TOREX XC612E

Series
2 Channel Voltage Detectors
◆CMOS Low Power Consumption
■Applications
◆2 Voltage Detectors Built-in
●Memory battery back-up circuitry
◆Detect Voltage Range
2
●Microprocessor reset circuits
◆Detect Voltage Accuracy : ± 2%
: 1.5V ~ 5.0V
◆SOT-25 Package
●Power failure detection
●System power-on reset circuits
●System battery life monitors and re-charge voltage monitors
●Delay circuitry
■General Description
■Features
The XC612 series consist of 2 voltage detectors, in 1 mini-molded, SOT25 package.
The series provides accuracy and low power consumption through
CMOS processing and laser trimming and consists of a highly accurate
voltage reference source, 2 comparators, hysteresis and output driver
circuits.
The input (VIN1) for voltage detector 1 (VD1) dually functions as the power
Highly accurate
Low-power consumption
: Set-up voltage accuracy ±2%
: Typ.2.0µA (VIN1=VIN2=2.0V, quiescent state)
Detect voltage
: 1.5V ~ 5.0V programmable in
0.1V steps. Detector’s voltages
can be set-up independently
Conditionaly,
XC612N : VDET1>VDET2
XC612D, XC612E : VDET1≥VDET2,
supply pin for both detector 1 (VD1) and detector 2 (VD2).
VDET1<VDET2
Operating Voltage Range
: 1.0V ~ 10.0V
Temperature characteristics : ±100ppm/°C
Output configuration
: N-channel open drain
Small package
: SOT-25 (150mW) mini-mold
* CMOS Output is under development
■Typical Application Circuit
VIN1
VIN2
R
■Typical Performance
Characteristic
SUPPLY CURRENT vs. INPUT VOLTAGE
XC612N3632
VDET1
VDET2
VSS
R=100kΩ
Supply Current: Iss (µA)
VIN
VDET1:CMOS, VDET2:N-ch Open drain
(VIN1=VIN2)
6.0
5.0
4.0
25℃
Ta=80℃
3.0
2.0
-30℃
1.0
0
0
2
4
6
8
10
Input Voltage: VIN1 (V)
169
XC612
Series
■Pin Configuration
VDET2
5
1
VIN2
4
2
PIN NUMBER
PIN NAME
FUNCTION
1
VDET1
Voltage Detector 1 output
2
VIN1
Detector 1 input,
Power Supply.
3
3
VSS
Ground
VSS
4
VIN2
Voltage Detector 2 Input
SOT-25
(TOP VIEW)
5
VDET2
Voltage Detector 2 Output
VDET1 VIN1
2
■Pin Assignment
■Product Classification
●Selection Guide
Type
VDET1
VDET2
XC612N
N-ch Open drain
N-ch Open drain
XC612D
N-ch Open drain
CMOS
XC612E
CMOS
N-ch Open drain
●Ordering Information
XC612 x x x x x x x
↑ ↑ ↑↑↑
a b c de
DESIGNATOR
a
170
DESCRIPTION
Output Configuration:
N=N-Channel Open Drain
D=VDET1 N-ch Open Drain, VDET2 CMOS
E=VDET1 CMOS, VDET2 N-ch Open Drain
b
Detect Voltage (VDET1)
e.g.25=2.5V
38=3.8V
c
Detect Voltage (VDET2)
e.g.33=3.3V
50=5.0V
DESIGNATOR
DESCRIPTION
d
Package Type:
M=SOT-25
e
Device Orientation
R=Embossed Tape (Orientation of Device: Right)
L=Embossed Tape (Orientation of Device: Left)
XC612
Series
■Packaging Information
●SOT-25
+0.1
0.15 -0.05
0.4
+0.1
-0.05
+0.2
-0.1
2
0.2min
1.6
2.8±0.2
0∼0.1
(0.95)
1.1±0.1
1.9±0.2
2.9±0.2
■Marking
①②③④
SOT-25
(TOP VIEW)
q Represents the output configuration
DESIGNATOR
CONFIGURATION
PRODUCT NAME
VDET1
VDET2
N
N-ch Open drain
N-ch Open drain
XC612N****M*
D
N-ch Open drain
CMOS
XC612D****M*
E
CMOS
N-ch Open drain
XC612E****M*
we Represents the entry order.
