MC33907_8, Power System Basis Chip with High Speed CAN Transceiver - Data Sheet

Freescale Semiconductor
Advance Information
Document Number: MC33907_08
Rev. 3.0, 2/2014
Power System Basis Chip with
High Speed CAN transceiver
33907_08
The 33907_8 devices are multi-output, power supply, integrated circuit,
including HSCAN transceiver, dedicated to the automotive market.
Multiple switching and linear voltage regulators, including low power
mode are available with various wake-up capabilities. An advanced
power management scheme is implemented to maintain high efficiency
over wide input voltages and output current ranges.
The 33907_8 includes enhanced safety features, with multiple fail-safe
outputs, becoming a full part of a safety oriented system partitioning, to
reach a high integrity safety level.
The built-in enhanced high speed CAN interface fulfills the ISO11898-2
and -5 standards. Local and bus failure diagnostics, protection, and failsafe operation mode are provided. This device is powered by
SMARTMOS technology.
Features
• Highly flexible SMPS pre-regulator, allowing two topologies: noninverting buck-boost or standard buck
• Switching mode power supply (SMPS) dedicated to MCU core supply,
1.2 V or 3.3 V delivering up to 1.5 A
• Linear voltage regulator dedicated to MCU A/D reference voltage or I/
Os supply (VCCA). 5.0 V or 3.3 V
• Linear voltage regulator dedicated to auxiliary functions, or to a sensor
supply (VCCA tracker or independent 5.0 V / 3.3 V)
• Multiple wake-up sources in low power mode: CAN and/or IOs
• Battery voltage sensing & MUX output terminal
• Enhanced safety block associated with fail-safe outputs
• Six configurable I/Os
POWER SYSTEM BASIS CHIP
AE SUFFIX (PB-FREE)
98ASA00173D
48-PIN LQFP-EP
Applications
• Electrical power steering
• Engine management
• Battery management
• Active suspension
• Gear box
• Transmission
• Electrical Vehicle (EV), Hybrid Electrical Vehicle
(HEV)
• Advanced driver assistance systems
+Battery
(KL30)
VDD
33907_08
BOOTS_CORE
SW_CORE
VPRE
GATE_LS
SW_PRE2
BOOTS_PRE
SW_PRE1
VSUP2
VSUP1
VSUP3
VSENSE
COMP_CORE
VCCA_E
VCCA_B
VCCA
VAUX_E
VDDIO
VAUX_B
Vaux
Vcca
AD ref.
voltage
Vcore or
Vcca
MOSI
MISO
SCLK
NCS
MUX_OUT
VAUX
SELECT
CAN-5V
Ignition Key
(KL15)
MCU
VCORE_SNS
FB_CORE
INTB
IO_0
SPI
ADC Input
NMI
VDDIO
IO_1
RSTB
IO_2
Reset
VDDIO
IO_3
IO_4
FS0B
Vpre
IO_5
CANH
CAN BUS
DEBUG
CANL
GNDA
GND_COM
DGND
VDD
TXD
DEBUG
mode
RXD
CAN
Figure 1. Simplified Application Diagram - Buck Boost Configuration
* This document contains certain information on a new product.
Specifications and information herein are subject to change without notice.
© Freescale Semiconductor, Inc., 2013 - 2014. All rights reserved.
FCCU
+Battery
(KL30)
VDD
33907_08
BOOTS_CORE
SW_CORE
VPRE
GATE_LS
BOOTS_PRE
SW_PRE2
SW_PRE1
VSUP2
VSUP1
VSUP3
MCU
VCORE_SNS
FB_CORE
Vpre
COMP_CORE
VCCA_E
VSENSE
VCCA_B
Vpre
VCCA
VAUX_E
VDDIO
Vcca
AD ref.
voltage
Vcore or
Vcca
VAUX_B
MOSI
MISO
SCLK
NCS
MUX_OUT
VAUX
SELECT
CAN-5V
Ignition Key
(KL15)
INTB
IO_0
IO_1
SPI
ADC Input
NMI
VDDIO
Reset
RSTB
IO_2
VDDIO
IO_3
FS0B
IO_4
Vpre
IO_5
CANH
DEBUG
CAN BUS
CANL
VDD
GNDA
GND_COM
DGND
TXD
DEBUG
mode
RXD
CAN
FCCU
Figure 2. Simplified Application Diagram - Buck Configuration, VAUX not used, VCCA = 100 mA
33907_8
2
Analog Integrated Circuit Device Data
Freescale Semiconductor
1
Orderable Parts
Table 1. Orderable Part Variations
Part Number (1)
MC33907AE
MC33908AE
VCORE
Temperature (TA)
VCORE Output Current
Capability in Normal Mode
Page 12
-40 to 125 °C
Package
48-pin LQFP exposed pad
Notes
1. To order parts in Tape & Reel, add the R2 suffix to the part number.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
3
2
Internal Block Diagram
COMP_CORE
BOOTS_CORE
VCORE_SNS
FB_CORE
SW_CORE
DGND
VPRE
GATE_LS
BOOTS_PRE
SW_PRE2
SW_PRE1
VSUP2
VSUP1
Vpre
VSUP3
TSD
TSD
Vpre SMPS
Vcore SMPS
TSD
VAUX_E
VAUX_B
VAUX
Vpre
Vpre
TSD
Vaux Linear Regulator
Vpre
Vsense
Vpre
Vpre
Vsup3
Vcan TSD
Internal Linear
Regulator
CAN-5V
VCCA_E
VCCA_B
VCCA
Vcca Linear Regulator
Analog
Reference #1
Charge Pump
Vref
(2.5V)
GNDA
MUX
Interface
IO_0
SELECT
Die
Temp
MUX_OUT
IO_1
Select
IO_0
IO_1
IO_2
6
I/Os
Interface
IO_3
V2p5
Logic
Main
OSC
Main
Power Management
State Machine
IO_4
IO_5
CAN-5V
Vpre
Vaux
Voltage Regulator
SUPERVISOR
(Over & under voltage)
Vsup1&2 CAN diag
Vsense
Debug
INTB
MOSI
MISO
SCLK
NCS
SPI
Main
VDDIO
Vcca FB_core
DEBUG
MISO FS
V2p5Logic
FS
5
Analog Reference #2
FS
Vpre
SPI
FS
FAIL SAFE Machine
VDDIO
RSTB
FS0B
OSC
FS
Vsup3
Vsense
CAN-5V
CANH
VDDIO
Debug
Select
HSCAN Interface
CANL
VSENSE
RXD
TXD
GND_COM
Fail Safe Logic & supply
Figure 3. MC33907_08 Simplified Internal Block Diagram
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
4
Table of Contents
1
Orderable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 3
2
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 4
3
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 6
3.1 Pinout Diagram for 33907_8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 6
3.2 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 6
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 9
4.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 9
4.2 Static Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 11
4.3 Dynamic Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 20
5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 25
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 25
5.2 Functional Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 25
6
Functional Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 30
6.1 Mode and State Description of MAIN State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 30
6.2 Mode and State Description of Fail-safe State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 31
6.3 Functional State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 33
6.4 Fail-safe Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 34
6.5 Fail-safe Machine State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 34
6.6 Watchdog Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 35
6.7 Wrong Watchdog Refresh Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 37
6.8 Startup Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 48
7
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 50
7.1 High Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 50
7.2 Detail Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 51
7.3 Detail of Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 55
8
List of Interruptions and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 98
9
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 100
10 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 102
10.1 Package Mechanical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 102
11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 106
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
5
VPRE
VAUX
VAUX_B
VAUX_E
VCCA_E
VCCA_B
VCCA
GATE_LS
DGND
Pinout Diagram for 33907_8
BOOT_PRE
3.1
SW_PRE2
Pin connections
SW_PRE1
3
Transparent top view
VSUP1
BOOT_CORE
VSUP2
SW_CORE
VSENSE
VCORE_SNS
VSUP3
COMP_CORE
NC
FB_CORE
GND_COM
SELECT
CAN_5V
VDDIO
NC
RSTB
NC
RXD
TXD
IO_3
IO_2
MISO
MUX_OUT
MOSI
IO_0
AGND
SCLK
IO_5
DEBUG
NCS
IO_4
IO_1
INTB
CANL
FS0B
CANH
Figure 4. 33907_8 Pinout
3.2
Pin Definitions
A functional description of each pin can be found in the functional pin description section beginning on page 25.
Table 2. 33907_8 Pin Definition
Pin
Pin Name
Type
Definition
1
VSUP1
A_IN
Power supply of the device. An external reverse battery protection diode in series is mandatory
2
VSUP2
A_IN
Second power supply. Also protected by the external reverse battery protection diode used for
VSUP1
3
VSENSE
A_IN
Sensing of the battery voltage. Must be connected prior to the reverse battery protection diode.
4
VSUP3
A_IN
Third power supply dedicated to the device supply. Also protected by the external reverse
battery protection diode used for VSUP1. Shall be connected between the reverse protection
diode and the input PI filter.
5, 22, 23
NC
N/A
Not connected. Pins must be left open.
33907_8
6
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 2. 33907_8 Pin Definition
Pin
Pin Name
Type
Definition
6
GND_COM
GROUND
7
CAN_5V
A_OUT
8
CANH
A_IN/OUT
HSCAN output High
9
CANL
A_IN/OUT
HSCAN output Low
10
11
IO_4:5
D_IN
A_OUT
Can be used as digital input (load dump proof) with wake-up capability or as an output gate
driver
Digital input: Pin status can be read through the SPI. Can be used to monitor error signals
from another IC for safety purposes.
Wake-up capability: Can be selectable to wake-up on a rising or falling edge, or on a
transition
Output gate driver: Can drive a logic level low side NMOS transistor. Controlled by the SPI.
12
13
IO_0:1
A_IN
D_IN
Can be used as analog or digital input (load dump proof) with wake-up capability (selectable)
Analog input: Pin status can be read through the MUX output terminal
Digital input: Pin status can be read through the SPI. Can be used to monitor error signals
from another IC for safety purposes
Wake-up capability: Can be selectable to wake-up on a rising or falling edge, or on a
transition
14
FS0B
D_OUT
15
DEBUG
D_IN
16
AGND
GROUND
17
MUX_OUT
A_OUT
18
19
IO_2:3
D_IN
Digital input pin with wake-up capability (logic level compatible)
Digital INPUT: Pin status can be read through the SPI. Can be used to monitor error signals
from MCU for safety purposes.
Wake-up capability: Can be selectable to wake-up on a rising or falling edge, or on a
transition.
20
TXD
D_IN
Transceiver input from the MCU which controls the state of the HSCAN bus
21
RXD
D_OUT
Receiver output which reports the state of the HSCAN bus to the MCU
24
RSTB
D_OUT
This output is asserted low when the safety block reports a failure. The main function is to reset
the MCU. Reset input voltage is also monitored in order to detect external reset and fault
condition. Open drain structure.
25
MISO
D_OUT
SPI bus. Master Input Slave Output
26
MOSI
D_IN
SPI bus. Master Output Slave Input
27
SCLK
D_IN
SPI Bus. Serial clock
28
NCS
D_IN
No Chip Select (Active low)
29
INTB
D_OUT
30
VDDIO
A_IN
Input voltage for MISO output buffer. Allows voltage compatibility with MCU I/Os.
31
SELECT
D_IN
Hardware selection pin for VAUX and VCCA output voltages
32
FB_CORE
A_IN
VCORE voltage feedback. Input of the error amplifier.
33
COMP_CORE
A_IN
Compensation network. Output of the error amplifier.
34
VCORE_SNS
A_IN
Vcore output voltage sense
35
SW_CORE
A_IN
VCORE switching point
36
BOOT_CORE
A_IN/OUT
Dedicated ground for CAN
Output voltage for the embedded CAN interface
Output of the safety block (active low). The pin is asserted low at startup and when a fault
condition is detected. Open drain structure.
Debug mode entry input
Analog ground connection
Multiplexed output to be connected to a MCU ADC. Selection of the analog parameter is
available at MUX-OUT through the SPI.
This output pin generates a low pulse when an Interrupt condition occurs. Pulse duration is
configurable
Bootstrap capacitor for VCORE internal NMOS gate drive
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
7
Table 2. 33907_8 Pin Definition
Pin
Pin Name
Type
Definition
37
VPRE
A_OUT
VPRE output voltage
38
VAUX
A_OUT
VAUX output voltage. External PNP ballast transistor. Collector connection
39
VAUX_B
A_OUT
VAUX voltage regulator. External PNP ballast transistor. Base connection
40
VAUX_E
A_OUT
VAUX voltage regulator. External PNP ballast transistor. Emitter connection
41
VCCA_E
A_OUT
VCCA voltage regulator. External PNP ballast transistor. Emitter connection
42
VCCA_B
A_OUT
VCCA voltage regulator. External PNP ballast transistor. Base connection
43
VCCA
A_OUT
VCCA output voltage. External PNP ballast transistor. Collector connection
44
GATE_LS
A_OUT
Low side MOSFET gate drive for “Non-inverting Buck-boost” configuration
45
DGND
GROUND
Digital ground connection
46
BOOT_PRE
A_IN/OUT
Bootstrap capacitor for the VPRE internal NMOS gate drive
47
SW_PRE2
A_IN
Second pre-regulator switching point
48
SW_PRE1
A_IN
Pre-regulator switching point
33907_8
8
Analog Integrated Circuit Device Data
Freescale Semiconductor
4
General Product Characteristics
4.1
Maximum Ratings
Table 3. Maximum Ratings
All voltages are with respect to ground, unless otherwise specified. Exceeding these ratings may cause a malfunction or
permanent damage to the device.
