INTEGRATED CIRCUITS DATA SHEET 74HC2G66; 74HCT2G66 Bilateral switches Product specification Supersedes data of 2003 Nov 26 2004 May 19 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 FEATURES DESCRIPTION • Wide supply voltage range from 2.0 V to 9.0 V The 74HC2G66/74HCT2G66 is a high-speed Si-gate CMOS device. • Very low ON-resistance: – 41 Ω (typical) at VCC = 4.5 V The 74HC2G66/74HCT2G66 provides a dual analog switch. Each switch has two pins (nY and nZ) for input or output and an active HIGH enable input (pin E). When pin E is LOW, the belonging analog switch is turned off. – 30 Ω (typical) at VCC = 6.0 V – 21 Ω (typical) at VCC = 9.0 V. • High noise immunity • Low power dissipation • ± 25 mA switch current • SOT505-2 package • ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V. • Specified from −40 °C to +85 °C and −40 °C to +125 °C. QUICK REFERENCE DATA GND = 0 V; Tamb = 25 °C; tr = tf = 6.0 ns; Vos is the output voltage at pins nY or nZ, whichever is assigned as an output. TYPICAL SYMBOL PARAMETER CONDITIONS UNIT HC2G HCT2G tPZH/tPZL turn-on time nE to Vos CL = 50 pF; RL = 1 kΩ; VCC = 4.5 V 12 13 ns tPHZ/tPLZ turn-off time nE to Vos CL = 50 pF; RL = 1 kΩ; VCC = 4.5 V 12 13 ns CI input capacitance 3.5 3.5 pF CPD power dissipation capacitance per switch notes 1 and 2 9 9 pF CS switch capacitance 8 8 pF Notes 1. CPD is used to determine the dynamic power dissipation (PD in µW). PD = CPD × VCC2 × fi + (CL +CS) × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; CS = Switch capacitance in pF; VCC = supply voltage in Volts. 2. For 74HC2G66 the condition is VI = GND to VCC. For 74HCT2G66 the condition is VI = GND to VCC − 1.5 V. 2004 May 19 2 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 FUNCTION TABLE See note 1. INPUT nE SWITCH L OFF H ON Note 1. H = HIGH voltage level; L = LOW voltage level. ORDERING INFORMATION PACKAGE TYPE NUMBER TEMPERATURE RANGE PINS PACKAGE MATERIAL OUTLINE VERSION MARKING 74HC2G66DP −40 °C to +125 °C 8 TSSOP8 plastic SOT505-2 H66 74HCT2G66DP −40 °C to +125 °C 8 TSSOP8 plastic SOT505-2 T66 PINNING PIN SYMBOL DESCRIPTION 1 1Y independent input or output 2 1Z independent input or output 3 2E enable input (active HIGH) 4 GND ground (0 V) 5 2Y independent input or output 6 2Z independent input or output 7 1E enable input (active HIGH) 8 VCC supply voltage handbook, halfpage handbook, halfpage 8 VCC 7 1E 2E 3 6 2Z GND 4 5 2Y 1Y 1 1Z 2 1Y 1Z 1E 66 2Z 2Y 2E MNB002 MNB003 Fig.1 Pin configuration. 2004 May 19 Fig.2 Logic symbol. 