AD AD8608ARZ

Precision, Low Noise, CMOS, Rail-to-Rail,
Input/Output Operational Amplifiers
AD8605/AD8606/AD8608
FEATURES
FUNCTIONAL BLOCK DIAGRAMS
TOP VIEW
(BUMP SIDE DOWN)
The combination of low offsets, low noise, very low input bias
currents, and high speed makes these amplifiers useful in a
wide variety of applications. Filters, integrators, photodiode
amplifiers, and high impedance sensors all benefit from the
combination of performance features. Audio and other ac
applications benefit from the wide bandwidth and low
distortion. Applications for these amplifiers include optical
control loops, portable and loop-powered instrumentation,
and audio amplification for portable devices.
–IN A 2
1
5
+IN A 3
V+ 4
2
+IN
–IN
+IN B 5
3
4
–IN B 6
AD8606
8
TOP VIEW
(Not to Scale)
4
5
+INB
C2
C3
14 OUT D
13 –IN D
AD8608
12 +IN D
TOP VIEW
(Not to Scale)
V+
OUT B
–IN B
+IN B
11 V–
10 +IN C
9 –IN C
8 OUT C
OUT B 7
Figure 3. 5-Ball WLCSP (CB Suffix)
1
V–
C1
OUT A 1
V+
V–
OUT A
–IN A
+IN A
V–
+INA
Figure 2. 8-Ball WLCSP (CB Suffix)
OUT
AD8605 ONLY
B3
02731-004
The AD8605, AD8606, and AD8608 1 are single, dual, and quad
rail-to-rail input and output, single-supply amplifiers. They
feature very low offset voltage, low input voltage and current
noise, and wide signal bandwidth. They use the Analog Devices,
Inc. patented DigiTrim® trimming technique, which achieves
superior precision without laser trimming.
–INB
B1
AD8606
Figure 1. 5-Lead SOT-23 (RJ Suffix)
GENERAL DESCRIPTION
–INA
TOP VIEW
(BALL SIDE DOWN)
Figure 4. 14-Lead SOIC_N (R Suffix)
02731-003
Photodiode amplification
Battery-powered instrumentation
Multipole filters
Sensors
Barcode scanners
Audio
4 –IN
+IN 3
A3
5 V+
TOP VIEW
(Not to Scale)
V– 2
APPLICATIONS
OUTB
A2
Figure 5. 8-Lead MSOP (RM Suffix),
8-Lead SOIC_N (R Suffix)
OUT A
–IN A
+IN A
V+
+IN B
–IN B
OUT B
1
14
AD8608
TOP VIEW
(Not to Scale)
7
8
OUT D
–IN D
+IN D
V–
+IN C
–IN C
OUT C
02731-002
AD8605
V+
A1
02731-001
OUT 1
OUTA
02731-057
BALL A1
CORNER
02731-006
Low offset voltage: 65 μV maximum
Low input bias currents: 1 pA maximum
Low noise: 8 nV/√Hz
Wide bandwidth: 10 MHZ
High open-loop gain: 1000 V/mV
Unity gain stable
Single-supply operation: 2.7 V to 5.5 V
5-ball WLCSP for single (AD8605) and 8-ball WLCSP for
dual (AD8606)
Figure 6. 14-Lead TSSOP (RU Suffix)
The AD8605, AD8606, and AD8608 are specified over the
extended industrial temperature range (−40°C to +125°C). The
AD8605 single is available in 5-lead SOT-23 and 5-ball WLCSP
packages. The AD8606 dual is available in an 8-lead MSOP, an
8-ball WLSCP, and a narrow SOIC surface-mounted package.
The AD8608 quad is available in a 14-lead TSSOP package and
a narrow 14-lead SOIC package. The 5-ball and 8-ball WLCSP
offer the smallest available footprint for any surface-mounted
operational amplifier. The WLCSP, SOT-23, MSOP, and TSSOP
versions are available in tape-and-reel only.
1
Protected by U.S. Patent No. 5,969,657; other patents pending.
Rev. H
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.
AD8605/AD8606/AD8608
TABLE OF CONTENTS
Features .............................................................................................. 1 THD + Noise ............................................................................... 15 Applications ....................................................................................... 1 Total Noise Including Source Resistors ................................... 16 General Description ......................................................................... 1 Channel Separation .................................................................... 16 Functional Block Diagrams ............................................................. 1 Capacitive Load Drive ............................................................... 16 Revision History ............................................................................... 3 Light Sensitivity .......................................................................... 17 5 V Electrical Specifications ............................................................ 4 WLCSP Assembly Considerations ........................................... 17 2.7 V Electrical Specifications ......................................................... 6 I-V Conversion Applications ........................................................ 18 Absolute Maximum Ratings............................................................ 8 Photodiode Preamplifier Applications .................................... 18 ESD Caution .................................................................................. 8 Audio and PDA Applications ................................................... 18 Typical Performance Characteristics ............................................. 9 Instrumentation Amplifiers ...................................................... 19 Applications Information .............................................................. 15 DAC Conversion ........................................................................ 19 Output Phase Reversal ............................................................... 15 Outline Dimensions ....................................................................... 20 Maximum Power Dissipation ................................................... 15 Ordering Guide .......................................................................... 22 Input Overvoltage Protection ................................................... 15 Rev. H | Page 2 of 24
