PHILIPS 74HCT2G66DP

INTEGRATED CIRCUITS
DATA SHEET
74HC2G66; 74HCT2G66
Bilateral switches
Product specification
Supersedes data of 2003 Nov 26
2004 May 19
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
FEATURES
DESCRIPTION
• Wide supply voltage range from 2.0 V to 9.0 V
The 74HC2G66/74HCT2G66 is a high-speed Si-gate
CMOS device.
• Very low ON-resistance:
– 41 Ω (typical) at VCC = 4.5 V
The 74HC2G66/74HCT2G66 provides a dual analog
switch. Each switch has two pins (nY and nZ) for input or
output and an active HIGH enable input (pin E). When
pin E is LOW, the belonging analog switch is turned off.
– 30 Ω (typical) at VCC = 6.0 V
– 21 Ω (typical) at VCC = 9.0 V.
• High noise immunity
• Low power dissipation
• ± 25 mA switch current
• SOT505-2 package
• ESD protection:
HBM EIA/JESD22-A114-A exceeds 2000 V
MM EIA/JESD22-A115-A exceeds 200 V.
• Specified from −40 °C to +85 °C and
−40 °C to +125 °C.
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf = 6.0 ns; Vos is the output voltage at pins nY or nZ, whichever is assigned as an output.
TYPICAL
SYMBOL
PARAMETER
CONDITIONS
UNIT
HC2G
HCT2G
tPZH/tPZL
turn-on time nE to Vos
CL = 50 pF; RL = 1 kΩ; VCC = 4.5 V 12
13
ns
tPHZ/tPLZ
turn-off time nE to Vos
CL = 50 pF; RL = 1 kΩ; VCC = 4.5 V 12
13
ns
CI
input capacitance
3.5
3.5
pF
CPD
power dissipation capacitance per switch notes 1 and 2
9
9
pF
CS
switch capacitance
8
8
pF
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW).
PD = CPD × VCC2 × fi + (CL +CS) × VCC2 × fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
CS = Switch capacitance in pF;
VCC = supply voltage in Volts.
2. For 74HC2G66 the condition is VI = GND to VCC.
For 74HCT2G66 the condition is VI = GND to VCC − 1.5 V.
2004 May 19
2
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
FUNCTION TABLE
See note 1.
INPUT nE
SWITCH
L
OFF
H
ON
Note
1. H = HIGH voltage level;
L = LOW voltage level.
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
TEMPERATURE
RANGE
PINS
PACKAGE
MATERIAL
OUTLINE
VERSION
MARKING
74HC2G66DP
−40 °C to +125 °C
8
TSSOP8
plastic
SOT505-2
H66
74HCT2G66DP
−40 °C to +125 °C
8
TSSOP8
plastic
SOT505-2
T66
PINNING
PIN
SYMBOL
DESCRIPTION
1
1Y
independent input or output
2
1Z
independent input or output
3
2E
enable input (active HIGH)
4
GND
ground (0 V)
5
2Y
independent input or output
6
2Z
independent input or output
7
1E
enable input (active HIGH)
8
VCC
supply voltage
handbook, halfpage
handbook, halfpage
8
VCC
7
1E
2E 3
6
2Z
GND 4
5
2Y
1Y 1
1Z 2
1Y
1Z
1E
66
2Z
2Y
2E
MNB002
MNB003
Fig.1 Pin configuration.
2004 May 19
Fig.2 Logic symbol.
3
Philips Semiconductors
Product specification
Bilateral switches
handbook, halfpage
1
7 #
5
3 #
74HC2G66; 74HCT2G66
1
X1
1
1
X1
1
nZ
handbook, halfpage
2
6
MNB004
nE
nY
GND
Fig.3 IEC logic symbol.
MNB005
Fig.4 Logic diagram.
