PHILIPS 74LVC1G66GV

INTEGRATED CIRCUITS
DATA SHEET
74LVC1G66
Bilateral switch
Product specification
Supersedes data of 2002 Nov 15
2004 Apr 13
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
FEATURES
DESCRIPTION
• Very low ON resistance:
The 74LVC1G66 is a high-speed Si-gate CMOS device.
– 7.5 Ω (typical) at VCC = 2.7 V
The 74LVC1G66 provides an analog switch. The switch
has two input/output pins (Y and Z) and an active HIGH
enable input pin (E). When pin E is LOW, the analog
switch is turned off.
– 6.5 Ω (typical) at VCC = 3.3 V
– 6 Ω (typical) at VCC = 5 V.
• Switch handling capability of 32 mA
• High noise immunity
• CMOS low power consumption
• Latch-up performance exceeds 100 mA per
JESD78 Class II
• Direct interface TTL-levels
• Multiple package options
• ESD protection:
– HBM EIA/JESD22-A114-B exceeds 2000 V
– MM EIA/JESD22-A115-A exceeds 200 V.
• Specified from −40 to +85 °C and −40 to +125 °C.
QUICK REFERENCE DATA
Ground = 0 V; Tamb = 25 °C; tr = tf ≤ 3.0 ns.
SYMBOL
tPZH/tPZL
tPHZ/tPLZ
PARAMETER
turn-ON time E to VOS
turn-OFF time E to VOS
CONDITIONS
TYPICAL
UNIT
CL = 50 pF; RL = 500 Ω; VCC = 3 V
2.5
ns
CL = 50 pF; RL = 500 Ω; VCC = 5 V
1.9
ns
CL = 50 pF; RL = 500 Ω; VCC = 3 V
3.4
ns
CL = 50 pF; RL = 500 Ω; VCC = 5 V
2.5
ns
2
pF
CI
input capacitance
CPD
power dissipation capacitance
CL = 50 pF; fi = 10 MHz; VCC = 3.3 V;
notes 1 and 2
12.0
pF
CS
switch capacitance
OFF-state
6.5
pF
ON-state
11
pF
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW).
PD = CPD × VCC2 × fi + {(CL + CS) × VCC2 × fo} where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
CS = switch capacitance in pF;
VCC = supply voltage in Volts;
2. The condition is VI = GND to VCC.
2004 Apr 13
2
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
FUNCTION TABLE
See note 1.
INPUT E
SWITCH
L
OFF
H
ON
Note
1. H = HIGH voltage level;
L = LOW voltage level.
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
TEMPERATURE
RANGE
PINS
PACKAGE
MATERIAL
CODE
74LVC1G66GW
−40 to +125 °C
5
SC-88A
plastic
SOT353
VL
74LVC1G66GV
−40 to +125 °C
5
SC-74A
plastic
SOT753
V66
MARKING
PINNING
PIN
SYMBOL
DESCRIPTION
1
Y
independent input/output
2
Z
independent output/input
3
GND
ground (0 V)
4
E
enable input (active HIGH)
5
VCC
supply voltage
handbook, halfpage
handbook, halfpage
Y 1
5 VCC
Y
Z 2
GND
Z
66
3
4
E
E
MNA074
MNA657
Fig.1 Pin configuration.
2004 Apr 13
Fig.2 Logic symbol.
3
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
handbook, halfpage
Z
handbook, halfpage
1
4 #
1
1
2
Y
X1
MNA076
E
VCC
Fig.3 IEC logic symbol.
MNA658
Fig.4 Logic diagram.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCC
supply voltage
1.65
5.5
V
VI
input voltage
0
5.5
V
VO
output voltage
0
VCC
V
Tamb
operating ambient temperature
tr, tf
input rise and fall times
active mode
VCC = 0 V; Power-down mode
2004 Apr 13
0
5.5
V
−40
+125
°C
VCC = 1.65 to 2.7 V
0
20
ns/V
VCC = 2.7 to 5.5 V
0
10
ns/V
4
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
−0.5
+6.5
V
VI < 0
−
−50
mA
input voltage
note 1
−0.5
+6.5
V
output voltage
active mode; notes 1 and 2
−0.5
VCC + 0.5 V
Power-down mode; notes 1 and 2
−0.5
+6.5
V
VO = 0 to VCC
−
±50
mA
VCC
supply voltage
IIK
input diode current
VI
VO
IOS
maximum switch current
ICC, IGND
VCC or GND current
−
±100
mA
Tstg
storage temperature
−65
+150
°C
Ptot
power dissipation
−
250
mW
Tamb = −40 to +125 °C; note 2
Notes
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. When VCC = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.
