AMMC-5026 2–35 GHz GaAs MMIC Traveling Wave Amplifier Data Sheet Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: 3050 x 840 µm (119 x 33 mils) ±10 µm (±0.4 mils) 100 ± 10 µm (4 ± 0.4 mils) 75 x 75 µm (2.9 ± 0.4 mils) Description Features The AMMC-5026 is a broadband PHEMT GaAs MMIC Traveling Wave Amplifier (TWA) designed for medium output power and high gain over the full 2 GHz to 35 GHz frequency range. The design employs a 6-section cascode connected FET structure to provide flat gain and medium power as well as uniform group delay. For improved reliability and moisture protection, the die is passivated at the active areas. • Frequency range: 2 – 35 GHz • Gain: 10.5 dB • Gain flatness: ±0.8 dB • Return loss: Input 17 dB, Output: 15 dB • Output power (P-1dB): Applications • Broadband gain block 24 dBm at 10 GHz 23 dBm at 20 GHz 22 dBm at 26 GHz • Noise figure (6–19 GHz): ≤ 4 dB • Broadband driver amplifier • 10 Gb/s Fiber Optics Absolute Maximum Ratings [1] Symbol Parameters/Conditions Units Min. Max. Vdd Positive Drain Voltage V 10 Idd Total Drain Current mA 450 Vg1 First Gate Voltage V -5 Ig1 First Gate Current mA -9 +5 Vg2 Second Gate Voltage V -3 +3.5 Ig2 Second Gate Current mA -10 Pin CW Input Power dBm 23 Tch Channel Temperature °C +150 Tb Operating Backside Temperature °C -55 Tstg Storage Temperature °C -65 Tmax Max. Assembly Temp (60 sec max) °C +165 +300 Notes: 1. Operation in excess of any one of these conditions may result in permanent damage to this device. AMMC-5026 DC Specifications/Physical Properties[1] Symbol Parameters and Test Conditions Units Min. Typ. Max. Idss Saturated Drain Current (Vdd =7 V, Vg1=0 V, Vg2=open circuit) mA 250 350 450 Vp1 First Gate Pinch-off Voltage (Vdd=7 V, Idd=0.1 Idss, Vg2=open circuit) V -1.2 Vg2 Second Gate Self-bias Voltage (Vdd=7 V, Idd=150 mA, Vg2=open circuit) V 3.5 Idsoff (Vg1) First Gate Pinch-off Current mA (Vdd=7 V, Vg1=3.5 V, Vg2=open circuit) 75 θch-b Thermal Resistance[2] (Backside temperature, Tb = 25°C) 28 °C/W Notes: 1. Backside temperature Tb = 25°C unless otherwise noted. 2. Channel-to-backside Thermal Resistance (θch-b) = 38°C/W at Tchannel (Tc) = 150°C as measured using the liquid crystal method. Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured data. RF Specifications[3,4] (Vdd = 7V, Idd (Q) = 150 mA, Zin = Z0 = 50Ω) Symbol Parameters and Test Conditions Units Min. Typ. Max. |S21| Small-signal Gain dB 8.5 10.5 12.5 ∆|S21|2 Small-signal Gain Flatness dB ±0.75 ±1.5 RLin Input Return Loss dB 13 17 RLout Output Return Loss dB 12 15 |S12| Isolation dB 23 26 P-1dB Output Power @ 1 dB Gain Compression f = 10 GHz dBm 22 24 Psat Saturated Output Power f = 10 GHz dBm 26 OIP3 Output 3rd Order Intercept Point, RFin1 = RFin2 = - 20 dBm, f = 10 GHz, ∆f = 2 MHz dBm 31 dB dB 3.6 4.3 2 2 NF Noise Figure f = 10 GHz f = 20 GHz H2 Second Harmonic (Pin = 12 dBm at 10 GHz) dBc -20 -17.5 H3 Third Harmonic (Pin = 12 dBm at 10 GHz) dBc -30 -28 Notes: 1. Data measured in wafer form, Tchuck = 25°C. 2. 