Single-Supply, High Speed, Fixed G = +2, Rail-to-Rail Output Video Amplifier ADA4856-3 NC 3 PD 4 OUT1 –VS 13 12 +VS 11 OUT2 ADA4856-3 10 –IN2 9 +IN3 5 6 7 +VS 8 NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD CONNECTED TO –VS. 07686-001 2 14 –VS +IN2 15 OUT3 1 16 –IN3 NC –IN1 CONNECTION DIAGRAM Voltage feedback architecture Rail-to-rail output swing: 0.1 V to 4.9 V High speed amplifier −3 dB bandwidth: 225 MHz 0.1 dB flatness at 2 V p-p: 74 MHz Slew rate: 800 V/μs Settling time to 0.1% with 2 V step: 5 ns High input common-mode voltage range −VS − 0.2 V to +VS − 1 V Supply range: 3 V to 5.5 V Differential gain error: 0.01% Differential phase error: 0.01° Low power 7.8 mA/amplifier typical supply current Power-down feature Available in 16-lead LFCSP +IN1 FEATURES Figure 1. APPLICATIONS Professional video Consumer video Imaging Instrumentation Base stations Active filters Buffers 7 The ADA4856-3 (triple) is a fixed gain of +2, single-supply, railto-rail output video amplifier. It provides excellent video performance with 225 MHz, −3 dB bandwidth, 800 V/μs slew rate, and 74 MHz, 0.1 dB flatness into a 150 Ω load. It has a wide input common-mode voltage range that extends 0.2 V below ground and 1 V below the positive rail. In addition, the output voltage swings within 200 mV of either supply, making this video amplifier easy to use on single-supply voltages as low as 3.3 V. 6 The ADA4856-3 is available in a 16-lead LFCSP and is designed to work over the extended industrial temperature range of −40°C to +105°C. VS = 5V, VOUT = 1.4V p-p VS = 3.3V, VOUT = 1.4V p-p VS = 3.3V, VOUT = 2V p-p 5 VS = 5V, VOUT = 2V p-p 4 3 2 1 07686-058 The ADA4856-3 offers a typical low power of 7.8 mA per amplifier, while being capable of delivering up to 52 mA of load current. It also features a power-down function for power sensitive applications that reduces the supply current to 1 mA. CLOSED-LOOP GAIN (dB) GENERAL DESCRIPTION RL = 150Ω 0 1 10 100 FREQUENCY (MHz) 1000 Figure 2. Large Signal Frequency Response Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved. ADA4856-3 TABLE OF CONTENTS Features .............................................................................................. 1 Theory of Operation ...................................................................... 12 Applications ....................................................................................... 1 Applications Information .............................................................. 13 Connection Diagram ....................................................................... 1 Using the ADA4856-3 in Gains Equal to +1, −1........................ 13 General Description ......................................................................... 1 Using the ADA4856-3 in Gains Equal to +3, +4, and +5 ..... 14 Revision History ............................................................................... 2 20 MHz Active Low-Pass Filter ................................................ 15 Specifications..................................................................................... 3 Video Line Driver ....................................................................... 15 5 V Operation ............................................................................... 3 Single-Supply Operation ........................................................... 16 3.3 V Operation ............................................................................ 4 Power Down ................................................................................ 