AD8605/AD8606/AD8608
REVISION HISTORY
2/08—Rev. G to Rev. H
Changes to Features ..................................................................... 1
Changes to Table 1 ....................................................................... 4
Changes to Table 2 ....................................................................... 6
Changes to Figure 11 ................................................................... 9
Changes to Figure 13, Figure 14, and Figure 16 Captions .... 10
Changes to Figure 15, Figure 17, and Figure 18 ..................... 10
Changes to Figure 34 and Figure 35 Captions........................ 13
Changes to Figure 36 ................................................................. 13
Changes to Figure 37 Caption .................................................. 14
Changes to Figure 38 and Figure 41 ........................................ 14
Changes to Figure 45 ................................................................. 15
Changes to Audio and PDA Applications Section ................. 18
Changes to Figure 52 ................................................................. 18
Changes to Ordering Guide ...................................................... 22
10/07—Rev. F to Rev. G
Changes to Figure 2...................................................................... 1
Updated Outline Dimensions ................................................... 20
8/07—Rev. E to Rev. F
Added 8-Ball WLCSP Package ..................................... Universal
Changes to Features ..................................................................... 1
Changes to Table 1 ....................................................................... 3
Changes to Table 2 ....................................................................... 5
Changes to Table 4 ....................................................................... 7
Updated Outline Dimensions ................................................... 19
Changes to Ordering Guide ...................................................... 21
1/06—Rev. D to Rev. E
Changes to Table 1 ....................................................................... 3
Changes to Table 2 ....................................................................... 5
Changes to Table 4 ....................................................................... 6
Changes to Figure 12 Caption .................................................... 8
Changes to Figure 26 and Figure 27 Captions........................ 11
Changes to Figure 33 Caption .................................................. 12
Changes to Figure 44 ................................................................. 14
Updated Outline Dimensions ................................................... 19
Changes to Ordering Guide ...................................................... 20
Updated Outline Dimensions................................................... 19
Changes to Ordering Guide ...................................................... 20
7/03—Rev. B to Rev. C
Changes to Features .......................................................................1
Change to General Description....................................................1
Addition to Functional Block Diagrams .....................................1
Addition to Absolute Maximum Ratings ....................................4
Addition to Ordering Guide .........................................................4
Change to Equation in Maximum Power Dissipation
Section .......................................................................................... 11
Added Light Sensitivity Section ................................................ 12
Added New Figure 8; Renumbered Subsequently .................. 13
Added New MicroCSP Assembly Considerations Section.... 13
Changes to Figure 9 .................................................................... 13
Change to Equation in Photodiode Preamplifier
Applications Section .................................................................. 13
Changes to Figure 12 .................................................................. 14
Change to Equation in D/A Conversion Section.................... 14
Updated Outline Dimensions ................................................... 15
3/03—Rev. A to Rev. B
Changes to Functional Block Diagram .......................................1
Changes to Absolute Maximum Ratings.....................................4