DC CHARACTERISTICS
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V)
OTHER
Tamb = −40 to +85 °C; note 1
VIH
VIL
1.65 to 1.95 0.65 × VCC −
HIGH-level input voltage
LOW-level input voltage
−
V
2.3 to 2.7
1.7
−
−
V
2.7 to 3.6
2.0
−
−
V
4.5 to 5.5
0.7 × VCC
−
−
V
1.65 to 1.95 −
−
0.35 × VCC V
2.3 to 2.7
−
−
0.7
V
2.7 to 3.6
−
−
0.8
V
4.5 to 5.5
−
−
0.3 × VCC
V
ILI
input leakage current
(control pin)
VI = 5.5 V or GND
5.5
−
±0.1
±5
µA
IS
analog switch OFF-state
current
VI = VIH or VIL;
|VS| = VCC − GND;
see Fig.5
5.5
−
±0.1
±5
µA
analog switch ON-state
current
VI = VIH or VIL;
|VS| = VCC − GND;
see Fig.6
5.5
−
±0.1
±5
µA
quiescent supply current
VI = VCC or GND;
VS = GND or VCC;
IO = 0
5.5
−
0.1
10
µA
ICC
2004 Apr 13
5
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
OTHER
∆ICC
additional quiescent supply
current per control pin
VI = VCC − 0.6 V;
VS = GND or VCC;
IO = 0
RON(peak)
ON-resistance (peak)
VS = GND to VCC;
VI = VIH; see Fig.7
RON(rail)
ON-resistance (rail)
TYP.
MAX.
UNIT
VCC (V)
5.5
−
5
500
µA
IS = 4 mA
1.65 to 1.95 −
35
100
Ω
IS = 8 mA
2.3 to 2.7
−
14
30
Ω
IS = 12 mA
2.7
−
11.5
25
Ω
IS = 24 mA
3.0 to 3.6
−
8.5
20
Ω
IS = 32 mA
4.5 to 5.5
−
6.5
15
Ω
1.65 to 1.95 −
10
30
Ω
VS = GND;
VI = VIH; see Fig.7
IS = 4 mA
IS = 8 mA
2.3 to 2.7
−
8.5
20
Ω
IS = 12 mA
2.7
−
7.5
18
Ω
IS = 24 mA
3.0 to 3.6
−
6.5
15
Ω
IS = 32 mA
4.5 to 5.5
−
6
10
Ω
1.65 to 1.95 −
12
30
Ω
VS = VCC; VI = VIH;
see Fig.7
IS = 4 mA
RON(flatness) ON-resistance (flatness)
IS = 8 mA
2.3 to 2.7
−
8.5
20
Ω
IS = 12 mA
2.7
−
7.5
18
Ω
IS = 24 mA
3.0 to 3.6
−
6.5
15
Ω
IS = 32 mA
4.5 to 5.5
−
6
10
Ω
100(2)
−
Ω
VS = GND to VCC;
VI = VIH;
see Figs 9 to 13
IS = 4 mA
1.65 to 1.95 −
IS = 8 mA
2.3 to 2.7
−
17(2)
−
Ω
IS = 12 mA
2.7
−
10(2)
−
Ω
3.0 to 3.6
−
5(2)
−
Ω
4.5 to 5.5
−
3(2)
−
Ω
IS = 24 mA
IS = 32 mA
2004 Apr 13
6
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
OTHER
TYP.
MAX.
