Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MMRF2010N
Rev. 0, 10/2015
RF LDMOS Wideband Integrated
Power Amplifiers
T he MMR F 2010N is a 2 -- s t age R F IC des igned for I F F trans ponder
applications operating from 1030 to 1090 MHz. These devices are suitable for
use in pulse applications such as IFF and secondary radar transponders.
Narrowband Performance: (50 Vdc, TA = 25C)
Frequency
(MHz)
1090 (1)
Pout
(W)
Gps
(dB)
2nd Stage Eff.
(%)
250 Peak
32.1
61.4
Signal Type
Pulse
(128 sec, 10% Duty Cycle)
MMRF2010N
MMRF2010GN
1030–1090 MHz, 250 W PEAK, 50 V
RF LDMOS INTEGRATED
POWER AMPLIFIERS
Typical Wideband Performance (50 Vdc, TA = 25C)
Frequency
(MHz)(2)
1030
1090
Pout
(W)
Gps
(dB)
2nd Stage Eff.
(%)
250 Peak
32.5
59.1
30.1
60.6
Signal Type
Pulse
(128 sec, 10% Duty Cycle)
TO--270WB--14
PLASTIC
MMRF2010N
Load Mismatch/Ruggedness
Frequency
(MHz)
1090 (1)
Signal Type
VSWR
Pulse
(128 sec, 10%
Duty Cycle)
> 10:1 at all
Phase Angles
Pin
(W)
Test
Voltage
0.345 W
Peak
(3 dB
Overdrive)
50
Result
No Device
Degradation
TO--270WBG--14
PLASTIC
MMRF2010GN
1. Measured in 1090 MHz narrowband test circuit.
2. Measured in 1030–1090 MHz reference circuit.
Features






Characterized over 1030–1090 MHz
On--chip input (50 ohm) and interstage matching
Single ended
Integrated ESD protection
Low thermal resistance
Integrated quiescent current temperature compensation with
enable/disable function (3)
Typical Applications
 Driver PA for high power pulse applications
 IFF and secondary radar
3. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. and to AN1987, Quiescent Current
Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1977 and AN1987.
 Freescale Semiconductor, Inc., 2015. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MMRF2010N MMRF2010GN
1
VDS1
RFin
Stage 1
VGS1
VGS2
Thermal Sense
RFout Sense
Stage 2
RFout/VDS2
Quiescent Current
Temperature Compensation (1)
and Thermal Sense
VDS1
VGS2
VGS1
N.C.
RFin
RFin
RFin
RFin
N.C.
N.C.
Thermal Sense
RFout Sense
1
2
3
4
5
6
7
8
9
10
11
12
14
RFout /VDS2
13
RFout /VDS2
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Functional Block Diagram
Figure 2. Pin Connections
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +100
Vdc
Gate--Source Voltage
VGS
–6, +10
Vdc
Operating Voltage
VDD
50, +0
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
TC
–40 to 150
C
TJ
–40 to 225
C
Pin
25
dBm
Symbol
Value (3,4)
Unit
Case Operating Temperature Range
Operating Junction Temperature Range
(2,3)
Input Power
Table 2. Thermal Characteristics
Characteristic
Thermal Impedance, Junction to Case
Pulse: Case Temperature 81C, 250 W Peak, 128 sec Pulse Width, 10% Duty
Cycle, 1090 MHz
Stage 1, 50 Vdc, IDQ1 = 80 mA
Stage 2, 50 Vdc, IDQ2 = 150 mA
ZJC
C/W
1.1
0.15
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
Class 2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
Class A, passes 150 V
Charge Device Model (per JESD22--C101)
Class II, passes 200 V
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family. and to AN1987, Quiescent Current
Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf and search for AN1977 and AN1987.
2. Continuous use at maximum temperature will affect MTTF.
3. MTTF calculator available at http://www.freescale.com/rf/calculators.
4. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.