16 Absolute Maximum Ratings............................................................ 5 Layout Considerations ............................................................... 16 Thermal Resistance ...................................................................... 5 Power Supply Bypassing ............................................................ 16 Maximum Power Dissipation ..................................................... 5 Outline Dimensions ....................................................................... 17 ESD Caution .................................................................................. 5 Ordering Guide .......................................................................... 17 Pin Configuration and Function Descriptions ............................. 6 Typical Performance Characteristics ............................................. 7 REVISION HISTORY 10/08—Revision 0: Initial Version Rev. 0 | Page 2 of 20 ADA4856-3 SPECIFICATIONS 5 V OPERATION TA = 25°C, +VS = 5 V, −VS = 0 V, G = +2, RL = 150 Ω to midsupply, unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1% (Rise/Fall) NOISE/DISTORTION PERFORMANCE Harmonic Distortion (HD2/HD3) Crosstalk, Output to Output Input Voltage Noise Input Current Noise Differential Gain Error Differential Phase Error DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Closed-Loop Gain Open-Loop Gain INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing Linear Output Current Per Amplifier POWER-DOWN Turn-On Time Turn-Off Time Input Bias Current Turn-On Voltage POWER SUPPLY Operating Range Quiescent Current per Amplifier Supply Current When Disabled Power Supply Rejection Ratio Test Conditions Min Typ Max Unit VO = 0.1 V p-p VO = 1.4 V p-p VO = 2 V p-p VO = 1.4 V p-p VO = 2 V p-p VO = 2 V step VO = 2 V step 370 225 200 90 74 800 4.8/5.2 MHz MHz MHz MHz MHz V/μs ns fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ f = 5 MHz, G = +2 f = 100 kHz f = 100 kHz −92/−110 −68/−71 −80 14 2 0.01 0.01 dBc dBc dBc nV/√Hz pA/√Hz % Degrees 1.95 1.3 5.5 −3.8 ±0.05 2 90 3.4 2.05 3.2 0.5 mV μV/°C μA μA V/V dB VCM = −0.2 V to +4 V 94 MΩ pF V dB HD2 ≤ −60 dBc, RL = 10 Ω 0.1 to 4.9 52 V mA 78 950 0.2 −125 3.75 ns ns μA μA V −VS − 0.2 Enabled Powered down +VS − 1 3 ∆VS = 4.5 V to 5.5 V Rev. 0 | Page 3 of 20 5.5 7.8 1.1 96 V mA mA dB ADA4856-3 3.3 V OPERATION TA = 25°C, +VS = 3.3 V, −VS = 0 V, G = +2, RL = 150 Ω to midsupply, unless otherwise noted. Table 2. Parameter DYNAMIC PERFORMANCE −3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1% (Rise/Fall) NOISE/DISTORTION PERFORMANCE Harmonic Distortion (HD2/HD3) Crosstalk, Output to Output Input Voltage Noise Input Current Noise Differential Gain Error Differential Phase Error DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Closed-Loop Gain Open-Loop Gain INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio OUTPUT CHARACTERISTICS Output Voltage Swing, Load Resistance Linear Output Current Per Amplifier POWER-DOWN Turn-On Time Turn-Off Time Turn-On Voltage POWER SUPPLY Operating Range Quiescent Current per Amplifier Quiescent Current When Powered Down Power Supply Rejection Ratio Test Conditions Min Typ Max Unit VO = 0.1 V p-p VO = 2 V p-p VO = 2 V p-p VO = 2 V step VO = 2 V step 370 225 77 800 4.8/7 MHz MHz MHz V/μs ns fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ f = 5 MHz, G = +2 f = 100 kHz f = 100 kHz −95/−128 −74/−101 −78 14 2 0.01 0.01 dBc dBc dBc nV/√Hz pA/√Hz % Degrees 1.95 1.2 5.5 −3.8 ±0.05 2 90 3 2.05 3.2 0.5 mV μV/°C μA μA V/V dB VCM = −0.2 V to +2.3 V 94 MΩ pF V dB HD2 ≤ −60 dBc, RL = 10 Ω 0.1 to 3.22 49 V mA 78 950 2.05 ns ns V −VS − 0.2 +VS − 1 3 ∆VS = 2.97 V to 3.63 V Rev. 0 | Page 4 of 20 5.5 7.5 0.98 94 V mA mA dB ADA4856-3 ABSOLUTE MAXIMUM RATINGS MAXIMUM POWER DISSIPATION 1 Rating 6V See Figure 3 (−VS − 0.2 V) to (+VS − 1 V) ±VS Observe power curves −65°C to +125°C −40°C to +105°C 300°C Specification is for device in free air. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The maximum power that can be safely dissipated by the ADA4856-3 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Temporarily exceeding this limit may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure. To ensure proper operation, it is necessary to observe the maximum power derating curves. 3.0 THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, θJA is specified for a device soldered in a circuit board for surface-mount packages. 2.5 2.0 1.5 1.0 0.5 07686-103 Parameter Supply Voltage Internal Power Dissipation1 Common-Mode Input Voltage Differential Input Voltage Output Short-Circuit Duration Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 10 sec) MAXIMUM POWER DISSIPATION (W) Table 3. 90 100 80 70 60 50 40 30 20 0 10 0 Unit °C/W –10 θJC 17.5 –20 θJA 67 –40 Package Type 16-Lead LFCSP –30 Table 4. AMBIENT TEMPERATURE (°C) Figure 3. Maximum Power Dissipation vs. Ambient Temperature ESD CAUTION Rev. 0 | Page 5 of 20 ADA4856-3 +IN1 –IN1 OUT1 –VS PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 16 15 14 13 12 +VS NC 1 +IN2 2 ADA4856-3 11 OUT2 NC 3 TOP VIEW (Not to Scale) 10 –IN2 PD 4 6 7 8 –IN3 OUT3 –VS NOTES 1. NC = NO CONNECT. 2. EXPOSED PAD CONNECTED TO –VS. Figure 4. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 (EPAD) Mnemonic NC +IN2 NC PD +IN3 −IN3 OUT3 −VS +VS −IN2 OUT2 +VS −VS OUT1 −IN1 +IN1 Exposed Pad (EPAD) Description No Connect. Noninverting Input 2. No Connect. Power Down. Noninverting Input 3. Inverting Input 3. Output 3. Negative Supply. Positive Supply. Inverting Input 2. Output 2. Positive Supply. Negative Supply. Output 1. Inverting Input 1. Noninverting Input 1. The exposed pad must be connected to −VS. Rev. 0 | Page 6 of 20 +VS 07686-003 5 +IN3 9 ADA4856-3 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, +VS = 5 V, G = +2, RL = 150 Ω, large signal VOUT = 2 V p-p, small signal VOUT = 100 mV p-p, unless otherwise noted. 7 7 VS = 5V, VOUT = 1.4V p-p VS = 3.3V CLOSED-LOOP GAIN (dB) 4 3 2 1 10 100 FREQUENCY (MHz) VS = 5V, VOUT = 2V p-p 4 3 2 1 07686-005 1 VS = 3.3V, VOUT = 2V p-p 5 07686-008 CLOSED-LOOP GAIN (dB) VS = 5V 5 0 VS = 3.3V, VOUT = 1.4V p-p 6 6 0 1 1000 Figure 5. Small Signal Frequency Response vs. Supply Voltage 10 100 FREQUENCY (MHz) 1000 Figure 8. Large Signal Frequency Response vs. Supply Voltage 2 6.2 TA = +105°C TA = +25°C 0 CLOSED-LOOP GAIN (dB) CLOSED-LOOP GAIN (dB) 6.1 VS = 3.3V, VOUT = 1.4V p-p VS = 5V, VOUT = 1.4V p-p 6.0 VS = 3.3V, VOUT = 2V p-p VS = 5V, VOUT = 2V p-p 5.9 TA = –40°C TA = +25°C TA = +85°C TA = +105°C TA = –40°C –2 TA = +85°C –4 1 10 100 FREQUENCY (MHz) –8 1000 Figure 6. Large Signal 0.1 dB Flatness vs. Supply Voltage 07686-009 5.8 07686-006 –6 1M 10M 100M FREQUENCY (Hz) Figure 9. Small Signal Frequency Response vs. Temperature 7 CL = 4.4pF 6 RL = 150Ω 5 4 3 2 0 1 10 100 FREQUENCY (MHz) CL = 2.2pF 4 2 0 –2 –4 07686-007 1 CL = 6.6pF 07686-010 CLOSED-LOOP GAIN (dB) CLOSED-LOOP GAIN (dB) RL = 1kΩ 6 1G –6 1 1000 10 100 1000 FREQUENCY (MHz) Figure 7. Small Signal Frequency Response