22 µA, RRIO, CMOS,18 V Operational Amplifiers AD8657/AD8659 Data Sheet PIN CONNECTION DIAGRAMS Micropower at high voltage (18 V): 22 μA maximum Low offset voltage: 350 µV maximum Low input bias current: 20 pA maximum Gain bandwidth product: 230 kHz at AV = 100 typical Unity-gain crossover: 230 kHz −3 dB closed-loop bandwidth: 305 kHz Single-supply operation: 2.7 V to 18 V Dual-supply operation: ±1.35 V to ±9 V Unity-gain stable Excellent electromagnetic interference immunity OUT A 1 TOP VIEW (Not to Scale) OUT A 1 V+ 7 OUT B 6 –IN B 5 +IN B 8 V+ AD8657 –IN A 2 7 OUT B TOP VIEW (Not to Scale) +IN A 3 6 –IN B 5 +IN B V– 4 08804-061 NOTES 1. CONNECT THE EXPOSED PAD TO V– OR LEAVE IT UNCONNECTED. Figure 2. AD8657 Pin Configuration, 8-Lead LFCSP Note: For AD8659 pin connections and for more information about the pin connections for these products, see the Pin Configurations and Function Descriptions section. 60 The AD8657/AD8659 are dual and quad micropower, precision, rail-to-rail input/output amplifiers optimized for low power and wide operating supply voltage range applications. 50 ISY PER AMP (µA) VSY = 2.7V VSY = 18V The AD8657/AD8659 operate from 2.7 V to 18 V with a typical quiescent supply current of 18 μA. The devices use the Analog Devices, Inc., patented DigiTrim® trimming technique, which achieves low offset voltage. The AD8657/AD8659 also have high immunity to electromagnetic interference. The AD8657/AD8659 are specified over the extended industrial temperature range (−40°C to +125°C). The AD8657 is available in an 8-lead MSOP package and an 8-lead LFCSP package; the AD8659 is available in a 14-lead SOIC package and 16-lead LFCSP package. +IN A 3 8 Figure 1. AD8657 Pin Configuration, 8-Lead MSOP GENERAL DESCRIPTION 40 30 20 10 0 –50 –25 0 25 50 TEMPERATURE (°C) 75 100 125 08804-023 The combination of low supply current, low offset voltage, very low input bias current, wide supply range, and rail-to-rail input and output make the AD8657/AD8659 ideal for current monitoring in process and motor control applications. The combination of precision specifications makes these devices ideal for dc gain and buffering of sensor front ends or high impedance input sources in wireless or remote sensors or transmitters. AD8657 V– 4 APPLICATIONS Portable operating systems Current monitors 4 mA to 20 mA loop drivers Buffer/level shifting Multipole filters Remote/wireless sensors Low power transimpedance amplifiers –IN A 2 08804-001 FEATURES Figure 3. AD8657, Supply Current vs. Temperature Table 1. Precision Micropower Op Amps (<250 µA) Supply Voltage Single Dual Quad 5V AD8538 AD8603 ADA4051-1 AD8539 AD8607 ADA4051-2 AD8609 12 V to 16 V OP196 36 V AD8657 AD8622 ADA4091-2 ADA4096-2 AD8624 ADA4091-4 ADA4096-4 AD8659 Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved. AD8657/AD8659 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................9 Applications ....................................................................................... 1 Applications Information .............................................................. 19 General Description ......................................................................... 1 Input Stage ................................................................................... 19 Pin Connection Diagrams ............................................................... 1 Output Stage................................................................................ 20 Revision History ............................................................................... 2 Rail to Rail ................................................................................... 20 Specifications..................................................................................... 3 Resistive Load ............................................................................. 20 Electrical Characteristics—18 V Operation ............................. 3 Comparator Operation—AD8657 ........................................... 21 Electrical Characteristics—10 V Operation ............................. 4 EMI Rejection Ratio .................................................................. 22 Electrical Characteristics—2.7 V Operation ............................ 5 Absolute Maximum Ratings ............................................................ 6 4 mA to 20 mA Process Control Current Loop Transmitter— AD8657 ........................................................................................ 22 Thermal Resistance ...................................................................... 6 Outline Dimensions ....................................................................... 23 ESD Caution .................................................................................. 6 Ordering Guide .......................................................................... 24 Pin Configurations and Function Descriptions ........................... 7 REVISION HISTORY 8/12—Rev. A to Rev. B Added AD8659 ................................................................... Universal Changes to Features Section............................................................ 1 Changes to Pin Connection Diagrams Section ............................ 1 Added Figure 3, Renumbered Figures Sequentially..................... 1 Changes to Table 1 ............................................................................ 1 Reordered Table 2 and Table 4 ........................................................ 3 Changes to Table 2 ............................................................................ 