r Denotes the production lot number
0 to 9, A to Z repeated. (G.I.J.O.Q.W excepted)
171
XC612
Series
■Block Diagram
XC612N Series
XC612D Series
VIN1
VIN1
VDET1
VDET1
2
VIN2
VIN2
VDET2
VDET2
VSS
VSS
Vref
Vref
XC612E Series
VIN1
VDET1
VIN2
VDET2
VSS
Vref
172
XC612
Series
■Absolute Maximum Ratings
Ta=25℃
PARAMETER
SYMBOL
CONDITIONS
UNITS
Input Voltage VIN1
VIN1
12
V
Input Voltage VIN2
VIN2
12
V
Output Voltage VDET1(N-ch Open drain)
VVDET1
VSS−0.3∼12
V
Output Voltage VDET1(CMOS)
VVDET1
VSS−0.3∼VIN1+0.3
V
Output Current VDET1
IVDET1
50
mA
V
Output Voltage VDET2(N-ch Open drain)
VVDET2
VSS−0.3∼12
Output Voltage VDET2(CMOS)
VVDET2
VSS−0.3∼VIN1+0.3
V
Output Current VDET2
IVDET2
50
mA
Power Dissipation
Pd
150
mW
Operating Ambient Temperature
Topr
−30∼+80
℃
Storage Temperature
Tstg
−40∼+125
℃
2
173
XC612
Series
■Electrical Characteristics
PARAMETER
2
SYMBOL
CONDITIONS
MIN
TYP
MAX
Detect Voltage
VDET1
VDF1
Voltage when VDET1 changes from
H to L following a reduction of VIN1
VDF1
x 0.98
VDF1
VDF1
x 1.02
V
1
Detect Voltage
VDET2
VDF2
Voltage when VDET2 changes from
H to L following a reduction of VIN2
VDF2
x 0.98
VDF2
VDF1
x 1.02
V
1
Hysteresis Range 1
VHYS1
Voltage (VDR1) - VDF1 when VDET1 changes
from L to H following an increase of VIN1
VDF1(T) VDF1(T) VDF1(T)
x 0.02 x 0.05
x 0.08
V
1
Hysteresis Range 2
VHYS2
Voltage (VDR2) - VDF2 when VDET2 changes
from L to H following an increase of VIN2
VDF2(T) VDF2(T) VDF2(T)
x 0.02 x 0.05
x 0.08
Supply Current
(Input Current VIN1)
ISS
Input Current VIN2
IIN2
Operating Voltage
VIN1
VIN1=1.5V
2.0V
3.0V
4.0V
5.0V
VIN1=1.5V
2.0V
3.0V
4.0V
5.0V
VDF (T) = 1.5V to 6.0V
N-ch
Output Current*
1.5
VDS = 0.5V
VIN1=1.0V
VIN1=2.0V
VIN1=3.0V
VIN1=4.0V
VIN1=5.0V
IVDET
VDS = -2.1V
VIN1=8.0V
(CMOS)
P-ch
1.35
1.50
1.95
2.40
3.00
0.45
0.50
0.65
0.80
1.00
Temperature Characteristics*
∆VDF
∆Topr • VDF
–30: ≤ Topr ≤ 80:
Transient Delay Time*
(Release Voltage→
Output Conversion)
tDLY
(VDR→VOUT conversion)
0.3
3.0
5.0
6.0
7.0
3.90
4.50
5.10
5.70
6.30
1.30
1.50
1.70
1.90
2.10
10
2.2
7.7
10.1
11.5
13.0
UNITS CIRCUIT
1
µA
2
µA
2
V
-
mA
3
-10.0
-2.0
±100
-
ppm/:
-
0.2
ms
5
1. VDF1(T), VDF2(T) : User specified detect voltage.
2. Release voltage (VDR) = VDF +VHYS
3. Those parameters marked with an asterisk apply to both VDET1 and VDET2.
4. Input Voltage : please ensure that VIN1 > VIN2
(Input voltage of XC612D and XC612E series : please ensure that VIN1 ≥ VIN2, VIN1< VIN2.)
5. VIN1 pin serve both ISS and power supply pin so that VIN2 operates VIN1 as a power supply source. For normal operation of VIN2, operating voltage
higher than the minimum is needed to be applied to power supply pin VIN1.
6. For CMOS output products, high level output voltage which is generated when the transient response is released becomes input voltage of VIN.
174
XC612
Series
■Operating Explanation
●Timing Chart (Pull up voltage =Input voltage VIN1)
Input Voltage(VIN1)
6
Release Voltage(VDR1)
Detect Voltage(VDF1)
Min. Operating Voltage(VMIN)
Ground Voltage(VSS)
6
Input Voltage(VIN2)
Release Voltage(VDR2)
2
Detect Voltage(VDF2)
Min. Operating Voltage(VMIN)
Ground Voltage(VSS)
Output Voltage(VDET1)
6
Min. Operating Voltage(VMIN)
Ground Voltage(VSS)
Output Voltage(VDET2)
6
Min. Operating Voltage(VMIN)
Ground Voltage(VSS)
1
2
3
4
5
A
条件A
1
2
3
4
5
B
条件B
●Operational Notes (N-ch Open drain)
Timing Chart A (VIN1=voltages above release voltage, VIN2=sweep voltage)
Because a voltage higher than the minimum operating voltage is applied to the voltage input pin (VIN), ground voltage will be output at the
output pin (VDET) during stage 3. (Stages 1, 2, 4, 5 are the same as in B below).