Changes to Ordering Guide ........................................................ 4
Changes to Figure 9 ................................................................... 13
Updated Outline Dimensions.................................................... 15
11/02—Rev. 0 to Rev. A
Change to Electrical Characteristics............................................2
Changes to Absolute Maximum Ratings.....................................4
Changes to Ordering Guide .........................................................4
Change to TPC 6 ...........................................................................5
Updated Outline Dimensions.................................................... 15
5/02—Revision 0: Initial Version
5/04—Rev. C to Rev. D
Updated Format.............................................................. Universal
Edit to Light Sensitivity Section ............................................... 16
Rev. H | Page 3 of 24
AD8605/AD8606/AD8608
5 V ELECTRICAL SPECIFICATIONS
VS = 5 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
AD8605/AD8606 (Except WLCSP)
AD8608
AD8605/AD8606/AD8608
Input Bias Current
AD8605/AD8606
AD8605/AD8606
AD8608
AD8608
Input Offset Current
Symbol
Conditions
Min
Typ
Max
Unit
20
20
80
65
75
300
750
1
50
250
100
300
0.5
20
75
5
μV
μV
μV
μV
pA
pA
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
4.5
6.0
μV/°C
μV/°C
VOS
VS = 3.5 V, VCM = 3 V
VS = 3.5 V, VCM = 2.7 V
VS = 5 V, VCM = 0 V to 5 V
−40°C < TA < +125°C
IB
0.2
−40°C < TA < +85°C
−40°C < TA < +125°C
−40°C < TA < +85°C
−40°C < TA < +125°C
IOS
0.1
−40°C < TA < +85°C
−40°C < TA < +125°C
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
Offset Voltage Drift
AD8605/AD8606
AD8608
INPUT CAPACITANCE
Common-Mode Input Capacitance
Differential Input Capacitance
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Output Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
AD8605/AD8606
AD8605/AD8606 WLCSP
AD8608
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Unity Gain Bandwidth Product
Phase Margin
CMRR
AVO
VCM = 0 V to 5 V
−40°C < TA < +125°C
RL = 2 kΩ, VO = 0.5 V to 4.5 V
ΔVOS/ΔT
ΔVOS/ΔT
−40°C < TA < +125°C
−40°C < TA < +125°C
0
85
75
300
1
1.5
CCOM
CDIFF
VOH
VOL
IOUT
ZOUT
IL = 1 mA
IL = 10 mA
−40°C < TA < +125°C
IL = 1 mA
IL= 10 mA
−40°C < TA < +125°C
100
90
1000
4.96
4.7
4.6
8.8
2.6
pF
pF
4.98
4.79
V
V
V
mV
mV
mV
mA
Ω
20
170
40
210
290
±80
1
f = 1 MHz, AV = 1
PSRR
ISY
SR
tS
GBP
ΦM
VS = 2.7 V to 5.5 V
VS = 2.7 V to 5.5 V
VS = 2.7 V to 5.5 V
−40°C < TA < +125°C
IOUT = 0 mA
−40°C < TA < +125°C
RL = 2 kΩ, CL = 16 pF
To 0.01%, 0 V to 2 V step, AV = 1
Rev. H | Page 4 of 24
80
75
77
70
95
92
92
90
1
5
<1
10
65
1.2
1.4
dB
dB
dB
dB
mA
mA
V/μs
μs
MHz
Degrees
AD8605/AD8606/AD8608
Parameter
NOISE PERFORMANCE
Peak-to-Peak Noise
Voltage Noise Density
Current Noise Density
Symbol
Conditions
en p-p
en
en
in
f = 0.1 Hz to 10 Hz
f = 1 kHz
f = 10 kHz
f = 1 kHz
Rev. H | Page 5 of 24
Min
Typ
Max
Unit
2.3
8
6.5
0.01
3.5
12
μV p-p
nV/√Hz
nV/√Hz
pA/√Hz
AD8605/AD8606/AD8608
2.7 V ELECTRICAL SPECIFICATIONS
VS = 2.7 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
AD8605/AD8606 (Except WLCSP)
AD8608
AD8605/AD8606/AD8608
Input Bias Current
AD8605/AD8606
AD8605/AD8606
AD8608
AD8608
Input Offset Current
Symbol
Conditions
Min
Typ
Max
Unit
20
20
80
65
75
300
750
1
50
250
100
300
0.5
20
75
2.7
μV
μV
μV
μV
pA
pA
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
4.5
6.0
μV/°C
μV/°C
VOS
VS = 3.5 V, VCM = 3 V
VS = 3.5 V, VCM = 2.7 V
VS = 2.7 V, VCM = 0 V to 2.7 V
−40°C < TA < +125°C
IB
0.2
−40°C < TA < +85°C
−40°C < TA < +125°C
−40°C < TA < +85°C
−40°C < TA < +125°C
IOS
0.1
−40°C < TA < +85°C
−40°C < TA < +125°C
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
Offset Voltage Drift
AD8605/AD8606
AD8608
INPUT CAPACITANCE
Common-Mode Input Capacitance
Differential Input Capacitance
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Output Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
AD8605/AD8606
AD8605/AD8606 WLCSP
AD8608
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Unity Gain Bandwidth Product
Phase Margin
CMRR
AVO
VCM = 0 V to 2.7 V
−40°C < TA < +125°C
RL = 2 kΩ, VO = 0.5 V to 2.2 V
ΔVOS/ΔT
ΔVOS/ΔT
−40°C < TA < +125°C
−40°C < TA < +125°C
0
80
70
110
1
1.5
CCOM
CDIFF
VOH
VOL
IOUT
ZOUT
IL = 1 mA
−40°C < TA < +125°C
IL = 1 mA
−40°C < TA < +125°C
95
85
350
2.6
2.6
8.8
2.6
pF
pF
2.66
V
V
mV
mV
mA
Ω
25
40
50
±30
1.2
f = 1 MHz, AV = 1
PSRR
ISY
SR
tS
GBP
ΦM
VS = 2.7 V to 5.5 V
VS = 2.7 V to 5.5 V
VS = 2.7 V to 5.5 V
−40°C < TA < +125°C
IOUT = 0 mA
−40°C < TA < +125°C
RL = 2 kΩ, CL = 16 pF
To 0.01%, 0 V to 1 V step, AV = 1
Rev. H | Page 6 of 24
80
75
77
70
95
92
92
90
1.15
5
<0.5
9
50
1.4
1.5
dB
dB
dB
dB
mA
mA
V/μs
μs
MHz
Degrees
AD8605/AD8606/AD8608
Parameter
NOISE PERFORMANCE
Peak-to-Peak Noise
Voltage Noise Density
Current Noise Density
Symbol
Conditions
en p-p
en
en
in
f = 0.1 Hz to 10 Hz
f = 1 kHz
f = 10 kHz
f = 1 kHz
Rev. H | Page 7 of 24
Min
Typ
Max
Unit
2.3
8
6.5
0.01
3.5
12
μV p-p
nV/√Hz
nV/√Hz
pA/√Hz
AD8605/AD8606/AD8608