3 Changes to Table 3 ............................................................................ 4 Changes to Table 4 ............................................................................ 5 Changes to Table 6 ............................................................................ 6 Added Pin Configurations and Function Descriptions Section 7 Added Figure 4 and Figure 5 ........................................................... 7 Added Table 7, Renumbered Tables Sequentially ........................ 7 Added Figure 6 and Figure 7 ........................................................... 8 Added Table 8.................................................................................... 8 Changes to Figure 10 and Figure 13............................................... 9 Changes to Figure 14, Figure 15, Figure 17, and Figure 18 ....... 10 Changes to Figure 28 and Figure 31............................................. 12 Changes to Figure 32 ...................................................................... 13 Changes to Figure 39 ...................................................................... 14 Changes to Figure 63 and Figure 66............................................. 18 Moved Figure 68 ............................................................................. 19 Change to Inverting Op Amp Configuration Section Heading and Changes to Figure 70 .............................................................. 20 Change to Noninverting Op Amp Configuration Heading and Changes to Figure 71 ...................................................................... 20 Change to Comparator Operation—AD8657 Heading ............ 21 Change to 4 mA to 20 mA Process Control Current Loop Transmitter—AD8657 Section Heading and Changed 33 μA to 34 μA ................................................................................ 22 Updated Outline Dimensions ....................................................... 24 Added Figure 81 and Figure 82 .................................................... 24 Changes to Ordering Guide .......................................................... 24 3/11—Rev. 0 to Rev. A Added LFCSP Package Information ........................... Throughout Added Figure 2, Renumbered Subsequent Figures .................... 1 Changes to Table 2, Introductory Text; Input Characteristics, Offset Voltage and Common-Mode Rejection Ratio Test Conditions/Comments; and Dynamic Performance, Phase Margin Values ....................................................................................3 Changes to Table 3, Introductory Text; Input Characteristics, Offset Voltage and Common-Mode Rejection Ratio Test Conditions/Comments .....................................................................4 Changes to Table 4, Introductory Text; Input Characteristics, Offset Voltage and Common-Mode Rejection Ratio Test Conditions/Comments .....................................................................5 Changes to Thermal Resistance Section and Table 5 ...................6 Updated Outline Dimensions ....................................................... 21 Changes to Ordering Guide .......................................................... 21 1/11—Revision 0: Initial Version Rev. B | Page 2 of 24 Data Sheet AD8657/AD8659 SPECIFICATIONS ELECTRICAL CHARACTERISTICS—18 V OPERATION VSY = 18 V, VCM = VSY/2 V, TA = 25°C, unless otherwise specified. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol Test Conditions/Comments VOS VCM = 0 V to 18 V VCM = 0.3 V to 17.7 V, −40°C ≤ TA ≤ +85°C VCM = 0.3 V to 17.7 V, −40°C ≤ TA ≤ +125°C VCM = 0 V to 18 V, −40°C ≤ TA ≤ +125°C Min IB Typ Max Unit 5 350 1.8 2 16 20 2.9 40 5.8 18 µV mV mV mV pA nA pA nA V dB dB dB dB dB dB μV/°C GΩ pF pF −40°C ≤ TA ≤ +125°C Input Offset Current IOS −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Input Resistance Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier VCM = 0 V to 18 V VCM = 0.3 V to 17.7 V, −40°C ≤ TA ≤ +85°C VCM = 0.3 V to 17.7 V, −40°C ≤ TA ≤ +125°C VCM = 0 V to 18 V, −40°C ≤ TA ≤ +125°C RL = 100 kΩ, VO = 0.5 V to 17.5 V −40°C ≤ TA ≤ +125°C 0 94 82 80 64 115 105 ΔVOS/ΔT RIN CINDM CINCM 120 2 10 11 3.5 VOH VOL ISC ZOUT RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C PSRR VSY = 2.7 V to 18 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C ISY 110 17.97 30 ±12 15 f = 1 kHz, AV = 1 100 90 115 18 22 34 V mV mA Ω dB dB µA µA DYNAMIC PERFORMANCE Slew Rate Settling Time to 0.1% Unity-Gain Crossover Phase Margin Gain Bandwidth Product −3 dB Closed-Loop Bandwidth Channel Separation EMI Rejection Ratio of +IN x SR tS UGC ΦM GBP f−3 dB CS EMIRR RL = 1 MΩ, CL = 10 pF, AV = 1 VIN = 1 V step, RL = 100 kΩ, CL = 10 pF VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1 VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1 VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 100 VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1 f = 10 kHz, RL = 1 MΩ VIN = 100 mVPEAK; f = 400 MHz, 900 MHz, 1800 MHz, 2400 MHz 80 15 230 60 230 305 95 90 V/ms µs kHz Degrees kHz kHz dB dB NOISE PERFORMANCE Voltage Noise Voltage Noise Density en p-p en f = 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 1 kHz 5 50 45 0.1 µV p-p nV/√Hz nV/√Hz pA/√Hz Current Noise Density in Rev. B | Page 3 of 24 AD8657/AD8659 Data Sheet ELECTRICAL CHARACTERISTICS—10 V OPERATION VSY = 10 V, VCM = VSY/2 V, TA = 25°C, unless otherwise specified. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol Test Conditions/Comments VOS VCM = 0 V to 10 V VCM = 0.3 V to 9.7 V, −40°C ≤ TA ≤ +85°C VCM = 0.3 V to 9.7 V, −40°C ≤ TA ≤ +125°C VCM = 0 V to 10 V, −40°C ≤ TA ≤ +125°C Min IB Typ Max Unit 2 350 1.6 2 16 15 2.6 30 5.2 10 µV mV mV mV pA nA pA nA V dB dB dB dB dB dB μV/°C GΩ pF pF −40°C ≤ TA ≤ +125°C Input Offset Current IOS −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Input Resistance Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier VCM = 0 V to 10 V VCM = 0.3 V to 9.7 V, −40°C ≤ TA ≤ +85°C VCM = 0.3 V to 9.7 V, −40°C ≤ TA ≤ +125°C VCM = 0 V to 10 V, −40°C ≤ TA ≤ +125°C RL = 100 kΩ, VO = 0.5 V to 9.5 V −40°C ≤ TA ≤ +125°C 0 88 76 75 59 108 100 ΔVOS/ΔT RIN CINDM CINCM 120 2 10 11 3.5 VOH VOL ISC ZOUT RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C PSRR VSY = 2.7 V to 18 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C ISY 105 9.98 20 ±11 15 f = 1 kHz, AV = 1 100 90 115 18 22 34 V mV mA Ω dB dB µA µA DYNAMIC PERFORMANCE Slew Rate Settling Time to 0.1% Unity-Gain Crossover Phase Margin Gain Bandwidth Product −3 dB Closed-Loop Bandwidth Channel Separation EMI Rejection Ratio of +IN x SR ts UGC ΦM GBP f−3 dB CS EMIRR RL = 1 MΩ, CL = 10 pF, AV = 1 VIN = 1 V step, RL = 100 kΩ, CL = 10 pF VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1 VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1 VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 100 VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1 f = 10 kHz, RL = 1 MΩ VIN = 100 mVPEAK; f = 400 MHz, 900 MHz, 1800 MHz, 2400 MHz 75 15 225 60 230 300 95 90 V/ms µs kHz Degrees kHz kHz dB dB NOISE PERFORMANCE Voltage Noise Voltage Noise Density en p-p en f = 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 1 kHz 5 50 45 0.1 µV p-p nV/√Hz nV/√Hz pA/√Hz Current Noise Density in Rev. B | Page 4 of 24 Data Sheet AD8657/AD8659 ELECTRICAL CHARACTERISTICS—2.7 V OPERATION VSY = 2.7 V, VCM = VSY/2 V, TA = 25°C, unless otherwise specified. Table 4. Parameter INPUT CHARACTERISTICS Offset Voltage Input Bias Current Symbol Test Conditions/Comments VOS VCM = 0 V to 2.7 V VCM = 0.3 V to 2.4 V, −40°C ≤ TA ≤ +85°C VCM = 0.3 V to 2.4 V, −40°C ≤ TA ≤ +125°C VCM = 0 V to 2.7 V, −40°C ≤ TA ≤ +125°C Min IB Typ Max Unit 1 350 1.2 2.5 16 10 2.6 20 5.2 2.7 µV mV mV mV pA nA pA nA V dB dB dB dB dB dB μV/°C GΩ pF pF −40°C ≤ TA ≤ +125°C Input Offset Current IOS −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Input Resistance Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier VCM = 0 V to 2.7 V VCM = 0.3 V to 2.4 V, −40°C ≤ TA ≤ +85°C VCM = 0.3 V to 2.4 V, −40°C ≤ TA ≤ +125°C VCM = 0 V to 2.7 V, −40°C ≤ TA ≤ +125°C RL = 100 kΩ, VO = 0.5 V to 2.2 V −40°C ≤ TA ≤ +125°C 0 77 69 62 47 95 90 ΔVOS/ΔT RIN CINDM CINCM 105 2 10 11 3.5 VOH VOL ISC ZOUT RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C RL = 100 kΩ to VCM, −40°C ≤ TA ≤ +125°C PSRR VSY = 2.7 V to 18 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C ISY 95 2.69 10 ±4 20 f = 1 kHz, AV = 1 100 90 115 18 22 34 V mV mA Ω dB dB µA µA DYNAMIC PERFORMANCE Slew Rate Settling Time to 0.1% Unity-Gain Crossover Phase Margin Gain Bandwidth Product −3 dB Closed-Loop Bandwidth Channel Separation EMI Rejection Ratio of +IN x SR ts UGC ΦM GBP f−3 dB CS EMIRR RL = 1 MΩ, CL = 10 pF, AV = 1 VIN = 1 V step, RL = 100 kΩ, CL = 10 pF VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1 VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1 VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 100 VIN = 10 mV p-p, RL = 1 MΩ, CL = 10 pF, AV = 1 f = 10 kHz, RL = 1 MΩ VIN = 100 mVPEAK; f = 400 MHz, 900 MHz, 1800 MHz, 2400 MHz 50 20 190 55 200 245 95 90 V/ms µs kHz Degrees kHz kHz dB dB NOISE PERFORMANCE Voltage Noise Voltage Noise Density en p-p en f = 0.1 Hz to 10 Hz f = 1 kHz f = 10 kHz f = 1 kHz 6 60 56 0.1 µV p-p nV/√Hz nV/√Hz pA/√Hz Current Noise Density in Rev. B | Page 5 of 24 AD8657/AD8659 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 5. Parameter Supply Voltage Input Voltage Input Current1 Differential Input Voltage Output Short-Circuit Duration to GND Temperature Ranges Storage Operating Junction Lead Temperature (Soldering, 60 sec) 1 Rating 20.5 V (V−) − 300 mV to (V+) + 300 mV ±10 mA ±VSY Indefinite −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages using a standard 4-layer JEDEC board. The exposed pad (LFCSP packages only) is soldered to the board. Table 6. Thermal Resistance Package Type 8-Lead MSOP (RM-8) 8-Lead LFCSP (CP-8-11) 14-Lead SOIC (R-14) 16-Lead LFCSP (CP-16-20) ESD CAUTION The input pins have clamp diodes to the power supply pins. Limit the input current to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. B | Page 6 of 24 θJA 142 75 115 52 θJC 45 12 36 13 Unit °C/W °C/W °C/W °C/W Data Sheet AD8657/AD8659 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS AD8657 +IN A 3 TOP VIEW (Not to Scale) V– 4 8 V+ 7 OUT B 6 –IN B 5 +IN B OUT A 1 –IN A 2 +IN A 3 V– 4 8 V+ AD8657 TOP VIEW (Not to Scale) 7 OUT B 6 –IN B 5 +IN B NOTES 1. CONNECT THE EXPOSED PAD TO V– OR LEAVE IT UNCONNECTED. Figure 4. AD8657 Pin Configuration, 8-Lead MSOP 08804-061 –IN A 2 08804-001 OUT A 1 Figure 5. AD8657 Pin Configuration, 8-Lead LFCSP Table 7. Pin Function Descriptions, AD8657 Pin No. 1 8-Lead MSOP 8-Lead LFCSP 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 N/A EP 2 1 2 Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ EPAD Description Output Channel A. Negative Input Channel A. Positive Input Channel A. Negative Supply Voltage. Positive Input Channel B. Negative Input Channel B. Output Channel B. Positive Supply Voltage. Exposed Pad. For the AD8657 (8-lead LFCSP only), connect the exposed pad to V− or leave it unconnected. N/A means not applicable. The exposed pad is not shown in the pin configuration diagram. Rev. B | Page 7 of 24 12 +IN D V+ 3 V+ 4 +IN B 5 TOP VIEW 11 V– (Not to Scale) 10 +IN C +IN B 4 AD8659 –IN B 6 9 –IN C OUT B 7 8 OUT C 13 NC 15 OUT A 11 +IN D TOP VIEW 10 V– (Not to Scale) 9 +IN C NOTES 1. NIC = NO INTERNAL CONNECTION. 