MMRF2010N MMRF2010GN
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 55 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 52 Adc)
VGS(th)
1.3
1.8
2.3
Vdc
Fixture Gate Quiescent Voltage
(VDD = 50 Vdc, IDQ1 = 80 mAdc, Measured in Functional Test)
VGG(Q)
6.0
7.0
8.0
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 55 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 528 Adc)
VGS(th)
1.3
1.8
2.3
Vdc
Fixture Gate Quiescent Voltage
(VDD = 50 Vdc, IDQ2 = 150 mAdc, Measured in Functional Test)
VGG(Q)
2.2
2.7
3.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 1.6 Adc)
VDS(on)
—
0.25
—
Vdc
Characteristic
Stage 1 -- Off Characteristics
Stage 1 -- On Characteristics
Stage 2 -- Off Characteristics
Stage 2 -- On Characteristics
Functional Tests (1,2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA, Pout = 250 W Peak
(25 W Avg.), f = 1090 MHz, 128 sec Pulse Width, 10% Duty Cycle
Power Gain
Gps
30.5
32.1
34.0
dB
2nd Stage Drain Efficiency
D
57.0
61.4
—
%
Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) IDQ1 = 80 mA, IDQ2 = 150 mA
Frequency
(MHz)
Signal
Type
1090
Pulse
(128 sec,
10% Duty
Cycle)
Pin
(W)
VSWR
> 10:1 at all Phase Angles
Test Voltage, VDD
Result
50
No Device Degradation
0.345 W Peak
(3 dB Overdrive)
Table 6. Ordering Information
Device
MMRF2010NR1
MMRF2010GNR1
Tape and Reel Information
R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel
Package
TO--270WB--14
TO--270WBG--14
1. Part internally input matched.
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing
(GN) parts.
MMRF2010N MMRF2010GN
RF Device Data
Freescale Semiconductor, Inc.
3
TYPICAL CHARACTERISTICS
1.2
VDD = 50 Vdc
IDQ1 = 80 mA
IDQ2 = 150 mA
1.15
NORMALIZED IDQ
1.1
IDQ2
1.05
1
IDQ1
0.95
0.9
0.85
0.8
--50
--25
0
25
50
75
100
TC, CASE TEMPERATURE (C)
Slope
(mA/C)
IDQ1
--0.008
IDQ2
--0.12
Figure 3. Normalized IDQ versus Case Temperature
109
VDD = 50 Vdc
Pulse Width = 128 sec
10% Duty Cycle
MTTF (HOURS)
108
ID = 6.52 Amps
8.30 Amps
107
9.36 Amps
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
MTTF calculator available at: http://www.freescale.com/rf/calculators
Figure 4. MTTF versus Junction Temperature -- Pulse
MMRF2010N MMRF2010GN
4
RF Device Data
Freescale Semiconductor, Inc.
1030–1090 MHz REFERENCE CIRCUIT — 1.97 x 2.76 (5.0 cm x 7.0 cm)
Table 7. 1030–1090 MHz Performance (In Freescale Reference Circuit, 50 ohm system)
VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA, Pout = 250 W Peak, 128 sec Pulse Width, 10% Duty Cycle
Frequency
(MHz)
Gps
(dB)
2nd Stage Eff.
(%)
Signal
Type
Pout
(W)
1030
32.5
59.1
Pulse
250
1090
30.1
60.6
Pulse
250
MMRF2010N MMRF2010GN
RF Device Data
Freescale Semiconductor, Inc.
5
1030–1090 MHz REFERENCE CIRCUIT
f = 1030 MHz
f = 1090 MHz
Zo = 50 
Zload
Zsource
f = 1030 MHz
f = 1090 MHz
f
MHz
Zsource

Zload

1030
30.0 -- j23
1.5 + j0.90
1090
36.7 -- j29
1.3 + j0.60
Zsource = Test circuit input impedance as measured from
gate to ground.
Zload
50 
= Test circuit impedance as measured from
drain to ground.
Device
Under
Test
Input
Matching
Network
Zsource
Output
Matching
Network
Zload
50 
Figure 5. Series Equivalent Source and Load Impedance — 1030–1090 MHz
MMRF2010N MMRF2010GN
6
RF Device Data
Freescale Semiconductor, Inc.