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage
Output Short-Circuit Duration to GND
Storage Temperature Range
All Packages
Operating Temperature Range
All Packages
Junction Temperature Range
All Packages
Lead Temperature (Soldering, 60 sec)
Table 4.
Rating
6V
GND to VS
6V
Observe Derating Curves
−65°C to +150°C
−40°C to +125°C
Package Type
5-Ball WLCSP (CB)
5-Lead SOT-23 (RJ)
8-Ball WLCSP (CB)
8-Lead MSOP (RM)
8-Lead SOIC_N (R)
14-Lead SOIC_N (R)
14-Lead TSSOP (RU)
1
−65°C to +150°C
300°C
θJA1
170
240
115
206
157
105
148
θJC
92
44
56
36
23
Unit
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
θJA is specified for the worst-case conditions, that is, a device soldered in a
circuit board for surface-mount packages.
ESD CAUTION
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. H | Page 8 of 24
AD8605/AD8606/AD8608
TYPICAL PERFORMANCE CHARACTERISTICS
4500
0.30
0.25
0.20
0.15
3000
0.10
VOS (mV)
NUMBER OF AMPLIFIERS
VS = 5V
4000 TA = 25°C
VCM = 0V TO 5V
3500
2500
2000
1500
0.05
0
–0.05
–0.10
–0.15
1000
02731-007
–100
0
100
OFFSET VOLTAGE (µV)
200
–0.30
300
Figure 7. Input Offset Voltage Distribution
24
12
8
0.8
1.2
1.6
2.0 2.4 2.8 3.2
TCVOS (µV/°C)
3.6
4.0
4.4
AD8608
120
80
0
50
75
TEMPERATURE (°C)
25
100
125
Figure 11. Input Bias Current vs. Temperature
1k
10
8
6
02731-009
4
0
5.0
160
0
12
0
4.5
AD8605/AD8606
4.8
14
2
4.0
200
OUTPUT SATURATION VOLTAGE (mV)
NUMBER OF AMPLIFIERS
16
3.5
40
VS = 5V
TA = –40°C TO +125°C
VCM = 2.5V
18
2.5
3.0
VCM (V)
VS = ±5V
Figure 8. AD8608 Input Offset Voltage Drift Distribution
20
2.0
240
02731-008
0.4
1.5
280
4
0
1.0
320
INPUT BIAS CURRENT (pA)
NUMBER OF AMPLIFIERS
360
16
0
0.5
Figure 10. Input Offset Voltage vs. Common-Mode Voltage
(200 Units, 5 Wafer Lots, Including Process Skews)
VS = 5V
TA = –40°C TO +125°C
VCM = 2.5V
20
0
02731-011
–200
–0.25
VS = 5V
TA = 25°C
100
10
SOURCE
1
0.1
0.001
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
TCVOS (µV/°C)
SINK
02731-012
0
–300
02731-010
–0.20
500
0.01
0.1
1
LOAD CURRENT (mA)
Figure 12. Output Saturation Voltage vs. Load Current
Figure 9. AD8605/AD8606 Input Offset Voltage Drift Distribution
Rev. H | Page 9 of 24
10
AD8605/AD8606/AD8608
6
5.00
VOH @ 1mA LOAD
5
VS = 5V
OUTPUT SWING (V p-p)
OUTPUT VOLTAGE (V)
4.95
4.90
4.85
4.80
VS = 5V
VIN = 4.9V p-p
TA = 25°C
RL = 2kΩ
AV = 1
4
3
2
VOH @ 10mA LOAD
4.75
–25
–10
5
20
35
50
65
80
95
110
0
125
02731-016
4.70
–40
02731-013
1
1k
10k
TEMPERATURE (°C)
100
0.25
80
OUTPUT IMPEDANCE (Ω)
0.10
70
AV = 100
60
50
AV = 10
40
AV = 1
30
20
0
–40
–25
–10
5
20
35
50
65
80
95
02731-014
VOL @ 1mA LOAD
110
02731-017
OUTPUT VOLTAGE (V)
0.15
0.05
10
0
125
1k
10k
TEMPERATURE (°C)
120
180
110
135
100
40
90
20
45
0
0
70
60
–90
50
–60
–135
40
–80
–180
30
40M
–225
02731-015
–40
10M
VS = 5V
80
–45
1M
FREQUENCY (Hz)
100M
90
–20
100k
10M
Figure 15. Open-Loop Gain and Phase vs. Frequency
20
1k
02731-018
60
225
CMRR (dB)
VS = ±2.5V
RL = 2kΩ
CL = 20pF
ΦM = 64°
PHASE (Degrees)
100
80
100k
1M
FREQUENCY (Hz)
Figure 17. Output Impedance vs. Frequency
Figure 14. Output Voltage Swing Low vs. Temperature
GAIN (dB)
10M
VS = 5V
90
VOL @ 10mA LOAD
0.20
–100
10k
1M
Figure 16. Closed-Loop Output Voltage Swing (FPBW)
Figure 13. Output Voltage Swing High vs. Temperature
VS = 5V
100k
FREQUENCY (Hz)
10k
100k
1M
FREQUENCY (Hz)
10M
Figure 18. Common-Mode Rejection Ratio (CMRR) vs. Frequency
Rev. H | Page 10 of 24
AD8605/AD8606/AD8608
140
1.0
VS = 5V
0.9
100
60
40
20
0
02731-019
–20
–40
–60
1k
100k
FREQUENCY (Hz)
10k
1M
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
10M
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VOLTAGE NOISE (1µV/DIV)
30
25
+OS
20
–OS
15
10
02731-020
02731-023
SMALL SIGNAL OVERSHOOT (%)
1.5
VS = 5V
VS = 5V
RL = ∞
TA = 25°C
AV = 1
5
0
10
100
CAPACITANCE (pF)
1k
TIME (1s/DIV)
Figure 23. 0.1 Hz to 10 Hz Input Voltage Noise
Figure 20. Small Signal Overshoot vs. Load Capacitance
2.0
VS = ±2.5V
RL = 10kΩ
CL = 200pF
AV = 1
VOLTAGE (50mV/DIV)
1.5
VS = 2.7V
1.0
VS = 5V
0.5
0
–40
02731-021
SUPPLY CURRENT/AMPLIFIER (mA)
1.0
Figure 22. Supply Current/Amplifier vs. Supply Voltage
45
35
0.5
SUPPLY VOLTAGE (V)
Figure 19. PSRR vs. Frequency
40
0
02731-024
PSRR (dB)
80
0.8
02731-022
SUPPLY CURRENT/AMPLIFIER (mA)
120
–25
–10
5
20
35
50
65
TEMPERATURE (°C)
80
95
110
TIME (200ns/DIV)
125
Figure 24. Small Signal Transient Response
Figure 21. Supply Current/Amplifier vs. Temperature
Rev. H | Page 11 of 24
AD8605/AD8606/AD8608
36
VS = ±2.5V
RL = 10kΩ
CL = 200pF
AV = 1
VS = ±2.5V
02731-025
VOLTAGE (1V/DIV)
VOLTAGE NOISE DENSITY (nV/ Hz)
32
28
24
20
16
12
4
TIME (400ns/DIV)
02731-028
8
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
FREQUENCY (kHz)
Figure 25. Large Signal Transient Response
Figure 28. Voltage Noise Density vs. Frequency
53.6
VS = ±2.5V
RL = 10kΩ
AV = –100
VIN = 50mV
0V
0V
VIN
02731-026
–50mV
46.9
40.2
33.5
26.8
20.1
13.4
6.7
02731-029
VOUT
VS = ±2.5V
VOLTAGE NOISE DENSITY (nV/ Hz)
2.5V
0
TIME (400ns/DIV)
0
2
3
4
5
6
FREQUENCY (kHz)
7
8
9
10
90
100
Figure 29. Voltage Noise Density vs. Frequency