2. CONNECT THE EXPOSED PAD TO V– OR LEAVE IT UNCONNECTED. 08804-104 +IN A 3 12 –IN D AD8659 OUT C 7 –IN C 8 +IN A 2 –IN B 5 –IN A 1 13 –IN D OUT B 6 14 OUT D –IN A 2 08804-103 OUT A 1 14 OUT D Data Sheet 16 NIC AD8657/AD8659 Figure 7. AD8659 Pin Configuration, 16-Lead LFCSP Figure 6. AD8659 Pin Configuration, 14-Lead SOIC_N Table 8. Pin Function Descriptions, AD8659 Pin No. 1 14-Lead SOIC 16-Lead LFCSP 1 15 2 1 3 2 11 10 5 4 6 5 7 6 4 3 8 7 9 8 10 9 12 11 13 12 14 14 N/A 13 N/A 16 N/A EP 2 1 2 Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ OUT C −IN C +IN C +IN D −IN D OUT D NIC NIC EPAD2 Description Output Channel A. Negative Input Channel A. Positive Input Channel A. Negative Supply Voltage. Positive Input Channel B. Negative Input Channel B. Output Channel B. Positive Supply Voltage. Output Channel C. Negative Input Channel C. Positive Input Channel C. Positive Input Channel D. Negative Input Channel D. Output Channel D. No Internal Connection. No Internal Connection. Exposed Pad. For the AD8659 (16-lead LFCSP only), connect the exposed pad to V− or leave it unconnected. N/A means not applicable. The exposed pad is not shown in the pin configuration diagram. Rev. B | Page 8 of 24 Data Sheet AD8657/AD8659 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. 160 160 Figure 8. Input Offset Voltage Distribution 140 120 80 60 20 VSY = 2.7V –40°C ≤ TA ≤ +125°C 16 VSY = 18V –40°C ≤ TA ≤ +125°C 18 16 14 NUMBER OF AMPLIFIERS 12 10 8 6 4 14 12 10 8 6 4 2 2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 TCVOS (µV/°C) 0 TCVOS (µV/°C) Figure 9. Input Offset Voltage Drift Distribution Figure 12. Input Offset Voltage Drift Distribution 350 350 VSY = 18V VSY = 2.7V 250 150 150 VOS (µV) 250 50 –50 50 –50 –150 –250 –250 0 0.3 0.6 0.9 1.2 1.5 VCM (V) 1.8 2.1 2.4 2.7 08804-207 –150 –350 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 08804-006 0 0 08804-003 0 Figure 10. Input Offset Voltage vs. Common-Mode Voltage –350 0 2 4 6 8 10 VCM (V) 12 14 16 Figure 13. Input Offset Voltage vs. Common-Mode Voltage Rev. B | Page 9 of 24 18 08804-210 NUMBER OF AMPLIFIERS 40 Figure 11. Input Offset Voltage Distribution 18 VOS (µV) 0 VOS (µV) 08804-005 VOS (µV) 20 –140 140 08804-002 120 80 100 60 40 0 20 –20 –40 –60 –80 0 –100 0 –120 20 –140 20 –20 40 –40 40 60 –60 60 80 –80 80 100 –100 100 120 –120 NUMBER OF AMPLIFIERS 120 NUMBER OF AMPLIFIERS VSY = 18V VCM = VSY/2 140 100 VSY = 2.7V VCM = VSY/2 140 AD8657/AD8659 Data Sheet 3.0 3.0 VSY = 2.7V –40°C ≤ TA ≤ +85°C 2.0 1.5 1.5 1.0 1.0 0.5 0.5 VOS (mV) 2.0 –0.5 0 –0.5 –1.0 –1.0 –1.5 –1.5 –2.0 –2.0 –2.5 –2.5 –3.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 VCM (V) –3.0 0 4 6 8 10 VCM (V) 12 14 18 16 Figure 14. Input Offset Voltage vs. Common-Mode Voltage Figure 17. Input Offset Voltage vs. Common-Mode Voltage 6 6 VSY = 2.7V –40°C ≤ TA ≤ +125°C 4 VSY = 18V –40°C ≤ TA ≤ +125°C 4 2 0 0 –2 –2 –4 –4 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 VCM (V) –6 Figure 15. Input Offset Voltage vs. Common-Mode Voltage 0 VSY = 2.7V 8 10 VCM (V) 12 14 16 18 VSY = 18V 1000 100 │IB+│ │IB–│ IB (pA) IB (pA) 6 10000 1000 10 1 1 50 75 100 TEMPERATURE (°C) 125 08804-008 10 0.1 25 4 Figure 18. Input Offset Voltage vs. Common-Mode Voltage 10000 100 2 Figure 16. Input Bias Current vs. Temperature 0.1 25 │IB+│ │IB–│ 50 75 100 TEMPERATURE (°C) Figure 19. Input Bias Current vs. Temperature Rev. B | Page 10 of 24 125 08804-011 0 08804-212 –6 08804-215 VOS (mV) 2 VOS (mV) 2 08804-214 0 0 VSY = 18V –40°C < TA < +85°C 2.5 08804-211 VOS (mV) 2.5 Data Sheet AD8657/AD8659 4 4 VSY = 18V 3 3 2 2 1 1 IB (nA) 0 125°C 85°C 25°C –1 –2 –2 –3 –3 0.9 1.2 1.5 1.8 2.1 2.4 2.7 VCM (V) 0 2 4 6 8 10 12 14 16 Figure 23. Input Bias Current vs. Common-Mode Voltage 10 10 OUTPUT VOLTAGE (VOH) TO SUPPLY RAIL (V) Figure 20. Input Bias Current vs. Common-Mode Voltage VSY = 2.7V 1 –40°C +25°C +85°C +125°C 100m 10m 1m 0.01 0.1 1 LOAD CURRENT (mA) 10 100 VSY = 18V 1 –40°C +25°C +85°C +125°C 100m 10m 1m 0.1m 0.01m 0.001 08804-010 0.1m 0.01m 0.001 18 VCM (V) Figure 21. Output Voltage (VOH) to Supply Rail vs. Load Current 08804-012 0.6 0.01 0.1 1 LOAD CURRENT (mA) 10 100 08804-013 0.3 08804-009 –4 0 OUTPUT VOLTAGE (VOH) TO SUPPLY RAIL (V) 125°C 85°C 25°C –1 –4 Figure 24. Output Voltage (VOH) to Supply Rail vs. Load Current 10 OUTPUT VOLTAGE (VOL) TO SUPPLY RAIL (V) 10 VSY = 2.7V 1 100m 10m –40°C +25°C +85°C +125°C 1m 0.1m 0.01m 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 100 08804-014 OUTPUT VOLTAGE (VOL) TO SUPPLY RAIL (V) 0 Figure 22. Output Voltage (VOL) to Supply Rail vs. Load Current VSY = 18V 1 100m 10m –40°C +25°C +85°C +125°C 1m 0.1m 0.01m 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 100 Figure 25. Output Voltage (VOL) to Supply Rail vs. Load Current Rev. B | Page 11 of 24 08804-017 IB (nA) VSY = 2.7V AD8657/AD8659 Data Sheet 2.700 18.000 RL = 1MΩ RL = 1MΩ OUTPUT VOLTAGE, VOH (V) 2.698 2.697 RL = 100kΩ 17.995 17.990 17.985 17.980 2.696 VSY = 2.7V 0 –25 25 50 75 100 125 TEMPERATURE (°C) 17.975 –50 –25 0 25 50 100 125 Figure 29. Output Voltage (VOH) vs. Temperature Figure 26. Output Voltage (VOH) vs. Temperature 12 12 VSY = 18V VSY = 2.7V RL = 100kΩ 10 8 6 4 RL = 100kΩ 8 6 4 2 2 RL = 1MΩ RL = 1MΩ –25 0 25 50 75 100 125 TEMPERATURE (°C) 0 –50 08804-016 0 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) 08804-019 OUTPUT VOLTAGE, VOL (mV) 10 Figure 30. Output Voltage (VOL) vs. Temperature Figure 27. Output Voltage (VOL) vs. Temperature 35 35 VSY = 18V VSY = 2.7V 