3 Philips Semiconductors Product specification Bilateral switches handbook, halfpage 1 7 # 5 3 # 74HC2G66; 74HCT2G66 1 X1 1 1 X1 1 nZ handbook, halfpage 2 6 MNB004 nE nY GND Fig.3 IEC logic symbol. MNB005 Fig.4 Logic diagram. RECOMMENDED OPERATING CONDITIONS 74HC2G66 SYMBOL PARAMETER 74HCT2G66 CONDITIONS UNIT MIN. TYP. MAX. MIN. TYP. MAX. VCC supply voltage 2.0 5.0 10.0 4.5 5.0 5.5 V VI input voltage 0 − VCC 0 − VCC V VO output voltage 0 − VCC 0 − VCC V Tamb ambient temperature +25 +125 −40 +25 +125 °C tr, tf input rise and fall VCC = 2.0 V times VCC = 4.5 V − − 1000 − − − ns − 6.0 500 − 6.0 500 ns VCC = 6.0 V − − 400 − − − ns VCC = 9.0 V − − 250 − − − ns see DC and AC −40 characteristics per device LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VCC supply voltage −0.5 +11.0 V IIK input diode current VI < −0.5 V or VI > VCC + 0.5 V; note 1 − ±20 mA IOK output diode current VO < −0.5 V or VO > VCC + 0.5 V; note 1 − ±20 mA IO output source or sink current −0.5 V < VO < VCC + 0.5 V; note 1 − ±25 mA ICC, IGND VCC or GND current note 1 − ±30 mA Tstg storage temperature −65 +150 °C Ptot power dissipation of package Ps power dissipation per switch Tamb = −40 °C to +125 °C; note 2 − 300 mW − 100 mW Notes 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. Above 55 °C the value of Ptot derates linearly with 2.5 mW/K. 2004 May 19 4 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 DC CHARACTERISTICS Type 74HC2G66 At recommended operating conditions; voltages are referenced to GND (ground = 0 V). TEST CONDITIONS SYMBOL PARAMETER MIN. OTHER TYP. MAX. UNIT VCC (V) Tamb = −40 °C to +85 °C; note1 VIH VIL ILI HIGH-level input voltage LOW-level input voltage input leakage current VI = VCC or GND 2.0 1.5 1.2 − V 4.5 3.15 2.4 − V 6.0 4.2 3.2 − V 9.0 6.3 4.7 − V 2.0 − 0.8 0.5 V 4.5 − 2.1 1.35 V 6.0 − 2.8 1.8 V 9.0 − 4.3 2.7 V 6.0 − − ±0.1 µA 9.0 − − ±0.2 µA Is(OFF) analog switch current, OFF-state VI = VIH or VIL; VS = VCC − GND; see Fig.7 9.0 − 0.1 1.0 µA Is(ON) analog switch current, ON-state VI = VIH or VIL; VS = VCC − GND; see Fig.8 9.0 − 0.1 1.0 µA ICC quiescent supply current VI = VCC or GND; Vis = GND or VCC; Vos = VCC or GND 6.0 − − 10 µA 9.0 − − 20 µA 2004 May 19 5 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 TEST CONDITIONS SYMBOL PARAMETER MIN. OTHER TYP. MAX. UNIT VCC (V) Tamb = −40 °C to +125 °C VIH VIL ILI HIGH-level input voltage LOW-level input voltage input leakage current VI = VCC or GND 2.0 1.5 − − V 4.5 3.15 − − V 6.0 4.2 − − V 9.0 6.3 − − V 2.0 − − 0.5 V 4.5 − − 1.35 V 6.0 − − 1.8 V 9.0 − − 2.7 V 6.0 − − ±0.1 µA 9.0 − − ±0.2 µA Is(OFF) analog switch current, OFF-state VI = VIH or VIL; VS = VCC − GND; see Fig.7 9.0 − − 1.0 µA Is(ON) analog switch current, ON-state VI = VIH or VIL; VS = VCC − GND; see Fig.8 9.0 − − 1.0 µA ICC quiescent supply current VI = VCC or GND; Vis = GND or VCC; Vos = VCC or GND 6.0 − − 20 µA 9.0 − − 40 µA Note 1. All typical values are measured at Tamb = 25 °C. 2004 May 19 6 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 Type 74HCT2G66 At recommended operating conditions; voltages are referenced to GND (ground = 0 V). TEST CONDITIONS SYMBOL PARAMETER MIN. OTHER TYP. MAX. UNIT VCC (V) Tamb = −40 °C to +85 °C; note 1 VIH HIGH-level input voltage 4.5 to 5.5 2.0 1.6 − V VIL LOW-level input voltage 4.5 to 5.5 − 1.2 0.8 V ILI input leakage current VI = VCC or GND 5.5 − − ±1.0 µA Is(OFF) analog switch current, OFF-state VI = VIH or VIL; VS = VCC − GND; see Fig.7 − 0.1 1.0 µA Is(ON) analog switch current, ON-state VI = VIH or VIL; VS = VCC − GND; see Fig.8 − 0.1 1.0 µA ICC quiescent supply current VI = VCC or GND; Vis = GND or VCC; Vos = VCC or GND 4.5 to 5.5 − − 10 µA ∆ICC additional supply current per input VI = VCC − 2.1 V; IO = 0 A 4.5 to 5.5 − − 375 µA Tamb = −40 °C to +125 °C VIH HIGH-level input voltage 4.5 to 5.5 2.0 − − V VIL LOW-level input voltage 4.5 to 5.5 − − 0.8 V ILI input leakage current VI = VCC or GND 5.5 − − ±1.0 µA Is(OFF) analog switch current, OFF-state VI = VIH or VIL; VS = VCC − GND; see Fig.7 − − 1.0 µA Is(ON) analog switch current, ON-state VI = VIH or VIL; VS = VCC − GND; see Fig.8 − − 1.0 µA ICC quiescent supply current VI = VCC or GND; Vis = GND or VCC; Vos = VCC or GND 4.5 to 5.5 − − 20 µA ∆ICC additional supply current per input VI = VCC − 2.1 V; IO = 0 A 4.5 to 5.5 − − 410 µA Note 1. All typical values are measured at Tamb = 25 °C. 2004 May 19 7 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 Resistance RON for 74HC2G66 and 74HCT2G66 See notes 1 and 2. TEST CONDITIONS SYMBOL PARAMETER MIN. TYP. MAX. UNIT VCC (V) Is (µA) OTHER Tamb = −40 °C to +85 °C; note 3 RON(peak) RON(rail) ON-resistance (peak) ON-resistance (rail) 2.0 100 − 250 − Ω 4.5 1000 − 41 118 Ω 6.0 1000 − 30 105 Ω 9.0 1000 − 21 88 Ω 2.0 100 − 65 − Ω 4.5 1000 − 28 95 Ω 6.0 1000 − 22 82 Ω 9.0 1000 − 18 70 Ω 2.0 100 − 65 − Ω 4.5 1000 − 31 106 Ω 6.0 1000 − 23 94 Ω 9.0 1000 − 19 78 Ω Vis = VCC to GND; VI = VIH or VIL; see Figs 5 and 6 4.5 − − 5 − Ω 6.0 − − 4 − Ω 9.0 − − 3 − Ω Vis = VCC to GND; VI = VIH or VIL; see Figs 5 and 6 2.0 100 − − − Ω 4.5 1000 − − 142 Ω 6.0 1000 − − 126 Ω 9.0 1000 − − 105 Ω 2.0 100 − − − Ω 4.5 1000 − − 115 Ω 6.0 1000 − − 100 Ω 9.0 1000 − − 80 Ω 2.0 100 − − − Ω 4.5 1000 − − 128 Ω 6.0 1000 − − 113 Ω 9.0 1000 − − 95 Ω Vis = VCC to GND; VI = VIH or VIL; see Figs 5 and 6 Vis = GND; VI = VIH or VIL; see Figs 5 and 6 Vis = VCC; VI = VIH or VIL; see Figs 5 and 6 ∆RON maximum variation of ON-resistance between the two channels Tamb = −40 °C to +125 °C RON(peak) RON(rail) ON-resistance (peak) ON-resistance (rail) Vis = GND; VI = VIH or VIL; see Figs 5 and 6 Vis = VCC; VI = VIH or VIL; see Figs 5 and 6 Notes 1. For 74 HCT2G66 only VCC = 4.5 V applies; for 74HC2G66 all VCC values apply. 2. At supply voltages near 2 V, the analog switch ON-resistance is extremely non linear. When using a supply of 2 V, it is recommended is to use these devices only for digital signals. 3. All typical values are measured at Tamb = 25 °C. 2004 May 19 8 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 MNB006 60 handbook, halfpage RON (Ω) VCC = 4.5 V 40 VCC = 6.0 V HIGH (from enable inputs) V 20 Y VCC = 9.0 V Z Vis = 0 to VCC - GND Iis 10 GND MNA078 0 0 2 4 6 8 Vis (V) 10 Vis = 0 V to VCC. Fig.5 Test circuit for measuring ON-resistance (RON). Fig.6 LOW (from enable input) Typical ON-resistance (RON) as function of input voltage (Vis). HIGH (from enable input) Y Z Y A A VI = VCC or GND VO = GND or VCC Z A A VI = VCC or GND VO (open circuit) GND GND MNA079 MNA080 Fig.7 Test circuit for measuring OFF-state current. 