Ratings
Symbol
Value
Unit
DC Voltage at Power Supply Pins
VSUP1/2/3
-1.0 to 40
V
DC voltage between VSUP1, 2, and VSUP3 (VSUP1,2 > VSUP3)
VSUP1/2/3
0.0 to 4.0
V
DC Voltage at Battery Sense Pin
VSENSE
-14 to 40
V
DC Voltage at SW_PRE1 and SW_PRE2 Pins
VSW1, 2
-1.0 to 40
V
VPRE
-0.3 to 8
V
VGATE_LS
-0.3 to 8
V
DC Voltage at BOOT_PRE pin
VBOOT_PRE
-1.0 to 50
V
DC Voltage at SW_CORE pin
VSW_CORE
-1.0 to 8.0
V
DC Voltage at VCORE_SNS pin
VCORE_SNS
0.0 to 8.0
V
DC Voltage at BOOT_CORE pin
VBOOT_CORE
0.0 to 15
V
VFB_CORE
-0.3 to 2.5
V
VCOMP_CORE
-0.3 to 2.5
V
VAUX_E,B
-0.3 to 40
V
VAUX
-2.0 to 40
V
VCCA_B,E
-0.3 to 8.0
V
DC Voltage at VCCA pin
VCCA
-0.3 to 8.0
V
DC Voltage at VDDIO
VDDIO
-0.3 to 8.0
V
DC Voltage at FS0B (with ext R mandatory)
VFS0
-0.3 to 40
V
VDEBUG
-0.3 to 40
V
VIO_0,1,4,5
-0.3 to 40
V
VDIG
-0.3 to
VDDIO+0.3
V
VSELECT
-0.3 to 8.0
V
VBUS_CAN
-27 to 40
V
VCAN_5V
-0.3 to 8.0
V
I_IO
-5.0 to 5.0
mA
Notes
ELECTRICAL RATINGS
DC Voltage at VPRE Pin
DC Voltage at Gate_LS pin
DC Voltage at FB_CORE pin
DC Voltage at COMP_CORE pin
DC Voltage at VAUX_E, VAUX_B pin
DC Voltage at VAUX pin
DC Voltage at VCCA_B, VCCA_E pin
DC Voltage at DEBUG
DC Voltage at IO_0:1; 4:5 (with ext R = 5.1 k in series mandatory)
DC Voltage at INTB, RSTB, MISO, MOSI, NCS, SCLK, MUX_OUT, RXD, TXD, IO_2,
IO_3
DC Voltage at SELECT
DC Voltage on CANL, CANH
DC voltage on CAN_5 V
IOs maximum current capability
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
9
Table 3. Maximum Ratings (continued)
All voltages are with respect to ground, unless otherwise specified. Exceeding these ratings may cause a malfunction or
permanent damage to the device.
Ratings
Symbol
Value
Unit
VESD-HBM1
VESD-HBM2
VESD-HBM3
VESD-HBM4
±2.0
±3.5
±4.0
±6.0
kV
kV
kV
kV
VESD-CDM1
VESD-CDM2
±500
±750
V
V
VESD-GUN1
VESD-GUN2
VESD-GUN3
VESD-GUN4
±8.0
±8.0
±8.0
±8.0
kV
kV
kV
kV
VESD-GUN5
VESD-GUN6
VESD-GUN7
VESD-GUN8
±15
±12
±15
±15
kV
kV
kV
kV
Ambient Temperature
TA
-40 to 125
°C
Junction Temperature
TJ
-40 to 150
°C
Storage Temperature
TSTG
-55 to 150
°C
RJA
32
°C/W
(2)
RJCTOP
23
°C/W
(3)
RJCBOTTOM
1.3
°C/W
(4)
ESD Voltage
Human Body Model (JESD22/A114) - 100 pF, 1.5 k
• All pins
• VSUP1, VSUP2, VSUP3, VSENSE, IO_0:1, IO_4:5, FS0B , DEBUG
• VAUX versus AGND
• CANH, CANL
Charge Device Model (JESD22/C101):
• All Pins
• Corner Pins
System level ESD (Gun Test)
• VSUP1, VSUP2, VSUP3, VSENSE, VAUX, IO_0:1, IO_4:5, FS0B
330 Ω / 150 pF Unpowered According to IEC61000-4-2:
330 Ω / 150 pF Unpowered According to OEM LIN, CAN, FLexray Conformance
2.0 kΩ / 150 pF Unpowered According to ISO10605.2008
2.0 kΩ / 330 pF Powered According to ISO10605.2008
• CANH, CANL
330 Ω / 150 pF Unpowered According to IEC61000-4-2:
330 Ω / 150 pF Unpowered According to OEM LIN, CAN, FLexray Conformance
2.0 kΩ / 150 pF Unpowered According to ISO10605.2008
2.0 kΩ / 330 pF Powered According to ISO10605.2008
Notes
THERMAL RATINGS
THERMAL RESISTANCE
Thermal resistance junction to ambient
Thermal resistance junction to Case Top
Thermal resistance junction to Case Bottom
Notes
2. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
3. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC - 883 Method 1012.1).
4. Thermal resistance between the die and the solder par on the bottom of the packaged based on simulation without any interface
resistance.
33907_8
10
Analog Integrated Circuit Device Data
Freescale Semiconductor
4.2
Static Electrical Characteristics
Table 4. Operating Range
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
2.0
–
13.0
mA
Notes
POWER SUPPLY
ISUP
Power Supply Current in Normal Mode (Vsup > Vsup_uv_7)
ISUP_LPOFF1
Power Supply Current in LPOFF (14 V, @ TA = 25 °C)
–
32
–
µA
ISUP_LPOFF2
Power Supply Current in LPOFF (18 V, @ TA = 80 °C)
–
42
60
µA
Power Supply Undervoltage Warning
–
8.5
–
V
Power Supply Undervoltage Hysteresis
0.1
–
–
V
VSUP_UV_7
Power Supply Undervoltage Lockout (power-up)
7.0
–
8.2
V
VSUP_UV_5
Power Supply Undervoltage Lockout (power-up)
–
–
5.6
V
VSUP_UV_L
Power Supply Undervoltage Lockout (falling - Boost config.)
–
–
2.7
V
VSUP_UV_L_B
Power Supply Undervoltage Lockout (falling - Buck config.)
–
–
4.6
V
Power Supply Undervoltage Lockout Hysteresis
–
0.1
–
V
6.25
–
6.75
VPRE_UV_4P3
VSUP RDSON_PRE
* IPRE
–
–
VSNS_UV
VSNS_UV_HYST
VSUP_UV_HYST
(5)
VPRE VOLTAGE PRE-REGULATOR
VPRE
VPRE Output Voltage
• Buck mode (VSUP > Vsup_uv_7)
• Buck mode (VSUP_UV_7 VSUP 4.6 V)

• Boost mode (VSUP 2.7 V)
IPRE
VPRE Maximum Output Current Capability
• Buck or Boost with VSUP > VSUP_UV_7
• Buck with VSUP_UV_7 VSUP 4.6 V
• Boost with VSUP_UV_7 VSUP 6.0 V
• Boost with 6.0 V VSUP 4.0 V
• Boost with 4.0 V VSUP 2.7 V
IPRE_LPOFF
VPRE Maximum Output Current Capability in LPOFF at low Vsup
voltage
• Buck with VSUP_UV_7 VSUP 4.6 V
• Boost with VSUP_UV_7 VSUP 6.0 V
• Boost with 6.0 V VSUP 4.0 V
• Boost with 4.0 V VSUP 2.7 V
V
6.0
2.0
0.5
2.0
1.0
0.3
–
2.0
–
–
–
7.0
A
(5)
A
(5)
–
–
–
–
–
0.050
2.0
1.0
0.3
–
–
–
–
–
–
–
–
IPRE_LIM
VPRE Output Current Limitation with Vsup 28V
3.5
–
–
A
IPRE_OC
VPRE Overcurrent Detection Threshold (in buck mode only) with
VSUP 28 V
5.0
–
–
A
VPRE_UV
VPRE Undervoltage Detection Threshold (Falling)
5.5
–
6.0
V
VPRE Undervoltage Hysteresis
0.05
–
0.15
V
VPRE Shut-off Threshold (Falling - buck mode)
4.2
–
4.5
V
VPRE_UV_HYST
VPRE_UV_4P3
(5)
Notes
5.
Guaranteed by design.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
11
Table 4. Operating Range (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
Notes
0.05
–
0.15
V
(6)
VPRE Pass Transistor On Resistance with VSUP 28 V
–
–
200
m
VPRE Line Regulation
–
20
–
mV
(6)
VPRE Load Regulation for COUT = 57 µF
IPRE from 50 mA to 2.0 A - Buck mode
–
100
–
mV
(6)
LORVPRE_BOOST VPRE Load Regulation for COUT = 57 µF
IPRE from 50 mA to 2.0 A - Boost mode
–
500
–
mV
(6)
VPRE VOLTAGE PRE-REGULATOR (CONTINUED)
VPRE_UV_4P3_HY VPRE Shut-off Hysteresis
ST
RDSON_PRE
LIR_VPRE
LORVPRE_BUCK
VPRE_LL_H
VPRE_LL_L
VPRE Pulse Skipping Thresholds
–
–
200
180
–
–
mV
TWARN_PRE
VPRE Thermal Warning Threshold
–
125
–
°C
TSD_PRE
VPRE Thermal Shutdown Threshold
160
–
–
°C
TSD_PRE_HYST
VPRE Thermal Shutdown Hysteresis
–
10
–
°C
IPFF Input Voltage detection
18
–
24
V
0.2
–
–
V
1.7
–
–
A
VPRE-1
–
VPRE
V
–
–
0.5
V
0.784
0.8
0.816
V
–
–
–
–
0.8
1.5
1.0
1.8
–
–
2.0
3.5
–
–
200
m
VSUP_IPFF
VSUP_IPFF_HYST IPFF Input Voltage hysteresis
IPRE_IPFF_PK
IPFF High Side Peak current detection with VSUP 28 V
VG_LS_OH
LS Gate driver High output voltage (IOUT = 50 mA)
VG_LS_OL
LS Gate driver Low Level (IOUT = 50 mA)
(6)
VCORE VOLTAGE REGULATOR
VCORE_FB
ICORE
VCORE Feedback Input Voltage
VCORE Output Current Capability in Normal Mode
• MC33907
• MC33908
ICORE_LIM_10
ICORE_LIM_20
VCORE Output Current Limitation
• MC33907
• MC33908
RDSON_CORE
VCORE Pass Transistor On Resistance
A
A
LORVCORE_1.2
VCORE Transient Load regulation - 1.2 V range
-60
–
60
mV
(6), (7)
LORVCORE_3.3
VCORE Transient Load regulation - 3.3 V range
-100
–
100
mV
(6), (7)
–
125
–
°C
160
–
–
°C
–
10
–
°C
TWARN_CORE
TSD_CORE
VCORE Thermal Warning Threshold
VCORE Thermal Shutdown Threshold
TSD_CORE_HYST VCORE Thermal Shutdown Hysteresis
(6)
Notes
6.
7.
Guaranteed by design.
COUT = 40 µF, ICORE = 10 mA to 1.5 A, dICORE/dt  2.0 A/µs
33907_8
12
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 4. Operating Range (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
4.95
4.9
4.85
3.2505
3.234
3.201
5.0
5.0
5.0
3.3
3.3
3.3
5.05
5.1
5.15
3.3495
3.366
3.399
Unit
Notes
VCCA VOLTAGE REGULATOR
VCCA
VCCA Output Voltage
• 5.0 V config. with Internal ballast at 100 mA
• 5.0 V config with external ballast at 200 mA
• 5.0 V config with external ballast at 300 mA
• 3.3 V config with Internal ballast at 100 mA
• 3.3 V config with external ballast at 200 mA
• 3.3 V config with external ballast at 300 mA
V
(8)
(8)
ICCA_IN
VCCA Output Current (int. MOSFET)
–
–
100
mA
ICCA_OUT
VCCA Output Current (external PNP)
–
–
300
mA
ICCA_LIM_INT
VCCA Output Current Limitation (int. MOSFET)
100
–
675
mA
ICCA_LIM_OUT
VCCA Output Current Limitation (external PNP)
300
–
675
mA
ICCA_LIM_FB
VCCA Output Current Limitation Foldback
80
–
200
mA
VCCA_LIM_FB
VCCA Output Voltage Foldback Threshold
0.5
–
1.1
V
VCCA_LIM_HYST
VCCA Output Voltage Foldback Hysteresis
0.07
–
0.3
V
ICCA_BASE_SC
VCCA Base Current Capability (internal pull-up)
–
20
30
mA
ICCA_BASE_SK
VCCA Base Current Capability (Current sink)
20
65
–
mA
VCCA Thermal Warning Threshold (int. ballast only)
–
125
–
°C
160
–
–
°C
VCCA Thermal Shutdown Hysteresis
–
10
–
°C
(9)
VCCA Transient Load Regulation
• ICCA = 10 mA to 100 mA (internal MOSFET)
• ICCA = 10 mA to 300 mA (external ballast)
–
–
1.0
%
(9)
TWARN_CCA
TSDCCA
TSDCCA_HYST
LORTVCCA
VCCA Thermal Shutdown Threshold (int. ballast only)
Notes
8.
