INTEGRATED CIRCUITS DATA SHEET 74LVC1G66 Bilateral switch Product specification Supersedes data of 2002 Nov 15 2004 Apr 13 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 FEATURES DESCRIPTION • Very low ON resistance: The 74LVC1G66 is a high-speed Si-gate CMOS device. – 7.5 Ω (typical) at VCC = 2.7 V The 74LVC1G66 provides an analog switch. The switch has two input/output pins (Y and Z) and an active HIGH enable input pin (E). When pin E is LOW, the analog switch is turned off. – 6.5 Ω (typical) at VCC = 3.3 V – 6 Ω (typical) at VCC = 5 V. • Switch handling capability of 32 mA • High noise immunity • CMOS low power consumption • Latch-up performance exceeds 100 mA per JESD78 Class II • Direct interface TTL-levels • Multiple package options • ESD protection: – HBM EIA/JESD22-A114-B exceeds 2000 V – MM EIA/JESD22-A115-A exceeds 200 V. • Specified from −40 to +85 °C and −40 to +125 °C. QUICK REFERENCE DATA Ground = 0 V; Tamb = 25 °C; tr = tf ≤ 3.0 ns. SYMBOL tPZH/tPZL tPHZ/tPLZ PARAMETER turn-ON time E to VOS turn-OFF time E to VOS CONDITIONS TYPICAL UNIT CL = 50 pF; RL = 500 Ω; VCC = 3 V 2.5 ns CL = 50 pF; RL = 500 Ω; VCC = 5 V 1.9 ns CL = 50 pF; RL = 500 Ω; VCC = 3 V 3.4 ns CL = 50 pF; RL = 500 Ω; VCC = 5 V 2.5 ns 2 pF CI input capacitance CPD power dissipation capacitance CL = 50 pF; fi = 10 MHz; VCC = 3.3 V; notes 1 and 2 12.0 pF CS switch capacitance OFF-state 6.5 pF ON-state 11 pF Notes 1. CPD is used to determine the dynamic power dissipation (PD in µW). PD = CPD × VCC2 × fi + {(CL + CS) × VCC2 × fo} where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; CS = switch capacitance in pF; VCC = supply voltage in Volts; 2. The condition is VI = GND to VCC. 2004 Apr 13 2 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 FUNCTION TABLE See note 1. INPUT E SWITCH L OFF H ON Note 1. H = HIGH voltage level; L = LOW voltage level. ORDERING INFORMATION PACKAGE TYPE NUMBER TEMPERATURE RANGE PINS PACKAGE MATERIAL CODE 74LVC1G66GW −40 to +125 °C 5 SC-88A plastic SOT353 VL 74LVC1G66GV −40 to +125 °C 5 SC-74A plastic SOT753 V66 MARKING PINNING PIN SYMBOL DESCRIPTION 1 Y independent input/output 2 Z independent output/input 3 GND ground (0 V) 4 E enable input (active HIGH) 5 VCC supply voltage handbook, halfpage handbook, halfpage Y 1 5 VCC Y Z 2 GND Z 66 3 4 E E MNA074 MNA657 Fig.1 Pin configuration. 2004 Apr 13 Fig.2 Logic symbol. 