AIC7660 Switched-Capacitor Voltage Converter FEATURES DESCRIPTION Lowest Output Impedance (Typical 35Ω at VIN=5V). Improved Direct Replacement for the Popular 7660. The AIC7660 is a monolithic CMOS switched capacitor voltage converter. Designed to be an improved direct replacement for the popular 7660 and LTC1044, the main function of the AIC7660 1.5V to 6V Operation. is to convert a positive input voltage in the range No External Diode Required. of 1.5V to 6V to the corresponding negative Simple Conversion of +5V to -5V. Low Quiescent Current (Typical 36µA at VIN=5V). High Power Efficiency (Typical 98%) output voltage in the range of -1.5V to -6V. The input voltage can also be doubled (VOUT = 2VIN), divided (VOUT = VIN /2), or multiplied (VOUT = Boost Pin for Higher Switching Frequency. ±nVIN), as shown in application examples. Improved SCR Latch-up Protection. The chip contains a series DC power supply APPLICATIONS regulator, oscillator, control circuitry and four output power MOS switches. The frequency of RS-232 Power Supplies. oscillator can be lowered by the addition of an Handheld Instruments. external capacitor to the OSC pin, or the Data Acquisition Systems. oscillator may be over-driven by an external Supply Splitter, VOUT= ±VIN /2. clock. Operational Amplifier Supplies. The boost function is available to raise the Panel Meter. oscillator frequency to optimize performance in TYPICAL APPLICATION CIRCUIT specific applications. The “LV” terminal may be tied to GND to improve low input voltage (VIN ≤3.0V) operation, or be left floating for input 1 BOOST 2 10µF C1 + 3 4 CAP+ VIN OSC 8 7 LV CAP- VOUT 5 dissipation. previous designs by combining low output VOUT=-5V + 10µF C2 Negative Voltage Converter Analog Integrations Corporation voltage larger than 3.0V to improve power The AIC7660 provides performance superior to 6 GND AIC7660 VIN=5V impedance, low quiescent current with high efficiency, and by eliminating diode drop voltage losses. The only required external components are two low cost electrolytic capacitors. Si-Soft Research Center DS-7660P-01 112206 3A1, No.1, Li-Hsin Rd. I, Science Park, Hsinchu 300, Taiwan, R.O.C. TEL: 886-3-5772500 FAX: 886-3-5772510 www.analog.com.tw 1 AIC7660 ORDERING INFORMATION AIC7660XXXX PIN CONFIGURATION PACKING TYPE TR: TAPE & REEL TB: TUBE DIP-8, SOP-8 TOP VIEW PACKAGE TYPE N8: DIP-8 S8: SOP-8 P: LEAD FREE COMMERCIAL BOOST 1 8 VIN CAP+ 2 7 OSC GND 3 6 LV CAP- 4 5 VOUT Example: AIC7660PS8TR in Lead Free SOP-8 Package & Tape & Reel Packing Type (PN8 is not available in TR packing type.) ABSOLUTE MAXIMUM RATINGS Supply Voltage (VIN to GND, or GND to VOUT) 6.0V Input Voltage on Pin 1, 6 and 7 -0.3V ~ VIN + 0.3V Operating Temperature Range -40°C ~ 85°C 125°C Junction Temperature -65°C ~ 150°C Storage Temperature Range 260°C Lead Temperature (Soldering, 10sec) Thermal Resistance Junction to Case, RθJC DIP-8 60°C /W SOP-8 40°C /W Thermal Resistance Junction to Ambient, RθJA DIP-8 100°C /W (Assume no ambient airflow, no heatsink) 160°C /W SOP-8 Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. 2 AIC7660 TEST CIRCUIT 1 BOOST 2 10µF + C1 VIN CAP+ OSC IS 8 + 7 6 3 GND LV 4 CAP- VOUT 5 VIN CBYPASS 0.1µF IL COSC RL C2 10µF VOUT + ELECTRICAL CHARACTERISTICS (VIN=5.0V, TA=25°C, BOOST and LV pin Floating, OSC pin OPEN, unless otherwise specified.) (Note 1) PARAMETER TEST CONDITIONS SYMBOL Supply Current RL = ∞ IS Minimum Supply Voltage RL = ∞ VINL Maximum Supply Voltage RL = ∞ VINH Output Resistance IL =20mA, FOSC =10KHz COSC=0 Oscillator Frequency Power Efficiency MIN TYP MAX UNIT 30 50 µA 1.5 V 35 ROUT 10 Boost Pin=VIN 50 Voltage Conversion Efficiency RL = ∞ V 70 Ω FOSC BOOST Pin=GND or Floating RL= 5K, FOSC=10KHz 6 KHz η 96 98 % VOUTEFF 98 99.9 % Note 1: Specifications are production tested at TA=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC). 