9.
External PNP gain within 150 to 450
Guaranteed by design.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
13
Table 4. Operating Range (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
Notes
VAUX VOLTAGE REGULATOR
VAUX_5
VAUX Output Voltage (5.0 V configuration)
4.85
5.0
5.15
V
VAUX_33
VAUX Output Voltage (3.3 V configuration)
3.2
3.3
3.4
V
VAUX_TRK
VAUX Tracking Error (VAUX_5 and VAUX_33)
-15
–
+15
mV
IAUX_OUT
VAUX Output Current
–
–
300
mA
IAUX_LIM
VAUX Output Current Limitation
300
–
700
mA
IAUX_LIM_FB
VAUX Output Current Limitation Foldback
100
–
530
mA
VAUX_LIM_FB
VAUX Output Voltage Foldback Threshold
0.5
–
1.1
V
VAUX_LIM_HYST
VAUX Output Voltage Foldback Hysteresis
0.05
–
0.3
V
VAUX Base Current Capability
–
7.0
–
–
-7.0
–
mA
TSDAUX
VAUX Thermal Shutdown Threshold
160
–
–
°C
TSDAUX_HYST
VAUX Thermal Shutdown Hysteresis
–
10
–
°C
(10)
VAUX Static Load Regulation (IAUX_OUT = 10 to 300 mA)
–
15
–
mV
(10)
VAUX Transient Load Regulation
• IAUX_OUT = 10 mA to 300 mA
–
–
1.0
%
(10)
4.8
5.0
5.2
V
–
–
100
mA
IAUX_BASE_SC
IAUX_BASE_SK
LORVAUX
LORTVAUX
5V-CAN VOLTAGE REGULATOR
VCAN
VCAN Output Voltage
VSUP > 6.0 V in Buck mode
VSUP > VSUP_UV_L in Boost mode
ICAN_OUT
VCAN Output Current
ICAN_LIM
VCAN Output Current Limitation
100
–
250
mA
TSDCAN
VCAN Thermal Shutdown Threshold
160
–
–
°C
TSDCAN_HYST
VCAN Thermal Shutdown Hysteresis
–
10
–
°C
VCAN Undervoltage Detection Threshold
4.25
–
4.8
V
VCAN Undervoltage Hysteresis
0.07
–
0.22
V
VCAN Overvoltage Detection Threshold
5.2
–
5.55
V
VCAN Overvoltage Hysteresis
0.07
–
0.22
V
–
100
–
mV
VCAN_UV
VCAN_UV_HYST
VCAN_OV
VCAN_OV_HYST
LORVCAN
VCAN Load Regulation (from 0 to 50 mA)
(10)
(10)
Notes
10.
Guaranteed by design.
33907_8
14
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 4. Operating Range (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
7.2
–
8.0
V
–
0.1
–
V
Notes
FAIL-SAFE MACHINE VOLTAGE SUPERVISOR
VPRE_OV
VPRE Overvoltage Detection Threshold
VPRE_OV_HYST
VPRE Overvoltage Hysteresis
VCORE_FB_UV
VCORE FB Undervoltage Detection Threshold
0.67
–
0.773
V
VCORE_FB_UV_D VCORE FB Undervoltage Detection Threshold - Degraded mode
0.45
–
0.58
V
10
–
27
mV
0.84
–
0.905
V
10
–
30
mV
VCORE Internal Pull-down Current
5.0
12
25
mA
VCCA_UV_5
VCCA Undervoltage Detection Threshold (5.0 V config)
4.5
–
4.75
V
VCCA_UV_5D
VCCA Undervoltage Detection Threshold (Degraded 5.0 V)
3.0
–
3.2
V
VCCA_UV_33
VCCA Undervoltage Detection Threshold (3.3 V config)
3.0
–
3.2
V
–
0.07
–
V
VCORE_FB_UV_
VCORE FB Undervoltage Hysteresis
(11)
(11)
HYST
VCORE_FB_OV
VCORE FB Overvoltage Detection Threshold
VCORE_FB_OV_HY VCORE FB Overvoltage Hysteresis
(11)
ST
IPD_CORE
VCCA_UV_HYST
VCCA Undervoltage Hysteresis
VCCA_OV_5
VCCA Overvoltage Detection Threshold (5.0 V config)
5.25
–
5.5
V
VCCA_OV_33
VCCA Overvoltage Detection Threshold (3.3 V config)
3.4
–
3.6
V
VCCA Overvoltage Hysteresis
–
0.15
–
V
VCCA Internal Pull-down Resistor (enabled when VCCA is switched
off)
50
–
160

VAUX_UV_5
VAUX Undervoltage Detection Threshold (5.0 V config)
4.5
–
4.75
V
VAUX_UV_5D
VAUX Undervoltage Detection Threshold (Degraded 5.0 V)
3.0
–
3.2
V
VAUX_UV_33
VAUX Undervoltage Detection Threshold (3.3 V config)
3.0
–
3.2
V
–
0.07
–
V
VCCA_OV_HYST
RPD_CCA
VAUX_UV_HYST
VAUX Undervoltage Hysteresis
VAUX_OV_5
VAUX Overvoltage Detection Threshold (5.0 V config)
5.25
–
5.5
V
VAUX_OV_33
VAUX Overvoltage Detection Threshold (3.3 V config)
3.4
–
3.6
V
VAUX Overvoltage Hysteresis
–
0.07
–
V
VAUX Internal Pull-down Resistor
50
–
170

VAUX_OV_HYST
RPD_AUX
(11)
(11)
(11)
(11)
Notes
11.
Guaranteed by design.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
15
Table 4. Operating Range (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
Notes
(12)
FAIL-SAFE OUTPUTS
VRSTB_OL
Reset Low Output Level (I_RSTB = 2.0 mA and 2.0 V < VSUP <
40 V)
–
–
0.5
V
IRSTB_LIM
Reset Output Current Limitation
12
–
25
mA
VRSTB_IL
External Reset Detection Threshold (falling)
1.0
–
VRSTB_IH
External Reset Detection Threshold (rising)
–
–
2.0
V
0.2
–
–
V
VRSTB_IN_HYST
External Reset Input Hysteresis
V
VFS0B_OL
FS0B low Output Level (I_FS0b = 2.0 mA)
–
–
0.5
V
IFS0B_LK
FS0B Input Current Leakage (VFS0B = 28 V)
–
–
1.0
µA
IFS0B_LIM
FS0B Output Current Limitation
6.0
–
12
mA
MULTI-PURPOSE IOS
ANALOG INPUT
VIO_ANA_WD
Measurable Input Voltage (wide range)
3.0
–
19
V
VIO_ANA_TG
Measurable Input Voltage (tight range)
3.0
–
9.0
V
–
–
100
µA
High Input Voltage Detection Threshold (IO_0:1, IO_4:5)
• Min Limit = 2.7 V at VSUP = 40 V
2.6
–
–
V
High Input Voltage Detection Threshold (IO_2, IO_3)
2.0
–
–
V
Digital Low Input Level (IO_0:1; IO_4:5)
–
–
2.1
V
VIO_HYST
Input Voltage Hysteresis (IO_0:1, IO_4:5)
50
120
500
mV
VIO23_IL
Digital Low Input Level (IO_2, IO_3)
–
–
0.9
V
Input Voltage Hysteresis (IO_2, IO_3)
200
450
700
mV
IIO_IN_0:1
Input Current for IO_0:1
-5.0
–
100
µA
IIO_IN_2:5
Input Current for IO_2:5
-5.0
–
5.0
µA
Input Current for IO_0:5 in LPOFF
-1.0
–
1.0
µA
IIO_IN_ANA
Input Current
DIGITAL INPUT
VIO_IH
VIO23_IH
VIO_IL
VIO23_HYST
IIO_IN_LPOFF
(13)
(13)
OUTPUT GATE DRIVER
VIO_OH
High Output Level at IIO_OUT = -2.5 mA
VPRE - 1.5
–
VPRE
V
VIO_OL
Low Output Level at IIO_OUT = +2.5 mA
0.0
–
1.0
V
Output Current Capability
2.5
–
–
–
–
-2.5
mA
VIO_OUT_SK
VIO_OUT_SC
Notes
12. For VSUP < 2.0 V, all supplies are already off and external pull-up on RSTB (e.g VCORE or VCCA) pulls the line down.
13.
Guaranteed by design.
33907_8
16
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 4. Operating Range (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
Notes
VAMUX_ACC
Voltage Sense Accuracy (VSNS, IO_0, IO_1) using 5.1 kresistor
-5.0
–
5.0
%
(14)
VAMUX_WD_5
Divider Ratio (wide input voltage range) at VDDIO = 5.0 V
–
5.0
–
VAMUX_WD_3P3
Divider Ratio (wide input voltage range) at VDDIO = 3.3 V
–
7.0
–
VAMUX_TG_5
Divider Ratio (tight input voltage range) at VDDIO = 5.0 V
–
2.0
–
VAMUX_TG_3P3
Divider Ratio (tight input voltage range) at VDDIO = 3.3 V
–
3.0
–
ANALOG MULTIPLEXER
VAMUX_REF1
Internal Voltage Reference with 6.0 V < VSUP < 19 V
2.475
2.5
2.525
V
VAMUX_REF2
Internal Voltage Reference with VSUP  6.0 V or VSUP 19 V
2.468
2.5
2.532
V
–
9.9
–
mV/°C
2.08
2.15
2.22
V
VAMUX_TP_CO
VAMUX_TP
Internal Temperature Sensor Coefficient
Temperature Sensor mux_output Voltage (at TJ = 165 °C)
(15)
INTERRUPT
VINTB_OL
Low output level (IINT = 2.5mA)
–
–
0.5
V
RPU_INT
Internal pull-up resistor (connected to VDDIO)
–
10
–
K
IINT_LK
Input leakage current
–
–
1
µA
CAN TRANSCEIVER
CAN LOGIC INPUT PIN (TXD)
VTXD_IH
TXD High Input Threshold
0.7 x VDDIO
–
–
V
VTXD_IL
TXD Low Input Threshold
–
–
0.3 x VDDIO
V
TXDPULL-UP
TXD Main Device Pull-up
20
33
50
K
-1.0
–
1.0
µA
TXDLK
TXD Input Leakage Current, VTXD = VDDIO
CAN LOGIC OUTPUT PIN (RXD)
VRXD_OL1
Low Level Output Voltage (IRXD = 250 µA)
–
–
0.4
V
VRXD_OL2
Low Level Output Voltage (IRXD = 1.5 mA)
–
–
0.9
V
VOUTHIGH
High Level Output Voltage (IRXD = -250 µA, VDDIO = 3.0 V to
5.5 V)
VDDIO - 0.4V
–
–
V
Notes
14. If a higher resistor value than recommended is used, the accuracy degrades.
15. Guaranteed by design.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
17
Table 4. Operating Range (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
-12
–
12
V
Differential Input Voltage Threshold in Sleep Mode
0.5
–
0.9
V
VIN_HYST
Differential Input Hysteresis (in Tx, Rx mode)
50
–
–
mV
RIN_CHCL
CANH, CANL Input Resistance
5.0
–
50
k
RIN_DIFF
CAN Differential Input Resistance
10
–
100
k
Input Resistance Matching
-3.0
–
3.0
%
VCANH
CANH Output Voltage (45 < RBUS < 65 )
• TX dominant state
• TX recessive state
2.75
2.0
–
2.5
4.5
3.0
VCANL
CANL Output Voltage (45 < RBUS < 65 )
• TX dominant state
• TX recessive state
0.5
2.0
–
2.5
2.25
3.0
VOH-VOL
Differential Output Voltage
• TX dominant state (45 < RBUS < 65 )
• TX recessive state
1.5
-50
2.0
0.0
3.0
50
V
mV
ICANL-SK
CANL Sink Current Under Short-circuit Condition (VCANL 12 V,
CANL driver ON, TXD low)
40
–
100
mA
ICANH-SC
CANH Source Current Under Short-circuit Condition 
(VCANH = -2.0 V, CANH driver ON, TXD low)
-100
–
-40
mA
RINSLEEP
CANH, CANL Input Resistance Device Supplied and in CAN
Sleep Mode
5.0
–
50
k
VCANLP
CANL, CANH Output Voltage in Sleep Modes. No Termination
load.