3 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 handbook, halfpage Z handbook, halfpage 1 4 # 1 1 2 Y X1 MNA076 E VCC Fig.3 IEC logic symbol. MNA658 Fig.4 Logic diagram. RECOMMENDED OPERATING CONDITIONS SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VCC supply voltage 1.65 5.5 V VI input voltage 0 5.5 V VO output voltage 0 VCC V Tamb operating ambient temperature tr, tf input rise and fall times active mode VCC = 0 V; Power-down mode 2004 Apr 13 0 5.5 V −40 +125 °C VCC = 1.65 to 2.7 V 0 20 ns/V VCC = 2.7 to 5.5 V 0 10 ns/V 4 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT −0.5 +6.5 V VI < 0 − −50 mA input voltage note 1 −0.5 +6.5 V output voltage active mode; notes 1 and 2 −0.5 VCC + 0.5 V Power-down mode; notes 1 and 2 −0.5 +6.5 V VO = 0 to VCC − ±50 mA VCC supply voltage IIK input diode current VI VO IOS maximum switch current ICC, IGND VCC or GND current − ±100 mA Tstg storage temperature −65 +150 °C Ptot power dissipation − 250 mW Tamb = −40 to +125 °C; note 2 Notes 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. When VCC = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation. DC CHARACTERISTICS At recommended operating conditions; voltages are referenced to GND (ground = 0 V). TEST CONDITIONS SYMBOL PARAMETER MIN. TYP. MAX. UNIT VCC (V) OTHER Tamb = −40 to +85 °C; note 1 VIH VIL 1.65 to 1.95 0.65 × VCC − HIGH-level input voltage LOW-level input voltage − V 2.3 to 2.7 1.7 − − V 2.7 to 3.6 2.0 − − V 4.5 to 5.5 0.7 × VCC − − V 1.65 to 1.95 − − 0.35 × VCC V 2.3 to 2.7 − − 0.7 V 2.7 to 3.6 − − 0.8 V 4.5 to 5.5 − − 0.3 × VCC V ILI input leakage current (control pin) VI = 5.5 V or GND 5.5 − ±0.1 ±5 µA IS analog switch OFF-state current VI = VIH or VIL; |VS| = VCC − GND; see Fig.5 5.5 − ±0.1 ±5 µA analog switch ON-state current VI = VIH or VIL; |VS| = VCC − GND; see Fig.6 5.5 − ±0.1 ±5 µA quiescent supply current VI = VCC or GND; VS = GND or VCC; IO = 0 5.5 − 0.1 10 µA ICC 2004 Apr 13 5 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 TEST CONDITIONS SYMBOL PARAMETER MIN. OTHER ∆ICC additional quiescent supply current per control pin VI = VCC − 0.6 V; VS = GND or VCC; IO = 0 RON(peak) ON-resistance (peak) VS = GND to VCC; VI = VIH; see Fig.7 RON(rail) ON-resistance (rail) TYP. MAX. UNIT VCC (V) 5.5 − 5 500 µA IS = 4 mA 1.65 to 1.95 − 35 100 Ω IS = 8 mA 2.3 to 2.7 − 14 30 Ω IS = 12 mA 2.7 − 11.5 25 Ω IS = 24 mA 3.0 to 3.6 − 8.5 20 Ω IS = 32 mA 4.5 to 5.5 − 6.5 15 Ω 1.65 to 1.95 − 10 30 Ω VS = GND; VI = VIH; see Fig.7 IS = 4 mA IS = 8 mA 2.3 to 2.7 − 8.5 20 Ω IS = 12 mA 2.7 − 7.5 18 Ω IS = 24 mA 3.0 to 3.6 − 6.5 15 Ω IS = 32 mA 4.5 to 5.5 − 6 10 Ω 1.65 to 1.95 − 12 30 Ω VS = VCC; VI = VIH; see Fig.7 IS = 4 mA RON(flatness) ON-resistance (flatness) IS = 8 mA 2.3 to 2.7 − 8.5 20 Ω IS = 12 mA 2.7 − 7.5 18 Ω IS = 24 mA 3.0 to 3.6 − 6.5 15 Ω IS = 32 mA 4.5 to 5.5 − 6 10 Ω 100(2) − Ω VS = GND to VCC; VI = VIH; see Figs 9 to 13 IS = 4 mA 1.65 to 1.95 − IS = 8 mA 2.3 to 2.7 − 17(2) − Ω IS = 12 mA 2.7 − 10(2) − Ω 3.0 to 3.6 − 5(2) − Ω 4.5 to 5.5 − 3(2) − Ω IS = 24 mA IS = 32 mA 2004 Apr 13 6 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 TEST CONDITIONS SYMBOL PARAMETER MIN. OTHER