2004 May 19 Fig.8 Test circuit for measuring ON-state current. 9 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 AC CHARACTERISTICS Type 74HC2G66 GND = 0 V; tr = tf = 6.0 ns; Vis is the input voltage at pins nY or nZ, whichever is assigned as an input; Vos is the output voltage at pins nY or nZ, whichever is assigned as an output. TEST CONDITIONS SYMBOL PARAMETER MIN. WAVEFORMS TYP. MAX. UNIT VCC (V) Tamb = −40 °C to +85 °C; note 1 tPHL/tPLH tPZH/tPZL tPHZ/tPLZ propagation delay Vis to Vos turn-on time nE to Vos turn-off time nE to Vos RL = ∞; see Figs 16 and 18 RL = 1 kΩ; see Figs 17 and 18 RL = 1 kΩ; see Figs 17 and 18 2.0 − 6.5 65 ns 4.5 − 2.0 13 ns 6.0 − 1.5 11 ns 9.0 − 1.2 10 ns 2.0 − 40 125 ns 4.5 − 12 25 ns 6.0 − 10 21 ns 9.0 − 7 16 ns 2.0 − 21 145 ns 4.5 − 12 29 ns 6.0 − 11 28 ns 9.0 − 10 23 ns 2.0 − − 80 ns 4.5 − − 15 ns 6.0 − − 14 ns 9.0 − − 12 ns 2.0 − − 150 ns 4.5 − − 30 ns 6.0 − − 26 ns 9.0 − − 20 ns 2.0 − − 175 ns 4.5 − − 35 ns 6.0 − − 33 ns 9.0 − − 27 ns Tamb = −40 °C to +125 °C tPHL/tPLH tPZH/tPZL tPHZ/tPLZ propagation delay Vis to Vos turn-on time nE to Vos turn-off time nE to Vos RL = ∞; see Figs 16 and 18 RL = 1 kΩ; see Figs 17 and 18 RL = 1 kΩ; see Figs 17 and 18 Note 1. All typical values are measured at Tamb = 25 °C. 2004 May 19 10 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 Type 74HCT2G66 GND = 0 V; tr = tf = 6.0 ns; Vis is the input voltage at pins nY or nZ, whichever is assigned as an input; Vos is the output voltage at pins nY or nZ, whichever is assigned as an output. TEST CONDITIONS SYMBOL PARAMETER MIN. WAVEFORMS TYP. MAX. UNIT VCC (V) Tamb = −40 °C to +85 °C; note 1 tPHL/tPLH propagation delay Vis to Vos RL = ∞; see Figs 16 and 18 4.5 − 2.0 15 ns tPZH/tPZL turn-on time nE to Vos RL = 1 kΩ; see Figs 17 and 18 4.5 − 13 30 ns tPHZ/tPLZ turn-off time nE to Vos RL = 1 kΩ; see Figs 17 and 18 4.5 − 13 44 ns Tamb = −40 °C to +125 °C tPHL/tPLH propagation delay Vis to Vos RL = ∞; see Figs 16 and 18 4.5 − − 18 ns tPZH/tPZL turn-on time nE to Vos RL = 1 kΩ; see Figs 17 and 18 4.5 − − 36 ns tPHZ/tPLZ turn-off time nE to Vos RL = 1 kΩ; see Figs 17 and 18 4.5 − − 53 ns Note 1. All typical values are measured at Tamb = 25 °C. 2004 May 19 11 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 Type 74HC2G66 and 74HCT2G66 At recommended conditions and typical values; GND = 0 V; tr = tf = 6.0 ns; Vis is the input voltage at pins nY or nZ, whichever is assigned as an input; Vos is the output voltage at pins nY or nZ, whichever is assigned as an output. TEST CONDITIONS SYMBOL PARAMETER TYP. OTHER dsin sine-wave distortion Vis(p-p) (V) UNIT VCC (V) f = 1 kHz; RL = 10 kΩ; CL = 50 pF; see Fig.14 4.0 4.5 0.04 % 8.0 9.0 