100% on wafer RF test is done at frequency = 2, 10, 22, 26.5, and 35 GHz, except as noted. AMMC-5026 Typical Performance (Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω) 0 15 RETURN LOSS (dB) GAIN (dB) 5 0 -5 -10 -15 -20 -25 -10 0 5 10 15 20 25 30 35 -30 40 0 5 10 15 20 25 30 35 FREQUENCY (GHz) Figure 4. Group Delay. 35 40 20 25 30 35 40 6 5 20 10 4 0 3 30 15 30 40 25 10 40 IP3 (dBm) NOISE FIGURE (dB) tg (pS) 80 20 5 Figure 3. Output Power at P1dB and P3dB. 7 120 15 0 FREQUENCY (GHz) 8 10 16 10 40 Figure 2. Input and Output Return Loss. 160 5 19 FREQUENCY (GHz) Figure 1. Gain. 0 22 13 FREQUENCY (GHz) 0 P1dB P3dB 25 P1dB, P3dB (dBm) -5 10 -15 28 S11(dB) S22(dB) 2 0 5 10 15 20 25 FREQUENCY (GHz) Figure 5. Noise Figure. 30 35 40 -10 0 5 10 15 20 25 30 35 40 FREQUENCY (GHz) Figure 6. Output 3rd Order Intercept Point. AMMC-5026 Typical Performance (Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω) 0 15 -5 GAIN (dB) 5 0 -5 -10 -15 -20 -25 -10 0 5 10 15 20 25 30 35 -30 40 0 5 10 80 7 60 20 25 30 35 15 20 25 30 35 5 0 5 10 15 20 25 30 35 40 NF (dB) 15 20 25 30 FREQUENCY (GHz) Figure 13. Gain vs. Temperature. 35 40 30 35 40 20 10 NF @ 25°C NF @ -40°C NF @ 85°C 6 0 0 5 10 15 20 -10 0 5 10 15 20 25 30 35 40 Figure 12. Output 3rd Order Intercept Point. 2 S21(dB) 25°C S21(dB) -40°C S21(dB) 80°C 25 FREQUENCY (GHz) 4 0 20 0 8 5 15 4 Figure 11. Noise Figure. 10 10 10 30 10 5 5 Figure 9. Output Power at P1dB and P3dB. FREQUENCY (GHz) 15 0 0 FREQUENCY (GHz) 6 2 40 Figure 10. Group Delay. -5 10 40 3 10 16 40 FREQUENCY (GHz) S21 (dB) 20 OIP3 (dBm) NOISE FIGURE (dB) tg (pS) 8 40 15 Figure 8. Input and Output Return Loss. 100 5 19 FREQUENCY (GHz) Figure 7. Gain. 0 22 13 FREQUENCY (GHz) 0 P1dB P3dB 25 P1dB, P3dB (dBm) RETURN LOSS (dB) 10 -15 28 S11(dB) S22(dB) 25 30 35 FREQUENCY (GHz) Figure 14. Noise Figure vs. Temperature. 40 AMMC-5026 Typical Scattering Parameters[1] (Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA) Freq. S11 GHz dB Mag Ang dB S21 Mag Ang dB S22 Mag 2.0 -24.93 0.06 -56 9.89 3.12 130 -52.04 0.0025 -109 Ang -17.16 0.14 -126 3.0 -26.84 0.05 -18 9.50 2.98 112 -48.40 0.0038 -131 -15.78 0.16 -154 4.0 -25.16 0.06 -2 9.14 2.87 94 -45.19 5.0 -23.72 0.07 2 8.90 2.79 77 -43.10 0.0055 -154 -14.87 0.18 179 0.0070 -174 -14.55 0.19 154 6.0 -22.99 0.07 2 8.81 2.76 60 7.0 -22.58 0.07 1 8.87 2.78 42 -41.31 0.0086 164 -14.82 0.18 128 -40.00 0.0100 143 -15.68 0.16 8.0 -21.97 0.08 1 9.04 2.83 101 24 -38.94 0.0113 122 -17.22 0.14 73 9.0 -21.29 0.09 -3 9.24 10.0 -20.67 0.09 -7 9.42 2.90 5 -38.13 0.0124 103 -19.41 0.11 39 2.96 -15 -37.33 0.0136 84 -21.84 0.08 -6 11.0 -20.29 0.10 -16 12.0 -20.47 0.09 -29 9.53 2.99 -35 -36.65 0.0147 66 -22.43 0.08 -62 9.56 3.01 -56 -36.03 0.0158 49 -20.48 0.09 -110 13.0 -21.49 0.08 -43 9.52 2.99 -76 -35.34 0.0171 32 -18.32 0.12 -145 14.0 -23.65 15.0 -28.02 0.07 -59 9.46 2.97 -97 -34.61 0.0186 14 -16.78 0.14 -172 0.04 -81 9.40 2.95 -117 -33.89 0.0202 -3 -15.83 0.16 165 16.0 17.0 -39.49 0.01 -131 9.36 2.94 -137 -32.96 0.0225 -22 -15.57 0.17 144 -31.18 0.03 86 9.41 2.95 -157 -32.22 0.0245 -41 -15.93 0.16 125 18.0 -24.21 0.06 60 9.52 2.99 -177 -31.57 0.0264 -62 -16.86 0.14 107 19.0 -20.93 0.09 38 9.68 3.05 162 -30.96 0.0283 -82 -18.63 0.12 91 20.0 -18.20 0.12 13 9.79 3.09 141 -30.60 0.0295 -104 -21.67 0.08 78 21.0 -17.48 0.13 -17 9.94 3.14 119 -30.17 0.0310 -125 -27.56 0.04 74 22.0 -17.43 0.13 -46 10.02 3.17 96 -29.90 0.0320 -147 -32.88 0.02 142 23.0 -17.77 0.13 -81 10.07 3.19 73 -29.74 0.0326 -168 -24.55 0.06 171 24.0 -18.27 0.12 -119 10.06 3.18 50 -29.50 0.0335 171 -19.79 0.10 163 25.0 -18.66 0.12 -161 10.04 3.18 27 -29.24 0.0345 150 -17.19 0.14 150 26.0 -18.56 0.12 156 10.08 3.19 4 -28.85 0.0361 129 -15.72 0.16 135 27.0 -18.60 0.12 112 10.20 3.24 -19 -28.34 0.0383 107 -15.10 0.18 119 28.0 -19.07 0.11 66 10.46 3.33 -44 -27.70 0.0412 83 -15.28 0.17 104 29.0 -19.79 0.10 9 10.75 3.45 -70 -27.23 0.0435 57 -16.61 0.15 89 30.0 -18.63 0.12 -59 10.99 3.54 -98 -26.80 0.0457 29 -19.73 0.10 80 31.0 -15.62 0.17 -116 11.07 3.58 -127 -26.67 0.0464 0 -24.26 0.06 102 32.0 -13.40 0.21 -161 10.93 3.52 -158 -26.82 0.0456 -29 -21.06 0.09 136 33.0 -12.69 0.23 161 10.79 3.46 171 -26.97 0.0448 -58 -17.40 0.13 133 34.0 -14.73 0.18 127 10.78 3.46 139 -26.96 0.0449 -89 -15.99 0.16 118 35.0 -26.00 0.05 120 10.83 3.48 102 -26.76 0.0459 -125 -17.25 0.14 107 36.0 -14.82 0.18 -157 10.24 3.25 58 -27.23 0.0435 -169 -18.78 0.12 120 37.0 -10.01 0.32 172 8.79 2.75 12 -28.38 0.0381 146 -16.58 0.15 125 38.0 -9.81 0.32 161 6.12 2.02 -42 -30.66 0.0293 91 -18.73 0.12 125 39.0 -6.40 0.48 157 -0.65 0.93 -90 -36.71 0.0146 44 -13.68 0.21 154 40.0 -4.23 0.61 135 -7.76 0.41 -109 -42.85 0.0072 18 -10.52 0.30 139 Note: 1. Data obtained from on-wafer measurements. S12 Mag Ang dB AMMC-5026 Typical Scattering Parameters[1] (Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA) Freq. S11 GHz dB Mag Ang dB S21 Mag Ang dB S22 Mag 2.0 -24.88 0.06 -57 9.59 3.02 129 -51.70 0.0026 -109 Ang -17.27 0.14 -123 3.0 -26.86 0.05 -19 9.20 2.88 112 -47.74 0.0041 -131 -15.97 0.16 -152 4.0 -25.30 0.05 -2 8.85 2.77 94 -45.04 5.0 -23.94 0.06 2 8.59 2.69 76 -42.85 0.0056 -153 -15.10 0.18 -179 0.0072 -175 -14.79 0.18 155 6.0 -23.17 0.07 2 8.49 2.66 59 7.0 -22.72 0.07 