FERRITE CHIP BEADS Z3 SERIES 1. PART NO. EXPRESSION : Z3K300-RN-10 (a) Series code (e) R : Reel (a)(b)(c) (d) (b) Dimension code (f) Current : N = 3000mA (c) Material code (g) 10 : Lead Free (e) (f) (g) (d) Impedance code : 300 = 30ȍ 2. CONFIGURATION & DIMENSIONS : A D L H G B C PCB Pattern Unit:m/m A B D C 2.00±0.20 1.25±0.20 0.85±0.20 0.50±0.30 G H L 1.00 Ref. 1.00 Ref. 3.00 Ref. 3. SCHEMATIC : 4. MATERIALS : b a Ag(100%) Ni(100%)-1.5um(min.) Sn(100%)-3.0um(min.) (a) Body : Ferrite (b) Termination : Ag/Ni/Sn 5. GENERAL SPECIFICATION : a) Temp. rise : 30°C Max. b) Rated current : Base on temp. rise c) Storage temp. : -55°C to +125°C d) Operating temp. : -55°C to +125°C e) Resistance to solder heat : 260°C.10secs NOTE : Specifications subject to change without notice. Please check our website for latest information. 03.07.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 1 FERRITE CHIP BEADS Z3 SERIES 6. ELECTRICAL CHARACTERISTICS : Part Number EIA Size Impedance (ȍ) Test Frequency ( MHz ) DC Resistance (ȍ) Max. Rated Current ( mA ) Max. Z3K300-RN-10 0805 30 ±25% 100 0.04 3000 Z3K800-RN-10 0805 80 ±25% 100 0.04 3000 Z3K121-RL-10 0805 120 ±25% 100 0.10 2000 Z3K151-RL-10 0805 150 ±25% 100 0.10 2000 Z3K221-RL-10 0805 220 ±25% 100 0.10 2000 Z3K301-RJ-10 0805 300 ±25% 100 0.20 1000 Z3K471-RJ-10 0805 470 ±25% 100 0.20 1000 Z3K601-RJ-10 0805 600 ±25% 100 0.20 1000 Packaging : Paper Carrier Tape 7. IMPEDANCE VS. FREQUENCY CURVES : Z3K800-RN-1 0 Z3K800-RN -00 HC B2012K-8 00T30 Z3K300-RN-1 Z 3K300-R N-00 HCB2012K -300T3 00 90 200 IMPEDANCE(Ohm) IMPEDANCE(Ohm) 160 60 Z 30 X Z 120 80 X 40 R R 0 0 1 10 100 1000 1 FREQUENCY(MHz) 100 1000 FREQUENCY(MHz) Z3K1 -RL-1 0 Z3K 151 51-RL-00 HCB2012K-1 51T20 Z3K1 -RL-1 0 Z3K121 21-RL-00 HCB2012K-1 21T20 400 IMPEDANCE(Ohm) 300 IMPEDANCE(Ohm) 10 200 Z 100 10 200 Z 100 X R X R 0 0 1 300 100 1000 1 FREQUENCY(MHz) 10 100 1000 FREQUENCY(MHz) NOTE : Specifications subject to change without notice. Please check our website for latest information. 03.07.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 2 FERRITE CHIP BEADS Z3 SERIES 7. IMPEDANCE VS. FREQUENCY CURVES : Z3K301 -RJ-1 0 Z3K301-RJ -00 HC B2012K-3 01T 10 Z3K221 -RL-1 Z3K221-RL-00 HCB2012K-2 21T200 600 IMPEDANCE(Ohm) IMPEDANCE(Ohm) 600 400 Z 200 400 Z 200 X X R R 0 0 1 10 100 1000 1 10 FREQUENCY(MHz) 100 1000 FREQUENCY(MHz) Z3K601 -RJ-1 Z3K601-RJ -00 HCB2012K-6 01T 100 Z3K471 -RJ-1 Z3K471-RJ -00 HCB2012K-4 71T 100 800 800 600 600 IMPEDANCE(Ohm) IMPEDANCE(Ohm) Z Z 400 200 400 200 X R 0 10 100 1000 X R 0 1 1 FREQUENCY(MHz) 10 100 1000 FREQUENCY(MHz) NOTE : Specifications subject to change without notice. Please check our website for latest information. 03.07.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 3 FERRITE CHIP BEADS Z3 SERIES 8. RELIABILITY & TEST CONDITION : ITEM PERFORMANCE TEST CONDITION Electrical Characteristics Test Impedance Refer to standard electrical characteristics list DC Resistance HP4291A, HP4287A+16092A HP4338B Rated Current Temperature Rise Test 30°C max. (ǻt) 1. Applied the allowed DC current. 