-0.1
0.0
0.1
V
ICAN
CANH, CANL Input Current, Device Unsupplied, VSUP and VIO
connected to GND
• VCANH, VCANL = 5.0 V
-10
–
10
TOT
Overtemperature Detection
160
–
–
°C
THYST
Overtemperature Hysteresis
-10
–
+20
°C
Notes
CAN OUTPUT PINS (CANH, CANL)
DIFF_COM_MODE Differential Input Comparator Common Mode Range
VIN_DIFF_SLEEP
RIN_MATCH
V
V
µA
DIGITAL INTERFACE
MISOH
High Output Level on MISO (IMISO = 1.5 mA)
VDDIO - 0.4
–
–
V
MISOL
Low Output Level on MISO (IMISO = 2.0 mA)
–
–
0.4
V
IMISO
Tri-state Leakage Current (VDDIO = 5.0 V)
-5.0
–
5.0
µA
VDDIO
Supply Voltage for MISO Output Buffer
3.0
–
5.5
V
SPILK
SCLK,NCS,MOSI Input Current
-1.0
–
1.0
µA
VSPI_IH
SCLK,NCS,MOSI High Input Threshold
2.0
–
–
V
VSPI_IL
SCLK,NCS,MOSI Low Input Threshold
–
–
0.8
V
200
400
800
K
RSPI
NCS,MOSI Internal Pull-up (pull-up to VDDIO)
33907_8
18
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 4. Operating Range (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
Notes
DEBUG
VDEBUG_IL
Low Input Voltage Threshold
2.1
2.35
2.6
V
VDEBUG_IH
High Input Voltage Threshold
4.35
4.6
4.97
V
IDEBUG_LK
Input Leakage Current
-10
–
10
µA
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
19
4.3
Dynamic Electrical Characteristics
Table 5. Dynamic Electrical Characteristics
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
0.5
–
8.0
MHz
5.0
5.0
–
–
30
50
Notes
DIGITAL INTERFACE TIMING
fSPI
SPI Operation Frequency (50% DC)
tMISO_TRANS
MISO Transition Speed, 20 - 80%
• VDDIO = 5.0 V, CLOAD = 50 pF
• VDDIO = 5.0 V, CLOAD = 150 pF
ns
tCLH
Minimum Time SCLK = HIGH
62
–
-
ns
tCLL
Minimum Time SCLK = LOW
62
–
-
ns
tPCLD
Propagation Delay (SCLK to data at 10% of MISO rising edge)
–
–
30
ns
tCSDV
NCS = LOW to Data at MISO Active
–
–
75
ns
tSCLCH
SCLK Low Before NCS Low (setup time SCLK to NCS change H/L)
75
–
–
ns
tHCLCL
SCLK Change L/H after NCS = low
75
–
–
ns
tSCLD
SDI Input Setup Time (SCLK change H/L after MOSI data valid)
40
–
–
ns
tHCLD
SDI Input Hold Time (MOSI data hold after SCLK change H/L)
40
–
–
ns
tSCLCL
SCLK Low Before NCS High
100
–
–
ns
tHCLCH
SCLK High After NCS High
100
–
–
ns
tPCHD
NCS L/H to MISO at High-impedance
–
–
75
ns
NCS Min. High Time
500
–
–
ns
NCS Filter Time
10
–
40
ns
tONNCS
tNCS_MIN
33907_8
20
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 5. Dynamic Electrical Characteristics (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
NCS
Max
Unit
Notes
tONNCS
tSCLCH
tHCLCL
tCLH
tCLL
tSCLCL
tHCLCH
SCLK
MISO
tPCLD
tCSDV
Tri-state
tPCHD
Not used
LSB
MSB
tHCLD
tSCLD
MOSI
LSB
MSB
Figure 5. SPI Timing Diagram
500 ns min
NCS
3.5 µs min
Any Fail Safe
register acces
Any Main register
acces
Any Fail Safe
register acces
Figure 6. Register Access Restriction
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
21
Table 5. Dynamic Electrical Characteristics (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
Notes
CAN DYNAMIC CHARACTERISTICS
tDOUT
TXD Dominant State Timeout
0.8
–
5.0
ms
tDOM
Bus Dominant Clamping Detection
0.8
–
5.0
ms
tLOOP
Propagation Loop Delay TXD to RXD
• RLOAD = 120 , C between CANH and CANL = 100 pF, 
C at RxD < 15 pF
–
–
255
t1PWU
Single Pulse Wake-up Time
0.5
–
5.0
µs
t3PWU
Multiple Pulse Wake-up Time
0.5
–
1.0
µs
t3PTO1
Multiple Pulse Wake-up Timeout (120 µs bit selection)
110
120
–
µs
t3PTO2
Multiple Pulse Wake-up Timeout (360µs bit selection)
350
360
–
µs
–
–
100
µs
tCAN_READY
Delay to enable CAN by SPI Command (NCS rising edge) to CAN
to Transmit (device in normal mode and CAN interface in TxRx
mode)
ns
(16)
FAIL-SAFE STATE MACHINE
OSCFSSM
Oscillator
400
–
500
kHz
CLKFS_MIN
Fail-safe Oscillator Monitoring
150
–
–
kHz
tIC_ERR
IO_0:5 Filter Time
4.0
–
20
µs
tACK_FS
Acknowledgement Counter (used for IC error handling IO_1 and
IO_5)
7.0
–
9.7
ms
0.8
–
1.3
ms
T_DFS_recovery IO_0 filter time to recover from deep reset and fail state
FAIL-SAFE OUTPUT
tRSTB_FB
RSTB feedback filter time
8.0
–
15
µs
tFSOB_FB
FS0B feedback filter time
8.0
–
15
µs
tRSTB_BLK
RSTB feedback blanking time
180
–
320
µs
tFSOB_BLK
FS0B feedback blanking time
180
–
320
µs
tRSTB_POR
Reset delay time (after a Power On Reset or from LPOFF)
12
15.9
23.6
ms
tRSTB_LG
Reset duration (long pulse)
8.0
–
10
ms
tRSTB_ST
Reset duration (short pulse)
1.0
–
1.3
ms
tRSTB_IN
External Reset delay time
8.0
–
15
µs
T_FS_FB
RSTB, FS0B Feedback Filter Time
8.0
–
15
µs
Fail-safe Output Diagnostic Counter (FS0B)
550
–
800
µs
-2.0
–
2.0
V/µs
T_DIAG_SC
VSUP VOLTAGE SUPPLY
DVSUP/DT
Supply Voltage Slew Rate
Notes
16. For proper CAN operation, TXD must be set to high level before CAN being enabled by SPI, and must remain high for at least
TCAN_READY
33907_8
22
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 5. Dynamic Electrical Characteristics (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
418
440
462
kHz
–
–
30
ns
VPRE Soft Start Duration (COUT  100 µF)
500
–
700
µs
VPRE Current Limitation Blanking Time
200
–
600
ns
tIPRE_OC
VPRE Overcurrent Filtering Time
30
–
120
ns
tPRE_UV
VPRE Undervoltage Filtering Time
20
–
40
µs
Vpre Shut-off Filtering Time
3.0
–
6.0
µs
VPRE Load Regulation Variation
–
–
25
A/ms
tPRE_WARN
VPRE Thermal Warning Filtering Time
30
–
40
µs
tPRE_TSD
VPRE Thermal Detection Filtering Time
1.3
–
–
µs
tVSUP_IPFF
IPFF Input Voltage Filtering Time
1.0
–
4.0
µs
tIPRE_IPFF
IPFF High Side Peak Current Filter Time
100
–
300
ns
–
–
50
ns
1.0
–
3.0
µs
Notes
VPRE VOLTAGE PRE-REGULATOR
fSW_PRE
VPRE Switching Frequency
tSW_PRE
VSW_PRE On and Off Switching Time
tPRE_SOFT
tPRE_BLK_LIM
tPRE_UV_4p3
dIPRE/DT
tLS_RISE/FALL
LS Gate Voltage Switching Time (IOUT = 300 mA)
(17)
(17)
(17)
VSENSE VOLTAGE REGULATOR
tVSNS_UV
VSNS Undervoltage Filtering Time
VCORE VOLTAGE REGULATOR
tCORE_BLK_LIM
VCORE Current Limitation Blanking Time
20
–
40
ns
fSW_CORE
VCORE Switching Frequency
2.28
2.4
2.52
MHz
tSW_CORE
VSW_CORE On and Off Switching Time
6.0
–
12
ns
VCORE_SOFT
VCORE Soft Start (COUT = 100 µF max)
–
–
10
V/ms
tCORE_WARN
VCORE Thermal Warning Filtering Time
30
–
40
µs
tCORE_TSD
VCORE Thermal Detection Filtering Time
0.5
–
–
µs
VCCA Output Current Limitation Filter Time
1.0
–
3.0
µs
VCCA Output Current Limitation Duration
10
50
–
–
–
–
ms
VCCA Thermal Warning Filtering Time
30
–
40
µs
tCCA_TSD
VCCA Thermal Detection Filter Time (int. MOSFET)
1.5
–
–
µs
dILOAD/dt
VCCA Load Transient
–
2.0
–
A/ms
VCCA Soft Start (5.0 V and 3.3 V)
–
–
50
V/ms
VCCA VOLTAGE REGULATOR
tCCA_LIM
tCCA_LIM_OFF1
tCCA_LIM_OFF2
tCCA_WARN
VCCA_SOFT
(17)
Notes
17. Guaranteed by characterization.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
23
Table 5. Dynamic Electrical Characteristics (continued)
TCASE = -40 to 125 °C, unless otherwise specified. VSUP = VSUP_UV_L to 40 V, unless otherwise specified. All voltages referenced
to ground. When 28 V < VSUP < 40 V, thermal dissipation must be considered (Figure 22).
Symbol
Parameter
Min
Typ
Max
Unit
VAUX Output Current Limitation Filter Time
1.0
–
3.0
µs
VAUX Output Current Limitation Duration
10
50
–
–
–
–
ms
tAUX_TSD
VAUX Thermal Detection Filter Time
1.5
–
–
µs
dIAUX/dt
VAUX Load Transient
–
2.0
–
A/ms
VAUX Soft Start (5.0 V and 3.3 V)
–
–
50
V/ms
Notes
VAUX VOLTAGE REGULATOR
tAUX_LIM
tAUX_LIM_OFF1
tAUX_LIM_OFF2
VAUX_SOFT
(18)
5V-CAN VOLTAGE REGULATOR
tCAN_LIM
Output Current Limitation Filter Time
2.0
–
4.0
µs
tCAN_TSD
VCAN Thermal Detection Filter Time
1.0
–
–
µs
tCAN_UV
VCAN Undervoltage Filtering Time
4.0
–
6.0
µs
tCAN_OV
VCAN Overvoltage Filtering Time
100
–
200
µs
dICAN/dt
VCAN Load Transient
–
100
–
A/ms
VPRE Overvoltage Filtering Time
128
–
234
µs
tCORE_UV
VCORE FB Undervoltage Filtering Time
4.0
–
10
µs
tCORE_OV
VCORE FB Overvoltage Filtering Time
128
–
234
µs
tCCA_UV
VCCA Undervoltage Filtering Time
4.0
–
10
µs
tCCA_OV
VCCA Overvoltage Filtering Time
128
–
234
µs
tAUX_UV
VAUX Undervoltage Filtering Time
4.0
–
10
µs
tAUX_OV
VAUX Overvoltage Filtering Time
128
–
234
µs
0.0
–
100
kHz
–
–
10
(18)
FAIL-SAFE MACHINE VOLTAGE SUPERVISOR
tPRE_OV
MULTI-PURPOSE IOS
DIGITAL INPUT
FIO_IN
Digital Input Frequency Range
ANALOG MULTIPLEXER
tMUX_READY
SPI Selection to Data Ready to be Sampled on Mux_out
• VDDIO = 5.0 V, CMUX_OUT = 1.0 nF
µs
INTERRUPT
tINTB_LG
INTB Pulse Duration (long)
100
–
–
µs
tINTB_ST
INTB Pulse Duration (short)
25
–
–
µs
50
70
90
µs
FUNCTIONAL SATE MACHINE
tWU_GEN
General Wake-up Signal Deglitch Time (for IO wu signal)
Notes
18. Guaranteed by characterization.
33907_8
24
Analog Integrated Circuit Device Data
Freescale Semiconductor
5
Functional Description
5.1
Introduction
The 33907_8 is the third generation of the System Basis Chip, combining:
• High efficiency switching voltage regulator for MCU, and linear voltage regulators for integrated CAN interface, external ICs
such as sensors, and accurate reference voltage for A to D converters.
• Built in enhanced high speed CAN interface (ISO11898-2 and -5), with local and bus failure diagnostic, Protection and Failsafe operation mode.
• Low power mode, with ultra low current consumption.
• Various wake-up capabilities
• Enhanced safety features with multiple fail-safe outputs and scheme.