1090 MHz REFERENCE CIRCUIT — 1.97 x 2.76 (5.0 cm x 7.0 cm)
R3
VDD1
C18
C25
C17
R4
R5
R6
C19
C20
C21
C26 C1
C23
C24
Q1
R1
C10
C9
C6
Thermal
Sense
C13*
C14*
C12
C8
C7
R2
C12
RFout
Sense
C15*
C16*
C22
Rev. 0
VDD2
* Stacked Capacitors
Note: Component numbers C2, C3, C4, and C5 are not used.
Figure 6. MMRF2010N Reference Component Layout — 1090 MHz
Table 8. MMRF2010N Reference Circuit Component Designations and Values — 1090 MHz
Part
Description
Part Number
Manufacturer
C1, C10
56 pF Chip Capacitors
ATC600F560JT250XT
ATC
C11, C12, C17, C18,
C19
51 pF Chip Capacitors
ATC600F510JT250XT
ATC
C6, C7
10 pF Chip Capacitors
ATC600F100JT250XT
ATC
C8
6.8 pF Chip Capacitor
ATC600F6R8BT250XT
ATC
C9
2.4 pF Chip Capacitor
ATC600F2R4BT250XT
ATC
C13, C14, C15, C16,
C25, C26
10 F Chip Capacitors
C5750X7S2A106M
TDK
C20
1 F Chip Capacitor
GRM21BR71H105KA12L
Murata
C21, C22
8.2 pF Chip Capacitors
ATC600F8R2BT250XT
ATC
C23
2.7 pF Chip Capacitor
ATC600F2R7BT250XT
ATC
C24
1.5 pF Chip Capacitor
ATC600F1R5BT250XT
ATC
R1
13.7 k 1/16 W Chip Resistor
RR0816P-1372-B-T5-14C
Susumu
R2
1.2 k 1/16 W Chip Resistor
RR0816P-122-B-T5
Susumu
Q1
RF Power LDMOS Transistor
MMRF2010NR1
Freescale
PCB
Taconic RF60A 0.025, r = 6.15
—
MTL
MMRF2010N MMRF2010GN
RF Device Data
Freescale Semiconductor, Inc.
7
TYPICAL CHARACTERISTICS — 1090 MHz
REFERENCE CIRCUIT
35
Gps, POWER GAIN (dB)
32
50
30
Gps
31
10
30
300
29
250
28
200
VDD = 50 Vdc, f = 1090 MHz
IDQ1 = 80 mA, IDQ2 = 150 mA
Pulse Width =128 sec
Duty Cycle = 10%
Pout
27
26
25
24
0.0
0.05
0.1
0.2
0.15
0.25
0.3
150
100
50
0
0.35
Pout, OUTPUT
POWER (WATTS) PEAK
70
D
33
D, DRAIN
EFFICIENCY (%)
90
34
Pin, INPUT POWER (WATTS) PEAK
Figure 7. Power Gain, Drain Efficiency and Output
Power versus Input Power
Pout, OUTPUT POWER (WATTS) PEAK
300
250
200
150
100
VDD = 50 Vdc, f = 1090 MHz
IDQ1 = 80 mA, IDQ2 = 150 mA
Pulse Width = 128 sec
Duty Cycle = 10%
50
0
0.0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Pin, INPUT POWER (WATTS) PEAK
Figure 8. Output Power versus Input Power
f
MHz
Zsource

Zload

1090
36.7 -- j29
1.3 + j0.60
Zsource = Test circuit input impedance as measured from
gate to ground.
Zload
50 
= Test circuit impedance as measured from
drain to ground.
Device
Under
Test
Input
Matching
Network
Zsource
Output
Matching
Network
Zload
50 
Figure 9. Series Equivalent Source and Load Impedance — 1090 MHz
MMRF2010N MMRF2010GN
8
RF Device Data
Freescale Semiconductor, Inc.