2. Temperature measured by digital surface thermometer. Solder Heat Resistance Appearance : No significant abnormality Impedance change : Within ±30% Preheat : 150°C, 60sec. Solder : Sn-Ag3.0-Cu0.5 Solder Temperature : 260±5°C Flux for lead free : rosin Dip Time : 10±0.5sec. Preheating Dipping 260°C 150°C 60 seconds Natural cooling 10±0.5 seconds Preheat : 150°C, 60sec. Solder : Sn-Ag3.0-Cu0.5 Solder Temperature : 245±5°C Flux for lead free : rosin Dip Time : 4±1sec. More than 90% of the terminal electrode should be covered with solder. Solderability Preheating Dipping 245°C 150°C Terminal Strength 60 seconds Natural cooling 4±1.0 seconds The terminal electrode & the dielectric must not be damaged by the forces applied on the right conditions. W W Flexture Strength The terminal electrode & the dielectric must not be damaged by the forces applied on the right conditions. For Z Series : Size Force (Kfg) 1 0.2 2 0.5 3 0.6 4 1.0 5 1.0 6 1.0 7 1.5 8 2.0 Time (sec) > 25 Solder a chip on a test substrate, bend the substrate by 2mm (0.079in) and return. 20(.787) Bending 45(1.772) 45(1.772) 40(1.575) 100(3.937) NOTE : Specifications subject to change without notice. Please check our website for latest information. 03.07.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 4 FERRITE CHIP BEADS Z3 SERIES 8. RELIABILITY & TEST CONDITION : ITEM Bending Strength PERFORMANCE TEST CONDITION The ferrite should not be damaged by forces applied on the right condition. Series name mm (inches) P-Kgf Z2 0.80 (0.033) 0.3 Z3 1.40 (0.055) 1.0 2.00 (0.079) 2.5 2.70 (0.106) 2.5 1.0(0.039) R0.5(0.02) Z4 Z5 Chip Z6 A Z7 Z8 Random Vibration Test Appearance : Cracking, shipping & any other defects harmful to the characteristics should not be allowed. Impedance : Within ±30% Frequency : 10-55-10Hz for 1 min. Amplitude : 1.52mm Directions & times : X, Y, Z directions for 2 hours. A period of 2 hours in each of 3 mutually perpendicular directions (Total 6 hours). Drop Drop 10 times on a concrete floor from a height of 75cm. a. No mechanical damage b. Impedance change : ±30% Loading at High Temperature Appearance : No damage. Impedance : Within ±30% of initial value. Temperature : 125±5°C Applied Current : rated current Duration : 1008±12hrs Measured at room temperature after placing for 2 to 3hrs. Humidity Humidity : 90~95% RH. Temperature : 40±2°C Duration : 1008±12hrs Measured at room temperature after placing for 2 to 3hrs. Thermal Shock Appearance : No damage. Impedance : Within ±30% of initial value. Phase Temperature (°C) Times (min.) 1 -55±2°C 30±3 2 +125±5°C 30±3 For Z Series : Condition for 1 cycle Step1 : -55±2°C 30±3 min. Step2 : +125±5°C 30±3 min. Number of cycles : 5 Measured at room temperature after placing for 2 to 3hrs. Measured : 5 times Temperature : -55±2°C Duration : 1008±12hrs Measured at room temperature after placing for 2 to 3hrs. Low temperature storage test Drop Drop 10 times on a concrete floor from a height of 75cm. a. No mechanical damage b. Impedance change : ±30% Derating Derating Curve 6 Derated Current(A) For the ferrite chip bead which withstanding current over 1.5A, as the operating temperature over 85°C, the derating current information is necessary to consider with. For the detail derating of current, please refer to the Derated Current vs. Operating Temperature curve. 