AIC AIC7660PN8TB

AIC7660
Switched-Capacitor Voltage Converter
FEATURES
DESCRIPTION
Lowest Output Impedance (Typical 35Ω at
VIN=5V).
Improved Direct Replacement for the Popular
7660.
The AIC7660 is a monolithic CMOS switched
capacitor voltage converter. Designed to be an
improved direct replacement for the popular 7660
and LTC1044, the main function of the AIC7660
1.5V to 6V Operation.
is to convert a positive input voltage in the range
No External Diode Required.
of 1.5V to 6V to the corresponding negative
Simple Conversion of +5V to -5V.
Low Quiescent Current (Typical 36µA at VIN=5V).
High Power Efficiency (Typical 98%)
output voltage in the range of -1.5V to -6V. The
input voltage can also be doubled (VOUT = 2VIN),
divided (VOUT = VIN /2), or multiplied (VOUT =
Boost Pin for Higher Switching Frequency.
±nVIN), as shown in application examples.
Improved SCR Latch-up Protection.
The chip contains a series DC power supply
APPLICATIONS
regulator, oscillator, control circuitry and four
output power MOS switches. The frequency of
RS-232 Power Supplies.
oscillator can be lowered by the addition of an
Handheld Instruments.
external capacitor to the OSC pin, or the
Data Acquisition Systems.
oscillator may be over-driven by an external
Supply Splitter, VOUT= ±VIN /2.
clock.
Operational Amplifier Supplies.
The boost function is available to raise the
Panel Meter.
oscillator frequency to optimize performance in
TYPICAL APPLICATION CIRCUIT
specific applications. The “LV” terminal may be
tied to GND to improve low input voltage (VIN
≤3.0V) operation, or be left floating for input
1 BOOST
2
10µF
C1
+
3
4
CAP+
VIN
OSC
8
7
LV
CAP-
VOUT 5
dissipation.
previous designs by combining low output
VOUT=-5V
+
10µF
C2
Negative Voltage Converter
Analog Integrations Corporation
voltage larger than 3.0V to improve power
The AIC7660 provides performance superior to
6
GND
AIC7660
VIN=5V
impedance, low quiescent current with high
efficiency, and by eliminating diode drop voltage
losses. The only required external components
are two low cost electrolytic capacitors.
Si-Soft Research Center
DS-7660P-01
112206
3A1, No.1, Li-Hsin Rd. I, Science Park, Hsinchu 300, Taiwan, R.O.C.
TEL: 886-3-5772500
FAX: 886-3-5772510
www.analog.com.tw
1
AIC7660
ORDERING INFORMATION
AIC7660XXXX
PIN CONFIGURATION
PACKING TYPE
TR: TAPE & REEL
TB: TUBE
DIP-8, SOP-8
TOP VIEW
PACKAGE TYPE
N8: DIP-8
S8: SOP-8
P: LEAD FREE COMMERCIAL
BOOST
1
8
VIN
CAP+
2
7
OSC
GND
3
6
LV
CAP-
4
5
VOUT
Example: AIC7660PS8TR
in Lead Free SOP-8 Package & Tape & Reel Packing Type
(PN8 is not available in TR packing type.)
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VIN to GND, or GND to VOUT)
6.0V
Input Voltage on Pin 1, 6 and 7
-0.3V ~ VIN + 0.3V
Operating Temperature Range
-40°C ~ 85°C
125°C
Junction Temperature
-65°C ~ 150°C
Storage Temperature Range
260°C
Lead Temperature (Soldering, 10sec)
Thermal Resistance Junction to Case, RθJC
DIP-8
60°C /W
SOP-8
40°C /W
Thermal Resistance Junction to Ambient, RθJA DIP-8
100°C /W
(Assume no ambient airflow, no heatsink)
160°C /W
SOP-8
Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
2
AIC7660
TEST CIRCUIT
1 BOOST
2
10µF
+
C1
VIN
CAP+
OSC
IS
8
+
7
6
3 GND
LV
4 CAP-
VOUT 5
VIN
CBYPASS
0.1µF
IL
COSC
RL
C2
10µF
VOUT
+
ELECTRICAL CHARACTERISTICS
(VIN=5.0V, TA=25°C, BOOST and LV pin Floating, OSC pin OPEN, unless otherwise specified.)