Figure 26. Positive Overload Recovery
119.2
VS = ±2.5V
RL = 10kΩ
AV = –100
VIN = 50mV
VS = ±2.5V
50mV
02731-027
0V
104.3
89.4
74.5
59.6
44.7
29.8
14.9
02731-030
–2.5V
VOLTAGE NOISE DENSITY (nV/ Hz)
0V
1
0
TIME (1µs/DIV)
0
10
20
30
40
50
60
FREQUENCY (Hz)
70
80
Figure 30. Voltage Noise Density vs. Frequency
Figure 27. Negative Overload Recovery
Rev. H | Page 12 of 24
AD8605/AD8606/AD8608
1800
2.680
VS = 2.7V
TA = 25°C
VCM = 0V TO 2.7V
VS = 2.7V
2.675
1400
OUTPUT VOLTAGE (V)
NUMBER OF AMPLIFIERS
1600
1200
1000
800
600
2.670
2.665
VOH @ 1mA LOAD
2.660
400
02731-031
0
–300
–200
–100
0
100
200
2.650
–40
300
02731-034
2.655
200
–25
–10
5
OFFSET VOLTAGE (µV)
20
35
50
65
80
95
125
110
TEMPERATURE (°C)
Figure 31. Input Offset Voltage Distribution
Figure 34. Output Voltage Swing High vs. Temperature
0.045
300
VS = 2.7V
TA = 25°C
VS = 2.7V
0.040
0.035
OUTPUT VOLTAGE (V)
INPUT OFFSET VOLTAGE (µV)
200
100
0
–100
0.030
VOL @ 1mA LOAD
0.025
0.020
0.015
0.010
–200
0
–40
2.7
1.8
–25
–10
COMMON-MODE VOLTAGE (V)
20
35
50
80
95
110
225
100
VS = 2.7V
TA = 25°C
VS = 2.7V
RL = 2kΩ
CL = 20pF
ΦM = 52.5°
80
60
100
GAIN (dB)
SOURCE
10
SINK
02731-033
1
0.01
0.1
LOAD CURRENT (mA)
1
125
Figure 35. Output Voltage Swing Low vs. Temperature
1k
0.1
0.001
65
TEMPERATURE (°C)
Figure 32. Input Offset Voltage vs. Common-Mode Voltage
(200 Units, 5 Wafer Lots, Including Process Skews)
OUTPUT SATURATION VOLTAGE (mV)
5
10
90
20
45
0
0
–20
–45
–40
–90
–60
–135
–80
–180
100k
1M
FREQUENCY (Hz)
10M
Figure 36. Open-Loop Gain and Phase vs. Frequency
Rev. H | Page 13 of 24
135
40
–100
10k
Figure 33. Output Saturation Voltage vs. Load Current
180
PHASE (Degrees)
0.9
–225
40M
02731-036
–300
0
0
02731-035
02731-032
0.005
AD8605/AD8606/AD8608
3.0
VS = 2.7V
VOLTAGE NOISE (1µV/DIV)
OUTPUT SWING (V p-p)
2.5
VS = 2.7V
VIN = 2.6V p-p
TA = 25°C
RL = 2kΩ
AV = 1
2.0
1.5
1.0
02731-037
02731-040
0.5
0
1k
10k
100k
FREQUENCY (Hz)
1M
TIME (1s/DIV)
10M
Figure 40. 0.1 Hz to 10 Hz Input Voltage Noise
Figure 37. Closed-Loop Output Voltage Swing vs. Frequency (FPBW)
100
VS = ±1.35V
RL = 10kΩ
CL = 200pF
AV = 1
VS = 2.7V
90
VOLTAGE (50mV/DIV)
OUTPUT IMPEDANCE (Ω)
80
70
AV = 100
60
50
AV = 10
40
30
AV = 1
02731-038
02731-041
20
10
0
1k
10k
100k
1M
FREQUENCY (Hz)
10M
TIME (200ns/DIV)
100M
Figure 41. Small Signal Transient Response
Figure 38. Output Impedance vs. Frequency
VS = 1.35V
RL = 10kΩ
CL = 200pF
AV = 1
50
VOLTAGE (1V/DIV)
VS = 2.7V
TA = 25°C
AV = 1
40
–OS
30
+OS
20
0
02731-042
10
02731-039
SMALL SIGNAL OVERSHOOT (%)
60
10
100
CAPACITANCE (pF)
1k
TIME (400ns/DIV)
Figure 39. Small Signal Overshoot vs. Load Capacitance
Figure 42. Large Signal Transient Response
Rev. H | Page 14 of 24
AD8605/AD8606/AD8608
APPLICATIONS INFORMATION
OUTPUT PHASE REVERSAL
VS = ±2.5V
VIN = 6V p-p
AV = 1
RL = 10kΩ
VOLTAGE (2V/DIV)
Phase reversal is defined as a change in polarity at the output of
the amplifier when a voltage that exceeds the maximum input
common-mode voltage drives the input.
Phase reversal can cause permanent damage to the amplifier; it
can also cause system lockups in feedback loops. The AD8605
does not exhibit phase reversal even for inputs exceeding the
supply voltage by more than 2 V.
VOUT
VIN
02731-043
MAXIMUM POWER DISSIPATION
Power dissipated in an IC causes the die temperature to
increase, which can affect the behavior of the IC and the
application circuit performance.
TIME (4µs/DIV)
The absolute maximum junction temperature of the AD8605/
AD8606/AD8608 is 150°C. Exceeding this temperature could
damage or destroy the device.
TJ − TA
θ JA
where:
TJ is the junction temperature.
TA is the ambient temperature.
θJA is the junction-to-ambient thermal resistance.
Figure 44 compares the maximum power dissipation with
temperature for the various AD860x family packages.
130
105
Figure 44. Maximum Power Dissipation vs. Ambient Temperature
INPUT OVERVOLTAGE PROTECTION
0.1
VIN − VS
≤ 5 mA
RS + 200 Ω
The remarkable low input offset current of the AD8605 (<1 pA)
allows the use of larger value resistors. With a 10 kΩ resistor at
the input, the output voltage has less than 10 nV of error voltage.
A 10 kΩ resistor has less than 13 nV/√Hz of thermal noise at
room temperature.
VSY = ±2.5V
AV = 1
BW = 80kHz
THD + NOISE (%)
The AD8605 has internal protective circuitry. However, if the
voltage applied at either input exceeds the supplies by more
than 2.5 V, external resistors should be placed in series with
the inputs. The resistor values can be determined by
THD + NOISE
Total harmonic distortion is the ratio of the input signal in V rms
to the total harmonics in V rms throughout the spectrum.
Harmonic distortion adds errors to precision measurements
and adds unpleasant sonic artifacts to audio systems.
The AD8605 has a low total harmonic distortion. Figure 45 shows
that the AD8605 has less than 0.005% or −86 dB of THD + N
over the entire audio frequency range. The AD8605 is configured
in positive unity gain, which is the worst case, and with a load
of 10 kΩ.