1090 MHz NARROWBAND PRODUCTION TEST FIXTURE
Table 9. 1090 MHz Narrowband Performance (1,2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ1 = 80 mA,
IDQ2 = 150 mA, Pout = 250 W Peak (25 W Avg.), f = 1090 MHz, 128 sec Pulse Width, 10% Duty Cycle
Symbol
Min
Typ
Max
Unit
Power Gain
Characteristic
Gps
30.5
32.1
34.0
dB
2nd Stage Drain Efficiency
D
57.0
61.4
—
%
1. Part internally input matched.
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing
(GN) parts.
MMRF2010N MMRF2010GN
RF Device Data
Freescale Semiconductor, Inc.
9
1090 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4 x 5 (10.2 cm x 12.7 cm)
C7
VDD1
C20
C17
C13
C12
R1
VGG2
C4
C1
C11
C9
C2 C3 C5
Thermal Sense
R3
D1
R4
U1
R5
PDET
C21 R7
V3
R6
C24
C23
C22
CUT OUT AREA
VGG1
C6
R2
VDD2
C19
C10
C8
VDD2
C14
C15
C16
C18
Rev. 0
Figure 10. MMRF2010N Narrowband Test Circuit Component Layout — 1090 MHz
Table 10. MMRF2010N Narrowband Test Circuit Component Designations and Values — 1090 MHz
Part
Description
Part Number
Manufacturer
C1
47 pF Chip Capacitor
ATC600F470JT250XT
ATC
C2
2.7 pF Chip Capacitor
ATC100B2R7CT500XT
ATC
C3
2.0 pF Chip Capacitor
ATC100B2R0BW500XT
ATC
C4
1 F Chip Capacitor
GRM31MR71H105KA88L
Murata
C5, C6, C7, C11, C14
43 pF Chip Capacitors
ATC100B430JT500XT
ATC
C8, C9
10 pF Chip Capacitors
ATC100B100JT500XT
ATC
C10
4.7 pF Chip Capacitor
ATC100B4R7CT500XT
ATC
C12, C13, C15, C16, C20
10 F Chip Capacitors
C5750X752A106M230KB
TDK
C17, C18
220 F, 100 V Electrolytic Capacitors
MCGPR100V227M16X26-RH
Multicomp
C19
30 pF Chip Capacitor
ATC600F300JT250XT
ATC
C21
10 nF Chip Capacitor
C0805C103J5RAC-TU
Kemet
C22
0.1 F Chip Capacitor
C1206C104K1RAC-TU
Kemet
C23
47 pF Chip Capacitor
ATC800B470JT500XT
ATC
C24
1000 pF Chip Capacitor
C2012X7R2E102K085AA
TDK
D1
Diode Schottky RF SGL 70 V SOT-23
HSMS--2800--TR1G
Avago Technologies
R1
2.2 k, 1/8 W Chip Resistor
CRCW08052K20JNEA
Vishay
R2
0 , 1 A Chip Resistor
CWCR08050000Z0EA
Vishay
R3
1 k, 1/10 W Chip Resistor
RR1220P-102-D
Susumu
R4
50 , 10 W Chip Resistor
060120A25X50--2
Anaren
R5
15 k, 1/10 W Chip Resistor
RR1220P-153-D
Susumu
R6
51 , 1/8 W Chip Resistor
RK73B2ATTD510J
KOA Speer
R7
470 k, 1/4 W Chip Resistor
CRCW1206470KFKEA
Vishay
U1
IC Detector RF PWR 3GHZ SC70--6
LT5534ESC6#TRMPBF
Linear Technology
PCB
Rogers, RO4350B, 0.020, r = 3.66
—
MTL
MMRF2010N MMRF2010GN
10
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 1090 MHz
NARROWBAND PRODUCTION TEST FIXTURE
34
53
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (dBm) PEAK
33
54
52
51
50
49
48
47
VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA
f = 1090 MHz, Pulse Width = 128 sec, 10% Duty Cycle
46
45
14
16
18
20
22
24
26
28
60
50
32
Gps
31
40
30
30
D
29
20
28
10
30
70
VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA
f = 1090 MHz, Pulse Width = 128 sec, 10% Duty Cycle
55
10
500
100
Pin, INPUT POWER (dBm) PEAK
D DRAIN EFFICIENCY (%)