5 4 3 2 1 0 6A 5A 4A 3A 2A 1.5A 1A 85 125 OperatingTemperature(¢X Tem perature(°C) Operating C) NOTE : Specifications subject to change without notice. Please check our website for latest information. 03.07.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 5 FERRITE CHIP BEADS Z3 SERIES 9. SOLDERING AND MOUNTING : 9-1. Recommended PC Board Pattern 3.00 1.00 1.00 PC board should be designed so that products are not sufficient under mechanical stress as warping the board. Products shall be positioned in the sideway direction against the mechanical stress to prevent failure. 9-2. Soldering Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools. 9-2.1 Lead Free Solder Re-flow : Recommended temperature profiles for re-flow soldering in Figure 1. 9-2.2 Solder Wave : Wave soldering is perhaps the most rigorous of surface mount soldering processes due to the steep rise in temperature seen by the circuit when immersed in the molten solder wave, typical at 230°C. Due to the risk of thermal damage to products, wave soldering of large size products is discouraged. Recommended temperature profile for wave soldering is shown in Fig. 2 9-2.3 Soldering Iron (Figure 3) : Products attachment with soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended. Note : d) 1.0mm tip diameter (max) a) Preheat circuit and products to 150°C. e) Use a 20 watt soldering iron with tip diameter of 1.0mm b) 350°C tip temperature (max) f) Limit soldering time to 3 secs. c) Never contact the ceramic with the iron tip Soldering Natural cooling Preheating TEMPERATURE °C TEMPERATURE °C Preheating 20~40s TP(260°C/10s max.) 217 200 150 60~150s 60~180s 25 480s max. Time(sec.) Soldering Natural cooling 260 245 150 Gradual Cooling Over 2min. Figure 1. Re-flow Soldering Within 10s TEMPERATURE °C Preheating Soldering 3s (max.) 350 Natural cooling Figure 2. Wave Soldering 10s (max.) 330 150 Over 1min. Gradual Cooling Figure 3. Hand Soldering NOTE : Specifications subject to change without notice. Please check our website for latest information. 03.07.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 6 FERRITE CHIP BEADS Z3 SERIES 9-3. Solder Volume Accordingly increasing the solder volume, the mechanical stress to product is also increased. Exceeding solder volume may cause the failure of mechanical or electrical performance. Solder shall be used not to be exceed as shown in Fig. 4. Upper limit t Recommendable Figure 4 NOTE : Specifications subject to change without notice. Please check our website for latest information. 03.07.