vs. Load Resistance Figure 10. Small Signal Frequency Response vs. Capacitive Load Rev. 0 | Page 7 of 20 ADA4856-3 –50 –50 RL = 1kΩ VOUT = 2V p-p –60 –70 –70 DISTORTION (dBc) DISTORTION (dBc) RL = 1kΩ VOUT = 1V p-p VS = 3.3V –60 –80 –90 HD3 –100 HD2 –110 –80 –90 –100 HD3 –110 –130 –130 07686-011 –120 –140 0.1 –140 100 1 10 FREQUENCY (MHz) 07686-014 HD2 –120 0.1 Figure 11. Harmonic Distortion vs. Frequency 1 10 FREQUENCY (MHz) 100 Figure 14. Harmonic Distortion vs. Frequency 0 –10 –20 –40 OUT3 –60 OUT1 –80 OUT2 07686-012 –100 –120 0.1 1 10 100 –30 –40 –60 –70 –100 –110 –120 1M 1000 10M FREQUENCY (Hz) 100M Figure 15. Crosstalk vs. Frequency 0.5 –10 0.4 –20 0.3 –30 0.2 SETTLING TIME (%) 0 –40 –50 +PSRR –PSRR –70 –80 0.1 0 –0.1 –0.2 –90 0.1 1 10 07685-024 –0.3 07686-013 PSRR (dB) IN2, IN3, OUT1 –90 Figure 12. Forward Isolation vs. Frequency –100 0.01 IN1, IN2, OUT3 –80 FREQUENCY (MHz) –60 IN1, IN3, OUT2 –50 07686-015 ALL HOSTILE CROSSTALK (dB) FORWARD ISOLATION (dB) –20 –0.4 –0.5 100 TIME (2ns/DIV) FREQUENCY (MHz) Figure 13. Power Supply Rejection Ratio (PSRR) vs. Frequency Figure 16. Settling Time Rev. 0 | Page 8 of 20 ADA4856-3 25.0 24.5 VS = 5V QUIESCENT CURRENT (mA) VOLTAGE NOISE (nV/√Hz) 1k 100 24.0 23.5 23.0 1k 10k FREQUENCY (Hz) 100k 2.7 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 Figure 20. Quiescent Current vs. Supply Voltage 0.06 1.5 VS = 5V VS = 3.3V VS = 5V VS = 3.3V 1.0 OUTPUT VOLTAGE (V) 0.04 0.02 0 –0.02 –0.04 0.5 0 –0.5 07686-018 –1.0 –0.06 –1.5 TIME (10ns/DIV) TIME (10ns/DIV) Figure 18. Small Signal Transient Response vs. Supply Voltage Figure 21. Large Signal Transient Response vs. Supply Voltage 0.08 1.5 0.06 1.0 OUTPUT VOLTAGE (V) 0.04 CL = 2.2pF CL = 4.4pF CL = 6.6pF 0.02 0 –0.02 –0.04 0.5 CL = 2.2pF CL = 4.4pF CL = 6.6pF 0 –0.5 –1.0 07686-019 –0.06 –0.08 07686-022 OUTPUT VOLTAGE (V) 3.0 SUPPLY VOLTAGE (V) Figure 17. Output Voltage Noise vs. Frequency OUTPUT VOLTAGE (V) 07686-057 22.0 1M 07686-021 10 100 07686-017 22.5 –1.5 TIME (10ns/DIV) TIME (10ns/DIV) Figure 19. Small Signal Transient Response vs. Capacitive Load Figure 22. Large Signal Transient Response vs. Capacitive Load Rev. 0 | Page 9 of 20 ADA4856-3 0.08 1.5 1.0 0.04 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 0.06 CL = 2.2pF CL = 4.4pF CL = 6.6pF 0.02 0 –0.02 –0.04 CL = 2.2pF CL = 4.4pF CL = 6.6pF 0.5 0 –0.5 07686-023 VS = 3.3V –0.08 07686-026 –1.0 –0.06 VS = 3.3V –1.5 TIME (10ns/DIV) TIME (10ns/DIV) Figure 23. Small Signal Transient Response vs. Capacitive Load Figure 26. Large Signal Transient Response vs. Capacitive Load 4 2.5 2 × VIN 3 2 × VIN 2.0 1.5 VOUT VOUT 1.0 1 VOLTAGE (V) VOLTAGE (V) 2 0 –1 0.5 0 –0.5 –1.0 –2 07686-025 –4 VS = 3.3V –2.0 –2.5 TIME (50ns/DIV) TIME (50ns/DIV) Figure 24. Output Overdrive Recovery Figure 27. Output Overdrive Recovery 3.0 23.6 VPD QUIESCENT CURRENT (mA) 2.0 VOUT 0.5 0 –0.5 –1.0 07686-056 VOLTAGE (V) 1.5 1.0 VS = 5V 23.4 –1.5 TIME (1us/DIV) 23.2 23.0 22.8 22.6 VS = 3.3V 22.4 22.2 22.0 21.8 –40 –25 –10 5 20 35 50 65 80 95 TEMPERATURE (°C) Figure 25. Turn-On/Turn-Off Time Figure 28. Quiescent Current vs. Temperature Rev. 0 | Page 10 of 20 110 125 07686-132 2.5 07686-028 –1.5 –3 ADA4856-3 1.8 5.00 1.7 4.95 1.5 1.4 1.3 1.2 1.1 07686-034 1.0 0.9 0.8 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 1 0.1 07686-135 OUTPUT IMPEDENCE (Ω) 10 10M 100M FREQUENCY (Hz) 4.80 4.75 4.70 4.65 4.60 0.01 0.1 1 10 Figure 31. Output Saturation Voltage vs. Load Current 100 1M 4.85 LOAD CURRENT (mA) Figure 29. Offset Drift vs. Temperature 0.01 100k 4.90 