Rev. H | Page 15 of 24
0.01
0.001
0.0001
02731-045
PDISS =
POWER DISSIPATION (W)
The maximum power dissipation of the amplifier is calculated
according to
1.8
1.7
SOIC-14
1.6
1.5
1.4
TSSOP-14
1.3
1.2
1.1
1.0
SOIC-8
0.9
0.8
0.7
0.6 MSOP-8
0.5
WLCSP-5
0.4
0.3
5-LEAD SOT-23
0.2
0.1
0
–45
–20
5
55
30
80
AMBIENT TEMPERATURE (°C)
02731-044
Figure 43. No Phase Reversal
20
100
1k
FREQUENCY (Hz)
Figure 45. THD + Noise vs. Frequency
10k
20k
AD8605/AD8606/AD8608
TOTAL NOISE INCLUDING SOURCE RESISTORS
The low input current noise and input bias current of the
AD8605 make it the ideal amplifier for circuits with substantial
input source resistance, such as photodiodes. Input offset voltage
increases by less than 0.5 nV per 1 kΩ of source resistance at
room temperature and increases to 10 nV at 85°C. The total
noise density of the circuit is
en , TOTAL = en 2 + (in RS ) 2 + 4k TRS
A snubber network, shown in Figure 48, helps reduce the signal
overshoot to a minimum and maintain stability. Although this
circuit does not recover the loss of bandwidth induced by large
capacitive loads, it greatly reduces the overshoot and ringing.
This method does not reduce the maximum output swing of the
amplifier.
0
CHANNEL SEPARATION (dB)
–20
where:
en is the input voltage noise density of the AD8605.
in is the input current noise density of the AD8605.
RS is the source resistance at the noninverting terminal.
k is Boltzmann’s constant (1.38 × 10−23 J/K).
T is the ambient temperature in Kelvin (T = 273 + °C).
–40
–60
–80
–100
–120
–160
For RS < 3.9 kΩ, en dominates and en, TOTAL ≈ en.
–180
100
The current noise of the AD8605 is so low that its total density does
not become a significant term unless RS is greater than 6 MΩ.
02731-046
–140
For example, with RS = 10 kΩ, the total voltage noise density is
roughly 15 nV/√Hz.
1k
10k
100k
FREQUENCY (Hz)
VS = ±2.5V
AV = 1
RL = 10kΩ
CL = 1000pF
BW
where BW is the bandwidth in hertz.
Note that the previous analysis is valid for frequencies greater
than 100 Hz and assumes relatively flat noise, above 10 kHz. For
lower frequencies, flicker noise (1/f) must be considered.
CHANNEL SEPARATION
The AD8606 has a channel separation of greater than −160 dB
up to frequencies of 1 MHz, allowing the two amplifiers to
amplify ac signals independently in most applications.
02731-047
Channel separation, or inverse crosstalk, is a measure of the signal
feed from one amplifier (channel) to another on the same IC.
TIME (10µs/DIV)
Figure 47. AD8606 Capacitive Load Drive Without Snubber
CAPACITIVE LOAD DRIVE
V+
The AD860x can drive large capacitive loads without oscillation.
Figure 47 shows the output of the AD8606 in response to a
200 mV input signal. In this case, the amplifier is configured
in positive unity gain, worst case for stability, while driving a
1000 pF load at its output. Driving larger capacitive loads in
unity gain can require the use of additional circuitry.
4
2
200mV
VIN
3
AD8605
1
RS
8
CS
V–
Figure 48. Snubber Network Configuration
Rev. H | Page 16 of 24
RL
CL
02731-049
)
100M
VOLTAGE (100mV/DIV)
(
10M
Figure 46. Channel Separation vs. Frequency
The total equivalent rms noise over a specific bandwidth is
expressed as
En = en, TOTAL
1M
AD8605/AD8606/AD8608
VOLTAGE (100mV/DIV)
VS = ±2.5V
AV = 1
RL = 10kΩ
RS = 90Ω
CL = 1000pF
CS = 700pF
4500
4000
3500
3mW/cm2
3000
2500
2mW/cm2
2000
1500
1mW/cm2
500
0
450
550
650
WAVELENGTH (nm)
750
850
02731-048
Figure 50. AD8605ACB Input Bias Current Response to Direct Illumination of
Varying Intensity and Wavelength
Figure 49. Capacitive Load Drive with Snubber
Table 5 summarizes a few optimum values for capacitive loads.
Table 5.
RS (Ω)
100
70
60
350
02731-050
1000
TIME (10µs/DIV)
CL (pF)
500
1000
2000
5000
INPUT BIAS CURRENT (pA)
Figure 49 shows a scope of the output at the snubber circuit.
The overshoot is reduced from over 70% to less than 5%, and
the ringing is eliminated by the snubber. Optimum values for RS
and CS are determined experimentally.
CS (pF)
1000
1000
800
An alternate technique is to insert a series resistor inside the
feedback loop at the output of the amplifier. Typically, the value
of this resistor is approximately 100 Ω. This method also reduces
overshoot and ringing but causes a reduction in the maximum
output swing.
LIGHT SENSITIVITY
The AD8605ACB (WLCSP package option) is essentially a
silicon die with additional postfabrication dielectric and
intermetallic processing designed to contact solder bumps
on the active side of the chip. With this package type, the die
is exposed to ambient light and is subject to photoelectric
effects. Light sensitivity analysis of the AD8605ACB mounted
on standard PCB material reveals that only the input bias
current (IB) parameter is impacted when the package is
illuminated directly by high intensity light. No degradation in
electrical performance is observed due to illumination by low
intensity (0.1 mW/cm2) ambient light. Figure 50 shows that IB
increases with increasing wavelength and intensity of incident
light; IB can reach levels as high as 4500 pA at a light intensity of
3 mW/cm2 and a wavelength of 850 nm. The light intensities
shown in Figure 50 are not normal for most applications, that is,
even though direct sunlight can have intensities of 50 mW/cm2,
office ambient light can be as low as 0.1 mW/cm2.
When the WLCSP package is assembled on the board with the
bump side of the die facing the PCB, reflected light from the
PCB surface is incident on active silicon circuit areas and results
in the increased IB. No performance degradation occurs due to
illumination of the backside (substrate) of the AD8605ACB.
The AD8605ACB is particularly sensitive to incident light with
wavelengths in the near infrared range (NIR, 700 nm to 1000 nm).
Photons in this waveband have a longer wavelength and lower
energy than photons in the visible (400 nm to 700 nm) and near
ultraviolet (NUV, 200 nm to 400 nm) bands; therefore, they can
penetrate more deeply into the active silicon. Incident light with
wavelengths greater than 1100 nm has no photoelectric effect
on the AD8605ACB because silicon is transparent to wavelengths
in this range. The spectral content of conventional light sources
varies. Sunlight has a broad spectral range, with peak intensity
in the visible band that falls off in the NUV and NIR bands;
fluorescent lamps have significant peaks in the visible but not
the NUV or NIR bands.