56
Pout, OUTPUT POWER (WATTS) PEAK
f
(MHz)
P1dB
(W)
P3dB
(W)
1090
265
284
Figure 12. Power Gain and Drain Efficiency
versus Output Power and Quiescent Current
Figure 11. Output Power versus Input Power
33
32
25_C
30
29
85_C
25_C
D
Gps
85_C
28
27
10
33
80
32
70
--40_C
TC = --40_C
31
90
100
60
50
40
30
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
34
VDD = 50 Vdc, IDQ1 = 80 mA, IDQ2 = 150 mA
f = 1090 MHz, Pulse Width = 128 sec
10% Duty Cycle
D, DRAIN EFFICIENCY (%)
35
31
30
29
50 V
28
40 V
27
20
26
10
500
25
35 V
VDD = 30 V
0
50
100
45 V
IDQ1 = 80 mA, IDQ2 = 150 mA
f = 1090 MHz, Pulse Width = 128 sec
10% Duty Cycle
150
200
250
300
350
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 13. Power Gain and Drain Efficiency
versus Output Power
Figure 14. Power Gain versus Output Power
and Drain--Source Voltage
MMRF2010N MMRF2010GN
RF Device Data
Freescale Semiconductor, Inc.
11
1090 MHz NARROWBAND PRODUCTION TEST FIXTURE
f
MHz
Zsource

Zload

1090
13.6 – j24.4
1.3 + j0.4
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
50 
= Test circuit impedance as measured from
drain to ground.
Device
Under
Test
Input
Matching
Network
Zsource
Output
Matching
Network
50 
Zload
Figure 15. Narrowband Series Equivalent Source and Load Impedance — 1090 MHz
MMRF2010N MMRF2010GN
12
RF Device Data
Freescale Semiconductor, Inc.
0.221
(5.61)
0.180
(4.57)
0.590
(14.99)
2X SOLDER PADS
0.352(1)
(8.94)
0.372(1)
(9.45)
12X SOLDER PADS
0.040
(1.02)
0.020
(0.51)
Inches
(mm)
0.723(1)
(18.36)
1. Slot dimensions are minimum dimensions and exclude milling tolerances.
Figure 16. PCB Pad Layout for TO--270WB--14
0.221
(5.61)
0.180
(4.57)
0.351
(8.92)
0.310
(7.87)
Solder pad with
thermal via structure.
0.020
(0.51)
0.463
(11.76)
0.040
(1.02)
0.720
(18.29)
Figure 17. PCB Pad Layout for TO--270WBG--14
MMRF2010N MMRF2010GN
RF Device Data
Freescale Semiconductor, Inc.
13
PACKAGE DIMENSIONS
MMRF2010N MMRF2010GN
14
RF Device Data
Freescale Semiconductor, Inc.
MMRF2010N MMRF2010GN
RF Device Data
Freescale Semiconductor, Inc.
15
MMRF2010N MMRF2010GN
16
RF Device Data
Freescale Semiconductor, Inc.
MMRF2010N MMRF2010GN
RF Device Data
Freescale Semiconductor, Inc.
17
MMRF2010N MMRF2010GN
18
RF Device Data
Freescale Semiconductor, Inc.
MMRF2010N MMRF2010GN
RF Device Data
Freescale Semiconductor, Inc.
19
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
 AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
Development Tools
 Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.freescale.com/rf
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Oct. 2015
Description
 Initial Release of Data Sheet
MMRF2010N MMRF2010GN
20
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2015 Freescale Semiconductor, Inc.
MMRF2010N MMRF2010GN
Document
Number:
RF
Device
Data MMRF2010N
Rev. 0, 10/2015
Freescale
Semiconductor, Inc.
21
Similar pages