(Note 1)
PARAMETER
TEST CONDITIONS
SYMBOL
Supply Current
RL = ∞
IS
Minimum Supply Voltage
RL = ∞
VINL
Maximum Supply Voltage
RL = ∞
VINH
Output Resistance
IL =20mA,
FOSC =10KHz
COSC=0
Oscillator Frequency
Power Efficiency
MIN
TYP
MAX
UNIT
30
50
µA
1.5
V
35
ROUT
10
Boost Pin=VIN
50
Voltage Conversion Efficiency RL = ∞
V
70
Ω
FOSC
BOOST Pin=GND or Floating
RL= 5K, FOSC=10KHz
6
KHz
η
96
98
%
VOUTEFF
98
99.9
%
Note 1: Specifications are production tested at TA=25°C. Specifications over the -40°C to 85°C operating
temperature range are assured by design, characterization and correlation with Statistical Quality
Controls (SQC).
3
AIC7660
TYPICAL PERFORMANCE CHARACTERISTICS
0.0
0.0
Boost/LV:Floating
-0.5
-0.5
Vin=3V
-1.5
-2.0
-2.5
Vin=4V
-3.0
-3.5
Vin=5V
-4.0
-4.5
-3.0
-4.0
-5.5
10
15
20
25
30
35
40
45
50
55
60
65
Vin=6V
-3.5
-5.0
5
Vin=5V
-2.5
-5.5
0
Vin=4V
-2.0
-4.5
Vin=6V
-6.0
70
0
5
10
Loading Current (mA)
Fig. 1
15
25
30
35
40
45
50
55
60
65
70
Loading Current (mA)
Output Voltage vs. Load Current
-0.5
Boost:Vin LV:Floating
-0.5
-1.0
Vin=3V
-1.5
-2.0
Vin=4V
-2.5
-3.0
Boost:Floating LV:GND
Vin=3V
-1.5
Output Voltage (V)
-1.0
Vin=5V
-3.5
-4.0
Vin=4V
-2.0
Vin=5V
-2.5
Vin=6V
-3.0
-3.5
-4.0
-4.5
Vin=6V
-4.5
-5.0
-5.0
-5.5
-5.5
-6.0
-6.0
0
5
10
15
20
25
30
35
40
45
50
55
60
65
0
70
5
10
15
Loading Current (mA)
Fig. 3
Fig. 4
Output Voltage vs. Load Current
20
25
30
35
40
45
50
55
60
65
70
Loading Current (mA)
Output Voltage vs. Load Current
100
100
95
Boost/LV:Floating
90
Boost:Vin LV:GND
90
85
Power Efficiency (%)
Power Efficiency (%)
20
Fig. 2
Output Voltage vs. Load Current
0.0
Output Voltage (V)
-1.5
-5.0
-6.0
Boost:Vin LV:GND
Vin=3V
-1.0
Output Voltage (V)
Output Voltage (V)
-1.0
80
75
Vin=6V
70
65
60
55
50
45
40
Vin=5V
Vin=4V
Vin=3V
80
70
60
50
Vin=3V
40
Vin=6V
Vin=5V
Vin=4V
35
30
30
25
0
5
10
Fig. 5
15
20
25
30
35
40
45
Loading Current (mA)
50
55
60
Power Efficiency vs. Load Current
65
70
0
5
10
Fig. 6
15
20
25
30
35
40
45
50
55
60
65
Loading Current (mA)
Power Efficiency vs. Load Current
4
70
AIC7660
TYPICAL PERFORMANCE CHARACTERISTICS
100
Boost:Vin LV:Floating
80
70
60
50
Vin=6V
40
Vin=3V
80
70
60
50
20
5
10
15
20
25
30
35
40
45
50
55
60
65
70
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
Loading Current (mA)
Loading Current (mA)
Fig. 7
Vin=4V
Vin=3V
30
30
0
Vin=6V
Vin=5V
40
Vin=5V
Vin=4V
Boost:Floating LV:GND
90
Power Efficiency (%)
Power Efficiency (%)
90
20
(Continued)
100
Fig. 8
Power Efficiency vs. Load Current