TYP. MAX. UNIT VCC (V) Tamb = −40 to +125 °C VIH HIGH-level input voltage 1.65 to 1.95 0.65 × VCC − − V 1.7 − − V 2.7 to 3.6 2.0 − − V 4.5 to 5.5 0.7 × VCC − − V 1.65 to 1.95 − − 0.35 × VCC V 2.3 to 2.7 − − 0.7 V 2.7 to 3.6 − − 0.8 V 4.5 to 5.5 − − 0.3 × VCC V 2.3 to 2.7 VIL LOW-level input voltage ILI input leakage current (control pin) VI = 5.5 V or GND 5.5 − − 100 µA IS analog switch OFF-state current VI = VIH or VIL; |VS| = VCC − GND; see Fig.5 5.5 − − 200 µA analog switch ON-state current VI = VIH or VIL; |VS| = VCC − GND; see Fig.6 5.5 − − 200 µA ICC quiescent supply current VI = VCC or GND; VS = GND or VCC; IO = 0 5.5 − − 200 µA ∆ICC additional quiescent supply current per control pin VI = VCC − 0.6 V; VS = GND or VCC; IO = 0 5.5 − − 5000 µA RON(peak) ON-resistance (peak) VS = GND to VCC; VI = VIH; see Fig.7 IS = 4 mA 1.65 to 1.95 − − 150 Ω IS = 8 mA 2.3 to 2.7 − − 45 Ω IS = 12 mA 2.7 − − 38 Ω IS = 24 mA 3.0 to 3.6 − − 30 Ω IS = 32 mA 4.5 to 5.5 − − 23 Ω 2004 Apr 13 7 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 TEST CONDITIONS SYMBOL PARAMETER MIN. OTHER RON(rail) ON-resistance (rail) TYP. MAX. UNIT VCC (V) VS = GND; VI = VIH; see Fig.7 IS = 4 mA 1.65 to 1.95 − − 45 Ω IS = 8 mA 2.3 to 2.7 − − 30 Ω IS = 12 mA 2.7 − − 27 Ω IS = 24 mA 3.0 to 3.6 − − 23 Ω IS = 32 mA 4.5 to 5.5 − − 15 Ω IS = 4 mA 1.65 to 1.95 − − 45 Ω IS = 8 mA 2.3 to 2.7 − − 30 Ω IS = 12 mA 2.7 − − 27 Ω IS = 24 mA 3.0 to 3.6 − − 23 Ω IS = 32 mA 4.5 to 5.5 − − 15 Ω VS = VCC; VI = VIH; see Fig.7 Notes 1. All typical values are measured at Tamb = 25 °C. 2. RON flatness over operating temperature range (Tamb = −40 to +85 °C). E VIL VIH Y Z E Y Z A A A A VI = VCC or GND VO = GND or VCC VI = VCC or GND VO (open circuit) GND GND MNA660 MNA661 Fig.5 Test circuit for measuring OFF-state current. 2004 Apr 13 Fig.6 Test circuit for measuring ON-state current. 8 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 001aaa707 40 RON (Ω) (1) 30 20 E VIH V Y (2) 10 Z (3) (4) VS = GND to VCC (5) IS 0 0 GND 2 3 4 Test circuit for measuring ON-resistance (RON). Measured at Tamb = 25 °C. VCC = 1.8 V. VCC = 2.5 V. VCC = 2.7 V. VCC = 3.3 V. VCC = 5.0 V. Fig.8 001aaa712 80 5 VI (V) (1) (2) (3) (4) (5) Fig.7 1 MNA659 GND Typical ON-resistance (RON) as a function of input voltage (VS) for VS = GND to VCC. 001aaa708 16 RON (Ω) RON (Ω) 60 12 (1) (2) 40 8 (3) (4) (1) (2) (3) (4) 20 4 0 0 1 2 3 4 0 5 0 VI (V) (1) (2) (3) (4) 2 3 4 5 VI (V) Tamb = +125 °C. Tamb = +85 °C. Tamb = +25 °C. Tamb = −40 °C. (1) (2) (3) (4) Fig.9 RON for VCC = 1.8 V. 2004 Apr 13 1 Tamb = +125 °C. Tamb = +85 °C. Tamb = +25 °C. Tamb = −40 °C. Fig.10 RON for VCC = 2.5 V. 9 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 001aaa709 16 001aaa710 16 RON (Ω) RON (Ω) 12 12 (1) (2) 8 (1) 8 (3) (2) (3) (4) 