Series 2 Channel Voltage Detectors ◆CMOS Low Power Consumption ■Applications ◆2 Voltage Detectors Built-in ●Memory battery back-up circuitry ◆Detect Voltage Range 2 ●Microprocessor reset circuits ◆Detect Voltage Accuracy : ± 2% : 1.5V ~ 5.0V ◆SOT-25 Package ●Power failure detection ●System power-on reset circuits ●System battery life monitors and re-charge voltage monitors ●Delay circuitry ■General Description ■Features The XC612 series consist of 2 voltage detectors, in 1 mini-molded, SOT25 package. The series provides accuracy and low power consumption through CMOS processing and laser trimming and consists of a highly accurate voltage reference source, 2 comparators, hysteresis and output driver circuits. The input (VIN1) for voltage detector 1 (VD1) dually functions as the power Highly accurate Low-power consumption : Set-up voltage accuracy ±2% : Typ.2.0µA (VIN1=VIN2=2.0V, quiescent state) Detect voltage : 1.5V ~ 5.0V programmable in 0.1V steps. Detector’s voltages can be set-up independently Conditionaly, XC612N : VDET1>VDET2 XC612D, XC612E : VDET1≥VDET2, supply pin for both detector 1 (VD1) and detector 2 (VD2). VDET1<VDET2 Operating Voltage Range : 1.0V ~ 10.0V Temperature characteristics : ±100ppm/°C Output configuration : N-channel open drain Small package : SOT-25 (150mW) mini-mold * CMOS Output is under development ■Typical Application Circuit VIN1 VIN2 R ■Typical Performance Characteristic SUPPLY CURRENT vs. INPUT VOLTAGE XC612N3632 VDET1 VDET2 VSS R=100kΩ Supply Current: Iss (µA) VIN VDET1:CMOS, VDET2:N-ch Open drain (VIN1=VIN2) 6.0 5.0 4.0 25℃ Ta=80℃ 3.0 2.0 -30℃ 1.0 0 0 2 4 6 8 10 Input Voltage: VIN1 (V) 169 XC612 Series ■Pin Configuration VDET2 5 1 VIN2 4 2 PIN NUMBER PIN NAME FUNCTION 1 VDET1 Voltage Detector 1 output 2 VIN1 Detector 1 input, Power Supply. 3 3 VSS Ground VSS 4 VIN2 Voltage Detector 2 Input SOT-25 (TOP VIEW) 5 VDET2 Voltage Detector 2 Output VDET1 VIN1 2 ■Pin Assignment ■Product Classification ●Selection Guide Type VDET1 VDET2 XC612N N-ch Open drain N-ch Open drain XC612D N-ch Open drain CMOS XC612E CMOS N-ch Open drain ●Ordering Information XC612 x x x x x x x ↑ ↑ ↑↑↑ a b c de DESIGNATOR a 170 DESCRIPTION Output Configuration: N=N-Channel Open Drain D=VDET1 N-ch Open Drain, VDET2 CMOS E=VDET1 CMOS, VDET2 N-ch Open Drain b Detect Voltage (VDET1) e.g.25=2.5V 38=3.8V c Detect Voltage (VDET2) e.g.33=3.3V 50=5.0V DESIGNATOR DESCRIPTION d Package Type: M=SOT-25 e Device Orientation R=Embossed Tape (Orientation of Device: Right) L=Embossed Tape (Orientation of Device: Left) XC612 Series ■Packaging Information ●SOT-25 +0.1 0.15 -0.05 0.4 +0.1 -0.05 +0.2 -0.1 2 0.2min 1.6 2.8±0.2 0∼0.1 (0.95) 1.1±0.1 1.9±0.2 2.9±0.2 ■Marking ①②③④ SOT-25 (TOP VIEW) q Represents the output configuration DESIGNATOR CONFIGURATION PRODUCT NAME VDET1 VDET2 N N-ch Open drain N-ch Open drain XC612N****M* D N-ch Open drain CMOS XC612D****M* E CMOS N-ch Open drain XC612E****M* we Represents the entry order. r Denotes the production lot number 0 to 9, A to Z repeated. (G.I.J.O.Q.W excepted) 171 XC612 Series ■Block Diagram XC612N Series XC612D Series VIN1 VIN1 VDET1 VDET1 2 VIN2 VIN2 VDET2 VDET2 VSS VSS Vref Vref XC612E Series VIN1 VDET1 VIN2 VDET2 VSS Vref 172 XC612 Series ■Absolute Maximum Ratings Ta=25℃ PARAMETER SYMBOL CONDITIONS UNITS Input Voltage VIN1 VIN1 12 V Input Voltage VIN2 VIN2 12 