UNIT
VCC (V)
Tamb = −40 to +125 °C
VIH
HIGH-level input voltage
1.65 to 1.95 0.65 × VCC −
−
V
1.7
−
−
V
2.7 to 3.6
2.0
−
−
V
4.5 to 5.5
0.7 × VCC
−
−
V
1.65 to 1.95 −
−
0.35 × VCC V
2.3 to 2.7
−
−
0.7
V
2.7 to 3.6
−
−
0.8
V
4.5 to 5.5
−
−
0.3 × VCC
V
2.3 to 2.7
VIL
LOW-level input voltage
ILI
input leakage current
(control pin)
VI = 5.5 V or GND
5.5
−
−
100
µA
IS
analog switch OFF-state
current
VI = VIH or VIL;
|VS| = VCC − GND;
see Fig.5
5.5
−
−
200
µA
analog switch ON-state
current
VI = VIH or VIL;
|VS| = VCC − GND;
see Fig.6
5.5
−
−
200
µA
ICC
quiescent supply current
VI = VCC or GND;
VS = GND or VCC;
IO = 0
5.5
−
−
200
µA
∆ICC
additional quiescent supply
current per control pin
VI = VCC − 0.6 V;
VS = GND or VCC;
IO = 0
5.5
−
−
5000
µA
RON(peak)
ON-resistance (peak)
VS = GND to VCC;
VI = VIH; see Fig.7
IS = 4 mA
1.65 to 1.95 −
−
150
Ω
IS = 8 mA
2.3 to 2.7
−
−
45
Ω
IS = 12 mA
2.7
−
−
38
Ω
IS = 24 mA
3.0 to 3.6
−
−
30
Ω
IS = 32 mA
4.5 to 5.5
−
−
23
Ω
2004 Apr 13
7
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
OTHER
RON(rail)
ON-resistance (rail)
TYP.
MAX.
UNIT
VCC (V)
VS = GND;
VI = VIH; see Fig.7
IS = 4 mA
1.65 to 1.95 −
−
45
Ω
IS = 8 mA
2.3 to 2.7
−
−
30
Ω
IS = 12 mA
2.7
−
−
27
Ω
IS = 24 mA
3.0 to 3.6
−
−
23
Ω
IS = 32 mA
4.5 to 5.5
−
−
15
Ω
IS = 4 mA
1.65 to 1.95 −
−
45
Ω
IS = 8 mA
2.3 to 2.7
−
−
30
Ω
IS = 12 mA
2.7
−
−
27
Ω
IS = 24 mA
3.0 to 3.6
−
−
23
Ω
IS = 32 mA
4.5 to 5.5
−
−
15
Ω
VS = VCC; VI = VIH;
see Fig.7
Notes
1. All typical values are measured at Tamb = 25 °C.
2. RON flatness over operating temperature range (Tamb = −40 to +85 °C).
E
VIL
VIH
Y
Z
E
Y
Z
A
A
A
A
VI = VCC or GND
VO = GND or VCC
VI = VCC or GND
VO (open circuit)
GND
GND
MNA660
MNA661
Fig.5 Test circuit for measuring OFF-state current.
2004 Apr 13
Fig.6 Test circuit for measuring ON-state current.
8
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
001aaa707
40
RON
(Ω)
(1)
30
20
E
VIH
V
Y
(2)
10
Z
(3)
(4)
VS = GND to VCC
(5)
IS
0
0
GND
2
3
4
Test circuit for measuring ON-resistance
(RON).
Measured at Tamb = 25 °C.
VCC = 1.8 V.
VCC = 2.5 V.
VCC = 2.7 V.
VCC = 3.3 V.
VCC = 5.0 V.
Fig.8
001aaa712
80
5
VI (V)
(1)
(2)
(3)
(4)
(5)
Fig.7
1
MNA659
GND
Typical ON-resistance (RON) as a function
of input voltage (VS) for VS = GND to VCC.
001aaa708
16
RON
(Ω)
RON
(Ω)
60
12
(1)
(2)
40
8
(3)
(4)
(1)
(2)
(3)
(4)
20
4
0
0
1
2
3
4
0
5
0
VI (V)
(1)
(2)
(3)
(4)
2
3
4
5
VI (V)
Tamb = +125 °C.
Tamb = +85 °C.
Tamb = +25 °C.
Tamb = −40 °C.
(1)
(2)
(3)
(4)
Fig.9 RON for VCC = 1.8 V.
2004 Apr 13
1
Tamb = +125 °C.
Tamb = +85 °C.
Tamb = +25 °C.
Tamb = −40 °C.
Fig.10 RON for VCC = 2.5 V.
9
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
001aaa709
16
001aaa710
16
RON
(Ω)
RON
(Ω)
12
12
(1)
(2)
8
(1)
8
(3)
(2)
(3)
(4)
4
(4)
4
0
0
0
1
2
3
4
5
0
1
VI (V)
(1)
(2)
(3)
(4)
(1)
(2)
(3)
(4)
Fig.11 RON for VCC = 2.7 V.