4 (4) 4 0 0 0 1 2 3 4 5 0 1 VI (V) (1) (2) (3) (4) (1) (2) (3) (4) Fig.11 RON for VCC = 2.7 V. RON (Ω) 12 8 (1) (2) (3) (4) 0 0 1 2 3 4 5 VI (V) (1) (2) (3) (4) Tamb = +125 °C. Tamb = +85 °C. Tamb = +25 °C. Tamb = −40 °C. Fig.13 RON for VCC = 5.0 V. 2004 Apr 13 4 5 Tamb = +125 °C. Tamb = +85 °C. Tamb = +25 °C. Tamb = −40 °C. Fig.12 RON for VCC = 3.3 V. 001aaa711 4 3 VI (V) Tamb = +125 °C. Tamb = +85 °C. Tamb = +25 °C. Tamb = −40 °C. 16 2 10 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 AC CHARACTERISTICS TEST CONDITIONS SYMBOL PARAMETER MIN. WAVEFORMS TYP. MAX. UNIT VCC (V) Tamb = −40 to +85 °C; note 1 tPHL/tPLH tPZH/tPZL tPHZ/tPLZ propagation delay Y to Z or Z to Y turn-ON time E to VOS turn-OFF time E to VOS see Figs 14 and 16 see Figs 15 and 16 see Figs 15 and 16 1.65 to 1.95 − 0.8 2 ns 2.3 to 2.7 − 0.4 1.2 ns 2.7 − 0.4 1 ns 3.0 to 3.6 − 0.3 0.8 ns 4.5 to 5.5 − 0.2 0.6 ns 1.65 to 1.95 1 5.3 12 ns 2.3 to 2.7 1 3.0 6.5 ns 2.7 1 2.6 6 ns 3.0 to 3.6 1 2.5 5 ns 4.5 to 5.5 1 1.9 4.2 ns 1.65 to 1.95 1 4.2 10 ns 2.3 to 2.7 1 2.4 6.9 ns 2.7 1 3.6 7.5 ns 3.0 to 3.6 1 3.4 6.5 ns 4.5 to 5.5 1 2.5 5 ns 1.65 to 1.95 − − 3 ns 2.3 to 2.7 − − 2 ns 2.7 − − 1.5 ns 3.0 to 3.6 − − 1.5 ns 4.5 to 5.5 − − 1 ns 1.65 to 1.95 1 − 15.5 ns 2.3 to 2.7 1 − 8.5 ns Tamb = −40 to +125 °C tPHL/tPLH tPZH/tPZL tPHZ/tPLZ propagation delay Y to Z or Z to Y turn-ON time E to VOS turn-OFF time E to VOS see Figs 14 and 16 see Figs 15 and 16 see Figs 15 and 16 Note 1. All typical values are measured at Tamb = 25 °C. 2004 Apr 13 11 2.7 1 − 8 ns 3.0 to 3.6 1 − 6.5 ns 4.5 to 5.5 1 − 5.5 ns 1.65 to 1.95 1 − 13 ns 2.3 to 2.7 1 − 9 ns 2.7 1 − 9.5 ns 3.0 to 3.6 1 − 8.5 ns 4.5 to 5.5 1 − 6.5 ns Philips Semiconductors Product specification Bilateral switch 74LVC1G66 AC WAVEFORMS handbook, halfpage VI VM Y or Z GND t PHL t PLH VOH VM Z or Y VOL VCC VM VI MNA667 INPUT tr = tf 1.65 to 1.95 V 0.5 × VCC VCC ≤ 2.0 ns 2.3 to 2.7 V 0.5 × VCC VCC ≤ 2.0 ns 2.7 V 1.5 V 2.7 V ≤ 2.5 ns 3.0 to 3.6 V 1.5 V 2.7 V ≤ 2.5 ns 4.5 to 5.5 V 0.5 × VCC VCC ≤ 2.5 ns VOL and VOH are typical output voltage drop that occur with the output load. Fig.14 The input (VS) to output (VO) propagation delays. 2004 Apr 13 12 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 VI handbook, full pagewidth E VM GND t PLZ t PZL VCC output LOW-to-OFF OFF-to-LOW Y or Z VM VX VOL t PZH t PHZ Y or Z VOH output HIGH-to-OFF OFF-to-HIGH VY VM GND switch enabled switch disabled switch enabled MNA668 VCC VM VI INPUT tr = tf 1.65 to 1.95 V 0.5 × VCC VCC ≤ 2.0 ns 2.3 to 2.7 V 0.5 × VCC VCC ≤ 2.0 ns 2.7 V 1.5 V 2.7 V ≤ 2.5 ns 3.0 to 3.6 V 1.5 V 2.7 V ≤ 2.5 ns 4.5 to 5.5 V 0.5 × VCC VCC ≤ 2.5 ns VX = VOL + 0.3 V at VCC ≥ 2.7 V; VX = VOL + 0.1 x VCC at VCC < 2.7 V; VY = VOH − 0.3 V at VCC ≥ 2.7 V; VY = VOH − 0.1 x VCC at VCC < 2.7 V. VOL and VOH are typical output voltage drop that occur with the output load. Fig.15 The turn-on and turn-off times. 