07686-038 SATURATION VOLTAGE (mV) OFFSET VOLTAGE (mV) 1.6 1G Figure 30. Output Impedance vs. Frequency Rev. 0 | Page 11 of 20 100 ADA4856-3 THEORY OF OPERATION Besides a novel input stage, the ADA4856-3 employs the Analog Devices, Inc., patented rail-to-rail output stage. This output stage makes an efficient use of the power supplies, allowing the op amp to drive up to three video loads to within 300 mV from both rails. In addition, this output stage provides the amplifier with very fast overdrive characteristics, an important property in video applications. The ADA4856-3 comes in a 16-lead LFCSP that has an exposed thermal pad for lower operating temperature. This pad is connected internally to the negative rail. To avoid printed circuit board (PCB) layout problems, the ADA4856-3 features a new pinout flow that is optimized for video applications. As shown in Figure 4, the feedback and gain resistors are on-chip, which minimizes the number of components needed and improves the design layout. The ADA4856-3 is fabricated in Analog Devices dielectrically isolated eXtra Fast Complementary Bipolar 3 (XFCB3) process, which results in the outstanding speed and dynamic range displayed by the amplifier. +VS C1 Gm2 +IN R –IN C –VS Figure 32. High Level Design Schematic Rev. 0 | Page 12 of 20 OUT Gm1 07686-147 The ADA4856-3 is a voltage feedback op amp that employs a new input stage that achieves a high slew rate while maintaining a wide common-mode input range. The input common-mode range of the ADA4856-3 extends from 200 mV below the negative rail to about 1 V from the positive rail. This feature makes the ADA4856-3 ideal for low voltage single-supply applications. In addition, this new input stage does not sacrifice noise performance for slew rate. At 14 nV/√Hz, the ADA4856-3 is one of the lowest noise rail-to-rail output video amplifiers in the market. ADA4856-3 APPLICATIONS INFORMATION +VS USING THE ADA4856-3 IN GAINS EQUAL TO +1, −1 10µF The ADA4856-3 was designed to offer outstanding video performance, simplify applications, and minimize board area. 0.1µF The ADA4856-3 is a triple amplifier with on-chip feedback and gain set resistors. The gain is fixed internally at G = +2. The inclusion of the on-chip resistors not only simplifies the design of the application but also eliminates six surface-mount resistors, saving valuable board space and lowering assembly costs. Whereas the ADA4856-3 has a fixed gain of G = +2, it can be used in other gain configurations, such as G = −1 and G = +1. RF RG VOUT VIN RT 0.1µF 07686-030 10µF –VS Unity-Gain Operation Option 1 GAIN OF +1 Figure 34. Unity Gain of Option 2 There are two options for obtaining unity gain (G = +1). The first is shown in Figure 33. In this configuration, the –IN input pin is tied to the output (feedback is now provided with the two internal 402 Ω resistors in parallel), and the input is applied to the noninverting input. The noise gain for this configuration is 1. Inverting Unity-Gain Operation In this configuration, the noninverting input is tied to ground and the input signal is applied to the inverting input. The noise gain for this configuration is +2, see Figure 35. +VS +VS 10µF 10µF 0.1µF 0.1µF VIN VIN RT VOUT RT VOUT 0.1µF 10µF –VS –VS GAIN OF –1 GAIN OF +1 Figure 35. Inverting Configuration (G = −1) Figure 33. Unity Gain of Option 1 Another option exists for running the ADA4856-3 as a unitygain amplifier. In this configuration, the noise gain is +2, see Figure 34. The frequency response and transient response