RECOMMENDED OPERATING CONDITIONS
74HC2G66
SYMBOL
PARAMETER
74HCT2G66
CONDITIONS
UNIT
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
VCC
supply voltage
2.0
5.0
10.0
4.5
5.0
5.5
V
VI
input voltage
0
−
VCC
0
−
VCC
V
VO
output voltage
0
−
VCC
0
−
VCC
V
Tamb
ambient
temperature
+25
+125
−40
+25
+125
°C
tr, tf
input rise and fall VCC = 2.0 V
times
VCC = 4.5 V
−
−
1000
−
−
−
ns
−
6.0
500
−
6.0
500
ns
VCC = 6.0 V
−
−
400
−
−
−
ns
VCC = 9.0 V
−
−
250
−
−
−
ns
see DC and AC
−40
characteristics per device
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCC
supply voltage
−0.5
+11.0
V
IIK
input diode current
VI < −0.5 V or VI > VCC + 0.5 V; note 1
−
±20
mA
IOK
output diode current
VO < −0.5 V or VO > VCC + 0.5 V; note 1
−
±20
mA
IO
output source or sink current
−0.5 V < VO < VCC + 0.5 V; note 1
−
±25
mA
ICC, IGND
VCC or GND current
note 1
−
±30
mA
Tstg
storage temperature
−65
+150
°C
Ptot
power dissipation of package
Ps
power dissipation per switch
Tamb = −40 °C to +125 °C; note 2
−
300
mW
−
100
mW
Notes
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. Above 55 °C the value of Ptot derates linearly with 2.5 mW/K.
2004 May 19
4
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
DC CHARACTERISTICS
Type 74HC2G66
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
OTHER
TYP.
MAX.
UNIT
VCC (V)
Tamb = −40 °C to +85 °C; note1
VIH
VIL
ILI
HIGH-level input voltage
LOW-level input voltage
input leakage current
VI = VCC or GND
2.0
1.5
1.2
−
V
4.5
3.15
2.4
−
V
6.0
4.2
3.2
−
V
9.0
6.3
4.7
−
V
2.0
−
0.8
0.5
V
4.5
−
2.1
1.35
V
6.0
−
2.8
1.8
V
9.0
−
4.3
2.7
V
6.0
−
−
±0.1
µA
9.0
−
−
±0.2
µA
Is(OFF)
analog switch current,
OFF-state
VI = VIH or VIL;
VS = VCC − GND;
see Fig.7
9.0
−
0.1
1.0
µA
Is(ON)
analog switch current,
ON-state
VI = VIH or VIL;
VS = VCC − GND;
see Fig.8
9.0
−
0.1
1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
Vis = GND or VCC;
Vos = VCC or GND
6.0
−
−
10
µA
9.0
−
−
20
µA
2004 May 19
5
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
OTHER
TYP.
MAX.
UNIT
VCC (V)
Tamb = −40 °C to +125 °C
VIH
VIL
ILI
HIGH-level input voltage
LOW-level input voltage
input leakage current
VI = VCC or GND
2.0
1.5
−
−
V
4.5
3.15
−
−
V
6.0
4.2
−
−
V
9.0
6.3
−
−
V
2.0
−
−
0.5
V
4.5
−
−
1.35
V
6.0
−
−
1.8
V
9.0
−
−
2.7
V
6.0
−
−
±0.1
µA
9.0
−
−
±0.2
µA
Is(OFF)
analog switch current,
OFF-state
VI = VIH or VIL;
VS = VCC − GND;
see Fig.7
9.0
−
−
1.0
µA
Is(ON)
analog switch current,
ON-state
VI = VIH or VIL;
VS = VCC − GND;
see Fig.8
9.0
−
−
1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
Vis = GND or VCC;
Vos = VCC or GND
6.0
−
−
20
µA
9.0
−
−
40
µA
Note
1. All typical values are measured at Tamb = 25 °C.
2004 May 19
6
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
Type 74HCT2G66
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
OTHER
TYP.
MAX.