Power Efficiency vs. Load Current
55
35
45
Oscillator Frequency, FOSC (KHz)
Oscillator Frequency Fosc(KHz)
50
40
35
Boost:Vin LV:floating
30
Boost:Vin LV:GND
25
20
15
Boost/LV floating
10
5
0
Boost:floating LV:GND
1
2
3
4
30
25
20
Boost:Vin LV:GND
15
10
Boost/LV floating
5
0
5
6
Boost:floating LV:GND
10
100
Supply Voltage, Vin(V)
Fig. 9
Fig. 10
Oscillator Frequency vs. Supply Voltage
250
Vin = 5.0V
Boost:Vin LV:floating
1000
10000
External Capacitance, COSC (pF)
Oscillator Frequency vs. External Capacitor
50
45
40
150
Boost:VDD LV:GND
100
Boost:VDD LV:floating
Boost/LV floating
50
Supply Current (µA)
Supply Current (µA)
200
Boost/LV:Floating
35
30
25
20
Boost:Floating Lv:GND
15
10
Vin=5V
5
0
1.0
Boost:floating LV:GND
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
0
-40
-20
Fig. 11
Supply Current vs. Supply Voltage
0
20
40
o
60
80
100
Temperature ( C)
Supply Voltage, Vin(V)
Fig. 12
Supply Current vs. Temperature
5
AIC7660
TYPICAL PERFORMANCE CHARACTERISTICS
(Continued)
Oscillator Frequency Fosc(KHz)
70
Vin=5V
60
50
Boost:VDD LV:Floating
40
30
20
Boost:VDD LV:GND
Boost/LV Floating
10
0
-40
Boost:Floating LV:GND
-20
0
20
40
o
60
80
100
Temperature ( C)
Fig. 13
Oscillation Frequency vs. Temperature
BLOCK DIAGRAM
6
1
BOOST
7
Oscillator
÷2
OSC
Voltage
Level
Converter
2
6
5
LV
4
VIN
CAP+
VOUT
CAP-
Substrate
Logic
Network
Voltage
Regulator
3
GND
PIN DESCRIPTIONS
PIN 1: BOOST - The frequency of oscillator will
be 5 times if boost pin is
connected to VIN.
PIN 6: LV
- If VIN is below 3.0V, LV should
be tied to GND. For VIN greater
than 3.0V, LV can be floating.
PIN 2: CAP+ - To be connected to the positive
side of the flying capacitor.
PIN 7: OSC
- The frequency of oscillator can
be lowered by the addition of an
external capacitor to the OSC
pin. Or the oscillator may be
over-driven by an external clock.
PIN 8: VIN
- Input supply.
PIN 3: GND
- Ground
PIN 4: CAP-
- To be connected to the negative
side of flying capacitor.
PIN 5: VOUT - Negative
output
voltage,
typically connected to a 10µF
capacitor.
6
AIC7660
APPLICATION EXAMPLES
8
2
VIN
3
3
C1
C2
4
Fig. 14 shows the idealized negative voltage
converter.
5
VOUT=-VIN
7
Fig. 14
Idealized Negative Voltage Converter
VIN (1.5V to 6V)
1 BOOST
2
+
10µF
C1
3
4
VIN
CAP+
OSC
Fig. 15 shows a typical connection, which
will provide a negative supply from an
available positive supply without the need of
any external diodes. The LV pin should be
connect to ground for VIN≤3.0V, or may be
“floated“ for VIN>3.0V.