1 8.54 2.67 41 -41.11 0.0088 164 -15.05 0.18 129 -39.74 0.0103 144 -15.89 0.16 8.0 -22.09 0.08 1 8.70 2.72 102 23 -38.56 0.0118 123 -17.37 0.14 72 9.0 -21.42 0.08 -3 8.89 10.0 -20.79 0.09 -7 9.07 2.78 4 -37.72 0.0130 104 -19.46 0.11 38 2.84 -16 -37.02 0.0141 85 -21.68 0.08 -7 11.0 -20.42 0.10 -17 12.0 -20.68 0.09 -30 9.17 2.87 -37 -36.31 0.0153 67 -22.16 0.08 -61 9.20 2.88 -58 -35.60 0.0166 49 -20.38 0.10 -108 13.0 -21.76 0.08 -44 9.15 2.87 -78 -34.94 0.0179 32 -18.33 0.12 -143 14.0 -24.04 15.0 -28.68 0.06 -61 9.08 2.84 -99 -34.20 0.0195 14 -16.84 0.14 -171 0.04 -83 9.01 2.82 -119 -33.47 0.0212 -3 -15.91 0.16 166 16.0 17.0 -40.72 0.01 -151 8.97 2.81 -139 -32.62 0.0234 -21 -15.67 0.16 145 -30.52 0.03 86 9.00 2.82 -159 -31.87 0.0255 -41 -16.02 0.16 125 18.0 -24.07 0.06 58 9.11 2.85 -180 -31.28 0.0273 -61 -16.95 0.14 107 19.0 -21.00 0.09 36 9.26 2.90 159 -30.66 0.0293 -81 -18.70 0.12 91 20.0 -18.37 0.12 12 9.35 2.93 137 -30.26 0.0307 -103 -21.76 0.08 77 21.0 -17.78 0.13 -18 9.49 2.98 115 -29.87 0.0321 -124 -27.81 0.04 69 22.0 -17.89 0.13 -49 9.57 3.01 93 -29.53 0.0334 -146 -34.56 0.02 146 23.0 -18.34 0.12 -84 9.60 3.02 70 -29.42 0.0338 -168 -24.90 0.06 175 24.0 -18.89 0.11 -123 9.57 3.01 46 -29.17 0.0348 172 -19.97 0.10 165 25.0 -19.20 0.11 -166 9.53 3.00 23 -28.95 0.0357 151 -17.32 0.14 151 26.0 -19.05 0.11 151 9.55 3.00 0 -28.57 0.0373 130 -15.83 0.16 136 27.0 -19.12 0.11 108 9.65 3.04 -24 -28.09 0.0394 108 -15.23 0.17 120 28.0 -19.87 0.10 62 9.88 3.12 -49 -27.47 0.0423 84 -15.44 0.17 105 29.0 -20.78 0.09 3 10.14 3.21 -75 -27.05 0.0444 58 -16.82 0.14 90 30.0 -19.42 0.11 -67 10.33 3.29 -103 -26.69 0.0463 30 -20.01 0.10 81 31.0 -16.18 0.16 -123 10.37 3.30 -133 -26.60 0.0468 1 -24.45 0.06 103 32.0 -13.92 0.20 -166 10.21 3.24 -164 -26.76 0.0459 -28 -21.24 0.09 136 33.0 -13.31 0.22 158 10.03 3.17 165 -26.92 0.0451 -57 -17.71 0.13 133 34.0 -15.52 0.17 129 9.95 3.14 132 -26.97 0.0448 -88 -16.44 0.15 119 35.0 -23.72 0.07 144 9.82 3.10 95 -27.01 0.0446 -124 -17.71 0.13 111 36.0 -14.68 0.18 -169 9.06 2.84 52 -27.64 0.0415 -167 -18.68 0.12 123 37.0 -10.47 0.30 166 7.43 2.35 6 -29.02 0.0354 148 -16.97 0.14 127 38.0 -9.72 0.33 159 4.27 1.64 -46 -31.77 0.0258 96 -18.00 0.13 136 39.0 -6.77 0.46 152 -2.02 0.79 -88 -37.46 0.0134 53 -13.26 0.22 151 40.0 -4.70 0.58 133 -8.14 0.39 -108 -42.97 0.0071 28 -10.51 0.30 138 Note: 1. Data obtained from on-wafer measurements. S12 Mag Ang dB Biasing and Operation Assembly Techniques AMMC-5026 is biased with a single positive drain supply (Vd) and a negative gate supply (Vg1). The recommended bias conditions for the AMMC-5026 is Vdd = 7 V and Idd = 150 mA for best overall performance. Open circuit is the default setting for the Vg2 biasing. The backside of the MMIC chip is RF ground. For microstrip applications the chip should be attached directly to the ground plane (e.g. circuit carrier or heatsink) using electrically conductive epoxy [1,2]. For conductive epoxy, the amount should be just enough to provide a thin fillet around the bottom perimeter of the die. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. Figure 17 shows a typical bonding configuration for the 2 to 35 GHz operations. In this case, auxiliary drain and Vg1 capacitors (>0.5 µF) are used for low frequency (below 2 GHz) performance. Input and output RF ports are DC coupled; therefore, DC decoupling capacitors are required if there are DC paths. The auxiliary gate and drain contacts are used for low frequency performance extension below 1 GHz. When used, these contacts must be AC coupled only. (Do not attempt to apply bias to these pads.) Ground connections are made with plated through-holes to the backside of the device. Thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. The RF connections should be kept as short as possible to minimize inductance. Gold mesh or double-bonding with 0.7 mil gold wire is recommended. Mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of 76 ± 8 mS. A guided wedge at an ultrasonic power level of 64 dB can be used for the 0.7 mil wire. The recommended wire bond stage temperature is 150 ± 2°C. The chip is 100 mm thick and should be handled with care. This MMIC has exposed air bridges on the top surface. Handle at edges or with a custom collet (do not pick up die with vacuum on die center.) This MMIC is also static sensitive and ESD handling precautions should be taken. Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Eutectic attach is not recommended and may jeopardize reliability of the device. Vd RF Output Aux Vd Aux Vg2 RF Input Vg1 Figure 15. AMMC-5026 Schematic. Aux Vg1 89 2964 (RF Output Pad) 750 (Vd) 840 (±10 µm) 587 (Aux Vd) 505 318 (Aux Vg2) 252 89 (RF Input Pad) 2323 (Vg1) 2563 (Aux Vg1) 3050 (± 10 µm) Notes: All dimensions in microns. Rectangular Pad Dim: 75 x 75 µm Figure 16. AMMC-5026 Bonding Pad Locations. (dimensions in micrometers) 1.5 mil dia.Gold Wire Bond to 15 nF DC Feedthru 68 pF Capacitor 4 nH Inductor (1.0 mil Gold Wire Bond with length of 200 mils) Input and Output Thin Film Circuit with 8 pF DC Blocking Capacitor Gold Plated Shim 2.0 mil nom. gap Vd IN OUT AMMC-5026 2.0 mil nom. gap Vg Bonding Island 0.7 mil dia. Gold Bond Wire (Length Not important) 1.5 mil dia.Gold Wire Bond to 15 nF DC Feedthru Figure 17. AMMC-5026 Assembly Diagram. Ordering Information AMMC-5026-W10 = 10 devices per tray AMMC-5026-W50 = 50 devices per tray For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes 5989-3929EN AV02-1286EN - July 8, 2008 2951