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 7 FERRITE CHIP BEADS Z3 SERIES 10. PACKAGING INFORMATION : 10-1. Reel Dimension C(mm) D(mm) Type A(mm) B(mm) 7" x 8mm 9.0±0.5 60.0±2.0 13.5±0.5 178.0±2.0 7" x 12mm 13.5±0.5 60.0±2.0 13.5±0.5 178.0±2.0 C D B A 2±0.5 7" x 8mm 7" x 12mm 13.5±0.5 R10.5 R1.9 R0.5 120° 10-2 Tape Dimension / 8mm Material : Paper D:1.56 +0.1 -0.05 t Bo Series Z/L Bo(mm) Ao(mm) Ko(mm) P(mm) t(mm) D1(mm) 1 1.12±0.03 0.62±0.03 0.60±0.03 2.0±0.1 0.60±0.03 none 2 1.85±0.05 1.05±0.05 0.95±0.05 4.0±0.1 0.95±0.05 none 3(09) 2.30±0.05 1.50±0.05 0.95±0.05 4.0±0.1 0.95±0.05 none Size Bo(mm) Ao(mm) Ko(mm) P(mm) t(mm) D1(mm) 2 1.95±0.10 1.05±0.10 1.05±0.10 4.0±0.1 0.23±0.05 none 3(09) 2.25±0.10 1.42±0.10 1.04±0.10 4.0±0.1 0.22±0.05 1.0±0.1 3(12) 2.35±0.10 1.50±0.10 1.45±0.10 4.0±0.1 0.22±0.05 1.0±0.1 Size Ko Ao P W:8.0±0.1 E:1.75±0.1 Po:4±0.1 F:3.5±0.1 P2:2±0.1 Material : Plastic D:1.5+0.1 Po:4±0.1 t Series P Ao A D1:1±0.1 Bo W:8.0±0.1 A F:3.5±0.05 E:1.75±0.1 P2:2±0.05 Z/L Ko 4 3.50±0.10 1.88±0.10 1.27±0.10 4.0±0.1 0.22±0.05 1.0±0.1 Section A-A 5 3.42±0.10 2.77±0.10 1.55±0.10 4.0±0.1 0.22±0.05 1.0±0.1 Size Bo(mm) Ao(mm) Ko(mm) P(mm) t(mm) D1(mm) 6 4.95±0.1 1.93±0.1 1.93±0.1 4.0±0.1 0.24±0.05 1.5±0.1 7 4.95±0.1 3.66±0.1 1.85±0.1 8.0±0.1 0.24±0.05 1.5±0.1 8 6.10±0.1 5.40±0.1 2.00±0.1 8.0±0.1 0.30±0.05 1.5±0.1 10-2.1 Tape Dimension / 12mm Po:4±0.1 P2:2±0.05 t A A D1:1.5±0.1 P Ao Bo W:12.0±0.1 Series F:5.5±0.05 E:1.75±0.1 D:1.5+0.1 Z/L Ko Section A-A NOTE : Specifications subject to change without notice. Please check our website for latest information. 03.07.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 8 FERRITE CHIP BEADS Z3 SERIES 10-3. Packaging Quantity Chip Size 8 7 6 5 4 3 (12) 3 (09) 2 1 Chip / Reel 1000 1000 2000 2500 3000 2000 4000 4000 10000 Inner Box 4000 4000 8000 12500 15000 10000 20000 20000 50000 Middle Box 20000 20000 40000 62500 75000 50000 100000 100000 250000 Carton 40000 40000 80000 125000 150000 100000 200000 200000 500000 Bulk (Bags) 7000 12000 20000 30000 50000 100000 150000 200000 300000 10-4. Tearing Off Force The force for tearing off cover tape is 15 to 60 grams in the arrow direction under the following conditions. F 165° to 180° Top cover tape Room Temp. (°C) Room Humidity (%) Room atm (hPa) Tearing Speed (mm/min) 5~35 45~85 860~1060 300 Base tape Application Notice 1. Storage Conditions : To maintain the solderabililty of terminal electrodes : a) Temperature and humidity conditions : -10 ~ 40°C and 30 ~ 70% RH. b) Recommended products should be used within 6 months from the time of delivery. c) The packaging material should be kept where no chlorine or sulfur exists in the air. 2. Transportation : a) Products should be handled with care to avoid damage or contamination from perspiration and skin oils. b) The use of tweezers or vacuum pick up is strongly recommended for individual components. c) Bulk handling should ensure that abrasion and mechanical shock are minimized. NOTE : Specifications subject to change without notice. Please check our website for latest information. 03.07.2008 SUPERWORLD ELECTRONICS (S) PTE LTD PG. 9