30 25 25 ISY PER AMP (µA) 30 20 15 20 15 10 10 –40°C +25°C +85°C +125°C 5 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 –40°C +25°C +85°C +125°C 5 2.4 VCM (V) 2.7 08804-225 ISY PER AMP (µA) 75 TEMPERATURE (°C) 0 0 3 6 9 12 15 VCM (V) Figure 31. Supply Current vs. Common-Mode Voltage Figure 28. Supply Current vs. Common-Mode Voltage Rev. B | Page 12 of 24 18 08804-018 VSY = 18V 08804-015 2.695 –50 OUTPUT VOLTAGE, VOL (mV) RL = 100kΩ 08804-228 OUTPUT VOLTAGE, VOH (V) 2.699 Data Sheet AD8657/AD8659 60 40 35 50 VSY = 2.7V VSY = 18V ISY PER AMP (µA) ISY PER AMP (µA) 30 25 20 15 40 30 20 10 –40°C +25°C +85°C +125°C 9 12 15 18 VSY (V) 0 –50 135 60 GAIN 0 –45 –20 CL = 10pF OPEN-LOOP GAIN (dB) 45 PHASE (Degrees) 20 08804-021 –135 1M FREQUENCY (Hz) 20 45 0 0 GAIN –45 –20 CL = 10pF 0 10k –135 1M 100k FREQUENCY (Hz) Figure 36. Open-Loop Gain and Phase vs. Frequency 60 VSY = 2.7V AV = 100 40 AV = 10 AV = 1 –20 20 0 VSY = 18V AV = 100 AV = 10 AV = 1 –20 –40 1k 10k 100k FREQUENCY (Hz) 1M 08804-022 –40 –60 100 –90 CL = 100pF –60 1k CLOSED-LOOP GAIN (dB) 20 VSY = 18V RL = 1MΩ 90 60 40 125 40 –40 –90 CL = 100pF 100k 100 135 Figure 33. Open-Loop Gain and Phase vs. Frequency CLOSED-LOOP GAIN (dB) OPEN-LOOP GAIN (dB) 90 10k 75 60 PHASE 40 –60 1k 25 50 TEMPERATURE (°C) VSY = 2.7V RL = 1MΩ PHASE –40 0 Figure 35. Supply Current vs. Temperature Figure 32. Supply Current vs. Supply Voltage 0 –25 08804-023 6 PHASE (Degrees) 3 08804-024 0 –60 100 1k 10k 100k FREQUENCY (Hz) Figure 37. Closed-Loop Gain vs. Frequency Figure 34. Closed-Loop Gain vs. Frequency Rev. B | Page 13 of 24 1M 08804-025 0 10 08804-229 5 AD8657/AD8659 Data Sheet 1000 1000 AV = 100 AV = 100 AV = 10 AV = 10 100 100 AV = 1 ZOUT (Ω) ZOUT (Ω) AV = 1 10 10 1k 10k FREQUENCY (Hz) 100k 08804-026 100 1 100 Figure 38. Output Impedance vs. Frequency 140 VSY = 2.7V VCM = VSY/2 120 60 80 60 40 40 20 20 1k 10k 100k 1M FREQUENCY (Hz) 0 100 1k 10k 100 100 VSY = 18V VSY = 2.7V 80 60 60 PSRR (dB) 80 PSRR+ PSRR– 40 PSRR+ PSRR– 40 1k 10k 100k FREQUENCY (Hz) 1M 0 100 1k 10k 100k FREQUENCY (Hz) Figure 43. PSRR vs. Frequency Figure 40. PSRR vs. Frequency Rev. B | Page 14 of 24 1M 08804-031 20 20 08804-028 PSRR (dB) 1M Figure 42. CMRR vs. Frequency Figure 39. CMRR vs. Frequency 0 100 100k FREQUENCY (Hz) 08804-030 CMRR (dB) 80 08804-236 CMRR (dB) VSY = 18V VCM = VSY/2 100 100 0 100 100k Figure 41. Output Impedance vs. Frequency 140 120 1k 10k FREQUENCY (Hz) 08804-029 VSY = 18V VSY = 2.7V 1 Data Sheet AD8657/AD8659 70 70 VSY = 2.7V VIN = 10mV p-p RL = 1MΩ 60 OS+ OS– OS+ OS– 50 40 30 40 30 20 20 10 10 100 1000 CAPACITANCE (pF) 0 10 08804-032 100 1000 CAPACITANCE (pF) Figure 44. Small Signal Overshoot vs. Load Capacitance Figure 47. Small Signal Overshoot vs. Load Capacitance VSY = ±1.35V AV = 1 RL = 1MΩ CL = 100pF TIME (100µs/DIV) TIME (100µs/DIV) Figure 45. Large Signal Transient Response Figure 48. Large Signal Transient Response VSY = ±9V AV = 1 RL = 1MΩ CL = 100pF VOLTAGE (5mV/DIV) 08804-034 VOLTAGE (5mV/DIV) VSY = ±1.35V AV = 1 RL = 1MΩ CL = 100pF TIME (100µs/DIV) 08804-036 08804-033 VOLTAGE (5V/DIV) VOLTAGE (500mV/DIV) VSY = ±9V AV = 1 RL = 1MΩ CL = 100pF TIME (100µs/DIV) Figure 46. Small Signal Transient Response Figure 49. Small Signal Transient Response Rev. B | Page 15 of 24 08804-037 0 10 08804-035 OVERSHOOT (%) 50 OVERSHOOT (%) VSY = 18V VIN = 10mV p-p RL = 1MΩ 60 AD8657/AD8659 Data Sheet INPUT 2 INPUT VOLTAGE (V) VSY = ±1.35 AV = –10 RL = 1MΩ –0.4 OUTPUT VOLTAGE (V) –1 –2 10 1 5 OUTPUT OUTPUT 0 TIME (40µs/DIV) TIME (40µs/DIV) Figure 50. Positive Overload Recovery Figure 53. Positive Overload Recovery VSY = ±9V AV = –10 RL = 1MΩ 2 0.4 0 OUTPUT 0 –1 –5 –2 –10 08804-038 VSY = ±1.35V AV = –10 RL = 1MΩ INPUT 0 TIME (40µs/DIV) TIME (40µs/DIV) Figure 51. Negative Overload Recovery Figure 54. Negative Overload Recovery INPUT VOLTAGE (500mV/DIV) INPUT VOLTAGE (500mV/DIV) 08804-041 OUTPUT INPUT VOLTAGE (V) 0 OUTPUT VOLTAGE (V) INPUT VSY = 2.7V RL = 100kΩ CL = 10pF +5mV VSY = 18V RL = 100kΩ CL = 10pF +5mV 0 ERROR BAND 0 ERROR BAND OUTPUT OUTPUT –5mV –5mV 08804-040 TIME (10µs/DIV) OUTPUT VOLTAGE (V) 1 0.2 INPUT VOLTAGE (V) 08804-042 08804-039 0 Figure 52. Positive Settling Time to 0.1% TIME (10µs/DIV) Figure 55. Positive Settling Time to 0.1% Rev. B | Page 16 of 24 08804-043 INPUT VOLTAGE (V) INPUT 0 –0.2 VSY = ±9V AV = –10 RL = 1MΩ OUTPUT VOLTAGE (V) 0 Data Sheet AD8657/AD8659 VSY =18V RL = 100kΩ CL = 10pF VOLTAGE (500mV/DIV) VOLTAGE (500mV/DIV) VSY = 2.7V RL = 100kΩ CL = 10pF INPUT +5mV OUTPUT 0 ERROR BAND INPUT +5mV OUTPUT –5mV TIME (10µs/DIV) Figure 56. Negative Settling Time to 0.1% Figure 59. Negative Settling Time to 0.1% 1000 1000 VSY = 18V 100 1 100 1k 10k FREQUENCY (Hz) 100k 1M 1 10 Figure 57. Voltage Noise Density vs. Frequency 100 1k 10k FREQUENCY (Hz) 100k 1M Figure 60. Voltage Noise Density vs. Frequency TIME (2s/DIV) 08804-046 VOLTAGE (2µV/DIV) VSY = 18V VOLTAGE (2µV/DIV) VSY = 2.7V TIME (2s/DIV) Figure 58. 0.1 Hz to 10 Hz Noise Figure 61. 