5.2
Functional Pin Description
5.2.1
Power Supply(VSUP1, VSUP2, VSUP3)
VSUP1 and VSUP2 are the inputs pins for internal supply dedicated to SMPS regulators. VSUP3 is the input pin for internal
voltage reference. VSUP1, 2, and 3 are robust against ISO7637 pulses.
5.2.2
VSENSE Input (VSENSE)
This pin must be connected to the battery line (before the reverse battery protection diode), via a serial resistor. It incorporates
a threshold detector to sense the battery voltage, and provide a battery early warning. It also includes a resistor divider to
measure the VSENSE voltage via the MUX-OUT pin. VSENSE pin is robust against ISO7637 pulse.
5.2.3
VCORE Output (1.2 V, 3.3 V)
On 33907 and 33908 product versions, the VCORE block is an SMPS regulator. The main difference between both versions is
the current capability of the VCORE regulator.
On 33907 and 33908 product versions, the voltage regulator is a step down DC-DC converter operating in voltage control mode.
The output voltage is selectable (1.2 V or 3.3 V) through an external resistor divider connected between VCORE and the feedback
pin (FB_Core) (Figure 1). The stability of the converter is done externally, by using the COMP_Core pin.
5.2.4
VAUX OUTPUT, 5.0 V, 3.3 V Selectable
The VAUX pin provides an auxiliary output voltage (5.0 V, 3.3 V) selectable through an external resistor connected to SELECT
pin. It uses an external PNP ballast transistor for flexibility and power dissipation constraints.
The VAUX output voltage regulator can be used as “sensor supply” (external ECU supply) or “auxiliary supply” (local ECU
supply).
Overcurrent, overvoltage, and undervoltage detectors are provided.
VAUX can be turned ON or OFF (if not configured as safety critical) via a SPI command. VAUX overcurrent and overvoltage
information disables VAUX, reported in the dedicated register, and generates an Interrupt.
VAUX is enabled by default.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
25
5.2.5
VCCA Output, 5.0 V or 3.3 V Selectable
The VCCA voltage regulator is used to provide an accurate voltage output (5.0 V, 3.3 V) selectable through an external resistor
connected to the SELECT pin.
The VCCA output voltage regulator can be configured using an internal ballast transistor delivering very good accuracy (+/- 1%
for 5 V configuration and +/- 1.5% for 3.3 V configuration), with a limited current capability (100 mA) for an Analog to Digital
converter, or with an external PNP transistor, giving higher current capability with lower output voltage accuracy when using a
local ECU supply.
Overcurrent, overvoltage, and undervoltage detectors are provided.
VCCA can be turned ON or OFF (if not configured as safety critical) via a SPI command. VCCA overcurrent (with the use of
external PNP only) and overvoltage information disables VCCA. Diagnostics are reported in the dedicated register and generate
an Interrupt.
VCCA is enabled by default.
5.2.6
SELECT Input (VCCA, VAUX Voltage Configuration)
VCCA and VAUX output voltage configurations are set by connecting an external resistor between SELECT pin and Ground.
According to the value of this resistor, the voltage of VCCA and VAUX are configured after each Power On Reset, and after a
wake-up event when device is in LPOFF. Information latches until the next hardware configuration read.
Regulator voltage values can be read on the dedicated register via the SPI.
Table 6. VCCA/VAUX Voltage Selection
VCCA(V)
VAUX(V)
R Select
Recommended value
3.3
3.3
<7.0 K
5.1 K5.0%
5.0
5.0
10.8 << 13.2 K
12 K5.0%
3.3
5.0
21.6 << 26.2 K
24 K5.0%
5.0
3.3
45.9 << 56.1 K
51 K5.0%
When VAUX is not used, the output VCCA voltage configuration is set using an external resistor connected between the SELECT
and the VPRE pin.
Table 7. VCCA Voltage Selection (VAUX not used)
VCCA(V)
R select
Recommended Value
3.3
<7.0 K
5.1 K5.0%
21.6 << 26.2 K
24 K5.0%
10.8 << 13.2 K
12 K5.0%
45.9 << 56.1 K
51 K5.0%
5.0
5.2.7
Debug Input (Entering In Debug Mode)
The DEBUG pin allows the product to enter Debug mode.
To activate the Debug mode, voltage applied to the DEBUG pin must be within the VDEBUG_IL and VDEBUG_IH range at startup.
If the voltage applied to DEBUG pin is out of these limits, before VCORE ramp-up, the device settles into Normal mode.
When the Debug mode is activated, the FS0B output is asserted low at startup.
As soon as the FS0B is released to “high” via SPI (Good WD answer and FS_OUT writing) this pin is never activated whatever
the fault is reported.
In debug mode, any errors from watchdog are ignored (No reset and No fail-safe), even if the whole functionality of the watchdog
is kept ON (Seed, LFSR, Wd_refresh counter, WD error counter). This allows an easy debug of the hardware and software
routines (i.e. SPI commands).
33907_8
26
Analog Integrated Circuit Device Data
Freescale Semiconductor
When the Debug mode is activated, the CAN transceiver is set to Normal operation mode. This allows communication with the
MCU, in case SPI communication is not available (case of MCU not programmed).
To exit Debug mode, the pin must be tied to ground through an external pull-down resistor. A Power On Reset occurs.
5.2.8
5 V-CAN Voltage Regulator
5 V-CAN voltage regulator is a linear regulator fully dedicated to the internal HSCAN interface. An external capacitor is required.
Overcurrent, overvoltage, and undervoltage detectors are provided. During overvoltage, the 5 V-CAN regulator switches off.
Information is reported in the dedicated register and this generates an Interrupt. The 5 V-CAN regulator is enabled by default.
5.2.9
Multiplexer Output Mux_out
The MUX_OUT pin (Figure 7) delivers analog voltage to the MCU ADC input. The voltage to be delivered to MUX_OUT is
selected via the SPI, from one of the following parameters:
• VSENSE
• VIO_O
• VIO_1
• Internal 2.5 V reference
• Die temperature sensor T (°C) = Vmux_Out * 165 / 2.15
Voltage range at MUX_OUT is from GND to VDDIO (3.3 V or 5.0 V)
Vsense
R
1
SPI selection
Mux_out
R
2
R
3
R
5
R
4
SPI selection
3.3V
3.3V
Ratio#1 Ratio#2
5V
Ratio#2
5V
Ratio#1
Internal 2.5V reference
SPI selection
IO_0
Same as above
IO_1
Same as above
Die temperature sensor
Figure 7. Simplified Analog Multiplexer Block Diagram
5.2.10 CANH, CANL, RXD, TXD
These are the pins of the high speed CAN physical interface.
The CAN interface is connected to the MCU via the RXD and TXD pins.
The HSCAN also exhibits wake-up capability with a very low current consumption.
5.2.11 INTERRUPT (INTB)
The INTB output pin generates a low pulse when an Interrupt condition occurs. The INTB behavior as well as the pulse duration
are set through the SPI during INIT phase.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
27
5.2.12 I/O pins (I/O_0:I/O_6)
The 33907_8 includes six multi-purpose I/Os (I/O_0 to I/O_5).
I/O_0, I/O_1, I/O_4, and I/O_5 are load dump proof and robust against ISO7637 pulses. An external serial resistor must be
connected to those pins. I/O_2 and I/O_3 are not load dump proof.
Table 8. I/Os Configuration
I/0 Number
Analog Input
Digital Input
Wake-up Capability
Output Gate Driver
IO_0
X
X
X
IO_1
X
X
X
IO_2
X
X
IO_3
X
X
IO_4
X
X
X
IO_5
X
X
X
• IO_0:1 are selectable as follows:
Analog input (load dump proof) sent to the MCU through the MUX_OUT pin.
Wake-up input on the rising or falling edge or based on the previous state.
Digital input (logic level) sent to the MCU through the SPI.
Safety purpose: Digital input (logic level) to perform an IC error monitoring (both IO_0 AND IO_1 are used if configured as
safety inputs).
• IO_2:3 are selectable as follows:
Digital input (logic level) sent to the MCU through the SPI.
Wake-up input (logic level) on the rising or falling edge or based on the previous state.
Safety purpose: Digital input (logic level) to monitor MCU error signals (both IO_2 AND IO_3 are used if configured as
safety inputs).
Only bi-stable protocol is available.
Reset Phase
Normal Phase
Error Phase
Config Phase
FCCU_eout[0]
FCCU_eout[1]
Figure 8. IO_2:3 MCU Error Monitoring: Bi-stable Protocol
• IO_4:5 are selectable as follows:
Digital input (logic level) sent to the MCU through the SPI.
Wake-up input (load dump proof) on rising or falling edge or based on previous state.
Output gate driver for LS logic level MOSFET.
Safety purpose: Digital input (logic level) to perform an IC error monitoring (both IO_4 AND IO_5 are used if configured as
safety inputs).
33907_8
28
Analog Integrated Circuit Device Data
Freescale Semiconductor
Error signal (IO_4 input)
MC33907_8 Internal IO_4 signal
PC33907_8
latched
Acknowledgment counter
Reset
counter
Restart Acknowledgment
counter
Acknowledgement signal
from MCU (IO_5 input)
Filter time
RST
RSTB
FS0b
FSOB
The error is acknowledged by the MCU
then, internal IO_4 signal is released
The error is NOT
acknowledged by the MCU
So, FSOB
FS0b is activated at the
end of the counter
Figure 9. External Error Signal Handling
5.2.13 SAFE Output PINs (FS0B, RSTB)
FS0B is asserted low when a fault event occurs (See Faults Triggering FS0B Activation on page 42).The objective of this pin is
to drive an electrical safe circuitry to deactivate the whole system and set the ECU in a protected and known state.
An external pull-up circuitry is mandatory connected to VDDIO or VSUP3. If pull-up is connected to VSUP3, the value of this pullup must be above 10 kohm.
After each power on reset or after each wake-up event (LPOFF) the FS0B pin is asserted low. Then the MCU can decide to
release the FS0B pin, when the application is ready to start.
The RSTB pin must be connected to MCU and is active low. An external pull-up resistor must be connected to VDDIO.
In default configuration, the RST delay time has three possible values depending of the mode and product configuration:
• The longest one is used automatically following a Power On Reset or when resulting from LPOFF mode (Low Power Off).
• The two reset durations are then available in the INIT_FSSM1 register, which are 1.0 ms and 10 ms. The configured
duration is finally used in the normal operation when a fault occurs leading to a reset activation. The INIT_FSSM1 register
is available (writing) in the INIT FS phase.
5.2.14 Pre-regulator (VPRE)
A highly flexible SMPS pre-regulator is implemented in the 33907_8. It can be configured as “Non-inverting Buck-boost converter”
(Figure 24) or “Standard Buck converter” (Figure 23), depending of the external configuration (Low Side connection). The
configuration is detected automatically during start-up sequence.
The SMPS pre-regulator is working in current mode control and the compensation network is fully integrated in the device. The
high side switching MOSFET is also integrated to make the current control easier.
The pre-regulator delivers a voltage output of 6.5 V, which is used internally.
Overcurrent, overvoltage, and undervoltage detectors are provided.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
29
6
Functional Device Operation
6.1
Mode and State Description of MAIN State Machine
The device has several operation modes. The transition and conditions to enter or leave each mode are illustrated in the
functional state diagram (Figure 10). Two state machines are working in parallel. The Main state machine is in charge of the
power management (VPRE, VCORE, VAUX, VCCA,...) and the fail-safe state machine is in charge of all the safety aspect (WD,
RSTB, FS0B,...).
6.1.1
Buck or Buck Boost Configuration
An external low side logic level MOSFET (N-type) is required to operate in “Non-inverting buck-boost converter”. The connection
of the external MOSFET is detected automatically during the start-up phase.
If the low side is not connected (GATE_LS pin connected to PGND), the product is configured as a standard buck converter.
6.1.2
VPRE ON
Pre-regulator is an SMPS regulator. In this phase, the pre-regulator is switched ON and a softstart with a specified duration is
started to control the VPRE output capacitor charge.
6.1.3
Select Pin Configuration
This phase is detecting the required voltage level on VAUX and VCCA, according to resistor value connected between the
SELECT pin and ground. If the SELECT pin is connected to VPRE via the resistor, it disables the VAUX regulator at start-up.
6.1.4
VCORE/VAUX/VCCA ON
In this stage, the three regulators are switched ON at the same time with a specified soft start duration.
6.1.5
INIT Main
This mode is automatically entered after the device is “Powered ON”. When RSTB is released, initialization phase starts where
the device can be configured via the SPI.
During INIT phase, some registers can only be configured in this mode (refer to Table 12 and Table 13). Other registers can be
written in this mode, and also in Normal mode.
Once the INIT registers configurations are complete, a last register called “INIT INT” must be configured to switch to Normal
mode. Writing data in this register (even same default values), automatically locks the INIT registers, and the product switches
automatically to Normal mode in the Main state machine.
6.1.6
Normal
In this mode, all device functions are available. This mode is entered by a SPI command from the INIT phase by writing in the
INIT INT register.
While in Normal mode, the device can be set to Low power mode (LPOFF) using secured SPI command.