for this configuration closely match the gain of +2 plots because the noise gains are equal. This method does have twice the noise gain of Option 1; however, in applications that do not require low noise, Option 2 offers less peaking and ringing. By tying the inputs together, the net gain of the amplifier becomes 1. Equation 1 shows the transfer characteristic for the schematic shown in Figure 34. ⎞ ⎟ ⎟ ⎠ (1) 6 3 which simplifies to VOUT = VIN. OPTION 1 G = +1 VS = 5V RL = 100Ω VOUT = 100mV p-p G = –1 0 OPTION 2 G = +1 –3 –6 –9 07686-044 ⎛ R + RG ⎞ ⎟ + V IN ⎜ F ⎜ R ⎟ G ⎝ ⎠ Figure 36 shows the small signal frequency response for both gain of +1 (Option 1 and Option 2) and gain of −1 configurations. It is clear that G = +1, Option 2 has better flatness and no peaking compared to Option 1. MAGNITUDE (dB) Option 2 ⎛ − RF VOUT = V IN ⎜⎜ ⎝ RG 10µF 07686-031 07686-032 0.1µF –12 1 10 100 FREQUENCY (MHz) Figure 36. G = +1 and G = −1 Rev. 0 | Page 13 of 20 1000 ADA4856-3 USING THE ADA4856-3 IN GAINS EQUAL TO +3, +4, AND +5 Depending on certain applications, it might be useful to have a fixed gain amplifier that can provide various gains. The advantage of having a fixed gain amplifier is the ease of layout, the reduced number of components needed, and the matching of the gain and feedback resistors. As shown in Figure 40, the large signal frequency response for G = +4 is also flat out to 65 MHz, and it has a bandwidth of 180 MHz. Gain of+ 5 Configuration The gain of +5 is very similar to the G = +3 configuration but with U2 set to a gain of −1, which ends up being added to twice the output of U1 to generate VOUT with G = +5. Gain of +3 Configuration –VS Figure 37 shows the ADA4856-3 used as an amplifier with a fixed gain of +3. No external resistors are required, just a simple trace connecting certain inputs and outputs. Connect VIN to U1, which is set to a gain of +2, and U2, which is set to unity. U3 then takes the output of U1 and gains it up by +2 and subtracts the output of U2 to produce VOUT. As shown in Figure 40, the large signal frequency response for G = +3 is flat out to 65 MHz, with a bandwidth of 165 MHz, a 2 V p-p output voltage, and a 100 Ω load. 0.1µF 15 14 0.1µF VIN 1 12 2 11 3 ADA4856-3 +VS VOUT 10 PD 4 +VS 9 5 + 14 6 7 10µF 0.1µF 13 –VS 2 3 Figure 39. Gain of +5 12 +VS 10 PD 4 +VS 9 5 6 7 Figure 40 shows the large signal frequency response of the three closed-loop gain sets (+3, +4, and +5) with flatness that extends to 65 MHz and a −3 dB bandwidth of 150 MHz. VOUT 11 ADA4856-3 + 8 15 G = +4 12 10µF 0.1µF G = +3 07686-045 –VS Figure 37. Gain of +3 Gain of +4 Configuration To get a gain of +4, set one amplifier to a gain of +1 and set the other two amplifiers to a gain of +2. Figure 38 shows VIN going in U2 at unity, then U1 takes the output of U2 and gains it by +2, and then feeds it to U3, which also gains it by +2 to produce VOUT. –VS CLOSED-LOOP GAIN (dB) 9 0.1µF 6 3 0 –3 –6 –9 RL = 100Ω VS = 5V VOUT = 2V p-p –12 –15 –18 1 0.1µF 15 14 + 16 13 1 12 2 11 ADA4856-3 +VS VOUT +VS 9 5 6 7 + 8 10µF 0.1µF –VS 07686-046 0.1µF VIN 100 1000 Figure 40. Large Signal Frequency Response for All Three Gains 10 PD 4 10 FREQUENCY (MHz) 10µF 0.1µF 3 G = +5 07686-048 1 10µF 0.1µF 0.1µF VIN + 8 07686-047 0.1µF 15 10µF 13 –VS 16 + 16 Figure 38. Gain of +4 Rev. 0 | Page 14 of 20 ADA4856-3 20 MHz ACTIVE LOW-PASS FILTER VIDEO LINE DRIVER The ADA4856-3 triple amplifier lends itself to higher order active filters. Figure 41 shows a 20 MHz, 6-pole, Sallen-Key low-pass filter. The ADA4856-3 was designed to excel in video driver applications. Figure 43 shows a typical schematic for a video driver operating on bipolar supplies. 