0.1 Hz to 10 Hz Noise Rev. B | Page 17 of 24 08804-049 10 10 08804-045 10 100 08804-048 VOLTAGE NOISE DENSITY (nV/√Hz) VSY = 2.7V VOLTAGE NOISE DENSITY (nV/√Hz) 08804-047 08804-044 –5mV TIME (10µs/DIV) 0 ERROR BAND AD8657/AD8659 Data Sheet 20 3.0 VSY = 2.7V VIN = 2.6V RL = 1MΩ AV = 1 VSY = 18V VIN = 17.9V RL = 1MΩ AV = 1 18 16 OUTPUT SWING (V) OUTPUT SWING (V) 2.5 2.0 1.5 1.0 14 12 10 8 6 4 0.5 0 100 1k 10k 100k 1M FREQUENCY (Hz) 08804-050 0 10 10 100 1k 10k 100k 1M FREQUENCY (Hz) 08804-053 2 Figure 65. Output Swing vs. Frequency Figure 62. Output Swing vs. Frequency 100 10 VSY = 2.7V VIN = 0.2V RMS RL = 1MΩ AV = 1 10 THD + N (%) THD + N (%) 1 VSY = 18V VIN = 0.2V RMS RL = 1MΩ AV = 1 1 0.1 0.1 100 1k 10k 100k FREQUENCY (Hz) 0.001 08804-260 0.01 10 10 1k 10k Figure 66. THD + N vs. Frequency 0 0 10kΩ RL –40 –60 VIN = 0.5V p-p –80 VIN = 1.5V p-p VIN = 2.6V p-p –100 –120 10kΩ VSY = 18V RL = 1MΩ AV = –100 –20 CHANNEL SEPARATION (dB) –20 1MΩ 1MΩ VSY = 2.7V RL = 1MΩ AV = –100 100k FREQUENCY (Hz) Figure 63. THD + N vs. Frequency RL –40 VIN = 1V p-p VIN = 5V p-p VIN = 10V p-p VIN = 15V p-p VIN = 17V p-p –60 –80 –100 –120 100 1k 10k FREQUENCY (Hz) 100k Figure 64. Channel Separation vs. Frequency –140 100 1k 10k FREQUENCY (Hz) Figure 67. Channel Separation vs. Frequency Rev. B | Page 18 of 24 100k 08804-055 –140 08804-052 CHANNEL SEPARATION (dB) 100 08804-263 0.01 Data Sheet AD8657/AD8659 APPLICATIONS INFORMATION V+ VB1 I1 M5 +IN x R1 –IN x R2 M3 D1 M8 M9 M10 M11 M4 M16 D2 VB2 M1 OUT x M2 M7 M6 M13 M14 M15 V– 08804-056 M17 M12 Figure 68. Simplified Schematic The AD8657/AD8659 are low power, rail-to-rail input and output precision CMOS amplifiers that operate over a wide supply voltage range of 2.7 V to 18 V. The AD8657/AD8659 use the Analog Devices DigiTrim technique to achieve a higher degree of precision than is available from other CMOS amplifiers. The DigiTrim technique is a method of trimming the offset voltage of an amplifier after assembly. The advantage of post-package trimming is that it corrects any shifts in offset voltage caused by mechanical stresses of assembly. The AD8657/AD8659 also employ unique input and output stages to achieve a rail-to-rail input and output range with a very low supply current. INPUT STAGE Figure 68 shows the simplified schematic of the AD8657/AD8659. The input stage comprises two differential transistor pairs, an NMOS pair (M1, M2) and a PMOS pair (M3, M4). The input common-mode voltage determines which differential pair turns on and is more active than the other. The PMOS differential pair is active when the input voltage approaches and reaches the lower supply rail. The NMOS pair is needed for input voltages up to and including the upper supply rail. This topology allows the amplifier to maintain a wide dynamic input voltage range and to maximize signal swing to both supply rails. For the majority of the input common-mode voltage range, the PMOS differential pair is active. Differential pairs commonly exhibit different offset voltages. The handoff from one pair to the other creates a step-like characteristic that is visible in the VOS vs. VCM graphs (see Figure 10 and Figure 13). This characteristic is inherent in all rail-to-rail amplifiers that use the dual differential pair topology. Therefore, always choose a common-mode voltage that does not include the region of handoff from one input differential pair to the other. Additional steps in the VOS vs. VCM curves are also visible as the input common-mode voltage approaches the power supply rails. These changes are a result of the load transistors (M8, M9, M14, and M15) running out of headroom. As the load transistors are forced into the triode region of operation, the mismatch of their drain impedances contributes to the offset voltage of the amplifier. This problem is exacerbated at high temperatures due to the decrease in the threshold voltage of the input transistors (see Figure 14, Figure 15, Figure 17, and Figure 18 for typical performance data). Current Source I1 drives the PMOS transistor pair. As the input common-mode voltage approaches the upper rail, I1 is steered away from the PMOS differential pair through the M5 transistor. The bias voltage, VB1 (see Figure 68), controls the point where this transfer occurs. M5 diverts the tail current into a current mirror consisting of the M6 and M7 transistors. The output of the current mirror then drives the NMOS pair. Note that the activation of this current mirror causes a slight increase in supply current at high common-mode voltages (see Figure 28 and Figure 31 for more details). The AD8657/AD8659 achieve their high performance by using low voltage MOS devices for their differential inputs. These low voltage MOS devices offer excellent noise and bandwidth per unit of current. Each differential input pair is protected by proprietary regulation circuitry (not shown in the simplified schematic). The regulation circuitry consists of a combination of active devices that maintain the proper voltages across the input pairs during normal operation and passive clamping devices that protect the amplifier during fast transients. However, these passive clamping devices begin to forward bias as the common-mode voltage approaches either power supply rail, thereby causing an increase in the input bias current (see Figure 20 and Figure 23). The input devices are also protected from large differential input voltages by clamp diodes (D1 and D2). These diodes are buffered from the inputs with two 10 kΩ resistors (R1 and R2). The differential diodes turn on whenever the differential voltage exceeds approximately 600 mV; in this condition, the differential input resistance drops to 20 kΩ. Rev. B | Page 19 of 24 AD8657/AD8659 Data Sheet OUTPUT STAGE Inverting Op Amp Configuration The AD8657/AD8659 feature a complementary output stage consisting of the M16 and M17 transistors. These transistors are configured in Class AB topology and are biased by the voltage source, VB2. This topology allows the output voltage to go within millivolts of the supply rails, achieving a rail-to-rail output swing. The output voltage is limited by the output impedance of the transistors, which are low RON MOS devices. The output voltage swing is a function of the load current and can be estimated