AVAGO AMMC

AMMC-5026
2–35 GHz GaAs MMIC Traveling Wave Amplifier
Data Sheet
Chip Size:
Chip Size Tolerance:
Chip Thickness:
Pad Dimensions:
3050 x 840 µm (119 x 33 mils)
±10 µm (±0.4 mils)
100 ± 10 µm (4 ± 0.4 mils)
75 x 75 µm (2.9 ± 0.4 mils)
Description
Features
The AMMC-5026 is a broadband PHEMT GaAs MMIC
Traveling Wave Amplifier (TWA) designed for medium
output power and high gain over the full 2 GHz to 35 GHz
frequency range. The design employs a 6-section cascode
connected FET structure to provide flat gain and medium
power as well as uniform group delay. For improved reliability and moisture protection, the die is passivated at
the active areas.
• Frequency range: 2 – 35 GHz
• Gain: 10.5 dB
• Gain flatness: ±0.8 dB
• Return loss:
Input 17 dB, Output: 15 dB
• Output power (P-1dB):
Applications
• Broadband gain block
24 dBm at 10 GHz
23 dBm at 20 GHz
22 dBm at 26 GHz
• Noise figure (6–19 GHz): ≤ 4 dB
• Broadband driver amplifier
• 10 Gb/s Fiber Optics
Absolute Maximum Ratings [1]
Symbol
Parameters/Conditions
Units
Min.
Max.
Vdd
Positive Drain Voltage
V
10
Idd
Total Drain Current
mA
450
Vg1
First Gate Voltage
V
-5
Ig1
First Gate Current
mA
-9
+5
Vg2
Second Gate Voltage
V
-3
+3.5
Ig2
Second Gate Current
mA
-10
Pin
CW Input Power
dBm
23
Tch
Channel Temperature
°C
+150
Tb
Operating Backside Temperature
°C
-55
Tstg
Storage Temperature
°C
-65
Tmax
Max. Assembly Temp (60 sec max)
°C
+165
+300
Notes:
1. Operation in excess of any one of these conditions may result in permanent damage to this
device.
AMMC-5026 DC Specifications/Physical Properties[1]
Symbol
Parameters and Test Conditions
Units
Min.
Typ.
Max.
Idss
Saturated Drain Current
(Vdd =7 V, Vg1=0 V, Vg2=open circuit)
mA
250
350
450
Vp1
First Gate Pinch-off Voltage (Vdd=7 V, Idd=0.1 Idss, Vg2=open circuit)
V
-1.2
Vg2
Second Gate Self-bias Voltage (Vdd=7 V, Idd=150 mA, Vg2=open circuit)
V
3.5
Idsoff
(Vg1)
First Gate Pinch-off Current
mA
(Vdd=7 V, Vg1=3.5 V, Vg2=open circuit)
75
θch-b
Thermal Resistance[2] (Backside temperature, Tb = 25°C)
28
°C/W
Notes:
1. Backside temperature Tb = 25°C unless otherwise noted.
2. Channel-to-backside Thermal Resistance (θch-b) = 38°C/W at Tchannel (Tc) = 150°C as measured using the liquid crystal method. Thermal Resistance
at backside temperature (Tb) = 25°C calculated from measured data.
RF Specifications[3,4]
(Vdd = 7V, Idd (Q) = 150 mA, Zin = Z0 = 50Ω)
Symbol
Parameters and Test Conditions
Units
Min.
Typ.
Max.
|S21| Small-signal Gain
dB
8.5
10.5
12.5
∆|S21|2
Small-signal Gain Flatness
dB
±0.75
±1.5
RLin
Input Return Loss
dB
13
17
RLout
Output Return Loss
dB
12
15
|S12| Isolation
dB
23
26
P-1dB
Output Power @ 1 dB Gain Compression
f = 10 GHz
dBm
22
24
Psat
Saturated Output Power
f = 10 GHz
dBm
26
OIP3
Output 3rd Order Intercept Point, RFin1 = RFin2 = - 20 dBm, f = 10 GHz, ∆f = 2 MHz
dBm
31
dB
dB
3.6
4.3
2
2
NF
Noise Figure
f = 10 GHz
f = 20 GHz
H2
Second Harmonic (Pin = 12 dBm at 10 GHz)
dBc
-20
-17.5
H3
Third Harmonic (Pin = 12 dBm at 10 GHz)
dBc
-30
-28
Notes:
1. Data measured in wafer form, Tchuck = 25°C.
2. 100% on wafer RF test is done at frequency = 2, 10, 22, 26.5, and 35 GHz, except as noted.