Timing Chart B (VIN1=VIN2)
q When a voltage greater than the release voltage (VDR) is applied to the voltage input pin (VIN1, VIN2), input voltage (VIN1, VIN2) will gradually
fall.
When a voltage greater than the detect voltage (VDF) is applied to the voltage input pin (VIN1, VIN2), a state of high impedance will exist at
the output pin (VDET1, VDET2), so should the pin be pulled up, voltage will be equal to pull up voltage.
w When input voltage (VIN1, VIN2) falls below detect voltage (VDF), output voltage (VDET1, VDET2) will be equal to ground level (VSS).
e Should input voltage (VIN1, VIN2) fall below the minimum operational voltage (VMIN), output will become unstable. Should VIN2 fall below VMIN,
voltage at the output pin (VDET2) will be equal to ground level (VSS) if the power supply (VIN1) is within the operating voltage range.
*In general the output pin is pulled up so output will be equal to pull up voltage.
r Should input voltage (VIN1, VIN2) rise above ground voltage (VSS), output voltage (VDET1, VDET2) will equal ground level until the release
voltage level (VDR) is reached.
t When input voltage (VIN1, VIN2) rises above release voltage, the output pin's (VDET1, VDET2) voltage will be equal to the voltage dependent on
pull up.
Note : The difference between release voltage (VDR) and detect voltage (VDF) is the Hysteresis Range y.
175
XC612
Series
■Directions for use
●Notes on Use
1. Please use this IC within the specified maximum absolute ratings.
2. Please ensure that input voltage VIN2 is less than VIN1 + 0.3V. (refer to N.B. 1 below)
3. With a resistor connected between the VIN1 pin and the input, oscillation is liable to occur as a result of through current at
the time of release. (refer to N.B. 2 below)
4. With a resistor connected between the VIN1 pin and the input, detect and release voltage will rise as a result of the IC's sup-
2
ply current flowing through the VIN1 pin.
5. In order to stabilise the IC's operations, please ensure that the VIN1 pin's input frequency's rise and fall times are more than
5 µ sec/V.
6. Should the power supply voltage VIN1 exceed 6V, voltage detector 2's detect voltage (VDF2) and the release voltage (VDR2)
will shift somewhat.
7. For CMOS output products, high level output voltage which is generated when the transient response is released becomes
input voltage of VIN.
●N.B.
■N.B.
1. Voltage detector 2's input voltage (VIN2)
An input protect diode is connected from input detector 2's input (VIN2) to input detector 1's input. Therefore, should
the voltage applied to VIN2 exceed VIN1, current will flow through VIN1 via the diode. (refer to diagram1)
2. Oscillation as a result of through current
Since the XC612 series are CMOS ICs, through current will flow when the IC's internal circuit switching operates
(during release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at
the through current's resistor (RIN) during release voltage operations. (refer to diagram 2)
Since hysteresis exists during detect operations, oscillation is unlikely to occur.
IN
RIN
XC612N Series
VIN1
RIN×ISS*
voltage drop
VIN2
XC612N Series
VIN1
VDET1
VIN2
VDET2
VSS
ISS*
(includes through current)
Diagram 1. Voltage detector 2's input voltage VIN2
176
Diagram 2. Through current oscillation
XC612
Series
■Test Circuits
Circuit 1.
VIN1
R
100kΩ
*
VIN2
VDET1
VIN
V
VDET2
VDF1,VDF2
VHYS1,VHYS2
V
VSS
VDF1,VDF2
VHYS1,VHYS2
2
* A resistor is not needed if the product is CMOS output type.
Circuit 2.
ISS
A
A
VIN1
VIN2
VIN
IIN2
VDET1
VDET2
VSS
Circuit 3.
XC612N Series
VIN1
VIN2
VDET1
VIN
IVDET
A
VDET2
VDS
VSS
XC612D Series
VIN1
VIN
VIN2
VDS
IVDET
VDET1
A
VDET2
A
VSS
IVDET
VDS
177
XC612
Series
XC612E Series
VIN1
VIN
VIN2
VDS
IVDET
VDET1
A
VDET2
A
IVDET
VDS
VSS
2
Circuit 4.