6.1.7
Low Power Mode OFF - LPOFF Sleep
Entering in Low Power mode OFF - SLEEP is only available if the product is in Normal mode by sending a secured SPI command.
In this mode, all the regulators are turned OFF and the MCU connected to VCORE regulator is unsupplied.
33907_8
30
Analog Integrated Circuit Device Data
Freescale Semiconductor
Once the 33907_8 is in LPOFF SLEEP, the device monitors external events to wake-up and leave the Low Power mode. The
wake-up events can occur and depending of the device configuration from:
• CAN
• I/Os inputs
When a wake-up event is detected, the device starts the main state machine again by detecting the VPRE configuration (BUCK
or BUCK-BOOST), the wake-up source is reported to the dedicated SPI register, and the Fail-safe state machine is also
restarted.
Finally, after the wake-up event, the regulators are turned ON and the MCU operation restarts, and the initialization phase is
accessible again.
6.1.8
Low Power Mode OFF - LPOFF VPRE_UV
LPOFF- VPRE_UV is entered when the device is in the INIT or Normal mode, and if the VPRE voltage level is passing the
VPRE_UV_L_4P3 threshold (4.3 V instead of 6.5 V) due to a problem on VPRE.
As the device is in LPOFF, all the regulators are switched OFF. After 1.0 ms the device attempts to recover by switching ON the
VPRE again.
6.1.9
Low Power Mode OFF - LPOFF DEEP FS
LPOFF DEEP FS is entered during start-up if the Power On Reset of the Fail-safe machine is not rising and if the key is OFF.
in this mode, all regulators are OFF and to exit this mode, a high level on IO_0 is required (often connected to key ON key OFF
signal).
LPOFF DEEP FS is also entered if the RSTB pin is asserted low within 8.0 s.
6.2
Mode and State Description of Fail-safe State Machine
6.2.1
LBIST
Included in the fail-safe machine, the Logic Built In Self Test (LBIST) verifies the correct functionality of the FSSM at start-up.
The fail-safe state machine is fully checked and if an issue is reported, the device does not start and the RSTB stays low to finally
go in LPOFF DEEP FS.
LBIST is run at start-up and after each wake-up event when device is in LPOFF mode.
6.2.2
Select Pin Configuration
This phase detects the required voltage level on VAUX and VCCA, according to the resistor value connected between the
SELECT pin and ground, in case VAUX is used or the SELECT pin and VPRE, if VAUX is not used in the application.
This mode is the equivalent mode seen in the main sate machine. Difference is in the fail-safe machine. This detection is used
to internally set the UV/OV threshold on VCCA and VAUX for the voltage supervision.
6.2.3
ABIST
Included in the fail-safe machine, the Analog Built In Self Test (ABIST) verifies the correct functionality of the analog part of the
device, like the voltage supervisor (overvoltage and undervoltage detection) and the fail-safe output feedback (RSTB and FS0B).
The ABIST is run at start-up and after each wake-up event when device is in LPOFF mode.
6.2.4
Release RSTB
In this state, the device releases the RSTB pin.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
31
6.2.5
INIT FS
This mode is automatically entered after the device is “powered on” and only if Built Self Tests (Logic and Analog) have been
passed successfully. This INIT FS mode starts as soon as RSTB is released (means no “Activate RST” faults are present and
no external reset is requested). Faults leading to an “Activate RST” are described in Watchdog Refresh Counter.
In this mode, the device can be configured via the SPI within a maximum time of 256 ms, including first watchdog refresh.
Some registers can only be configured in this mode and is locked when leaving INIT FS mode (refer to Table 12 and Table 13).
It is recommended, to configure first the device before sending the first WD refresh.
As soon as the first good watchdog refresh is sent by the MCU, the device leaves this mode and goes into Normal WD mode.
6.2.6
Normal WD is Running
In this mode, the device is now waits for a periodic watchdog refresh, coming from the MCU within a specific configured window
timing.
Configuration of the watchdog window period can be set during INIT FS phase or in this mode.
This mode is exited if there are consecutive bad watchdog refreshes, or if there is an external reset request.
6.2.7
RST Delay
When the reset pin is asserted low by the device, a delay runs, to release the RSTB, if there is no more faults present.
The reset low duration time is configurable via the SPI in the INIT_ FSSM1 register, which is accessible (writing) only in the INIT
FS phase. All the sources of reset are available in the Watchdog Refresh Counter.
33907_8
32
Analog Integrated Circuit Device Data
Freescale Semiconductor
6.3
Functional State Diagram
Wait
Fail
SAFE
VSUP > VSUP_UV_5
PowerDown
No POR Fail Safe
POR Fail Safe &
Fail Safe Reg. ON
& VSUP > VSUP_UV_5
VSUP < VSUP_UV_L
From
Anywhere
POR Fail Safe
VSUP < VSUP_UV_5
Buck or
Buck Boost
configuration
detection
- RSTb is asserted low
LBIST
LBIST Done &
VPRE>VPRE_UV
120µs elapsed
VSUP < VSUP_UV_5
VPRE
ON
VPRE<VPRE_UV
VPRE>VPRE_UV
SELECT pin
config.
detection
SELECT pin
config.
detection
No IO_0
- RSTb is asserted low
1ms elapsed &
VCORE > VCORE_UV &
VCCA > VCCA_UV &
VAUX > VAUX_UV
VPRE<VPRE_UV
Wait
Deep Fail
Safe
From
Anywhere
PowerDown
- RSTb is asserted low
ABIST
1ms elapsed
RST delay=8s or
RST error counter = 6
Vcore/Vaux/
Vcca ON
ABIST Pass
No activate RST &
- RSTb delay running RST delay expired
- RSTb is asserted low
RST Delay
- Unlock SPI init registers
- SPI config
Activate RST
VPRE_UV_L4P3
INIT MAIN
- SPI init registers locked
NORMAL
MODE
Activate RST or
WD Not OK
LPOFF SLEEP
- Unlock SPI init registers
- Start 256ms open window
- RSTb is released
WD OK
RSTb delay = 8s
LPOFF VPRE_UV
CAN/IOs event
- VCAN/VCORE/VAUX/VCCA OFF
- Fail Safe OFF
External
RST
Activate
RST
NORMAL
WD is
RUNNING
- Start WD close/open window
1ms
Rise IO_0
POR Fail Safe &
Fail Safe Reg. ON &
VPRE OFF
INIT FS
VPRE_UV_L4P3
SPI command
LPOFF DEEP FS
- RSTb is released
No external RST &
No activate RST
External
RST
INIT done
(init int reg. writing)
External
RST
Release
RSTb
Activate RST : any UV, any OV, WD, IO_23
error, deep fail safe, reset by spi, FS0b short
to VDD, SPI DED
Wake up
- VCAN/VCORE OFF
- VAUX/VCCA OFF
- OSC Main ON
- FailSafe ON
MAIN STATE MACHINE
FAIL SAFE STATE MACHINE
Figure 10. Simplified State Diagram
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
33
6.4
Fail-safe Machine
To fulfill safety critical applications, the 33907_8 integrates a dedicated Fail-safe machine (FSM). The FSM is composed of three
main sub-blocks: the Voltage Supervisor (VS), the Fail-safe State Machine (FSSM), and the Fail-safe Output driver (FSO).The
FSM is electrically independent from the rest of the circuitry, to avoid common cause failure.
For this reason, the FSM has its own voltage regulators (analog and digital), dedicated bandgap, and its own oscillator.
Three power supply pins (VSUP 1, 2, & 3) are used to overtake a pin lift issue. The internal voltage regulators are directly
connected on VSUP (one bonding wire per pin is used). Additionally, the ground connection is redundant as well to avoid any
loss of ground.
All the voltages generated in the device are monitored by the voltage supervisor (under & overvoltage) due to a dedicated internal
voltage reference (different from the one used for the voltage regulators). The result is reported to the MCU through the SPI and
delivered to the Fail-safe state machine (FSSM) for action. The FSSM has its own voltage regulator and oscillator. All the safety
relevant signals feed the FSSM, which handles the error handling and controls the fail-safe outputs.
There are two fail-safe outputs: RSTB (asserted low to reset the MCU), and FS0B (asserted low to control any fail-safe circuitry).
The Fail-safe machine is in charge of bringing and maintaining the application in a fail-safe state. Four sub fail-safe states are
implemented to handle the different kinds of failures, and to give a chance for the system to come back to a normal state.
6.5
Fail-safe Machine State Diagram
No POR Fail Safe
From
Anywhere
PowerDown
POR Fail Safe
LBIST
- RSTb is asserted low
LBIST Done &
VPRE>VPRE_UV
SELECT pin
config.
detection
VPRE<VPRE_UV
- RSTb is asserted low
1ms elapsed &
VCORE > VCORE_UV &
VCCA > VCCA_UV &
VAUX > VAUX_UV
ABIST
RSTb delay = 8s
IO_0
- RSTb is asserted low
ABIST Pass
- RSTb delay running
- RSTb is asserted low
RST delay=8s OR
Rst_error_count=6
- VCAN/VCORE OFF
- VAUX/VCCA OFF
- Fail Safe OFF Deep Fail
Safe
- FS0b = Low
- RSTb = Low
Assert RSTb
No activate RST &
RST delay expired
Activate RST
FS0b low & No
activate RST &
RST delay expired
External
RST
- RSTb is released
No external RST &
No activate RST
External RSTb =
8s
External
RST
Activate
RST
2 > RST_error_count < 6
Release
RSTb
Activate RST or
WD Not OK
INIT FS
- Unlock SPI init registers
- Start 256ms open window
- RSTb is released
WD OK
RST delay=8s
- FS0b is asserted low
FS0B Low
Ext. IC error (IO0:1
and/or IO4:5)
Ext. IC error (IO0:1
and/or IO4:5)
External
RST
RST_err_count = 0
& FS_OUT ok
NORMAL
WD is
RUNNING
- Start WD close/open window
Release
FSOb
-FS0b is
released
No FS0b
Figure 11. Simplified Fail-safe State Diagram
33907_8
34
Analog Integrated Circuit Device Data
Freescale Semiconductor
6.6
Watchdog Operation
A windowed watchdog is implemented in the PowerSBC and is based on "question/answer" principle. The watchdog must be
continuously triggered by the MCU in the open watchdog window, otherwise an error is generated. The error handling and
watchdog operations are managed by the Fail-safe state machine. For debugging purpose, this functionality can be inhibited by
setting the right voltage on the DEBUG pin at start-up.
The watchdog window duration is selectable through the SPI during the INIT FS phase or in normal mode. The following values
are available: 1.0 ms, 2.0 ms, 3.0 ms, 4.0 ms, 6.0 ms, 8.0 ms, 12 ms, 16.0 ms, 24 ms, 32 ms, 64 ms, 128 ms, 256 ms, 512 ms,
1024 ms. The watchdog can also be inhibited through the SPI register to allow “reprogramming” (ie.at vehicle level through CAN).
An 8-bit pseudo-random word is generated, due to a Linear Feedback Shift Register implemented in the PowerSBC. The MCU
sends the seed of the LFSR during the INIT phase and then uses it to perform a pre-defined calculation. The result is sent through
the SPI during the “open” watchdog window and verified by the PowerSBC. When the result is right, the LFSR is incremented
and the watchdog window is restarted. When the result is wrong, the WD error counter is incremented, the watchdog window is
restarted, and an INTB is generated. Any access to the WD register during the “closed” watchdog window is considered a wrong
WD refresh.
6.6.1
Normal Operation (First Watchdog Refresh)
At power up, when the RSTB is released as high (after around 13 ms), the INIT phase starts for a maximum duration of 256 ms
and this is considered as a fully open watchdog window. During this initialization phase the MCU sends the seed for the LFSR,
or uses the default LFSR value generated by the PowerSBC (0xB2), available in the WD_LFSR register (Table 73).
Using this LFSR, the MCU performs a simple calculation based on this formula: the result of this calculation is based on the
LSFSR default value: 0x4D.
LFSR_OUT[7:0]
x
+
-
4
6
4
NOT
/
WD_answer[7:0]
4
Figure 12. Watchdog Answer Calculation
The MCU sends the results in the WD answer register (Table 75).
When the watchdog is properly refreshed during the open window, the 256 ms open window is stopped and the initialization
phase is finished. A new LFSR value is generated and available in the WD_LFSR register (Table 73).
If the watchdog refresh is wrong or if the watchdog is not refreshed during this 256 ms open window (INIT FS phase), the device
asserts the reset low and the RSTB error counter is incremented by “1”.
After a good watchdog refresh, the device enters the Normal WD refresh mode, where open and closed windows are defined
either by the configuration made during initialization phase in the watchdog window register (Table 71), or by the default value
already present in this register (3.0 ms).
6.6.2
Normal Watchdog Refresh
The watchdog must be refreshed during every open window of the window period configured in the register Table 71.
Any WD refresh restarts the window. This ensures the synchronization between MCU and PowerSBC.