AMMC-5026 Typical Performance
(Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω)
0
15
RETURN LOSS (dB)
GAIN (dB)
5
0
-5
-10
-15
-20
-25
-10
0
5
10
15
20
25
30
35
-30
40
0
5
10
15
20
25
30
35
FREQUENCY (GHz)
Figure 4. Group Delay.
35
40
20
25
30
35
40
6
5
20
10
4
0
3
30
15
30
40
25
10
40
IP3 (dBm)
NOISE FIGURE (dB)
tg (pS)
80
20
5
Figure 3. Output Power at P1dB and P3dB.
7
120
15
0
FREQUENCY (GHz)
8
10
16
10
40
Figure 2. Input and Output Return Loss.
160
5
19
FREQUENCY (GHz)
Figure 1. Gain.
0
22
13
FREQUENCY (GHz)
0
P1dB
P3dB
25
P1dB, P3dB (dBm)
-5
10
-15
28
S11(dB)
S22(dB)
2
0
5
10
15
20
25
FREQUENCY (GHz)
Figure 5. Noise Figure.
30
35
40
-10
0
5
10
15
20
25
30
35
40
FREQUENCY (GHz)
Figure 6. Output 3rd Order Intercept Point.
AMMC-5026 Typical Performance
(Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω)
0
15
-5
GAIN (dB)
5
0
-5
-10
-15
-20
-25
-10
0
5
10
15
20
25
30
35
-30
40
0
5
10
80
7
60
20
25
30
35
15
20
25
30
35
5
0
5
10
15
20
25
30
35
40
NF (dB)
15
20
25
30
FREQUENCY (GHz)
Figure 13. Gain vs. Temperature.
35
40
30
35
40
20
10
NF @ 25°C
NF @ -40°C
NF @ 85°C
6
0
0
5
10
15
20
-10
0
5
10
15
20
25
30
35
40
Figure 12. Output 3rd Order Intercept Point.
2
S21(dB) 25°C
S21(dB) -40°C
S21(dB) 80°C
25
FREQUENCY (GHz)
4
0
20
0
8
5
15
4
Figure 11. Noise Figure.
10
10
10
30
10
5
5
Figure 9. Output Power at P1dB and P3dB.
FREQUENCY (GHz)
15
0
0
FREQUENCY (GHz)
6
2
40
Figure 10. Group Delay.
-5
10
40
3
10
16
40
FREQUENCY (GHz)
S21 (dB)
20
OIP3 (dBm)
NOISE FIGURE (dB)
tg (pS)
8
40
15
Figure 8. Input and Output Return Loss.
100
5
19
FREQUENCY (GHz)
Figure 7. Gain.
0
22
13
FREQUENCY (GHz)
0
P1dB
P3dB
25
P1dB, P3dB (dBm)
RETURN LOSS (dB)
10
-15
28
S11(dB)
S22(dB)
25
30
35
FREQUENCY (GHz)
Figure 14. Noise Figure vs. Temperature.