UNIT
VCC (V)
Tamb = −40 °C to +85 °C; note 1
VIH
HIGH-level input voltage
4.5 to 5.5
2.0
1.6
−
V
VIL
LOW-level input voltage
4.5 to 5.5
−
1.2
0.8
V
ILI
input leakage current
VI = VCC or GND
5.5
−
−
±1.0
µA
Is(OFF)
analog switch current,
OFF-state
VI = VIH or VIL;
VS = VCC − GND;
see Fig.7
−
0.1
1.0
µA
Is(ON)
analog switch current,
ON-state
VI = VIH or VIL;
VS = VCC − GND;
see Fig.8
−
0.1
1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
Vis = GND or VCC;
Vos = VCC or GND
4.5 to 5.5
−
−
10
µA
∆ICC
additional supply current
per input
VI = VCC − 2.1 V;
IO = 0 A
4.5 to 5.5
−
−
375
µA
Tamb = −40 °C to +125 °C
VIH
HIGH-level input voltage
4.5 to 5.5
2.0
−
−
V
VIL
LOW-level input voltage
4.5 to 5.5
−
−
0.8
V
ILI
input leakage current
VI = VCC or GND
5.5
−
−
±1.0
µA
Is(OFF)
analog switch current,
OFF-state
VI = VIH or VIL;
VS = VCC − GND;
see Fig.7
−
−
1.0
µA
Is(ON)
analog switch current,
ON-state
VI = VIH or VIL;
VS = VCC − GND;
see Fig.8
−
−
1.0
µA
ICC
quiescent supply current
VI = VCC or GND;
Vis = GND or VCC;
Vos = VCC or GND
4.5 to 5.5
−
−
20
µA
∆ICC
additional supply current
per input
VI = VCC − 2.1 V;
IO = 0 A
4.5 to 5.5
−
−
410
µA
Note
1. All typical values are measured at Tamb = 25 °C.
2004 May 19
7
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
Resistance RON for 74HC2G66 and 74HCT2G66
See notes 1 and 2.
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
TYP.
MAX.
UNIT
VCC (V) Is (µA)
OTHER
Tamb = −40 °C to +85 °C; note 3
RON(peak)
RON(rail)
ON-resistance (peak)
ON-resistance (rail)
2.0
100
−
250
−
Ω
4.5
1000
−
41
118
Ω
6.0
1000
−
30
105
Ω
9.0
1000
−
21
88
Ω
2.0
100
−
65
−
Ω
4.5
1000
−
28
95
Ω
6.0
1000
−
22
82
Ω
9.0
1000
−
18
70
Ω
2.0
100
−
65
−
Ω
4.5
1000
−
31
106
Ω
6.0
1000
−
23
94
Ω
9.0
1000
−
19
78
Ω
Vis = VCC to GND;
VI = VIH or VIL;
see Figs 5 and 6
4.5
−
−
5
−
Ω
6.0
−
−
4
−
Ω
9.0
−
−
3
−
Ω
Vis = VCC to GND;
VI = VIH or VIL;
see Figs 5 and 6
2.0
100
−
−
−
Ω
4.5
1000
−
−
142
Ω
6.0
1000
−
−
126
Ω
9.0
1000
−
−
105
Ω
2.0
100
−
−
−
Ω
4.5
1000
−
−
115
Ω
6.0
1000
−
−
100
Ω
9.0
1000
−
−
80
Ω
2.0
100
−
−
−
Ω
4.5
1000
−
−
128
Ω
6.0
1000
−
−
113
Ω
9.0
1000
−
−
95
Ω
Vis = VCC to GND;
VI = VIH or VIL;
see Figs 5 and 6
Vis = GND;
VI = VIH or VIL;
see Figs 5 and 6
Vis = VCC;
VI = VIH or VIL;
see Figs 5 and 6
∆RON
maximum variation of
ON-resistance between
the two channels
Tamb = −40 °C to +125 °C
RON(peak)
RON(rail)
ON-resistance (peak)
ON-resistance (rail)
Vis = GND;
VI = VIH or VIL;
see Figs 5 and 6
Vis = VCC;
VI = VIH or VIL;
see Figs 5 and 6
Notes
1. For 74 HCT2G66 only VCC = 4.5 V applies; for 74HC2G66 all VCC values apply.
2. At supply voltages near 2 V, the analog switch ON-resistance is extremely non linear. When using a supply of 2 V,
it is recommended is to use these devices only for digital signals.
3. All typical values are measured at Tamb = 25 °C.
2004 May 19
8
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
MNB006
60
handbook, halfpage
RON
(Ω)
VCC = 4.5 V
40
VCC = 6.0 V
HIGH
(from enable inputs)
V
20
Y
VCC = 9.0 V
Z
Vis = 0 to VCC - GND
Iis
10
GND
MNA078
0
0
2
4
6
8
Vis (V)
10
Vis = 0 V to VCC.
Fig.5
Test circuit for measuring ON-resistance
(RON).