The duration of the “window” is selectable through the SPI with no access restriction, means the window duration can be changed
in the INIT phase or Normal mode. The duty cycle of the window is set to 50% and is not modifiable.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
35
Window Period
CLOSED
OPEN
Refresh
Slot
CLOSED
OPEN
Refresh
Slot
Figure 13. Windowed Watchdog
6.6.3
Watchdog in Debug Mode
When the device is in debug mode (entered via the DEBUG pin), the watchdog continues to operate, but does not affect the
device operation by asserting a reset or fail-safe pins. For the user, operation appears without the watchdog. If needed and to
debug the watchdog itself, the user can operate as in Normal mode and check LFSR values, the watchdog refresh counter, the
watchdog error counter, and reset counter. This allows the user to debug their software and ensure a good watchdog strategy in
the application.
33907_8
36
Analog Integrated Circuit Device Data
Freescale Semiconductor
6.7
Wrong Watchdog Refresh Handling
Error counters and strategy are implemented in the device to manage wrong watchdog refreshes from the MCU.
According to consecutive numbers of wrong watchdog refreshes, the device can decide to assert the RSTB only, or to go in deep
fail-safe mode where only a Power On Reset or a transition on IO_O helps the system to recover.
6.7.1
Watchdog error counter
The watchdog error counter is implemented in the device to filter the incorrect watchdog refresh. Each time a watchdog failure
occurs, the device increments this counter by 2. The WD error counter is decremented by 1 each time the watchdog is properly
refreshed. This principle ensures that a cyclic “OK/NOK” behavior converges to a failure detection.
To allow flexibility in the application, the maximum value of this counter is configurable in the INIT_WD register, but only when
device is in INIT FS mode.
Watchdog Error Counter
WD_CNT_error = 6
WD refresh NOK
0
WD refresh NOK
1
WD refresh NOK
2
Watchdog Error Counter
WD_CNT_error = 4
WD refresh NOK
0
WD refresh OK
WD refresh NOK
0
WD refresh OK
WD refresh NOK
1
WD refresh NOK
2
WD refresh OK
1
WD refresh OK
WD refresh OK
WD refresh NOK
Watchdog Error Counter
WD_CNT_error = 2
2
WD refresh OK
3
3
WD refresh NOK
WD refresh OK
WD refresh NOK
4
4
WD refresh OK
5
WD refresh NOK
6
Figure 14. Watchdog Error Counter Configuration (Init_WD register, Bits WD_CNT_error_1:0)
6.7.2
Watchdog Refresh Counter
The watchdog refresh counter is used to decrement the RST error counter. Each time the watchdog is properly refreshed, the
watchdog refresh counter is incremented by “1”.
Each time the watchdog refresh counter reaches “6” and if next WD refresh is also good, the RST error counter is decremented
by “1” (case with WD_CNT_refresh_1:0 configured at 6).
Whatever the position is in the watchdog refresh counter, each time there is a wrong refresh watchdog, the watchdog refresh
counter is reseted to “0”.
To allow flexibility in the application, the maximum value of this watchdog refresh counter is configurable in the INIT_WD register,
but only when device is in INIT FS mode.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
37
Watchdog Refresh Counter
WD_CNT_refresh = 6
Watchdog Refresh Counter
WD_CNT_refresh = 1
Watchdog Refresh Counter
WD_CNT_refresh = 4
WD Refresh NOK
0
0
0
WD Refresh OK
WD Refresh OK
WD Refresh OK
1
WD Refresh OK
2
WD Refresh OK
3
WD Refresh OK
4
WD Refresh OK
5
WD Refresh OK
6
WD Refresh NOK
WD Refresh NOK
1
WD Refresh NOK /
WD_OFF
WD Refresh OK
WD Refresh NOK /
WD_OFF
WD Refresh OK
WD Refresh NOK /
WD_OFF
WD Refresh OK
2
3
WD Refresh NOK /
WD_OFF
4
1
WD Refresh NOK /
WD_OFF
WD Refresh OK /
WD Refresh NOK /
WD_OFF
WD Refresh NOK /
WD_OFF
WD Refresh NOK /
WD_OFF
WD Refresh OK /
WD Refresh NOK /
WD_OFF
WD Refresh NOK /
WD_OFF
WD Refresh OK /
WD Refresh NOK /
WD_OFF
Figure 15. Watchdog Refresh Counter Configuration (Init_WD register, WD_CNT_refresh_1:0)
Table 9. Watchdog Error Table
WINDOW
SPI
CLOSED
OPEN
BAD Key
WD_NOK
WD_NOK
GOOD Key
WD_NOK
WD_OK
None (timeout)
No_issue
WD_NOK
Any access to the watchdog register during the “closed” watchdog window is considered as a wrong watchdog refresh. Watchdog
timeout, meaning no WD refresh during closed or open windows, is considered as a wrong WD refresh.
6.7.3
Reset Error Counter
The reset error counter manages the reset events and counts the number of resets occurring in the application. This counter is
incremented not only for the reset linked to consecutive wrong refresh watchdogs, but also for other sources of reset
(undervoltage, overvoltage, external reset).
The RST error counter is incremented by 1, each time a reset is generated.
The reset error counter has two output values (intermediate and final). The intermediate output value is used to handle the
transition from reset (RSTB is asserted low) to reset and fail where RSTB and FS0B are activated. The final value is used to
handle the transition from reset and fail to deep reset and fail (Deep fail-safe mode), where regulators are off, reset and FS0B
are activated, and a power on reset or a transition on IO_0 is needed to recover.
The intermediate value of the reset error counter is configurable to “1” or “3” using the RSTB_err_FS bit in the INIT FSSM2
register (Table 69).
If RSTB_err_FS is set to “0”, it means the device activates FS0B when the reset error counter reaches level “3”.
If RSTB_err_FS is set to “1”, it means the device activates FS0B when the reset error counter reaches level “1”.
This configuration must be done during INIT FS phase.
The final value of the reset error counter is based on the intermediate configuration.
33907_8
38
Analog Integrated Circuit Device Data
Freescale Semiconductor
• RSTB_err_FS = 0 / Intermediate = 3; Final = 6 (Figure 16). When reset error counter reaches 6, the device goes into deep
reset and fails.
• RSTB_err_FS = 1 / Intermediate = 1; Final = 2 (Figure 17). When reset error counter reaches 2, the device goes into deep
reset and fails.
In any condition, if the RSTB is asserted LOW for a duration longer than eight seconds, the device goes into deep reset and fails.
Conditions that leads to an incrementation of the RSTB error counter, and according to the product configuration are:
• Watchdog error counter = 6
• Watchdog refresh NOK during INIT phase or Watchdog timeout
• IO_23 error detection (FCCU)
• Undervoltage
• Overvoltage
• FS0B shorted to VDD
• SPI DED
• Reset request by the SPI
• External reset
Conditions leading to a transition go to FS, according to the product configuration are:
• IO_01/IO_23/IO_45 error detection
• Undervoltage
• Overvoltage
• Analog BIST fail
• SPI DED
• RSTB shorted to high
Reset Error Counter
(Cfg SPI RSTb_err_FS=0; WD_CNT_refresh=6)
7 consecutive WD Refresh OK
POR or from
LPOFF mode
INCR = WD error counter = WD_CNT_error[1:0] |
WD refresh NOK during INIT |
IO23_ERR |UV/OV |
FS0b_shorttovdd |
SPI DED |
Reset by SPI |
External reset
gotoFS = IO01/23/45_ERR |
UV/OV |
ABIST_fail |
SPI DED |
RSTb_short2hi
gotoFS
(7 = WD_CNT_refresh + 1)
0
INCR
7 consecutive WD Refresh OK
INCR
7 consecutive WD Refresh OK
INCR
7 consecutive WD Refresh OK
1
gotoFS
2
Active FS0
3
INCR
Active FS0
4
INCR
Active FS0
7 consecutive WD Refresh OK
7 consecutive WD Refresh OK
5
INCR
Active FS0
Turn OFF regulators
6
RSTb asserted for 8
seconds
Figure 16. RSTB Error Counter (RSTB_err_FS = 0)
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
39
Reset Error Counter
(Cfg SPI RSTb_err_FS=1; WD_CNT_refresh=6)
INCR = WD error counter = WD_CNT_error[1:0] |
WD refresh NOK during INIT |
IO23_ERR |UV/OV |
FS0b_shorttovdd |
SPI DED |
Reset by SPI |
External reset
7 consecutive WD Refresh OK
(7 = WD_CNT_refresh + 1)
0
POR or from
LPOFF mode
INCR/gotoFS
Active FS0
7 consecutive WD Refresh OK
1
INCR
gotoFS = IO01/23/45_ERR |
UV/OV |
ABIST_fail |
SPI DED |
RSTb_short2hi
Active FS0
Turn OFF regulators
2
RSTb asserted for 8
seconds
Figure 17. RSTB Error Counter(RSTb_err_FS = 1)
6.7.4
RST Error Counter at Start-up or Resuming from LPOFF Mode
At start-up or when resuming from LPOFF mode the reset error counter starts at level 1 and FS0B is asserted low. To remove
activation of FS0B, the RST error counter must go back to value “0” (seven consecutive good watchdog refresh decreases the
reset error counter down to 0) and a right command is sent to FS_OUT register (Figure 20).
1st WD refresh OK after
INIT phase. Start of the
WD window
New fully OPEN window of
256ms
WD window
OK
WD error
counter
NOK
0
NOK
2
NOK
OK
4
Reset error
counter
3
OK
5
NOK
4
6
1
RSTb
delay time
RSTb
WD Refresh
counter
0
1
0
0
1
0
1
0
Figure 18. Example of WD Operation Generating a Reset (WD_error_cnt = 6)
33907_8
40
Analog Integrated Circuit Device Data
Freescale Semiconductor
New fully OPEN window of
256ms
WD window
OK
NOK
WD error
counter
4
Reset error
counter
1
OK
OK
OK
OK
OK
OK
OK
0
6
2
RSTb
1
RSTb
delay time
WD Refresh
counter
1
0
2
3
4
6
5
0
1
Figure 19. Example of WD Operation Leading a Decrement of the Reset Error Counter (WD_resfresh_cnt = 6)
# WD refresh counter max value +1
consecutive WD answers OK
FS_OUT
write OK
Reset error counter
RST_ERR_CNT
1
RSTb
FS0b
# WD refresh counter max value +1
consecutive WD answers OK
WD error counter
=6
WD error counter
=6
0
1
WD error counter
=6
2
FS_OUT
write OK
3
2
1
0
Reset delay
Output stage ON
OFF
ON
OFF
Figure 20. Reset Error Counter and FS0B DEACTIVATION Sequence (RSTB_err_FS = 0 & WD_CNT_error1:0 = 6)
6.7.5
Fail-safe Output (FS0B) De-activation
When the fail-safe output FS0B is asserted low by the device due to a fault, some conditions must be validated before allowing
the FS0B pin to be de-activated by the device.
These conditions are:
• Fault is removed
• Reset error counter must be at “0”
• FS_OUT register must be filled with the right value.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
41
6.7.6
Faults Triggering FS0B Activation
The activation of the FS0B is clearly dependent on the product configuration, but the following items can be settled:
• IO_01/IO_23/IO_45 error detection
• Undervoltage
• Overvoltage
• Analog BIST fail (not configurable)
• SPI DED (not configurable)
• RSTB shorted to high (not configurable)
• RSTB error counter level
6.7.7
SPI DED
Some SPI registers affect some safety critical aspects of the fail-safe functions, and thus are required to be protected against
SEU (Single Event Upset). Only fail-safe registers are concerned.
During INIT FS mode, access to fail-safe registers for product configuration is open. Then once the INIT FS phase is over, the
Hamming circuitry is activated to protect registers content.
At this stage, if there is 1 single bit flip, the detection is made due to hamming code, and the error is corrected automatically (fully
transparent for the user), and a flag is sent. If there are two errors (DED - Dual Error Detection), the detection is made due to
hamming code but detected errors cannot be corrected. Flag is sent, RSTB and FS0B are activated.
6.7.8
FS_OUT Register
When fault is removed and reset error counter changes back to level “0”, a right word must be filled in the FS_OUT register. The
value is dependant on the current WD_LFSR.
LSB and MSB must be swapped and negative operation per bit must be applied.
WD_LFSR_7:0=
b7
b6
b5
b4
b3
b2
b1
b0
FS_OUT_7:0 =
b0
b1
b2
b3
b4
b5
b6
b7
Figure 21. FS_OUT Register Based on LFSR Value
33907_8
42
Analog Integrated Circuit Device Data
Freescale Semiconductor
6.7.9
INPUT VOLTAGE RANGE
Due to the flexibility of the pre-regulator, the device can cover a wide battery input voltage range. However, a more standard
voltage range can still be covered using only the Buck configuration.