V Output Voltage VDET1(N-ch Open drain) VVDET1 VSS−0.3∼12 V Output Voltage VDET1(CMOS) VVDET1 VSS−0.3∼VIN1+0.3 V Output Current VDET1 IVDET1 50 mA V Output Voltage VDET2(N-ch Open drain) VVDET2 VSS−0.3∼12 Output Voltage VDET2(CMOS) VVDET2 VSS−0.3∼VIN1+0.3 V Output Current VDET2 IVDET2 50 mA Power Dissipation Pd 150 mW Operating Ambient Temperature Topr −30∼+80 ℃ Storage Temperature Tstg −40∼+125 ℃ 2 173 XC612 Series ■Electrical Characteristics PARAMETER 2 SYMBOL CONDITIONS MIN TYP MAX Detect Voltage VDET1 VDF1 Voltage when VDET1 changes from H to L following a reduction of VIN1 VDF1 x 0.98 VDF1 VDF1 x 1.02 V 1 Detect Voltage VDET2 VDF2 Voltage when VDET2 changes from H to L following a reduction of VIN2 VDF2 x 0.98 VDF2 VDF1 x 1.02 V 1 Hysteresis Range 1 VHYS1 Voltage (VDR1) - VDF1 when VDET1 changes from L to H following an increase of VIN1 VDF1(T) VDF1(T) VDF1(T) x 0.02 x 0.05 x 0.08 V 1 Hysteresis Range 2 VHYS2 Voltage (VDR2) - VDF2 when VDET2 changes from L to H following an increase of VIN2 VDF2(T) VDF2(T) VDF2(T) x 0.02 x 0.05 x 0.08 Supply Current (Input Current VIN1) ISS Input Current VIN2 IIN2 Operating Voltage VIN1 VIN1=1.5V 2.0V 3.0V 4.0V 5.0V VIN1=1.5V 2.0V 3.0V 4.0V 5.0V VDF (T) = 1.5V to 6.0V N-ch Output Current* 1.5 VDS = 0.5V VIN1=1.0V VIN1=2.0V VIN1=3.0V VIN1=4.0V VIN1=5.0V IVDET VDS = -2.1V VIN1=8.0V (CMOS) P-ch 1.35 1.50 1.95 2.40 3.00 0.45 0.50 0.65 0.80 1.00 Temperature Characteristics* ∆VDF ∆Topr • VDF –30: ≤ Topr ≤ 80: Transient Delay Time* (Release Voltage→ Output Conversion) tDLY (VDR→VOUT conversion) 0.3 3.0 5.0 6.0 7.0 3.90 4.50 5.10 5.70 6.30 1.30 1.50 1.70 1.90 2.10 10 2.2 7.7 10.1 11.5 13.0 UNITS CIRCUIT 1 µA 2 µA 2 V - mA 3 -10.0 -2.0 ±100 - ppm/: - 0.2 ms 5 1. VDF1(T), VDF2(T) : User specified detect voltage. 2. Release voltage (VDR) = VDF +VHYS 3. Those parameters marked with an asterisk apply to both VDET1 and VDET2. 4. Input Voltage : please ensure that VIN1 > VIN2 (Input voltage of XC612D and XC612E series : please ensure that VIN1 ≥ VIN2, VIN1< VIN2.) 5. VIN1 pin serve both ISS and power supply pin so that VIN2 operates VIN1 as a power supply source. For normal operation of VIN2, operating voltage higher than the minimum is needed to be applied to power supply pin VIN1. 6. For CMOS output products, high level output voltage which is generated when the transient response is released becomes input voltage of VIN. 174 XC612 Series ■Operating Explanation ●Timing Chart (Pull up voltage =Input voltage VIN1) Input Voltage(VIN1) 6 Release Voltage(VDR1) Detect Voltage(VDF1) Min. Operating Voltage(VMIN) Ground Voltage(VSS) 6 Input Voltage(VIN2) Release Voltage(VDR2) 2 Detect Voltage(VDF2) Min. Operating Voltage(VMIN) Ground Voltage(VSS) Output Voltage(VDET1) 6 Min. Operating Voltage(VMIN) Ground Voltage(VSS) Output Voltage(VDET2) 6 Min. Operating Voltage(VMIN) Ground Voltage(VSS) 1 2 3 4 5 A 条件A 1 2 3 4 5 B 条件B ●Operational Notes (N-ch Open drain) Timing Chart A (VIN1=voltages above release voltage, VIN2=sweep voltage) Because a voltage higher than the minimum operating voltage is applied to the voltage input pin (VIN), ground voltage will be output at the output pin (VDET) during stage 3. (Stages 1, 2, 4, 5 are the same as in B below). Timing Chart B (VIN1=VIN2) q When a voltage greater than the release voltage (VDR) is applied to the voltage input pin (VIN1, VIN2), input