VIN
waveform
measurement
VDR
Time
VIN1
VIN2
VDET1
*
100kΩ
VDET
R
waveform
measurement
Time
VDET2
VSS
178
tDLY
XC612
Series
■Typical Performance Characteristics
(1) SUPPLY CURRENT vs. INPUT VOLTAGE
XC612N3632
XC612N3632
(VIN1=VIN2)
6.0
4.0
25℃
Input Current: IIN2 (µA)
Supply Current: Iss (µA)
5.0
Ta=80℃
3.0
2.0
-30℃
1.0
(VIN1=10V)
6.0
5.0
4.0
2
3.0
Ta=80℃
25℃
2.0
1.0
-30℃
0
0
0
2
4
6
8
10
0
2
Input Voltage: VIN1 (V)
4
6
8
10
Input Voltage: VIN2 (V)
(2) DETECT & RELEASE VOLTAGE vs. AMBIENT TEMPERATURE
XC612N3632
XC612N3632
(VDF1=3.6V)
VDR
3.8
3.7
VDF
3.6
3.5
3.4
-40
-20
0
20
40
60
(VDF2=3.2V)
3.5
Detect, Release Voltage
: VDF2, VDR2 (V)
Detect, Release Voltage
: VDF1, VDR1 (V)
3.9
3.4
VDR
3.3
VDF
3.2
3.1
3.0
-40
80
Ambient Temp.: Topr (:)
-20
0
20
40
60
80
Ambient Temp.: Topr (:)
Note : Unless otherwise stated, pull up resistance = 100kΩ with N-ch open drain output types.
(3) OUTPUT VOLTAGE vs. INPUT VOLTAGE
XC612N3632 Topr = 80℃
25℃
-30℃
4
3
2
1
0
(VDF2=3.2V)
5
Output Voltage: VDET2(V)
Output Voltage: VDET1 (V)
XC612N3632
(VDF1=3.6V)
5
Topr = 80℃
25℃
-30℃
4
3
2
1
0
0
1
2
3
4
Input Voltage: VIN1 (V)
5
0
1
2
3
4
5
Input Voltage: VIN2 (V)
179
XC612
Series
(4) N-CH DRIVER OUTPUT CURRENT vs. VDS
XC612N3632
XC612N3632
(VDF1=3.6V)
VIN =3.5V
40
35
3.0
30
25
2.5V
20
2.0V
15
10
1.5V
5
(VDF2=3.2V)
45
Output Current: IVET2 (mA)
2
Output Current: IVDET1 (mA)
45
0
40
35
VIN =3.0V
30
25
2.5V
20
2.0V
15
10
1.5V
5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0
0.5
1.0
XC612N3632
2.5
3.0
3.5
500
400
0.7V
200
100
(VDF2 =3.2V )
700
Output Current: IVET2 (μA)
Output Current: IVET1 (μA)
VIN =0.8V
300
2.0
XC612N3632
(VDF1=3.6V)
700
600
1.5
VDS (V)
VDS (V)
0
600
VIN =0.8V
500
400
300
0.7V
200
100
0
0
0.2
0.4
0.6
0.8
1.0
0
0.2
VDS (V)
0.4
0.6
0.8
1.0
VDS (V)
(5) N-CH DRIVER OUTPUT CURRENT vs. INPUT VOLTAGE
XC612N3632
VDS=0.5V
18
Topr=-30℃
16
14
25℃
12
10
8
80℃
6
4
2
0
VDS=0.5V
18
16
Topr=-30℃
14
25℃
12
10
8
6
80℃
4
2
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Input Voltage: VIN1 (V)
180
(VDF2=3.2V)
20
Output Current: IVDET2 (mA)
Output Current: IVET1 (mA)
XC612N3632
(VDF1=3.6V)
20
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Input Voltage: VIN2 (V)
XC612
Series
■Typical Application Circuits
●Window comparator circuit (Example covers N-channel open drain product's circuits.)
VIN
VIN
VDF1
R
VDF2
R
VOUT
VIN1
VSS
VDET1
Time
VOUT
VIN2
VDET2
2
VSS
VSS
VSS
VSS
Time
●Detect voltages above respective established voltages circuit (Example covers N-channel open drain product's circuits.)
VDD
VIN
R
R1
VIN1
VDET1
VIN2
VDET2
VOUT
VSS
R2
VSS
VSS
Notes on resistors R1 and R2's (1), (2) functions :
Detect voltage = { (R1 + R2) ÷ R2} × VDF2
N.B. VDF2 = detect voltage VD2
Please set-up so that
Hysteresis (VHYS2) = { (R1 + R2) ÷ } × VHYS2
(1)
(2)
Note : Please ensure that input voltage 2 (VIN2) is less than VIN1 + 0.3V
●Voltage detect circuit with delay built-in (Example covers N-channel open drain product's circuits.)
VDD
R
D
RD
VIN1
VDET1
VIN2
CD
VSS
VDET2
VSS
VSS
Note : Delay operates at both times of release
and detect operations.
181