3 AIC7660 TYPICAL PERFORMANCE CHARACTERISTICS 0.0 0.0 Boost/LV:Floating -0.5 -0.5 Vin=3V -1.5 -2.0 -2.5 Vin=4V -3.0 -3.5 Vin=5V -4.0 -4.5 -3.0 -4.0 -5.5 10 15 20 25 30 35 40 45 50 55 60 65 Vin=6V -3.5 -5.0 5 Vin=5V -2.5 -5.5 0 Vin=4V -2.0 -4.5 Vin=6V -6.0 70 0 5 10 Loading Current (mA) Fig. 1 15 25 30 35 40 45 50 55 60 65 70 Loading Current (mA) Output Voltage vs. Load Current -0.5 Boost:Vin LV:Floating -0.5 -1.0 Vin=3V -1.5 -2.0 Vin=4V -2.5 -3.0 Boost:Floating LV:GND Vin=3V -1.5 Output Voltage (V) -1.0 Vin=5V -3.5 -4.0 Vin=4V -2.0 Vin=5V -2.5 Vin=6V -3.0 -3.5 -4.0 -4.5 Vin=6V -4.5 -5.0 -5.0 -5.5 -5.5 -6.0 -6.0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 0 70 5 10 15 Loading Current (mA) Fig. 3 Fig. 4 Output Voltage vs. Load Current 20 25 30 35 40 45 50 55 60 65 70 Loading Current (mA) Output Voltage vs. Load Current 100 100 95 Boost/LV:Floating 90 Boost:Vin LV:GND 90 85 Power Efficiency (%) Power Efficiency (%) 20 Fig. 2 Output Voltage vs. Load Current 0.0 Output Voltage (V) -1.5 -5.0 -6.0 Boost:Vin LV:GND Vin=3V -1.0 Output Voltage (V) Output Voltage (V) -1.0 80 75 Vin=6V 70 65 60 55 50 45 40 Vin=5V Vin=4V Vin=3V 80 70 60 50 Vin=3V 40 Vin=6V Vin=5V Vin=4V 35 30 30 25 0 5 10 Fig. 5 15 20 25 30 35 40 45 Loading Current (mA) 50 55 60 Power Efficiency vs. Load Current 65 70 0 5 10 Fig. 6 15 20 25 30 35 40 45 50 55 60 65 Loading Current (mA) Power Efficiency vs. Load Current 4 70 AIC7660 TYPICAL PERFORMANCE CHARACTERISTICS 100 Boost:Vin LV:Floating 80 70 60 50 Vin=6V 40 Vin=3V 80 70 60 50 20 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Loading Current (mA) Loading Current (mA) Fig. 7 Vin=4V Vin=3V 30 30 0 Vin=6V Vin=5V 40 Vin=5V Vin=4V Boost:Floating LV:GND 90 Power Efficiency (%) Power Efficiency (%) 90 20 (Continued) 100 Fig. 8 Power Efficiency vs. Load Current Power Efficiency vs. Load Current 55 35 45 Oscillator Frequency, FOSC (KHz) Oscillator Frequency Fosc(KHz) 50 40 35 Boost:Vin LV:floating 30 Boost:Vin LV:GND 25 20 15 Boost/LV floating 10 5 0 Boost:floating LV:GND 1 2 3 4 30 25 20 Boost:Vin LV:GND 15 10 Boost/LV floating 5 0 5 6 Boost:floating LV:GND 10 100 Supply Voltage, Vin(V) Fig. 9 Fig. 10 Oscillator Frequency vs. Supply Voltage 250 Vin = 5.0V Boost:Vin LV:floating 1000 10000 External Capacitance, COSC (pF) Oscillator Frequency vs. External Capacitor 50 45 40 150 Boost:VDD LV:GND 100 Boost:VDD LV:floating Boost/LV floating 50 Supply Current (µA) Supply Current (µA) 200 Boost/LV:Floating 35 30 25 20 Boost:Floating Lv:GND 15 10 Vin=5V 5 0 1.0 Boost:floating LV:GND 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0 -40 -20 Fig. 11 Supply Current vs. Supply Voltage 0 20 40 o 60 80 100 Temperature ( C) Supply Voltage, Vin(V) Fig. 12 Supply Current vs. Temperature 5 AIC7660 TYPICAL PERFORMANCE CHARACTERISTICS (Continued) Oscillator Frequency Fosc(KHz) 70 Vin=5V 60 50 Boost:VDD LV:Floating 40 30 20 Boost:VDD LV:GND Boost/LV Floating 10 0 -40 Boost:Floating LV:GND -20 0 20 40 o 60 80 100 Temperature ( C) Fig. 13 Oscillation Frequency vs. Temperature BLOCK DIAGRAM 6 1 BOOST 7 Oscillator ÷2 OSC Voltage Level Converter 2 6 5 LV 4 VIN CAP+ VOUT CAP- Substrate Logic Network Voltage Regulator 3 GND PIN DESCRIPTIONS PIN 1: BOOST - The frequency of oscillator will be 5 times if boost pin is