using the output voltage to the supply rail vs. load current diagrams (see Figure 21, Figure 22, Figure 24, and Figure 25). Figure 70 shows the AD8657/AD8659 in an inverting configuration with a resistive load, RL, at the output. The actual load seen by the amplifier is the parallel combination of the feedback resistor, R2, and load, RL. For example, the combination of a feedback resistor of 1 kΩ and a load of 1 MΩ results in an equivalent load resistance of 999 Ω at the output. Because the AD8657/ AD8659 are incapable of driving such a heavy load, performance degrades greatly. To avoid loading the output, use a larger feedback resistor, but consider the resistor thermal noise effect on the overall circuit. RAIL TO RAIL R2 The AD8657/AD8659 feature rail-to-rail input and output with a supply voltage from 2.7 V to 18 V. Figure 69 shows the input and output waveforms of the AD8657/AD8659 configured as a unity-gain buffer with a supply voltage of ±9 V and a resistive load of 1 MΩ. With an input voltage of ±9 V, the AD8657/AD8659 allow the output to swing very close to both rails. Additionally, they do not exhibit phase reversal. +VSY R1 VIN VOUT RL 08804-058 AD8657/ AD8659 –VSY RL, EFF = RL || R2 Figure 70. Inverting Op Amp Configuration VSY = ±9V RL = 1MΩ INPUT OUTPUT Noninverting Op Amp Configuration VOLTAGE (5V/DIV) Figure 71 shows the AD8657/AD8659 in a noninverting configuration with a resistive load, RL, at the output. The actual load seen by the amplifier is the parallel combination of R1 + R2 and RL. R2 +VSY R1 Figure 69. Rail-to-Rail Input and Output –VSY RESISTIVE LOAD RL, EFF = RL || (R1 + R2) The feedback resistor alters the load resistance that an amplifier sees. It is, therefore, important to be aware of the value of feedback resistors chosen for use with the AD8657/AD8659. The amplifiers are capable of driving resistive loads down to 100 kΩ. The following two examples, inverting and noninverting configurations, show how the feedback resistor changes the actual load resistance seen at the output of the amplifier. Rev. B | Page 20 of 24 VOUT RL 08804-059 08804-057 TIME (200µs/DIV) AD8657/ AD8659 VIN Figure 71. Noninverting Op Amp Configuration Data Sheet AD8657/AD8659 COMPARATOR OPERATION—AD8657 An op amp is designed to operate in a closed-loop configuration with feedback from its output to its inverting input. Figure 72 shows the AD8657 configured as a voltage follower with an input voltage that is always kept at midpoint of the power supplies. The same configuration is applied to the unused channel. A1 and A2 indicate the placement of ammeters to measure supply current. ISY+ refers to the current flowing from the upper supply rail to the op amp, and ISY− refers to the current flowing from the op amp to the lower supply rail. As shown in Figure 73, as expected in normal operating condition, the total current flowing into the op amp is equivalent to the total current flowing out of the op amp, where, ISY+ = ISY− = 36 μA for the dual AD8657 at VSY = 18 V. conduct whenever the differential input voltage exceeds approximately 600 mV; however, these diodes also allow a current path from the input to the lower supply rail, thus resulting in an increase in the total supply current of the system. As shown in Figure 76, both configurations yield the same result. At 18 V of power supply, ISY+ remains at 36 μA per dual amplifier, but ISY− increases to 140 μA in magnitude per dual amplifier. +VSY ISY+ A1 100kΩ AD8657 VOUT 1/2 +VSY 100kΩ ISY– A2 ISY+ 08804-068 A1 –VSY 100kΩ AD8657 Figure 74. Comparator A VOUT 1/2 +VSY 100kΩ A2 ISY– 08804-066 A1 –VSY ISY+ 100kΩ AD8657 Figure 72. Voltage Follower VOUT 1/2 40 100kΩ A2 ISY– 08804-069 30 –VSY 25 Figure 75. Comparator B 20 160 15 140 0 0 2 4 6 8 10 VSY (V) 12 14 16 18 08804-067 5 Figure 73. Supply Current vs. Supply Voltage (Voltage Follower) In contrast to op amps, comparators are designed to work in an open-loop configuration and to drive logic circuits. Although op amps are different from comparators, occasionally an unused section of a dual op amp is used as a comparator to save board space and cost; however, this is not recommended. Figure 74 and Figure 75 show the AD8657 configured as a comparator, with 100 kΩ resistors in series with the input pins. Any unused channels are configured as buffers with the input voltage kept at the midpoint of the power supplies. The AD8657/AD8659 have input devices that are protected from large differential input voltages by Diode D1 and Diode D2 (refer to Figure 68). These diodes consist of substrate PNP bipolar transistors, and 120 100 ISY– ISY+ 80 60 40 20 0 0 2 4 6 8 10 VSY (V) 12 14 16 18 08804-070 ISY– ISY+ 10 ISY pER DUAL AMPLIFIER (µA) ISY PER DUAL AMPLIFIER (µA) 35 Figure 76. Supply Current vs. Supply Voltage (AD8657 as a Comparator) Note that 100 kΩ resistors are used in series with the input of the op amp. If smaller resistor values are used, the supply current of the system increases much more. For more details on op amps as comparators, refer to the AN-849 Application Note Using Op Amps as Comparators. Rev. B | Page 21 of 24 AD8657/AD8659 Data Sheet EMI REJECTION RATIO Circuit performance is often adversely affected by high frequency electromagnetic interference (EMI). In the event where signal strength is low and transmission lines are long, an op amp must accurately amplify the input signals. However, all op amp pins— the noninverting input, inverting input, positive supply, negative supply, and output pins—are susceptible to EMI signals. These high frequency signals are coupled into an op amp by various means such as conduction, near field