Efforts have been made at a product level to reduce the effect of
ambient light; the under bump metal (UBM) has been designed
to shield the sensitive circuit areas on the active side (bump
side) of the die. However, if an application encounters any light
sensitivity with the AD8605ACB, shielding the bump side of the
WLCSP package with opaque material should eliminate this
effect. Shielding can be accomplished using materials such as
silica-filled liquid epoxies that are used in flip-chip underfill
techniques.
WLCSP ASSEMBLY CONSIDERATIONS
For detailed information on the WLCSP PCB assembly and
reliability, see Application Note AN-617, MicroCSP™ Wafer
Level Chip Scale Package.
Rev. H | Page 17 of 24
AD8605/AD8606/AD8608
I-V CONVERSION APPLICATIONS
At room temperature, the AD8605 has an input bias current of
0.2 pA and an offset voltage of 100 μV. Typical values of RD are
in the range of 1 GΩ.
PHOTODIODE PREAMPLIFIER APPLICATIONS
The low offset voltage and input current of the AD8605 make
it an excellent choice for photodiode applications. In addition,
the low voltage and current noise make the amplifier ideal for
application circuits with high sensitivity.
For the circuit shown in Figure 51, the output error voltage is
approximately 100 μV at room temperature, increasing to about
1 mV at 85°C.
CF
10pF
The maximum achievable signal bandwidth is
RF
10MΩ
ID
CD
50pF
where ft is the unity gain frequency of the amplifier.
AD8605
AUDIO AND PDA APPLICATIONS
VOUT
The low distortion and wide dynamic range of the AD860x
make it a great choice for audio and PDA applications,
including microphone amplification and line output buffering.
02731-051
RD
VOS
Figure 51. Equivalent Circuit for Photodiode Preamp
Figure 52 shows a typical application circuit for headphone/
line-out amplification.
The input bias current of the amplifier contributes an error
term that is proportional to the value of RF.
R1 and R2 are used to bias the input voltage at half the supply,
which maximizes the signal bandwidth range. C1 and C2 are
used to ac couple the input signal. C1, R1, and R2 form a highpass filter whose corner frequency is 1/[2π(R1||R2)C1].
The offset voltage causes a dark current induced by the shunt
resistance of the Diode RD. These error terms are combined at
the output of the amplifier. The error voltage is written as
⎛ R
E O = VOS ⎜⎜1 + F
⎝ RD
ft
2πR F C F
⎞
⎟ + RF I B
⎟
⎠
The high output current of the AD8606 allows it to drive heavy
resistive loads.
The circuit in Figure 52 is tested to drive a 16 Ω headphone. The
THD + N is maintained at approximately −60 dB throughout the
audio range.
Typically, RF is smaller than RD, thus RF/RD can be ignored.
5V
C1
1µF
R1
20kΩ
R2
V1
20kΩ
500mV
8
3
1/2
AD8606
C3
100µF
R4
20Ω
1
R3 HEADPHONES
1kΩ
2
4
5V
C2
1µF
R7
20kΩ
R8
V2
500mV 20kΩ
8
5
1/2
AD8606
C4
100µF
R6
20Ω
7
6
4
R5
1kΩ
Figure 52. Single-Supply Headphone/Speaker Amplifier
Rev. H | Page 18 of 24
02731-052
PHOTODIODE
f MAX =
AD8605/AD8606/AD8608
INSTRUMENTATION AMPLIFIERS
R
VREF
R
R
CF
RF
Difference amplifiers are widely used in high accuracy circuits
to improve the common-mode rejection ratio. Figure 53 shows
a simple difference amplifier. Figure 54 shows the commonmode rejection for a unity gain configuration and for a gain of 10.
R2
R2
R2
V+
VOS
AD8605
Making (R4/R3) = (R2/R1) and choosing 0.01% tolerance yields
a CMRR of 74 dB and minimizes the gain error at the output.
R2
10kΩ
V–
Figure 55. Simplified Circuit of the DAC8143 with AD8605 Output Buffer
5V
To optimize the performance of the DAC, insert a capacitor in
the feedback loop of the AD8605 to compensate the amplifier
for the pole introduced by the output capacitance of the DAC.
Typical values for CF range from 10 pF to 30 pF; it can be
adjusted for the best frequency response. The total error at the
output of the op amp can be computed by
R4 R2
=
R3 R1
R2
(V2 – V1)
R1
AD8605
R3
1kΩ
V2
VOUT
R4
10kΩ
02731-053
VOUT =
⎛
R
E O = VOS ⎜⎜1 + F
Req
⎝
Figure 53. Difference Amplifier, AV = 10
120
VSY = ±2.5V
AV = 1
80
CMRR (dB)
where Req is the equivalent resistance seen at the output of the
DAC. As previously mentioned, Req is code dependent and
varies with the input. A typical value for Req is 15 kΩ.
Choosing a feedback resistor of 10 kΩ yields an error of less
than 200 μV.
AV = 10
100
60
Figure 56 shows the implementation of a dual-stage buffer
at the output of a DAC. The first stage is used as a buffer.
Capacitor C1 with Req creates a low-pass filter, and thus,
provides phase lead to compensate for frequency response.
The second stage of the AD8606 is used to provide voltage
gain at the output of the buffer.
40
02731-054
20
0
100
1k
10k
100k
FREQUENCY (Hz)
⎞
⎟
⎟
⎠
1M
10M
Grounding the positive input terminals in both stages reduces
errors due to the common-mode output voltage. Choosing R1,
R2, and R3 to match within 0.01% yields a CMRR of 74 dB and
maintains minimum gain error in the circuit.
Figure 54. Difference Amplifier CMRR vs. Frequency
DAC CONVERSION
The low input bias current and offset voltage of the AD8605
make it an excellent choice for buffering the output of a current
output DAC.
Figure 55 shows a typical implementation of the AD8605 at the
output of a 12-bit DAC.
The DAC8143 output current is converted to a voltage by the
feedback resistor. The equivalent resistance at the output of the
DAC varies with the input code, as does the output capacitance.