connected to VIN. PIN 6: LV - If VIN is below 3.0V, LV should be tied to GND. For VIN greater than 3.0V, LV can be floating. PIN 2: CAP+ - To be connected to the positive side of the flying capacitor. PIN 7: OSC - The frequency of oscillator can be lowered by the addition of an external capacitor to the OSC pin. Or the oscillator may be over-driven by an external clock. PIN 8: VIN - Input supply. PIN 3: GND - Ground PIN 4: CAP- - To be connected to the negative side of flying capacitor. PIN 5: VOUT - Negative output voltage, typically connected to a 10µF capacitor. 6 AIC7660 APPLICATION EXAMPLES 8 2 VIN 3 3 C1 C2 4 Fig. 14 shows the idealized negative voltage converter. 5 VOUT=-VIN 7 Fig. 14 Idealized Negative Voltage Converter VIN (1.5V to 6V) 1 BOOST 2 + 10µF C1 3 4 VIN CAP+ OSC Fig. 15 shows a typical connection, which will provide a negative supply from an available positive supply without the need of any external diodes. The LV pin should be connect to ground for VIN≤3.0V, or may be “floated“ for VIN>3.0V. 8 + 7 6 GND LV CAP- VOUT 5 CBYPASS 0.1µF Required for VIN ≤3.0V VOUT=-VIN AIC7660 + 10µF C2 VOUT=VIN/2 ± 0.002% TMIN≤TA≤TMAX IL<100nA Fig. 15 1 2 3 4 Negative Voltage Converter BOOS VIN 8 CAP+ OSC 7 GND LV 6 CAP- VOUT 5 U1 AIC7660 Fig. 16 VIN (1.5V~6V) Required for VIN ≤3.0V D1 + 1N4148 CBYPASS 0.1µF D2 + 1N4148 + C1 10µF VOUT Fig. 16 shows a method of voltage doubling. VOUT=2VIN-2VD. To reduce the voltage drops across diodes, use Schottky diodes. C2 10µF Voltage Doubling 7 AIC7660 APPLICATION EXAMPLES (Continued) (3 to 12V) + C1 10µF 1 BOOST VIN 8 2 CAP+ OSC 7 3 GND LV 6 4 CAP- VOUT 5 VIN CBYPASS 0.1µF + Required for VIN≤3.0V AIC7660 VOUT + C2 10µF Fig. 17 Ultra Precision Voltage Divider 1 BOOST 2 CAP+ + VBAT + C1 10µF An ultra precision voltage divider is shown in Fig. 17. To achieve the 0.002% accuracy as indicated, the load current should be kept below 100nA. However, with a slight loss in accuracy, the load current can be increased. VIN 8 OSC 7 3 GND LV 6 4 CAP- VOUT 5 VOUT1= VBAT/2 + AIC7660 A common need in many systems is to obtain (+) and ( - ) supplies from a single Required for battery or power supply system. Where VBAT≤3.0V current requirements are low, the circuit VOUT2= -VBAT/2 shown in Fig. 18 is a simple solution. CBYPASS 0.1µF + C2 10µF Output Common Fig. 18 Battery Splitter 8 AIC7660 PHYSICAL DIMENSIONS (unit: mm) SOP-8 h X 45° A A SEE VIEW B A e H E D WITH PLATING 0.25 C A1 B GAUGE PLANE SEATING PLANE θ L VIEW B BASE METAL SECTION A-A Note: 1. Refer to JEDEC MS-012AA. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side . 3. Dimension "E" does not include inter-lead flash or protrusions. 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact. S Y M B O L SOP-8 MILLIMETERS MIN. MAX. A 1.35 1.75 A1 0.10 0.25 B 0.33 0.51 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 e 1.27 BSC H 5.80 6.20 h 0.25 0.50 L 0.40 1.27 θ 0° 8° 9 AIC7660 DIP-8 E D 0.38 E1 GAUGE PLANE eA A A2 eB b D1 A b2 A c L A1 WITH PLATING BASE METAL SECTION A-A e S Y M B O L DIP-8 MILLIMETERS MIN. MAX. A Note: 1. Refer to JEDEC MS-001BA 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side . 3. Dimension "D1"and "E1" do not include inter-lead flash or protrusions. 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact. 5.33 A1 0.38 A2 2.92 4.95 b 0.36 0.56 b2 1.14 1.78 c 0.20 0.35 D 9.01 10.16 D1 0.13 E 7.62 8.26 E1 6.10 7.11 e 2.54 BSC eA 7.62 BSC eB L 10.92 2.92 3.81 10 AIC7660 Note: Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice. Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 11