8
+
7
6
GND
LV
CAP-
VOUT 5
CBYPASS
0.1µF
Required for
VIN ≤3.0V
VOUT=-VIN
AIC7660
+
10µF
C2
VOUT=VIN/2 ± 0.002%
TMIN≤TA≤TMAX
IL<100nA
Fig. 15
1
2
3
4
Negative Voltage Converter
BOOS
VIN 8
CAP+
OSC 7
GND
LV 6
CAP-
VOUT 5
U1
AIC7660
Fig. 16
VIN (1.5V~6V)
Required for
VIN ≤3.0V
D1
+
1N4148
CBYPASS
0.1µF
D2
+
1N4148 +
C1
10µF
VOUT
Fig. 16 shows a method of voltage doubling.
VOUT=2VIN-2VD. To reduce the voltage
drops across diodes, use Schottky diodes.
C2
10µF
Voltage Doubling
7
AIC7660
APPLICATION EXAMPLES
(Continued)
(3 to 12V)
+
C1
10µF
1 BOOST
VIN 8
2 CAP+
OSC 7
3 GND
LV 6
4 CAP-
VOUT 5
VIN
CBYPASS
0.1µF
+
Required for
VIN≤3.0V
AIC7660
VOUT
+
C2
10µF
Fig. 17
Ultra Precision Voltage Divider
1 BOOST
2 CAP+
+
VBAT
+
C1
10µF
An ultra precision voltage divider is shown in
Fig. 17. To achieve the 0.002% accuracy as
indicated, the load current should be kept
below 100nA. However, with a slight loss in
accuracy, the load current can be increased.
VIN 8
OSC 7
3 GND
LV 6
4 CAP-
VOUT 5
VOUT1= VBAT/2
+
AIC7660
A common need in many systems is to
obtain (+) and ( - ) supplies from a single
Required for
battery or power supply system. Where
VBAT≤3.0V
current requirements are low, the circuit
VOUT2= -VBAT/2
shown in Fig. 18 is a simple solution.
CBYPASS
0.1µF
+
C2
10µF
Output
Common
Fig. 18
Battery Splitter
8
AIC7660
PHYSICAL DIMENSIONS (unit: mm)
SOP-8
h X 45°
A
A
SEE VIEW B
A
e
H
E
D
WITH PLATING
0.25
C
A1
B
GAUGE PLANE
SEATING PLANE
θ
L
VIEW B
BASE METAL
SECTION A-A
Note: 1. Refer to JEDEC MS-012AA.
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not
exceed 6 mil per side .
3. Dimension "E" does not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch
dimensions are not necessarily exact.
S
Y
M
B
O
L
SOP-8
MILLIMETERS
MIN.
MAX.
A
1.35
1.75
A1
0.10
0.25
B
0.33
0.51
C
0.19
0.25
D
4.80
5.00
E
3.80
4.00
e
1.27 BSC
H
5.80
6.20
h
0.25
0.50
L
0.40
1.27
θ
0°
8°
9
AIC7660
DIP-8
E
D
0.38
E1
GAUGE PLANE
eA
A
A2
eB
b
D1
A
b2
A
c
L
A1
WITH PLATING
BASE METAL
SECTION A-A
e
S
Y
M
B
O
L
DIP-8
MILLIMETERS
MIN.
MAX.
A
Note: 1. Refer to JEDEC MS-001BA
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not
exceed 10 mil per side .
3. Dimension "D1"and "E1" do not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch
dimensions are not necessarily exact.
5.33
A1
0.38
A2
2.92
4.95
b
0.36
0.56
b2
1.14
1.78
c
0.20
0.35
D
9.01
10.16
D1
0.13
E
7.62
8.26
E1
6.10
7.11
e
2.54 BSC
eA
7.62 BSC
eB
L
10.92
2.92
3.81
10
AIC7660
Note:
Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other
than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its
use. We reserve the right to change the circuitry and specifications without notice.
Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems
are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform,
when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant
injury to the user.
11