RON
(Ω)
12
8
(1)
(2)
(3)
(4)
0
0
1
2
3
4
5
VI (V)
(1)
(2)
(3)
(4)
Tamb = +125 °C.
Tamb = +85 °C.
Tamb = +25 °C.
Tamb = −40 °C.
Fig.13 RON for VCC = 5.0 V.
2004 Apr 13
4
5
Tamb = +125 °C.
Tamb = +85 °C.
Tamb = +25 °C.
Tamb = −40 °C.
Fig.12 RON for VCC = 3.3 V.
001aaa711
4
3
VI (V)
Tamb = +125 °C.
Tamb = +85 °C.
Tamb = +25 °C.
Tamb = −40 °C.
16
2
10
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
AC CHARACTERISTICS
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
WAVEFORMS
TYP.
MAX.
UNIT
VCC (V)
Tamb = −40 to +85 °C; note 1
tPHL/tPLH
tPZH/tPZL
tPHZ/tPLZ
propagation delay Y to Z
or Z to Y
turn-ON time E to VOS
turn-OFF time E to VOS
see Figs 14 and 16
see Figs 15 and 16
see Figs 15 and 16
1.65 to 1.95
−
0.8
2
ns
2.3 to 2.7
−
0.4
1.2
ns
2.7
−
0.4
1
ns
3.0 to 3.6
−
0.3
0.8
ns
4.5 to 5.5
−
0.2
0.6
ns
1.65 to 1.95
1
5.3
12
ns
2.3 to 2.7
1
3.0
6.5
ns
2.7
1
2.6
6
ns
3.0 to 3.6
1
2.5
5
ns
4.5 to 5.5
1
1.9
4.2
ns
1.65 to 1.95
1
4.2
10
ns
2.3 to 2.7
1
2.4
6.9
ns
2.7
1
3.6
7.5
ns
3.0 to 3.6
1
3.4
6.5
ns
4.5 to 5.5
1
2.5
5
ns
1.65 to 1.95
−
−
3
ns
2.3 to 2.7
−
−
2
ns
2.7
−
−
1.5
ns
3.0 to 3.6
−
−
1.5
ns
4.5 to 5.5
−
−
1
ns
1.65 to 1.95
1
−
15.5
ns
2.3 to 2.7
1
−
8.5
ns
Tamb = −40 to +125 °C
tPHL/tPLH
tPZH/tPZL
tPHZ/tPLZ
propagation delay Y to Z
or Z to Y
turn-ON time E to VOS
turn-OFF time E to VOS
see Figs 14 and 16
see Figs 15 and 16
see Figs 15 and 16
Note
1. All typical values are measured at Tamb = 25 °C.
2004 Apr 13
11
2.7
1
−
8
ns
3.0 to 3.6
1
−
6.5
ns
4.5 to 5.5
1
−
5.5
ns
1.65 to 1.95
1
−
13
ns
2.3 to 2.7
1
−
9
ns
2.7
1
−
9.5
ns
3.0 to 3.6
1
−
8.5
ns
4.5 to 5.5
1
−
6.5
ns
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
AC WAVEFORMS
handbook, halfpage VI
VM
Y or Z
GND
t PHL
t PLH
VOH
VM
Z or Y
VOL
VCC
VM
VI
MNA667
INPUT
tr = tf
1.65 to 1.95 V
0.5 × VCC VCC
≤ 2.0 ns
2.3 to 2.7 V
0.5 × VCC VCC
≤ 2.0 ns
2.7 V
1.5 V
2.7 V
≤ 2.5 ns
3.0 to 3.6 V
1.5 V
2.7 V
≤ 2.5 ns
4.5 to 5.5 V
0.5 × VCC VCC
≤ 2.5 ns
VOL and VOH are typical output voltage drop that occur with the output load.
Fig.14 The input (VS) to output (VO) propagation delays.
2004 Apr 13
12
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
VI
handbook, full pagewidth
E
VM
GND
t PLZ
t PZL
VCC
output
LOW-to-OFF
OFF-to-LOW
Y or Z
VM
VX
VOL
t PZH
t PHZ
Y or Z
VOH
output
HIGH-to-OFF
OFF-to-HIGH
VY
VM
GND
switch
enabled
switch
disabled
switch
enabled
MNA668
VCC
VM
VI
INPUT
tr = tf
1.65 to 1.95 V
0.5 × VCC VCC
≤ 2.0 ns
2.3 to 2.7 V
0.5 × VCC VCC
≤ 2.0 ns
2.7 V
1.5 V
2.7 V
≤ 2.5 ns
3.0 to 3.6 V
1.5 V
2.7 V
≤ 2.5 ns
4.5 to 5.5 V
0.5 × VCC VCC
≤ 2.5 ns
VX = VOL + 0.3 V at VCC ≥ 2.7 V;
VX = VOL + 0.1 x VCC at VCC < 2.7 V;
VY = VOH − 0.3 V at VCC ≥ 2.7 V;
VY = VOH − 0.1 x VCC at VCC < 2.7 V.