2004 Apr 13 13 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 VEXT handbook, full pagewidth VCC PULSE GENERATOR VI RL VO D.U.T. CL RT RL MNA616 VCC VI CL RL VEXT tPLH/tPHL tPZH/tPHZ tPZL/tPLZ 1.65 to 1.95 V VCC 30 pF 1 kΩ open GND 2 × VCC 2.3 to 2.7 V VCC 30 pF 500 Ω open GND 2 × VCC 2.7 V 2.7 V 50 pF 500 Ω open GND 6V 3.0 to 3.6 V 2.7 V 50 pF 500 Ω open GND 6V 4.5 to 5.5 V VCC 50 pF 500 Ω open GND 2 × VCC Definitions for test circuit: RL = Load resistor. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance should be equal to the output impedance Zo of the pulse generator. Fig.16 Load circuitry for switching times. 2004 Apr 13 14 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 ADDITIONAL AC CHARACTERISTICS At recommended conditions and all typical values are measured at Tamb = 25 °C. SYMBOL dsin PARAMETER sine-wave distortion TEST CONDITIONS RL = 10 kΩ; CL = 50 pF; fi = 1 kHz; see Fig.18 RL = 10 kΩ; CL = 50 pF; fi = 10 kHz; see Fig.18 fON(res) switch ON signal frequency response RL = 600 Ω; CL = 50 pF; fi = 1 MHz; see Fig.17; note 1 RL = 50 Ω; CL = 5 pF; fi = 1 MHz; see Fig.17; note 1 αOFF(ft) switch OFF signal feed-through attenuation RL = 600 Ω; CL = 50 pF; fi = 1 MHz; see Fig.19; note 2 RL = 0 Ω; CL = 50 pF; fi = 1 MHz; see Fig.19; note 2 Vct fmax CPD Q 2004 Apr 13 crosstalk (control input to signal output) frequency response (−3 dB) power dissipation capacitance charge injection RL = 600 Ω; CL = 50 pF; fi = 1 MHz; tr = tf = 2 ns; see Fig.20 RL = 50 Ω; CL = 10 pF; see Fig.17; note 1 CL = 50 pF; fi = 10 MHz VCC (V) UNIT 1.65 0.032 % 2.3 0.008 % 3 0.006 % 4.5 0.001 % 1.65 0.068 % 2.3 0.009 % 3 0.008 % 4.5 0.006 % 1.65 135 MHz 2.3 145 MHz 3 150 MHz 4.5 155 MHz 1.65 >500 MHz 2.3 >500 MHz 3 >500 MHz 4.5 >500 MHz 1.65 −46 dB 2.3 −46 dB 3 −46 dB 4.5 −46 dB 1.65 −37 dB 2.3 −37 dB 3 −37 dB 4.5 −37 dB 1.65 69 mV 2.3 87 mV 3 156 mV 4.5 302 mV 1.65 200 MHz 2.3 350 MHz 3 410 MHz 4.5 440 MHz 2.5 9.8 pF 3.3 12.0 pF 5.0 17.3 pF 0.05 pC CL = 0.1 nF; Vgen = 0 V; 1.65 to 5.5 Rgen = 0 Ω; fi = 1 MHz; RL = 1 MΩ; see Fig.21; note 3 15 TYP. Philips Semiconductors Product specification Bilateral switch 74LVC1G66 Notes 1. Adjust fi voltage to obtain 0 dBm level at output. Increase fi frequency until dB meter reads −3 dB. 2. Adjust fi voltage to obtain 0 dBm level at input. 