0.02 % f = 10 kHz; RL = 10 kΩ; CL = 50 pF; see Fig.14 4.0 4.5 0.12 % 8.0 9.0 0.06 % −50 dB αOFF(feedthru) switch OFF signal feed-through RL = 600 Ω; CL = 50 pF; note 1 f = 1 MHz; see Figs 9 and 15 4.5 9.0 −50 dB αct(s) crosstalk between the two switches RL = 600 Ω; CL = 50 pF; f = 1 MHz; see Fig 11 note 1 4.5 −60 dB 9.0 −60 dB crosstalk voltage between enable input to the switches (peak-to-peak value) RL = 600 Ω; CL = 50 pF; f = 1 MHz (nE, square wave between VCC and GND, tr = tf = 6.0 ns); see Fig 12 note 1 frequency response (−3 dB) RL = 50 Ω; CL = 10 pF; see Figs 10 and 13 note 2 Vct(E-S)(p-p) fmax CS switch capacitance Notes 1. Adjust input voltage Vis is 0 dBm level (0 dBm = 1 mW into 600 Ω). 2. Adjust input voltage Vis is 0 dBm level at Vos for 1 MHz (0 dBm = 1 mW into 50 Ω). 2004 May 19 12 4.5 110 mV 9.0 220 mV 4.5 180 MHz 9.0 200 MHz 8 pF Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 MNA082 0 handbook, full pagewidth (dB) −20 −40 −60 −80 −100 10 102 103 104 105 f (kHz) 106 Test conditions: VCC = 4.5 V; GND = 0 V; RL = 50 Ω; RSOURCE = 1 kΩ. Fig.9 Typical switch OFF signal feed-through as a function of frequency. MNA083 5 handbook, full pagewidth (dB) 0 −5 10 102 103 104 Test conditions: VCC = 4.5 V; GND = 0 V; RL = 50 Ω; RSOURCE = 1 kΩ. Fig.10 Typical frequency response. 2004 May 19 13 105 f (kHz) 106 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 VCC handbook, halfpage 0.1 µF RL handbook, halfpage VCC 2RL VCC 2RL nY/nZ nZ/nY 2RL nY/nZ nZ/nY Vos Vis channel ON 2RL CL 2RL channel OFF GND 2RL CL dB MNB009 MNB010 a. Channel ON condition. b. Channel OFF condition. Fig.11 Test circuit for measuring crosstalk between any two switches. VCC handbook, full pagewidth nE VCC VCC GND 2RL 2RL nY/nZ nZ/nY DUT 2RL 2RL CL oscilloscope GND MNB011 The crosstalk is defined as follows (oscilloscope output): handbook, halfpage V(p−p) MNB012 Fig.12 Test circuit for measuring crosstalk between control and any switch. 2004 May 19 GND 14 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 VCC handbook, full pagewidth 0.1 µF Vis sine-wave 2RL Y/Z Z/Y 2RL Vos CL dB channel ON GND MNA084 Adjust input voltage to obtain 0 dBm at Vos when fi = 1 MHz. After set-up, frequency of fi is increased to obtain a reading of −3 dB at Vos. Fig.13 Test circuit for measuring minimum frequency response. VCC handbook, full pagewidth 10 µF Vis 2RL Y/Z Z/Y fin = 1 kHz sine-wave 2RL channel ON CL Vos DISTORTION METER GND MNA085 Fig.14 Test circuit for measuring sine-wave distortion. VCC handbook, full pagewidth 0.1 µF Vis 2RL Y/Z Z/Y 2RL Vos CL dB channel OFF GND MNA086 Fig.15 Test circuit for measuring switch OFF signal feed-through. 