VOL and VOH are typical output voltage drop that occur with the output load.
Fig.15 The turn-on and turn-off times.
2004 Apr 13
13
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
VEXT
handbook, full pagewidth
VCC
PULSE
GENERATOR
VI
RL
VO
D.U.T.
CL
RT
RL
MNA616
VCC
VI
CL
RL
VEXT
tPLH/tPHL
tPZH/tPHZ
tPZL/tPLZ
1.65 to 1.95 V
VCC
30 pF
1 kΩ
open
GND
2 × VCC
2.3 to 2.7 V
VCC
30 pF
500 Ω
open
GND
2 × VCC
2.7 V
2.7 V
50 pF
500 Ω
open
GND
6V
3.0 to 3.6 V
2.7 V
50 pF
500 Ω
open
GND
6V
4.5 to 5.5 V
VCC
50 pF
500 Ω
open
GND
2 × VCC
Definitions for test circuit:
RL = Load resistor.
CL = Load capacitance including jig and probe capacitance.
RT = Termination resistance should be equal to the output impedance Zo of the pulse generator.
Fig.16 Load circuitry for switching times.
2004 Apr 13
14
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
ADDITIONAL AC CHARACTERISTICS
At recommended conditions and all typical values are measured at Tamb = 25 °C.
SYMBOL
dsin
PARAMETER
sine-wave distortion
TEST CONDITIONS
RL = 10 kΩ; CL = 50 pF;
fi = 1 kHz; see Fig.18
RL = 10 kΩ; CL = 50 pF;
fi = 10 kHz; see Fig.18
fON(res)
switch ON signal frequency
response
RL = 600 Ω; CL = 50 pF;
fi = 1 MHz; see Fig.17; note 1
RL = 50 Ω; CL = 5 pF;
fi = 1 MHz; see Fig.17; note 1
αOFF(ft)
switch OFF signal
feed-through attenuation
RL = 600 Ω; CL = 50 pF;
fi = 1 MHz; see Fig.19; note 2
RL = 0 Ω; CL = 50 pF;
fi = 1 MHz; see Fig.19; note 2
Vct
fmax
CPD
Q
2004 Apr 13
crosstalk (control input to
signal output)
frequency response (−3 dB)
power dissipation capacitance
charge injection
RL = 600 Ω; CL = 50 pF;
fi = 1 MHz; tr = tf = 2 ns;
see Fig.20
RL = 50 Ω; CL = 10 pF;
see Fig.17; note 1
CL = 50 pF; fi = 10 MHz
VCC (V)
UNIT
1.65
0.032
%
2.3
0.008
%
3
0.006
%
4.5
0.001
%
1.65
0.068
%
2.3
0.009
%
3
0.008
%
4.5
0.006
%
1.65
135
MHz
2.3
145
MHz
3
150
MHz
4.5
155
MHz
1.65
>500
MHz
2.3
>500
MHz
3
>500
MHz
4.5
>500
MHz
1.65
−46
dB
2.3
−46
dB
3
−46
dB
4.5
−46
dB
1.65
−37
dB
2.3
−37
dB
3
−37
dB
4.5
−37
dB
1.65
69
mV
2.3
87
mV
3
156
mV
4.5
302
mV
1.65
200
MHz
2.3
350
MHz
3
410
MHz
4.5
440
MHz
2.5
9.8
pF
3.3
12.0
pF
5.0
17.3
pF
0.05
pC
CL = 0.1 nF; Vgen = 0 V;
1.65 to 5.5
Rgen = 0 Ω; fi = 1 MHz;
RL = 1 MΩ; see Fig.21; note 3
15
TYP.