75Ω VIN (R) R1 93.1Ω VIN C1 33pF OUT1 U1 OP AMP + R2 604Ω VOUT (R) –VS 75Ω 16 15 14 C2 22pF VIN (G) 2 75Ω – +VS 11 ADA4856-3 3 10 PD 4 9 75Ω VOUT (G) +VS OUT2 U2 OP AMP + R4 732Ω C3 33pF 10µF 0.1µF 12 1 R3 113Ω 0.1µF 0.1µF 13 + – 5 6 7 0.1µF 8 VIN (B) C4 15pF + 10µF 0.1µF 0.1µF 75Ω 75Ω 07686-051 –VS VOUT (B) Figure 43. Video Driver Schematic U3 OP AMP + R6 475Ω C5 47pF OUT3 VOUT C6 15pF 07686-049 R5 121Ω In applications that require multiple video loads be driven simultaneously, the ADA4856-3 can deliver. Figure 44 shows the ADA4856-3 configured with triple video loads. Figure 45 shows the triple video load performance. +VS Figure 41. 20 MHz, 6-Pole Low-Pass Filter 75Ω CABLE 0.1µF 75Ω FOUR POLES –VS VOUT2 75Ω 0.1µF + TWO POLES 0 VOUT1 75Ω 75Ω CABLE ADA4856-3 SIX POLES 10 75Ω CABLE 75Ω – VIN 20 75Ω 0.1µF The filter has a gain of approximately 18 dB, which is set by three fixed gain of 2 stages, and a flat frequency response out to 14 MHz. This type of filter is commonly used at the output of a video DAC as a reconstruction filter. The frequency response of the filter is shown in Figure 42. 75Ω 75Ω CABLE VOUT3 10µF 75Ω Figure 44. Video Driver Schematic for Triple Video Loads 6.5 –10 6.0 –20 RL = 150Ω RL = 75Ω RL = 50Ω 5.5 –40 –50 –60 1 10 100 200 5.0 4.5 4.0 3.5 FREQUENCY (MHz) Figure 42. 20 MHz, Low-Pass Filter Frequency Response VS = 5V VOUT = 1V p-p 3.0 07686-053 MAGNITUDE (dB) –30 07686-050 MAGNITUDE (dB) 10µF 07686-052 – 2.5 1 10 100 200 FREQUENCY (MHz) Figure 45. Large Signal Frequency Response for Various Loads Rev. 0 | Page 15 of 20 ADA4856-3 SINGLE-SUPPLY OPERATION POWER DOWN The ADA4856-3 can operate in single-supply applications. Figure 46 shows the schematic for a single 5 V supply video driver. Resistors R2 and R4 establish the midsupply reference. Capacitor C2 is the bypass capacitor for the midsupply reference. Capacitor C1 is the input coupling capacitor, and C6 is the output coupling capacitor. Capacitor C5 prevents constant current from being drawn through the internal gain set resistor. Resistor R3 sets the ac input impedance of the circuit. The ADA4856-3 is equipped with a PD (power-down) pin for all three amplifiers. This allows the user to reduce the quiescent supply current when an amplifier is inactive. The power-down threshold levels are derived from the voltage applied to the +VS pin. When used in single-supply applications, this is especially useful with conventional logic levels. The amplifier is enabled when the voltage applied to the PD pin is greater than +VS − 1.25 V. In a 5 V single-supply application, the typical threshold voltage is +3.75 V, and in a 3.3 V dual-supply application, the typical threshold voltage is +2 V. The amplifier is also enabled when the PD pin is left floating (not connected). However, the amplifier is powered down when the voltage on the PD pin is lower than 2.5 V from +VS. If the PD pin is not used, it is best to connect it to the positive supply For more information on single-supply operation of op amps, see “Avoiding Op-Amp Instability Problems In Single-Supply Applications”, Analog Dialogue, Volume 35, Number 2, MarchMay, 2001, at www.analog.com. +5V R2 50kΩ +5V C2 1µF C3 2.2µF R4 50kΩ C4 0.01µF R3 1kΩ Table 6. Power-Down Voltage Control C6 220µF VIN C1 22µF R1 50Ω R5 75Ω 07686-035 Figure 46. AC-Coupled, Single-Supply Video Driver Schematic In addition, the ADA4856-3 