40
AMMC-5026 Typical Scattering Parameters[1]
(Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA)
Freq. S11
GHz
dB Mag Ang
dB
S21
Mag Ang
dB
S22
Mag
2.0
-24.93
0.06
-56
9.89
3.12
130
-52.04
0.0025
-109
Ang
-17.16
0.14
-126
3.0
-26.84
0.05
-18
9.50
2.98
112
-48.40
0.0038
-131
-15.78
0.16
-154
4.0
-25.16
0.06
-2
9.14
2.87
94
-45.19
5.0
-23.72
0.07
2
8.90
2.79
77
-43.10
0.0055
-154
-14.87
0.18
179
0.0070
-174
-14.55
0.19
154
6.0
-22.99
0.07
2
8.81
2.76
60
7.0
-22.58
0.07
1
8.87
2.78
42
-41.31
0.0086
164
-14.82
0.18
128
-40.00
0.0100
143
-15.68
0.16
8.0
-21.97
0.08
1
9.04
2.83
101
24
-38.94
0.0113
122
-17.22
0.14
73
9.0
-21.29
0.09
-3
9.24
10.0
-20.67
0.09
-7
9.42
2.90
5
-38.13
0.0124
103
-19.41
0.11
39
2.96
-15
-37.33
0.0136
84
-21.84
0.08
-6
11.0
-20.29
0.10
-16
12.0
-20.47
0.09
-29
9.53
2.99
-35
-36.65
0.0147
66
-22.43
0.08
-62
9.56
3.01
-56
-36.03
0.0158
49
-20.48
0.09
-110
13.0
-21.49
0.08
-43
9.52
2.99
-76
-35.34
0.0171
32
-18.32
0.12
-145
14.0
-23.65
15.0
-28.02
0.07
-59
9.46
2.97
-97
-34.61
0.0186
14
-16.78
0.14
-172
0.04
-81
9.40
2.95
-117
-33.89
0.0202
-3
-15.83
0.16
165
16.0
17.0
-39.49
0.01
-131
9.36
2.94
-137
-32.96
0.0225
-22
-15.57
0.17
144
-31.18
0.03
86
9.41
2.95
-157
-32.22
0.0245
-41
-15.93
0.16
125
18.0
-24.21
0.06
60
9.52
2.99
-177
-31.57
0.0264
-62
-16.86
0.14
107
19.0
-20.93
0.09
38
9.68
3.05
162
-30.96
0.0283
-82
-18.63
0.12
91
20.0
-18.20
0.12
13
9.79
3.09
141
-30.60
0.0295
-104
-21.67
0.08
78
21.0
-17.48
0.13
-17
9.94
3.14
119
-30.17
0.0310
-125
-27.56
0.04
74
22.0
-17.43
0.13
-46
10.02
3.17
96
-29.90
0.0320
-147
-32.88
0.02
142
23.0
-17.77
0.13
-81
10.07
3.19
73
-29.74
0.0326
-168
-24.55
0.06
171
24.0
-18.27
0.12
-119
10.06
3.18
50
-29.50
0.0335
171
-19.79
0.10
163
25.0
-18.66
0.12
-161
10.04
3.18
27
-29.24
0.0345
150
-17.19
0.14
150
26.0
-18.56
0.12
156
10.08
3.19
4
-28.85
0.0361
129
-15.72
0.16
135
27.0
-18.60
0.12
112
10.20
3.24
-19
-28.34
0.0383
107
-15.10
0.18
119
28.0
-19.07
0.11
66
10.46
3.33
-44
-27.70
0.0412
83
-15.28
0.17
104
29.0
-19.79
0.10
9
10.75
3.45
-70
-27.23
0.0435
57
-16.61
0.15
89
30.0
-18.63
0.12
-59
10.99
3.54
-98
-26.80
0.0457
29
-19.73
0.10
80
31.0
-15.62
0.17
-116
11.07
3.58
-127
-26.67
0.0464
0
-24.26
0.06
102
32.0
-13.40
0.21
-161
10.93
3.52
-158
-26.82
0.0456
-29
-21.06
0.09
136
33.0
-12.69
0.23
161
10.79
3.46
171
-26.97
0.0448
-58
-17.40
0.13
133
34.0
-14.73
0.18
127
10.78
3.46
139
-26.96
0.0449
-89
-15.99
0.16
118
35.0
-26.00
0.05
120
10.83
3.48
102
-26.76
0.0459
-125
-17.25
0.14
107
36.0
-14.82
0.18
-157
10.24
3.25
58
-27.23
0.0435
-169
-18.78
0.12
120
37.0
-10.01
0.32
172
8.79
2.75
12
-28.38
0.0381
146
-16.58
0.15
125
38.0
-9.81
0.32
161
6.12
2.02
-42
-30.66
0.0293
91
-18.73
0.12
125
39.0
-6.40
0.48
157
-0.65
0.93
-90
-36.71
0.0146
44
-13.68
0.21
154
40.0
-4.23
0.61
135
-7.76
0.41
-109
-42.85
0.0072
18
-10.52
0.30
139
Note:
1. Data obtained from on-wafer measurements.
S12 Mag Ang
dB
AMMC-5026 Typical Scattering Parameters[1]
(Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA)
Freq. S11
GHz
dB Mag Ang
dB
S21
Mag Ang
dB
S22
Mag
2.0
-24.88
0.06
-57
9.59
3.02
129
-51.70
0.0026
-109
Ang
-17.27
0.14
-123
3.0
-26.86
0.05
-19
9.20
2.88
112
-47.74
0.0041
-131
-15.97
0.16
-152
4.0
-25.30
0.05
-2
8.85
2.77
94
-45.04
5.0
-23.94
0.06
2
8.59
2.69
76
-42.85
0.0056
-153
-15.10
0.18
-179
0.0072
-175
-14.79
0.18
155
6.0
-23.17
0.07
2
8.49
2.66
59
7.0
-22.72
0.07
1
8.54
2.67
41
-41.11
0.0088
164
-15.05
0.18
129
-39.74
0.0103
144
-15.89
0.16
8.0
-22.09
0.08
1
8.70
2.72
102
23
-38.56
0.0118
123
-17.37
0.14
72
9.0
-21.42
0.08
-3
8.89
10.0
-20.79
0.09
-7
9.07
2.78
4
-37.72
0.0130
104
-19.46
0.11
38
2.84
-16
-37.02
0.0141
85
-21.68
0.08
-7
11.0
-20.42
0.10
-17
12.0
-20.68
0.09
-30
9.17
2.87
-37
-36.31
0.0153
67
-22.16
0.08
-61
9.20
2.88
-58
-35.60
0.0166
49
-20.38
0.10
-108
13.0
-21.76
0.08
-44
9.15
2.87
-78
-34.94
0.0179
32
-18.33
0.12
-143
14.0
-24.04
15.0
-28.68
0.06
-61
9.08
2.84
-99
-34.20
0.0195
14
-16.84
0.14
-171
0.04
-83
9.01
2.82
-119
-33.47
0.0212
-3
-15.91
0.16
166
16.0
17.0
-40.72
0.01
-151
8.97
2.81
-139
-32.62
0.0234
-21
-15.67
0.16
145
-30.52
0.03
86
9.00
2.82
-159
-31.87
0.0255
-41
-16.02
0.16
125
18.0
-24.07
0.06
58
9.11
2.85
-180
-31.28
0.0273
-61
-16.95
0.14
107
19.0
-21.00
0.09
36
9.26
2.90
159
-30.66
0.0293
-81
-18.70
0.12
91
20.0
-18.37
0.12
12
9.35
2.93
137
-30.26
0.0307
-103
-21.76
0.08
77
21.0
-17.78
0.13
-18
9.49
2.98
115
-29.87
0.0321
-124
-27.81
0.04
69
22.0
-17.89
0.13
-49
9.57
3.01
93
-29.53
0.0334
-146
-34.56
0.02
146
23.0
-18.34
0.12
-84
9.60
3.02
70
-29.42
0.0338
-168
-24.90
0.06
175
24.0
-18.89
0.11
-123
9.57
3.01
46
-29.17
0.0348
172
-19.97
0.10
165
25.0
-19.20
0.11
-166
9.53
3.00
23
-28.95
0.0357
151
-17.32
0.14
151
26.0
-19.05
0.11
151
9.55
3.00
0
-28.57
0.0373
130
-15.83
0.16
136
27.0
-19.12
0.11
108
9.65
3.04
-24
-28.09
0.0394
108
-15.23
0.17
120
28.0
-19.87
0.10
62
9.88
3.12
-49
-27.47
0.0423
84
-15.44
0.17
105
29.0
-20.78
0.09
3
10.14
3.21
-75
-27.05
0.0444
58
-16.82
0.14
90
30.0
-19.42
0.11
-67
10.33
3.29
-103
-26.69
0.0463
30
-20.01
0.10
81
31.0
-16.18
0.16
-123
10.37
3.30
-133
-26.60
0.0468
1
-24.45
0.06
103
32.0
-13.92
0.20
-166
10.21
3.24
-164
-26.76
0.0459
-28
-21.24
0.09
136
33.0
-13.31
0.22
158
10.03
3.17
165
-26.92
0.0451
-57
-17.71
0.13
133
34.0
-15.52
0.17
129
9.95
3.14
132
-26.97
0.0448
-88
-16.44
0.15
119
35.0
-23.72
0.07
144
9.82
3.10
95
-27.01
0.0446
-124
-17.71
0.13
111
36.0
-14.68
0.18
-169
9.06
2.84
52
-27.64
0.0415
-167
-18.68
0.12
123
37.0
-10.47
0.30
166
7.43
2.35
6
-29.02
0.0354
148
-16.97
0.14
127
38.0
-9.72
0.33
159
4.27
1.64
-46
-31.77
0.0258
96
-18.00
0.13
136
39.0
-6.77
0.46
152
-2.02
0.79
-88
-37.46
0.0134
53
-13.26
0.22
151
40.0
-4.70
0.58
133
-8.14
0.39
-108
-42.97
0.0071
28
-10.51
0.30
138
Note:
1. Data obtained from on-wafer measurements.
S12 Mag Ang
dB
Biasing and Operation
Assembly Techniques
AMMC-5026 is biased with a single positive drain supply
(Vd) and a negative gate supply (Vg1). The recommended
bias conditions for the AMMC-5026 is Vdd = 7 V and Idd =
150 mA for best overall performance. Open circuit is the
default setting for the Vg2 biasing.
The backside of the MMIC chip is RF ground. For mi­crostrip
applications the chip should be attached directly to
the ground plane (e.g. circuit carrier or heatsink) using
electrically conductive epoxy [1,2]. For conductive epoxy,
the amount should be just enough to provide a thin fillet around the bottom perimeter of the die. The ground
plane should be free of any residue that may jeopardize
electrical or mechanical attachment. Caution should be
taken to not exceed the Absolute Maximum Rating for
assembly temperature and time.
Figure 17 shows a typical bonding configuration for the 2
to 35 GHz operations. In this case, auxiliary drain and Vg1
capacitors (>0.5 µF) are used for low frequency (below
2 GHz) performance. Input and output RF ports are DC
coupled; therefore, DC decoupling capacitors are required
if there are DC paths.
The auxiliary gate and drain contacts are used for low
frequency performance extension below 1 GHz. When
used, these contacts must be AC coupled only. (Do not
attempt to apply bias to these pads.)
Ground connections are made with plated through-holes
to the backside of the device.
Thermosonic wedge bonding is the preferred method for
wire attachment to the bond pads. The RF connections
should be kept as short as possible to minimize inductance.
Gold mesh or double-bonding with 0.7 mil gold wire is
recommended.
Mesh can be attached using a 2 mil round tracking tool
and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of 76 ± 8
mS. A guided wedge at an ultrasonic power level of 64
dB can be used for the 0.7 mil wire. The recommended
wire bond stage temperature is 150 ± 2°C.
The chip is 100 mm thick and should be handled with
care.
This MMIC has exposed air bridges on the top surface.
Handle at edges or with a custom collet (do not pick up
die with vacuum on die center.)
This MMIC is also static sensitive and ESD handling precautions should be taken.
Notes:
1. Ablebond 84-1 LM1 silver epoxy is recommended.
2. Eutectic attach is not recommended and may jeopardize reliability
of the device.
Vd
RF Output
Aux Vd
Aux Vg2
RF Input
Vg1
Figure 15. AMMC-5026 Schematic.
Aux Vg1
89
2964
(RF Output Pad)
750
(Vd)
840
(±10 µm)
587
(Aux Vd)
505
318
(Aux Vg2)
252
89 (RF Input Pad)
2323
(Vg1)
2563
(Aux Vg1)
3050 (± 10 µm)
Notes:
All dimensions in microns.
Rectangular Pad Dim: 75 x 75 µm
Figure 16. AMMC-5026 Bonding Pad Locations. (dimensions in micrometers)
1.5 mil dia.Gold Wire Bond
to 15 nF DC Feedthru
68 pF Capacitor
4 nH Inductor
(1.0 mil Gold Wire Bond
with length of 200 mils)
Input and Output Thin Film
Circuit with 8 pF
DC Blocking Capacitor
Gold Plated Shim
2.0 mil
nom. gap
Vd
IN
OUT
AMMC-5026
2.0 mil
nom. gap
Vg
Bonding Island
0.7 mil dia. Gold Bond Wire
(Length Not important)
1.5 mil dia.Gold Wire Bond
to 15 nF DC Feedthru
Figure 17. AMMC-5026 Assembly Diagram.
Ordering Information
AMMC-5026-W10 = 10 devices per tray
AMMC-5026-W50 = 50 devices per tray
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes 5989-3929EN
AV02-1286EN - July 8, 2008
2951