3. Guaranteed by design. handbook, full pagewidth VIH E 0.1 µF fin Y/Z Z/Y 50 Ω VO RL channel ON 1/2VCC CL dB MNA669 Fig.17 Test circuit for measuring the frequency response when switch is ON. 2004 Apr 13 16 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 E handbook, full pagewidth VIH Y/Z 600 Ω fin 10 µF Z/Y VO CL RL channel ON DISTORTION METER 1/2VCC MNA670 VCC VI 1.65 V 1.4 V (p-p) 2.3 V 2 V (p-p) 3V 2.5 V (p-p) 4V 4 V (p-p) Fig.18 Test circuit for measuring sine-wave distortion. handbook, full pagewidth VIL E 0.1 µF fin 50 Ω Y/Z Z/Y RL 1/2VCC VO RL channel ON CL dB 1/2VCC MNA671 Fig.19 Test circuit for measuring feed-through when switch is OFF. 2004 Apr 13 17 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 E handbook, full pagewidth Y/Z Z/Y VO RL 600 Ω Rin 600 Ω 50 Ω CL 50 pF 1/2VCC 1/2VCC MNA672 Fig.20 Crosstalk. E handbook, full pagewidth Rgen logic input Y/Z Z/Y Vgen RL VO 1 MΩ CL MNA674 handbook, full pagewidth logic input (E) off on off ∆Vout VO MNA675 Q = (∆Vout) × (CL) Fig.21 Charge injection test. 2004 Apr 13 18 0.1 nF Philips Semiconductors Product specification Bilateral switch 74LVC1G66 PACKAGE OUTLINES Plastic surface mounted package; 5 leads SOT353 D E B y X A HE 5 v M A 4 Q A A1 1 2 e1 3 bp c Lp w M B e detail X 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A A1 max bp c D E (2) e e1 HE Lp Q v w y mm 1.1 0.8 0.1 0.30 0.20 0.25 0.10 2.2 1.8 1.35 1.15 1.3 0.65 2.2 2.0 0.45 0.15 0.25 0.15 0.2 0.2 0.1 OUTLINE VERSION SOT353 2004 Apr 13 REFERENCES IEC JEDEC EIAJ SC-88A 19 EUROPEAN PROJECTION ISSUE DATE 97-02-28 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 Plastic surface mounted package; 5 leads SOT753 D E B y A X HE 5 v M A 4 Q A A1 c 1 2 3 Lp detail X bp e w M B 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A A1 bp c D E e HE Lp Q v w y mm 1.1 0.9 0.100 0.013 0.40 0.25 0.26 0.10 3.1 2.7 1.7 1.3 0.95 3.0 2.5 0.6 0.2 0.33 0.23 0.2 0.2 0.1 OUTLINE VERSION SOT753 2004 Apr 13 REFERENCES IEC JEDEC JEITA SC-74A 20 EUROPEAN PROJECTION ISSUE DATE 02-04-16 Philips Semiconductors Product specification Bilateral switch 74LVC1G66 DATA SHEET STATUS LEVEL DATA SHEET STATUS(1) PRODUCT STATUS(2)(3) Development DEFINITION I Objective data II Preliminary data Qualification This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. III Product data This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Production This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. Notes 1. Please consult the most recently issued data sheet before initiating or completing a design. 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. DEFINITIONS DISCLAIMERS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Right to make changes Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. 2004 Apr 13 21 Philips Semiconductors – a worldwide company Contact information For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: [email protected]. SCA76 © Koninklijke Philips Electronics N.V. 2004 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands R20/04/pp22 Date of release: 2004 Apr 13 Document order number: 9397 750 13018