can be configured in dc-coupled, single-supply operation. The common-mode input voltage can go about 200 mV below ground, which makes it a true singlesupply part. However, in video applications, the black level is set at 0 V, which means that the output of the amplifier must go to the ground level as well. This part has a rail-to-rail output stage; it can go as close as 100 mV from either rail. Figure 47 shows the schematic for adding 50 mV dc offset to the input signal so that the output is not clipped while still properly terminating the input with 75 Ω. 5V 5V C2 0.1µF R1 3.74kΩ VIN U1 R3 75Ω –VS VOUT R4 75Ω ADA4856-3 07686-156 R2 76.8Ω ±2.5 V 3.3 V >3.75 V <2 V >1.25 V <0 V >2.05 V <1.3 V LAYOUT CONSIDERATIONS –VS C1 10µF 5V Not Active Active VOUT R6 75Ω ADA4856-3 C5 22µF PD Pin As is the case with all high speed applications, careful attention to printed circuit board (PCB) layout details prevents associated board parasitics from becoming problematic. Proper RF design technique is mandatory. The PCB should have a ground plane covering all unused portions of the component side of the board to provide a low impedance return path. Removing the ground plane on all layers from the area near the input and output pins reduces stray capacitance. Locate termination resistors and loads as close as possible to their respective inputs and outputs. Keep input and output traces as far apart as possible to minimize coupling (crosstalk) though the board. Adherence to microstrip or stripline design techniques for long signal traces (greater than about 1 inch) is recommended. POWER SUPPLY BYPASSING Careful attention must be paid to bypassing the power supply pins of the ADA4856-3. Use high quality capacitors with low equivalent series resistance (ESR), such as multilayer ceramic capacitors (MLCCs), to minimize supply voltage ripple and power dissipation. A large, usually tantalum, 10 μF to 47 μF capacitor located in proximity to the ADA4856-3 is required to provide good decoupling for lower frequency signals. In addition, locate 0.1 μF MLCC decoupling capacitors as close to each of the power supply pins as is physically possible, no more than 1/8 inch away. The ground returns should terminate immediately into the ground plane. Locating the bypass capacitor return close to the load return minimizes ground loops and improves performance. Figure 47. DC-Coupled Single Supply Video Driver Schematic Rev. 0 | Page 16 of 20 ADA4856-3 OUTLINE DIMENSIONS 4.00 BSC SQ 12° MAX 1.00 0.85 0.80 0.65 BSC TOP VIEW 3.75 BSC SQ 0.75 0.60 0.50 (BOTTOM VIEW) 9 0.80 MAX 0.65 TYP SEATING PLANE PIN 1 INDICATOR 1 2.25 2.10 SQ 1.95 8 5 4 0.25 MIN 1.95 BSC 0.05 MAX 0.02 NOM 0.35 0.30 0.25 16 13 12 0.20 REF COPLANARITY 0.08 FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 072808-A PIN 1 INDICATOR 0.60 MAX 0.60 MAX COMPLIANT TO JEDEC STANDARDS MO-220-VGGC Figure 48.16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 4 mm × 4 mm Body, Very Thin Quad (CP-16-4) Dimensions shown in millimeters ORDERING GUIDE Model ADA4856-3YCPZ-R2 1 ADA4856-3YCPZ-R71 ADA4856-3YCPZ-RL1 1 Temperature Range –40°C to +105°C –40°C to +105°C –40°C to +105°C Package Description 16-Lead LFCSP_VQ 16-Lead LFCSP_VQ 16-Lead LFCSP_VQ Z = RoHS Compliant Part. Rev. 0 | Page 17 of 20 Package Option CP-16-4 CP-16-4 CP-16-4 Ordering Quantity 250 1,500 5,000 ADA4856-3 NOTES Rev. 0 | Page 18 of 20 ADA4856-3 NOTES Rev. 0 | Page 19 of 20 ADA4856-3 NOTES ©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07686-0-10/08(0) Rev. 0 | Page 20 of 20