. Temperature Document Number: 81314 Rev. 1.3, 15-Mar-11 0 21752 1 2 3 4 5 IF - Forward LED Current (mA) Fig. 18 - Transfer Characteristics For technical questions, contact: [email protected] www.vishay.com 7 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VO3120 2.5 A Output Current IGBT and MOSFET Driver Vishay Semiconductors 500 IF = 10 mA, TA = 25 °C Rg = 10 Ω, Cg = 10 nF Duty cycle = 50 % f = 10 kHz 400 tp - Propagation Delay (ns) tp - Propagation Delay (ns) 500 300 tPHL 200 tPLH 400 300 tPLH 200 tPHL 100 0 100 15 20 25 30 0 35 VCC - Supply Voltage (V) 21714 10 20 30 40 50 Rg - Series Load Resistance (Ω) 21717 Fig. 19 - Propagation Delay vs. Supply Voltage Fig. 22 - Propagation Delay vs. Series Load Resistance 500 500 VCC = 32 V, VEE = 0 V IF = 10 mA Rg = 10 Ω, Cg = 10 nF Duty cycle = 50 % f = 10 kHz 400 tp - Propagation Delay (ns) tp - Propagation Delay (ns) VCC = 30 V, VEE = 0 V IF = 10 mA, TA = 25 °C Cg = 10 nF Duty cycle = 50 % f = 10 kHz tPHL 300 200 tPLH 100 0 - 40 400 300 tPLH 200 tPHL 100 0 - 15 10 35 60 85 110 TA - Temperature (°C) 21753 VCC = 30 V, VEE = 0 V IF = 10 mA, TA = 25 °C Rg = 10 Ω Duty cycle = 50 % f = 10 kHz 0 21718 Fig. 20 - Propagation Delay vs. Temperature 20 40 60 80 100 Cg - Series Load Capacitance (nF) Fig. 23 - Propagation Delay vs. Series Load Capacitance tp - Propagation Delay (ns) 500 VCC = 30 V, VEE = 0 V TA = 25 °C Rg = 10 Ω, Cg = 10 nF Duty cycle = 50 % f = 10 kHz 400 300 tPHL 200 tPLH 100 0 6 21716 8 10 12 14 16 IF - Forward LED Current (mA) Fig. 21 - Propagation Delay vs. Forward LED Current www.vishay.com 8 For technical questions, contact: [email protected] Document Number: 81314 Rev. 1.3, 15-Mar-11 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VO3120 2.5 A Output Current IGBT and MOSFET Driver Vishay Semiconductors PACKAGE DIMENSIONS in millimeters Pin one ID 4 3 2 1 5 6 7 8 6.645 ± 0.165 ISO method A 9.77 ± 0.14 0.95 ± 0.19 7.62 typ. 0.79 4° typ. 3.555 ± 0.255 6.095 ± 0.255 1.27 10° 3.045 ± 0.255 0.70 ± 0.19 3° to 9° 0.51 ± 0.05 2.54 typ. 0.25 ± 0.05 i178006 Option 7 7.62 typ. 0.7 4.6 4.1 8 min. 8.4 min. 10.3 max. 18450-4 PACKAGE MARKING VO3120 X007 V YWW H 68 21764-42 Notes • The VDE logo is only marked on option 1 parts. • Tape and reel suffix (T) is not part of the package marking. Document Number: 81314 Rev. 1.3, 15-Mar-11 For technical questions, contact: [email protected] www.vishay.com 9 This datasheet is subject to change without notice. THE PRODUCT DESCRIBED HEREIN AND THIS DATASHEET ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Legal Disclaimer Notice Vishay Disclaimer ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 11-Mar-11 www.vishay.com 1