Fig.6
LOW
(from enable input)
Typical ON-resistance (RON) as function of
input voltage (Vis).
HIGH
(from enable input)
Y
Z
Y
A
A
VI = VCC or GND
VO = GND or VCC
Z
A
A
VI = VCC or GND
VO (open circuit)
GND
GND
MNA079
MNA080
Fig.7 Test circuit for measuring OFF-state current.
2004 May 19
Fig.8 Test circuit for measuring ON-state current.
9
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
AC CHARACTERISTICS
Type 74HC2G66
GND = 0 V; tr = tf = 6.0 ns; Vis is the input voltage at pins nY or nZ, whichever is assigned as an input; Vos is the output
voltage at pins nY or nZ, whichever is assigned as an output.
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
WAVEFORMS
TYP.
MAX.
UNIT
VCC (V)
Tamb = −40 °C to +85 °C; note 1
tPHL/tPLH
tPZH/tPZL
tPHZ/tPLZ
propagation delay
Vis to Vos
turn-on time nE to Vos
turn-off time nE to Vos
RL = ∞; see
Figs 16 and 18
RL = 1 kΩ; see
Figs 17 and 18
RL = 1 kΩ; see
Figs 17 and 18
2.0
−
6.5
65
ns
4.5
−
2.0
13
ns
6.0
−
1.5
11
ns
9.0
−
1.2
10
ns
2.0
−
40
125
ns
4.5
−
12
25
ns
6.0
−
10
21
ns
9.0
−
7
16
ns
2.0
−
21
145
ns
4.5
−
12
29
ns
6.0
−
11
28
ns
9.0
−
10
23
ns
2.0
−
−
80
ns
4.5
−
−
15
ns
6.0
−
−
14
ns
9.0
−
−
12
ns
2.0
−
−
150
ns
4.5
−
−
30
ns
6.0
−
−
26
ns
9.0
−
−
20
ns
2.0
−
−
175
ns
4.5
−
−
35
ns
6.0
−
−
33
ns
9.0
−
−
27
ns
Tamb = −40 °C to +125 °C
tPHL/tPLH
tPZH/tPZL
tPHZ/tPLZ
propagation delay
Vis to Vos
turn-on time nE to Vos
turn-off time nE to Vos
RL = ∞; see
Figs 16 and 18
RL = 1 kΩ; see
Figs 17 and 18
RL = 1 kΩ; see
Figs 17 and 18
Note
1. All typical values are measured at Tamb = 25 °C.
2004 May 19
10
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
Type 74HCT2G66
GND = 0 V; tr = tf = 6.0 ns; Vis is the input voltage at pins nY or nZ, whichever is assigned as an input; Vos is the output
voltage at pins nY or nZ, whichever is assigned as an output.
TEST CONDITIONS
SYMBOL
PARAMETER
MIN.
WAVEFORMS
TYP.
MAX.
UNIT
VCC (V)
Tamb = −40 °C to +85 °C; note 1
tPHL/tPLH
propagation delay
Vis to Vos
RL = ∞; see
Figs 16 and 18
4.5
−
2.0
15
ns
tPZH/tPZL
turn-on time nE to Vos
RL = 1 kΩ; see
Figs 17 and 18
4.5
−
13
30
ns
tPHZ/tPLZ
turn-off time nE to Vos
RL = 1 kΩ; see
Figs 17 and 18
4.5
−
13
44
ns
Tamb = −40 °C to +125 °C
tPHL/tPLH
propagation delay
Vis to Vos
RL = ∞; see
Figs 16 and 18
4.5
−
−
18
ns
tPZH/tPZL
turn-on time nE to Vos
RL = 1 kΩ; see
Figs 17 and 18
4.5
−
−
36
ns
tPHZ/tPLZ
turn-off time nE to Vos
RL = 1 kΩ; see
Figs 17 and 18
4.5
−
−
53
ns
Note
1. All typical values are measured at Tamb = 25 °C.
2004 May 19
11
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
Type 74HC2G66 and 74HCT2G66
At recommended conditions and typical values; GND = 0 V; tr = tf = 6.0 ns; Vis is the input voltage at pins nY or nZ,
whichever is assigned as an input; Vos is the output voltage at pins nY or nZ, whichever is assigned as an output.