voltage (VIN1, VIN2) will gradually fall. When a voltage greater than the detect voltage (VDF) is applied to the voltage input pin (VIN1, VIN2), a state of high impedance will exist at the output pin (VDET1, VDET2), so should the pin be pulled up, voltage will be equal to pull up voltage. w When input voltage (VIN1, VIN2) falls below detect voltage (VDF), output voltage (VDET1, VDET2) will be equal to ground level (VSS). e Should input voltage (VIN1, VIN2) fall below the minimum operational voltage (VMIN), output will become unstable. Should VIN2 fall below VMIN, voltage at the output pin (VDET2) will be equal to ground level (VSS) if the power supply (VIN1) is within the operating voltage range. *In general the output pin is pulled up so output will be equal to pull up voltage. r Should input voltage (VIN1, VIN2) rise above ground voltage (VSS), output voltage (VDET1, VDET2) will equal ground level until the release voltage level (VDR) is reached. t When input voltage (VIN1, VIN2) rises above release voltage, the output pin's (VDET1, VDET2) voltage will be equal to the voltage dependent on pull up. Note : The difference between release voltage (VDR) and detect voltage (VDF) is the Hysteresis Range y. 175 XC612 Series ■Directions for use ●Notes on Use 1. Please use this IC within the specified maximum absolute ratings. 2. Please ensure that input voltage VIN2 is less than VIN1 + 0.3V. (refer to N.B. 1 below) 3. With a resistor connected between the VIN1 pin and the input, oscillation is liable to occur as a result of through current at the time of release. (refer to N.B. 2 below) 4. With a resistor connected between the VIN1 pin and the input, detect and release voltage will rise as a result of the IC's sup- 2 ply current flowing through the VIN1 pin. 5. In order to stabilise the IC's operations, please ensure that the VIN1 pin's input frequency's rise and fall times are more than 5 µ sec/V. 6. Should the power supply voltage VIN1 exceed 6V, voltage detector 2's detect voltage (VDF2) and the release voltage (VDR2) will shift somewhat. 7. For CMOS output products, high level output voltage which is generated when the transient response is released becomes input voltage of VIN. ●N.B. ■N.B. 1. Voltage detector 2's input voltage (VIN2) An input protect diode is connected from input detector 2's input (VIN2) to input detector 1's input. Therefore, should the voltage applied to VIN2 exceed VIN1, current will flow through VIN1 via the diode. (refer to diagram1) 2. Oscillation as a result of through current Since the XC612 series are CMOS ICs, through current will flow when the IC's internal circuit switching operates (during release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through current's resistor (RIN) during release voltage operations. (refer to diagram 2) Since hysteresis exists during detect operations, oscillation is unlikely to occur. IN RIN XC612N Series VIN1 RIN×ISS* voltage drop VIN2 XC612N Series VIN1 VDET1 VIN2 VDET2 VSS ISS* (includes through current) Diagram 1. Voltage detector 2's input voltage VIN2 176 Diagram 2. Through current oscillation XC612 Series ■Test Circuits Circuit 1. VIN1 R 100kΩ * VIN2 VDET1 VIN V VDET2 VDF1,VDF2 VHYS1,VHYS2 V VSS VDF1,VDF2 VHYS1,VHYS2 2 * A resistor is not needed if the product is CMOS output type. Circuit 2. ISS A A VIN1 VIN2 VIN