radiation, or far field radiation. For example, wires and PCB traces can act as antennas and pick up high frequency EMI signals. Precision op amps, such as the AD8657 and AD8659, do not amplify EMI or RF signals because of their relatively low bandwidth. However, due to the nonlinearities of the input devices, op amps can rectify these out-of-band signals. When these high frequency signals are rectified, they appear as a dc offset at the output. To describe the ability of the AD8657/AD8659 to perform as intended in the presence of an electromagnetic energy, the electromagnetic interference rejection ratio (EMIRR) of the noninverting pin is specified in Table 2, Table 3, and Table 4 of the Specifications section. A mathematical method of measuring EMIRR is defined as follows: EMIRR = 20 log (VIN_PEAK/ΔVOS) 140 120 At a zero-scale input, a current of VREF/RNULL flows through R. This creates a current flowing through the sense resistor, ISENSE, determined by the following equation (see Figure 78 for details): ISENSE, MIN = (VREF × R)/(RNULL × RSENSE) With a full-scale input voltage, current flowing through R is increased by the full-scale change in VIN/RSPAN. This creates an increase in the current flowing through the sense resistor. ISENSE, DELTA = (Full-Scale Change in VIN × R)/(RSPAN × RSENSE) Therefore ISENSE, MAX = ISENSE, MIN + ISENSE, DELTA When R >> RSENSE, the current through the load resistor at the receiver side is almost equivalent to ISENSE. Figure 78 is designed for a full-scale input voltage of 5 V. At 0 V of input, loop current is 3.5 mA; and at a full scale of 5 V, the loop current is 21 mA. This allows software calibration to fine tune the current loop to the 4 mA to 20 mA range. The AD8657 and ADR125 both consume only 160 µA quiescent current, making 3.34 mA current available to power additional signal conditioning circuitry or to power a bridge circuit. 80 RNULL 1MΩ 1% 60 20 10M VIN = 100mVPEAK VSY = 2.7V TO 18V 100M 1G 10G FREQUENCY (Hz) 08804-071 40 ADR125 VREF VIN 0V TO 5V 4 mA TO 20 mA PROCESS CONTROL CURRENT LOOP TRANSMITTER—AD8657 R2 2kΩ 1% The 2-wire current transmitters are often used in distributed control systems and process control applications to transmit analog signals between sensors and process controllers. Figure 78 shows a 4 mA to 20 mA current loop transmitter. C2 C3 10µF 0.1µF RSPAN 200kΩ 1% R1 68kΩ 1% Figure 77. EMIRR vs. Frequency VOUT VIN GND C5 C4 0.1µF 10µF 1/2 AD8657 Q1 R4 3.3kΩ R3 1.2kΩ VDD 18V D1 C1 390pF 4mA TO 20mA RSENSE 100Ω 1% NOTES 1. R1 + R2 = R´. The transmitter powers directly from the control loop power supply, and the current in the loop carries signal from 4 mA to 20 mA. Thus, 4 mA establishes the baseline current budget within Rev. B | Page 22 of 24 Figure 78. 4 mA to 20 mA Current Loop Transmitter RL 100Ω 08804-060 100 EMIRR (dB) which the circuit must operate. Using the AD8657 is an excellent choice due to its low supply current of 34 μA per amplifier over temperature and supply voltage. The current transmitter controls the current flowing in the loop, where a zero-scale input signal is represented by 4 mA of current and a full-scale input signal is represented by 20 mA. The transmitter also floats from the control loop power supply, VDD, while signal ground is in the receiver. The loop current is measured at the load resistor, RL, at the receiver side. Data Sheet AD8657/AD8659 OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 1 5.15 4.90 4.65 5 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 0.80 0.55 0.40 0.23 0.09 6° 0° 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 79. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 2.44 2.34 2.24 3.10 3.00 SQ 2.90 0.50 BSC 8 5 0.50 0.40 0.30 0.80 0.75 0.70 0.30 0.25 0.20 1 4 BOTTOM VIEW TOP VIEW SEATING PLANE 1.70 1.60 1.50 EXPOSED PAD 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.203 REF PIN 1 INDICATOR (R 0.15) FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-229-WEED Figure 80. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD] 3 mm × 3 mm Body, Very Very Thin, Dual Lead (CP-8-11) Dimensions shown in millimeters Rev. B | Page 23 of 24 01-24-2011-B PIN 1 INDEX AREA AD8657/AD8659 Data Sheet 8.75 (0.3445) 8.55 (0.3366) 4.00 (0.1575) 3.80 (0.1496) 8 14 1 7 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 0.50 (0.0197) 0.25 (0.0098) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 45° 8° 0° 1.27 (0.0500) 0.40 (0.0157) 0.25 (0.0098) 0.17 (0.0067) 060606-A COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 81. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) PIN 1 INDICATOR 0.35 0.30 0.25 0.65 BSC PIN 1 INDICATOR 16 13 1 12 EXPOSED PAD 2.40 2.35 SQ 2.30 9 TOP VIEW 0.80 0.75 0.70 0.50 0.40 0.30 4 8 0.25 MIN BOTTOM VIEW 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF SEATING PLANE 5 FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-220-WGGC-3. 07-18-2012-B 4.10 4.00 SQ 3.90 Figure 82. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4 mm Body, Very Very Thin Quad (CP-16-20) Dimensions shown in millimeters ORDERING GUIDE Model 1 AD8657ARMZ AD8657ARMZ-R7 AD8657ARMZ-RL AD8657ACPZ-R7 AD8657ACPZ-RL AD8659ARZ AD8659ARZ-R7 AD8659ARZ-RL AD8659ACPZ-R7 AD8659ACPZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Lead Frame Chip Scale Package [LFCSP_WD] 8-Lead Lead Frame Chip Scale Package [LFCSP_WD] 14-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] Z = RoHS Compliant Part. ©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08804-0-8/12(B) Rev. B | Page 24 of 24 Package Option RM-8 RM-8 RM-8 CP-8-11 CP-8-11 R-14 R-14 R-14 CP-16-20 CP-16-20 Branding A2N A2N A2N A2N A2N