RCS
15V
R3
20kΩ
R2
10kΩ
C1
33pF
VDD
VIN
RP
VREF
RFB
AD7545
AGND
DB11
R1
10kΩ
OUT1
1/2
AD8606
R4
5kΩ
Figure 56. Bipolar Operation
Rev. H | Page 19 of 24
VOUT
1/2
AD8606
02731-056
R1
1kΩ
V1
02731-055
The low offset voltage and low noise of the AD8605 make it an
ideal amplifier for instrumentation applications.
AD8605/AD8606/AD8608
OUTLINE DIMENSIONS
0.50 REF
0.37
0.36
0.35
SEATING
PLANE
2
1
0.87
BALL 1
IDENTIFIER
A
0.23
0.18
0.14
1.33
1.29
1.25
0.50
0.21
0.17
0.14
0.12
TOP VIEW
(BALL SIDE DOWN)
B
C
0.20
0.50
BOTTOM VIEW
(BALL SIDE UP)
Figure 57. 5-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-5-1)
Dimensions shown in millimeters
2.90 BSC
5
4
2.80 BSC
1.60 BSC
1
2
3
PIN 1
0.95 BSC
1.90
BSC
1.30
1.15
0.90
1.45 MAX
0.15 MAX
0.50
0.30
0.22
0.08
10°
5°
0°
SEATING
PLANE
0.60
0.45
0.30
COMPLIANT TO JEDEC STANDARDS MO-178-A A
Figure 58. 5-Lead Small Outline Transistor Package [SOT-23]
(RJ-5)
Dimensions shown in millimeters
3.20
3.00
2.80
8
3.20
3.00
2.80
1
5
5.15
4.90
4.65
4
PIN 1
0.65 BSC
0.95
0.85
0.75
1.10 MAX
0.15
0.00
0.38
0.22
COPLANARITY
0.10
0.23
0.08
8°
0°
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 59. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
Rev. H | Page 20 of 24
0.80
0.60
0.40
101607-A
0.94
0.90
0.86
AD8605/AD8606/AD8608
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
8
5
1
4
6.20 (0.2441)
5.80 (0.2284)
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
SEATING
PLANE
0.50 (0.0196)
0.25 (0.0099)
1.75 (0.0688)
1.35 (0.0532)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
012407-A
COMPLIANT TO JEDEC STANDARDS MS-012-A A
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 60. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
0.675
0.595
0.515
1.480
1.430
1.380
SEATING
PLANE
BALL 1
IDENTIFIER
3
2
1
A
0.340
0.320
0.300
1.825
1.775
1.725
B
C
0.50
BALL PITCH
BOTTOM VIEW
0.380
0.355
0.330
(BALL SIDE UP)
0.27
0.24
0.21
090706-B
TOP VIEW
(BALL SIDE DOWN)
Figure 61. 8-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-8-1)
Dimensions shown in millimeters
8.75 (0.3445)
8.55 (0.3366)
8
14
1
7
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0039)
COPLANARITY
0.10
0.51 (0.0201)
0.31 (0.0122)
6.20 (0.2441)
5.80 (0.2283)
0.50 (0.0197)
0.25 (0.0098)
1.75 (0.0689)
1.35 (0.0531)
SEATING
PLANE
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 62. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-14)
Dimensions shown in millimeters and (inches)
Rev. H | Page 21 of 24
060606-A
4.00 (0.1575)
3.80 (0.1496)
AD8605/AD8606/AD8608
5.10
5.00
4.90
14
8
4.50
4.40
4.30
6.40
BSC
1
7
PIN 1
1.05
1.00
0.80
0.65
BSC
1.20
MAX
0.15
0.05
0.30
0.19
0.20
0.09
SEATING
COPLANARITY
PLANE
0.10
8°
0°
0.75
0.60
0.45
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 63. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
ORDERING GUIDE
Model
AD8605ACB-REEL
AD8605ACB-REEL7
AD8605ACBZ-REEL1
AD8605ACBZ-REEL71
AD8605ART-R2
AD8605ART-REEL
AD8605ART-REEL7
AD8605ARTZ-R2 1
AD8605ARTZ-REEL1
AD8605ARTZ-REEL71
AD8606ARM-R2
AD8606ARM-REEL
AD8606ARMZ-R21
AD8606ARMZ-REEL1
AD8606AR
AD8606AR-REEL
AD8606AR-REEL7
AD8606ARZ1
AD8606ARZ-REEL1
AD8606ARZ-REEL71
AD8606ACBZ-REEL1
AD8606ACBZ-REEL71
AD8608AR
AD8608AR-REEL
AD8608AR-REEL7
AD8608ARZ1
AD8608ARZ-REEL1
AD8608ARZ-REEL71
AD8608ARU
AD8608ARU-REEL
AD8608ARUZ1
AD8608ARUZ-REEL1
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
5-Ball WLCSP
5-Ball WLCSP
5-Ball WLCSP
5-Ball WLCSP
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
8-Lead MSOP
8-Lead MSOP
8-Lead MSOP
8-Lead MSOP
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Ball WLCSP
8-Ball WLCSP
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead TSSOP
14-Lead TSSOP
14-Lead TSSOP
14-Lead TSSOP
Z = RoHS Compliant Part, # denotes RoHS compliant (except for CB-5-1). Product may be top or bottom marked.
Rev. H | Page 22 of 24
Package Option
CB-5-1
CB-5-1
CB-5-1
CB-5-1
RJ-5
RJ-5
RJ-5
RJ-5
RJ-5
RJ-5
RM-8
RM-8
RM-8
RM-8
R-8
R-8
R-8
R-8
R-8
R-8
CB-8-1
CB-8-1
R-14
R-14
R-14
R-14
R-14
R-14
RU-14
RU-14
RU-14
RU-14
Branding
B3A
B3A
A1J
A1J
B3A
B3A
B3A
B3A#
B3A#
B3A#
B6A
B6A
B6A#
B6A#
B6A#
B6A#
AD8605/AD8606/AD8608
NOTES
Rev. H | Page 23 of 24
AD8605/AD8606/AD8608
NOTES
©2002–2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D02731-0-2/08(H)
Rev. H | Page 24 of 24