TEST CONDITIONS
SYMBOL
PARAMETER
TYP.
OTHER
dsin
sine-wave distortion
Vis(p-p) (V)
UNIT
VCC (V)
f = 1 kHz; RL = 10 kΩ;
CL = 50 pF; see Fig.14
4.0
4.5
0.04
%
8.0
9.0
0.02
%
f = 10 kHz; RL = 10 kΩ;
CL = 50 pF; see Fig.14
4.0
4.5
0.12
%
8.0
9.0
0.06
%
−50
dB
αOFF(feedthru)
switch OFF signal
feed-through
RL = 600 Ω; CL = 50 pF;
note 1
f = 1 MHz; see Figs 9 and 15
4.5
9.0
−50
dB
αct(s)
crosstalk between the two
switches
RL = 600 Ω; CL = 50 pF;
f = 1 MHz; see Fig 11
note 1
4.5
−60
dB
9.0
−60
dB
crosstalk voltage between
enable input to the switches
(peak-to-peak value)
RL = 600 Ω; CL = 50 pF;
f = 1 MHz (nE, square wave
between VCC and GND,
tr = tf = 6.0 ns); see Fig 12
note 1
frequency response (−3 dB)
RL = 50 Ω; CL = 10 pF; see
Figs 10 and 13
note 2
Vct(E-S)(p-p)
fmax
CS
switch capacitance
Notes
1. Adjust input voltage Vis is 0 dBm level (0 dBm = 1 mW into 600 Ω).
2. Adjust input voltage Vis is 0 dBm level at Vos for 1 MHz (0 dBm = 1 mW into 50 Ω).
2004 May 19
12
4.5
110
mV
9.0
220
mV
4.5
180
MHz
9.0
200
MHz
8
pF
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
MNA082
0
handbook, full pagewidth
(dB)
−20
−40
−60
−80
−100
10
102
103
104
105
f (kHz)
106
Test conditions: VCC = 4.5 V; GND = 0 V; RL = 50 Ω; RSOURCE = 1 kΩ.
Fig.9 Typical switch OFF signal feed-through as a function of frequency.
MNA083
5
handbook, full pagewidth
(dB)
0
−5
10
102
103
104
Test conditions: VCC = 4.5 V; GND = 0 V; RL = 50 Ω; RSOURCE = 1 kΩ.
Fig.10 Typical frequency response.
2004 May 19
13
105
f (kHz)
106
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
VCC
handbook, halfpage
0.1 µF
RL
handbook, halfpage VCC
2RL
VCC
2RL
nY/nZ
nZ/nY
2RL
nY/nZ
nZ/nY
Vos
Vis
channel
ON
2RL
CL
2RL
channel
OFF
GND
2RL
CL dB
MNB009
MNB010
a. Channel ON condition.
b. Channel OFF condition.
Fig.11 Test circuit for measuring crosstalk between any two switches.
VCC
handbook, full pagewidth
nE
VCC
VCC
GND
2RL
2RL
nY/nZ
nZ/nY
DUT
2RL
2RL
CL
oscilloscope
GND
MNB011
The crosstalk is defined as follows (oscilloscope output):
handbook, halfpage
V(p−p)
MNB012
Fig.12 Test circuit for measuring crosstalk between control and any switch.
2004 May 19
GND
14
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
VCC
handbook, full pagewidth
0.1 µF
Vis
sine-wave
2RL
Y/Z
Z/Y
2RL
Vos
CL dB
channel
ON
GND
MNA084
Adjust input voltage to obtain 0 dBm at Vos when fi = 1 MHz.
After set-up, frequency of fi is increased to obtain a reading of −3 dB at Vos.
Fig.13 Test circuit for measuring minimum frequency response.
VCC
handbook, full pagewidth
10 µF
Vis
2RL
Y/Z
Z/Y
fin = 1 kHz
sine-wave
2RL
channel
ON
CL
Vos
DISTORTION
METER
GND
MNA085
Fig.14 Test circuit for measuring sine-wave distortion.
VCC
handbook, full pagewidth
0.1 µF
Vis
2RL
Y/Z
Z/Y
2RL
Vos
CL dB
channel
OFF
GND
MNA086
Fig.15 Test circuit for measuring switch OFF signal feed-through.