IIN2 VDET1 VDET2 VSS Circuit 3. XC612N Series VIN1 VIN2 VDET1 VIN IVDET A VDET2 VDS VSS XC612D Series VIN1 VIN VIN2 VDS IVDET VDET1 A VDET2 A VSS IVDET VDS 177 XC612 Series XC612E Series VIN1 VIN VIN2 VDS IVDET VDET1 A VDET2 A IVDET VDS VSS 2 Circuit 4. VIN waveform measurement VDR Time VIN1 VIN2 VDET1 * 100kΩ VDET R waveform measurement Time VDET2 VSS 178 tDLY XC612 Series ■Typical Performance Characteristics (1) SUPPLY CURRENT vs. INPUT VOLTAGE XC612N3632 XC612N3632 (VIN1=VIN2) 6.0 4.0 25℃ Input Current: IIN2 (µA) Supply Current: Iss (µA) 5.0 Ta=80℃ 3.0 2.0 -30℃ 1.0 (VIN1=10V) 6.0 5.0 4.0 2 3.0 Ta=80℃ 25℃ 2.0 1.0 -30℃ 0 0 0 2 4 6 8 10 0 2 Input Voltage: VIN1 (V) 4 6 8 10 Input Voltage: VIN2 (V) (2) DETECT & RELEASE VOLTAGE vs. AMBIENT TEMPERATURE XC612N3632 XC612N3632 (VDF1=3.6V) VDR 3.8 3.7 VDF 3.6 3.5 3.4 -40 -20 0 20 40 60 (VDF2=3.2V) 3.5 Detect, Release Voltage : VDF2, VDR2 (V) Detect, Release Voltage : VDF1, VDR1 (V) 3.9 3.4 VDR 3.3 VDF 3.2 3.1 3.0 -40 80 Ambient Temp.: Topr (:) -20 0 20 40 60 80 Ambient Temp.: Topr (:) Note : Unless otherwise stated, pull up resistance = 100kΩ with N-ch open drain output types. (3) OUTPUT VOLTAGE vs. INPUT VOLTAGE XC612N3632 Topr = 80℃ 25℃ -30℃ 4 3 2 1 0 (VDF2=3.2V) 5 Output Voltage: VDET2(V) Output Voltage: VDET1 (V) XC612N3632 (VDF1=3.6V) 5 Topr = 80℃ 25℃ -30℃ 4 3 2 1 0 0 1 2 3 4 Input Voltage: VIN1 (V) 5 0 1 2 3 4 5 Input Voltage: VIN2 (V) 179 XC612 Series (4) N-CH DRIVER OUTPUT CURRENT vs. VDS XC612N3632 XC612N3632 (VDF1=3.6V) VIN =3.5V 40 35 3.0 30 25 2.5V 20 2.0V 15 10 1.5V 5 (VDF2=3.2V) 45 Output Current: IVET2 (mA) 2 Output Current: IVDET1 (mA) 45 0 40 35 VIN =3.0V 30 25 2.5V 20 2.0V 15 10 1.5V 5 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 0.5 1.0 XC612N3632 2.5 3.0 3.5 500 400 0.7V 200 100 (VDF2 =3.2V ) 700 Output Current: IVET2 (μA) Output Current: IVET1 (μA) VIN =0.8V 300 2.0 XC612N3632 (VDF1=3.6V) 700 600 1.5 VDS (V) VDS (V) 0 600 VIN =0.8V 500 400 300 0.7V 200 100 0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 VDS (V) 0.4 0.6 0.8 1.0 VDS (V) (5) N-CH DRIVER OUTPUT CURRENT vs. INPUT VOLTAGE XC612N3632 VDS=0.5V 18 Topr=-30℃ 16 14 25℃ 12 10 8 80℃ 6 4 2 0 VDS=0.5V 18 16 Topr=-30℃ 14 25℃ 12 10 8 6 80℃ 4 2 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Input Voltage: VIN1 (V) 180 (VDF2=3.2V) 20 Output Current: IVDET2 (mA) Output Current: IVET1 (mA) XC612N3632 (VDF1=3.6V) 20 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Input Voltage: VIN2 (V) XC612 Series ■Typical Application Circuits ●Window comparator circuit (Example covers N-channel open drain product's circuits.) VIN VIN VDF1 R VDF2 R VOUT VIN1 VSS VDET1 Time VOUT VIN2 VDET2 2 VSS VSS VSS VSS Time ●Detect voltages above respective established voltages circuit (Example covers N-channel open drain product's circuits.) VDD VIN R R1 VIN1 VDET1 VIN2 VDET2 VOUT VSS R2 VSS VSS Notes on resistors R1 and R2's (1), (2) functions : Detect voltage = { (R1 + R2) ÷ R2} × VDF2 N.B. VDF2 = detect voltage VD2 Please set-up so that Hysteresis (VHYS2) = { (R1 + R2) ÷ } × VHYS2 (1) (2) Note : Please ensure that input voltage 2 (VIN2) is less than VIN1 + 0.3V ●Voltage detect circuit with delay built-in (Example covers N-channel open drain product's circuits.) VDD R D RD VIN1 VDET1 VIN2 CD VSS VDET2 VSS VSS Note : Delay operates at both times of release and detect operations. 181