2004 May 19 15 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 AC WAVEFORMS VI handbook, halfpage VM Vis GND tPLH tPHL VOH VM Vos VOL MNB007 74HC2G66: VM = 50%; VI = GND to VCC. 74HCT2G66: VM = 1.3 V; VI = GND to 3.0 V. Fig.16 Waveforms showing input (Vis) to output (Vos) propagation delay and the output transition time. VI handbook, full pagewidth nE VM GND t PLZ t PZL VCC nY or nZ output LOW-to-OFF OFF-to-LOW VM VX VOL t PZH t PHZ VOH nY or nZ VY output HIGH-to-OFF OFF-to-HIGH VM GND switch enabled switch disabled switch enabled MNB008 VX = 10% of signal amplitude. VY = 90% of signal amplitude. 74HC2G66: VM = 50%; VI = GND to VCC. 74HCT2G66: VM = 1.3 V; VI = GND to 3.0 V. Fig.17 Waveforms showing turn-on and turn-off times. 2004 May 19 16 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 tW handbook, full pagewidth amplitude 90% negative input pulse VM 10% 0V tTHL (tf) tTLH (tr) tTLH (tr) tTHL (tf) amplitude 90% positive input pulse VM 10% 0V tW MNA089 Input pulse definition: tr = tf = 6 ns, when measuring fmax, there is no constraint on tr, tf with 50% duty factor. 74HC2G66: VM = 50%; VI = GND to VCC. 74HCT2G66: VM = 1.3 V; VI = GND to 3.0 V. S1 handbook, full pagewidth VCC PULSE GENERATOR RL = VI 1 kΩ VO D.U.T. CL = 50 pF RT MNA742 TEST S1 tPLH/tPHL open tPLZ/tPZL VCC tPHZ/tPZH GND Definitions for test circuit: RL = Load resistor. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance should be equal to the output impedance Zo of the pulse generator. Fig.18 Load circuitry for switching times. 2004 May 19 17 VCC open GND Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 PACKAGE OUTLINE TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm D E A SOT505-2 X c HE y v M A Z 5 8 A A2 (A3) A1 pin 1 index θ Lp L 1 4 e detail X w M bp 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D(1) E(1) e HE L Lp v w y Z(1) θ mm 1.1 0.15 0.00 0.95 0.75 0.25 0.38 0.22 0.18 0.08 3.1 2.9 3.1 2.9 0.65 4.1 3.9 0.5 0.47 0.33 0.2 0.13 0.1 0.70 0.35 8° 0° Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. OUTLINE VERSION SOT505-2 2004 May 19 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 02-01-16 --- 18 Philips Semiconductors Product specification Bilateral switches 74HC2G66; 74HCT2G66 DATA SHEET STATUS LEVEL DATA SHEET STATUS(1) PRODUCT STATUS(2)(3) Development DEFINITION I Objective data II Preliminary data Qualification This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. III Product data This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Production This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. Notes 1. Please consult the most recently issued data sheet before initiating or completing a design. 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. DEFINITIONS DISCLAIMERS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Right to make changes Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. 2004 May 19 19 Philips Semiconductors – a worldwide company Contact information For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: [email protected]. SCA76 © Koninklijke Philips Electronics N.V. 2004 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands R44/04/pp20 Date of release: 2004 May 19 Document order number: 9397 750 13255