2004 May 19
15
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
AC WAVEFORMS
VI
handbook, halfpage
VM
Vis
GND
tPLH
tPHL
VOH
VM
Vos
VOL
MNB007
74HC2G66: VM = 50%; VI = GND to VCC.
74HCT2G66: VM = 1.3 V; VI = GND to 3.0 V.
Fig.16 Waveforms showing input (Vis) to output (Vos) propagation delay and the output transition time.
VI
handbook, full pagewidth
nE
VM
GND
t PLZ
t PZL
VCC
nY or nZ
output
LOW-to-OFF
OFF-to-LOW
VM
VX
VOL
t PZH
t PHZ
VOH
nY or nZ
VY
output
HIGH-to-OFF
OFF-to-HIGH
VM
GND
switch
enabled
switch
disabled
switch
enabled
MNB008
VX = 10% of signal amplitude.
VY = 90% of signal amplitude.
74HC2G66: VM = 50%; VI = GND to VCC.
74HCT2G66: VM = 1.3 V; VI = GND to 3.0 V.
Fig.17 Waveforms showing turn-on and turn-off times.
2004 May 19
16
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
tW
handbook, full pagewidth
amplitude
90%
negative
input pulse
VM
10%
0V
tTHL (tf)
tTLH (tr)
tTLH (tr)
tTHL (tf)
amplitude
90%
positive
input pulse
VM
10%
0V
tW
MNA089
Input pulse definition:
tr = tf = 6 ns, when measuring fmax, there is no constraint on tr, tf with 50% duty factor.
74HC2G66: VM = 50%; VI = GND to VCC.
74HCT2G66: VM = 1.3 V; VI = GND to 3.0 V.
S1
handbook, full pagewidth
VCC
PULSE
GENERATOR
RL =
VI
1 kΩ
VO
D.U.T.
CL =
50 pF
RT
MNA742
TEST
S1
tPLH/tPHL
open
tPLZ/tPZL
VCC
tPHZ/tPZH
GND
Definitions for test circuit:
RL = Load resistor.
CL = Load capacitance including jig and probe capacitance.
RT = Termination resistance should be equal to the output impedance Zo of the pulse generator.
Fig.18 Load circuitry for switching times.
2004 May 19
17
VCC
open
GND
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
PACKAGE OUTLINE
TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm
D
E
A
SOT505-2
X
c
HE
y
v M A
Z
5
8
A
A2
(A3)
A1
pin 1 index
θ
Lp
L
1
4
e
detail X
w M
bp
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D(1)
E(1)
e
HE
L
Lp
v
w
y
Z(1)
θ
mm
1.1
0.15
0.00
0.95
0.75
0.25
0.38
0.22
0.18
0.08
3.1
2.9
3.1
2.9
0.65
4.1
3.9
0.5
0.47
0.33
0.2
0.13
0.1
0.70
0.35
8°
0°
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
OUTLINE
VERSION
SOT505-2
2004 May 19
REFERENCES
IEC
JEDEC
JEITA
EUROPEAN
PROJECTION
ISSUE DATE
02-01-16
---
18
Philips Semiconductors
Product specification
Bilateral switches
74HC2G66; 74HCT2G66
DATA SHEET STATUS
LEVEL
DATA SHEET
STATUS(1)
PRODUCT
STATUS(2)(3)
Development
DEFINITION
I
Objective data
II
Preliminary data Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product.
III
Product data
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in order
to improve the design, manufacturing and supply. Relevant changes will
be communicated via a Customer Product/Process Change Notification
(CPCN).
Production
This data sheet contains data from the objective specification for product
development. Philips Semiconductors reserves the right to change the
specification in any manner without notice.
Notes
1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
DEFINITIONS
DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design
and/or performance. When the product is in full production
(status ‘Production’), relevant changes will be
communicated via a Customer Product/Process Change
Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these
products, conveys no licence or title under any patent,
copyright, or mask work right to these products, and
makes no representations or warranties that these
products are free from patent, copyright, or mask work
right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
2004 May 19
19
Philips Semiconductors – a worldwide company
Contact information
For additional information please visit http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to: [email protected].
SCA76
© Koninklijke Philips Electronics N.V. 2004
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
R44/04/pp20
Date of release: 2004
May 19
Document order number:
9397 750 13255