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
Notes
1. Adjust fi voltage to obtain 0 dBm level at output. Increase fi frequency until dB meter reads −3 dB.
2. Adjust fi voltage to obtain 0 dBm level at input.
3. Guaranteed by design.
handbook, full pagewidth
VIH
E
0.1 µF
fin
Y/Z
Z/Y
50 Ω
VO
RL
channel
ON
1/2VCC
CL dB
MNA669
Fig.17 Test circuit for measuring the frequency response when switch is ON.
2004 Apr 13
16
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
E
handbook, full pagewidth
VIH
Y/Z
600 Ω
fin
10 µF
Z/Y
VO
CL
RL
channel
ON
DISTORTION
METER
1/2VCC
MNA670
VCC
VI
1.65 V
1.4 V (p-p)
2.3 V
2 V (p-p)
3V
2.5 V (p-p)
4V
4 V (p-p)
Fig.18 Test circuit for measuring sine-wave distortion.
handbook, full pagewidth
VIL
E
0.1 µF
fin
50 Ω
Y/Z
Z/Y
RL
1/2VCC
VO
RL
channel
ON
CL dB
1/2VCC
MNA671
Fig.19 Test circuit for measuring feed-through when switch is OFF.
2004 Apr 13
17
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
E
handbook, full pagewidth
Y/Z
Z/Y
VO
RL
600 Ω
Rin
600 Ω
50 Ω
CL
50 pF
1/2VCC
1/2VCC
MNA672
Fig.20 Crosstalk.
E
handbook, full pagewidth
Rgen
logic
input
Y/Z
Z/Y
Vgen
RL
VO
1
MΩ
CL
MNA674
handbook, full pagewidth
logic
input (E)
off
on
off
∆Vout
VO
MNA675
Q = (∆Vout) × (CL)
Fig.21 Charge injection test.
2004 Apr 13
18
0.1
nF
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
PACKAGE OUTLINES
Plastic surface mounted package; 5 leads
SOT353
D
E
B
y
X
A
HE
5
v M A
4
Q
A
A1
1
2
e1
3
bp
c
Lp
w M B
e
detail X
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
max
bp
c
D
E (2)
e
e1
HE
Lp
Q
v
w
y
mm
1.1
0.8
0.1
0.30
0.20
0.25
0.10
2.2
1.8
1.35
1.15
1.3
0.65
2.2
2.0
0.45
0.15
0.25
0.15
0.2
0.2
0.1
OUTLINE
VERSION
SOT353
2004 Apr 13
REFERENCES
IEC
JEDEC
EIAJ
SC-88A
19
EUROPEAN
PROJECTION
ISSUE DATE
97-02-28
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
Plastic surface mounted package; 5 leads
SOT753
D
E
B
y
A
X
HE
5
v M A
4
Q
A
A1
c
1
2
3
Lp
detail X
bp
e
w M B
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
bp
c
D
E
e
HE
Lp
Q
v
w
y
mm
1.1
0.9
0.100
0.013
0.40
0.25
0.26
0.10
3.1
2.7
1.7
1.3
0.95
3.0
2.5
0.6
0.2
0.33
0.23
0.2
0.2
0.1
OUTLINE
VERSION
SOT753
2004 Apr 13
REFERENCES
IEC
JEDEC
JEITA
SC-74A
20
EUROPEAN
PROJECTION
ISSUE DATE
02-04-16
Philips Semiconductors
Product specification
Bilateral switch
74LVC1G66
DATA SHEET STATUS
LEVEL
DATA SHEET
STATUS(1)
PRODUCT
STATUS(2)(3)
Development
DEFINITION
I
Objective data
II
Preliminary data Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product.
III
Product data
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in order
to improve the design, manufacturing and supply. Relevant changes will
be communicated via a Customer Product/Process Change Notification
(CPCN).
Production
This data sheet contains data from the objective specification for product
development. Philips Semiconductors reserves the right to change the
specification in any manner without notice.
Notes
1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
DEFINITIONS
DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design
and/or performance. When the product is in full production
(status ‘Production’), relevant changes will be
communicated via a Customer Product/Process Change
Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these
products, conveys no licence or title under any patent,
copyright, or mask work right to these products, and
makes no representations or warranties that these
products are free from patent, copyright, or mask work
right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
2004 Apr 13
21
Philips Semiconductors – a worldwide company
Contact information
For additional information please visit http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to: [email protected].
SCA76
© Koninklijke Philips Electronics N.V. 2004
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
R20/04/pp22
Date of release: 2004
Apr 13
Document order number:
9397 750 13018