Vsup
Buck-Boost
Buck only
No operation
Risk of damage
No operation
Risk of damage
40V
Extended voltage range
Extended voltage range
Potential Vpre thermal limitation
Potential Vpre thermal limitation
28V
Extended voltage range
Extended voltage range
Amux limitation
Amux limitation
19V
Normal voltage range
Normal voltage range
Vsup_uv_7
Extended voltage range
6V
Extended voltage range
Vpre output current limitation
4.6v
Vpre output current limitation
2.7V
No operation
No operation
Figure 22. Input Voltage Range
• VSUP > 28 V : Potential VPRE thermal limitation
RDSON, Current limitation and Overcurrent detection are specified for VSUP < 28 V
• VSUP < 19 V : Mux_out limitation
IO_0 and IO_1 maximum analog input voltage range is 19 V
Internal 2.5 V reference voltage accuracy degraded
• Buck only, VSUP < VSUP_UV_7 :
CAN communication is guaranteed for VSUP > 6.0 V
For VCCA and VAUX 5.0 V configuration, under voltage triggers at low VSUP (refer to VCCA_UV_5 and VAUX_UV_5)
6.7.10 Vpre Voltage Pre-regulator
A highly flexible SMPS pre-regulator is implemented in the 33907_8. Depending on the input voltage requirement, the
device can be configured as “Non-inverting Buck-boost converter” (Figure 24) or “Standard Buck converter” (Figure 23). An
external low side MOSFET (N-type) is required to operate in “Non-inverting Buck-boost converter”. The connection of the external
MOSFET is detected automatically during the start-up phase.
The converter operates in Current Control mode in any configuration. The high side switching MOSFET is integrated to make the
current control easier. The PWM frequency is fixed at 440 kHz typical. The compensation network is fully integrated. The output
voltage (VPRE) is regulated between 6.0 V and 7.0 V.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
43
L_Vpre
ESR cap.
<10 m
PGND
PGND
PGND
Cout_Vpre4
Cout_Vpre3
Cout_Vpre2
Cout_Vpre1
D_Vpre
Rsunb_Vpre
Csnub_Vpre
Cboot_pre
ESR cap.
<100 m
PGND PGND
PGND
PGND
Vpre
Gate_LS
Boots_pre
SW_pre2
SW_pre1
Figure 23. Pre-regulator: Buck configuration
PGND
PGND
Cout_Vpre4
ESR cap.
<10m
Cout_Vpre3
Cout_Vpre1
Cout_Vpre2
ESR cap.
<100m
D_BB
LS_BB
D_Vpre
Cboot_pre
Rsunb_Vpre
Csnub_Vpre
L_Vpre
PGND PGND
PGND
PGND
Optional
PGND
Vpre
Gate_LS
Boots_pre
SW_pre2
SW_pre1
Figure 24. Pre-regulator: Buck Boost configuration
Transition between buck mode and boost mode is based on hysteresis (Figure 25).
D (%)
D buck
D boost
Vpre (V)
100
6.5
50
hysteresis
66
33
25
0
7.5
12
18
24
Vin (V)
Figure 25. Transition between Buck and Boost
33907_8
44
Analog Integrated Circuit Device Data
Freescale Semiconductor
Vsns_UV
Vsup_UV_5
Vsup_UV_L_B
Vbattery
0V
Vsup
Buck_Boost Mask
Boost
Buck
Buck
Boost
Vpre_EN
Vpre
Vcore
Vcore_UV
INTB
RSTB
RST delay time
Figure 26. Buck Configuration Power-up and Power-down
VSUP_UV_7
VSUP_UV_5
VSUP_UV_L
Vbattery
0V
Vsup
Buck_Boost Mask
Buck
Boost
Buck
Boost
Vpre_EN
Vpre
Vcore
VCORE_FB_UV * ((R3+R4)/R4)
INTB
RSTB
Figure 27. Buck Boost Configuration Power-up and Power-down
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
45
Vsense
Vsup
VSNS_UV
VSUP_UV_L_B
Buck_Boost
Mask
Buck
Vpre_EN
Vpre
Vcore
VCORE_FB_UV * ((R3+R4)/R4)
INTB
RSTB
Figure 28. Behavior During a Cranking (Buck Configuration)
Vsup
Vsup_UV_7
VSUP_UV_L
Buck_Boost
Mask
Buck
Buck
Boost
Boost
Vpre_EN
Vpre
Vcore
VCORE_FB_UV * ((R3+R4)/R4)
INTB
RSTB
Figure 29. Behavior During a Cranking (Buck Boost Configuration)
33907_8
46
Analog Integrated Circuit Device Data
Freescale Semiconductor
In order to improve the efficiency, the converter switches automatically to burst mode in light load condition. Moreover, the battery
voltage sensing (VSENSE) is used to manage the load dump condition. An input power feed forward function is also implemented
to minimize the switching losses during the load dump.
VSUP_IPFF
Vsup
Ipk envelop
IPFF
Vpre_fsw
440 kHz
220 KHz
440 kHz
Figure 30. Input Power Feed Forward Principle
6.7.11 Vcore Voltage Regulator
This voltage regulator is a step-down DC-DC converter operating in Voltage Control mode. The switching MOSFET is integrated.
The PWM frequency is fixed at 2.4 MHz typical. The high side MOSFET is integrated in the device. The output voltage is
configured for 1.2 V and 3.3 V, due to an external resistor divider connected between VCORE and the feedback pin (FB-CORE)
(Figure 34). The expected accuracy is 2.0%. The output current is up to 0.8 A for the 33907 and 1.5 A for the 33908 device.
The stability of the overall converter is done externally by the pin COMP_CORE.
In order to improve the efficiency, the converter switches automatically in burst mode in light load condition.
6.7.12 Charge Pump and Bootstrap
Both switching MOSFETs of VPRE and VCORE SMPS are driven by external bootstrap capacitors. Additionally, a charge pump is
implemented to ensure 100% duty cycle for both converters. Each converter uses a 100 nF external capacitor minimum to
operate properly.
6.7.13 VCCA Voltage Regulator
VCCA is a linear voltage regulator mainly dedicated to supply the MCU I/Os, especially the ADC. The output voltage is selectable
at 5.0 V or 3.3 V. Since this output voltage can be used to supply MCU IOs, the output voltage selection is done using an external
resistor connected to the SELECT pin and ground if VAUX is used. When VAUX is not used, the resistor is connected between the
SELECT pin and VPRE.
The expected accuracy is +/- 1% for 5 V configuration and +/- 1.5% for 3.3 V configuration with an output current capability at
100 mA.
An external PNP transistor is used to boost the current capability up to 300 mA. When an external PNP is used, the connection
is detected automatically during the start-up sequence of the PowerSBC. In such condition, the internal pass transistor is
switched OFF and all the current is driven through the external PNP to reduce the internal power dissipation. The output voltage
accuracy with an external PNP is reduced to 3.0%. The VCCA output voltage is used as a reference for the Auxiliary voltage
supply (VAUX) when used as sensor supply output.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
47
6.7.14 VAUX Voltage Regulator
VAUX is a highly flexible linear voltage regulator either as an auxiliary supply dedicated to additional device in the ECU or as a
sensor supply (i.e. outside the ECU). As an auxiliary supply, the output voltage is selectable between 5.0 V, 3.3 V. Since this
voltage rail can be used to supply IOs, the selection is done with an external resistor connected between the SELECT pin and
ground.
In such case, the expected accuracy is 3.0%. The output current capability is up to 300 mA. An external PNP transistor must
be used (no internal current capability).
As a sensor supply rail, the output voltage is selectable between 5.0 V and 3.3 V.
Moreover VCCA can be used as reference for the sensor supply used as tracker. The selection is also done during the INIT phase
and secured. The tracking accuracy is expected to be 15 mV.
6.8
Startup Sequence
In order to provide a safe and well known startup sequence, the 33907_8 includes an undervoltage lock-out. This undervoltage
lock-out is only applicable when the device is under a Power-On-Reset condition, which means the initial condition is VSUP <
VSUP_UV_L (i.e. below 2.7 V max). In all the other conditions (i.e. LPOFF), the device is able to operate (and therefore to (re)start)
down to VSUP_UV_L. The other different voltage rails automatically start, as described in the following figure.
Vsup_uv_5
Vsup
Vint_2.5
120µs
Vpre_EN
Vpre_UV
1mS
Vpre
Vcore / Vaux / Vcca
INTB
INIT
Initial RESET
Softstart Vregs
Select Pin
config Detection
Softstart Vpre
LS detect
UV Lock-out
RSTB
~16ms
Figure 31. Start-up Scheme
33907_8
48
Analog Integrated Circuit Device Data
Freescale Semiconductor
The final value of VAUX and VCCA depends on the hardware configuration (resistor values on the SELECT pin).
It takes around 13 ms to release the RSTB. RSTB can be pulled low after those 13 ms by the MCU, if it is not ready to run after
power up.
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
49
7
Serial Peripheral Interface
7.1
High Level Overview
7.1.1
SPI
The device is using a 16 bits SPI, with the following arrangement:
MOSI, Master Out Slave In bits:
• Bit 15 read/write
• Bit 14 Main or fail-safe register target
• bit 13 to 9 (A4 to A0) to select the register address. Bit 8 is a parity bit in write mode, Next bit (=0) in read mode.
• bit7 to 0 (D7 to D0): control bits
MISO, Master IN Slave Out bits:
• bits 15 to 8 (S15 to S8) are device status bits
• bits 7 to 0(Do7 to Do0) are either extended device status bits, device internal control register content or device flags.
Figure 32 is an overview of the SPI implementation.
7.1.2
Parity Bit 8 Calculation:
The parity is used for write to register command (bit 15,14 = 01). It is calculated based on the number of logic ones contained in
bits 15-9,7-0 sequence (this is the whole 16 bits of the write command except bit 8).
Bit 8 must be set to 0 if the number of 1 is odd.
Bit 8 must be set to 1 if the number of 1 is even.
7.1.3
Device Status on MISO
When a write operation is performed to store data or control bit into the device, MISO pin reports a 16 bit fixed device status
composed of 2 bytes: Device Fixed Status (bits 15 to 8) + extended Device Status (bits 7 to 0). In a read operation, MISO reports
the fixed device status (bits 15 to 8), and the next 8 bits are content of the selected register. A standard serial peripheral interface
(SPI) is integrated to allow bi-directional communication between the 33907_8 and the MCU. The SPI is used for configuration
and diagnostic purposes.
33907_8
50
Analog Integrated Circuit Device Data
Freescale Semiconductor
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9
MOSI
R/W
M/FS
A4
A2
A3
A1
A0
register address
MISO
S15
S14
S13
S11
S12
Bit 8
Bit 7 Bit 6
P
D7
Bit 5
D6
D5
Bit 4 Bit 3
Bit 2
Bit 1
Bit 0
D4
D2
D1
D0
Do2
Do1
Do0
Parity
S9
S10
D3
data
S8
Do7
Do6
Do5 Do4
Do3
Extended Device Status, Register Control bits or Device Flags
Device Status
CSb
CSb active low. Must be raised at end of 16 clocks,
for write commands, MOSI bits [15] = [1].
SCLK
SCLK signal is low outside of CSB active
MOSI Don’t care
MISO Tri state
C1
S15
C0
D0
S14
Do0
Don’t care
Tri state
MOSI and MISO data changed at SCLK rising edge
and sampled at falling edge. Msb first.
MISO tri state outside of CSB active
SPI wave form, and signals polarity
Figure 32. SPI Overview
The device contains several registers. Their address is coded on 7 bits (bits 15 to 9). Each register controls or reports part of the
device function. Data can be written to the register, to control the device operation or set default value or behavior. Every register
can also be read back in order to ensure that its content (default setting or value previously written) is correct.
7.1.4
Register Description
Although the minimum time between two NCS low sequences is defined by tONNCS (Figure 33), two consecutive accesses to the
fail-safe registers must be done with a 3.5 µs minimum NCS high time in between.
Although the minimum time between two fail-safe registers accesses is 3.5 µs, some SPI accesses to the main registers can be
done in between (Figure 34)
7.2
Detail Operation
MOSI
bi t15
R/W
bit 14
M / FS
bit 13
A4
bit 12
A3
bit 11
A2
bit 10
A1
bit 9
A0
bit 8
P
bit 7
D7
bit 6
D6
bit 5
D5
bit4
D4
bit3
D3
bit2
D2
bit1
D1
bi t0
D0
bi t15
SP I_G
bit 14
WU
bit 13
CAN_G
bit 12
RES ERV ED
bit 11
IO_G
bit 10
Vpre_G
bit 9
V co re_G
bit 8
Vothers_G
bit 7
bit 6
bit 5
bit4
bit3
bit2
bit1
bi t0
MIS O
Bits15:8 always sen t by Main digi tal
Extended diagnostic: either sent by Main or Fail Safe based on bi ts15:9 on MOSI
Figure 33. MOSI / MISO SPI Command Organization
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
51
Table 10. MOSI Bits Description
R/W
M / FS
A4:0
Description
Set if it is a READ or WRITE Command
0
READ
1
WRITE
Description
Split the addresses between Fail-safe State machine and Main Logic
0
Main
1
Fail-safe
Description
0
Set the address to Read or Write
See Register Mapping
1
P
D7:0
Description
Parity bit (only use in Write mode). Set to 0 in Read mode
0
Number of “1” (bit15:9 and bit 7:0) is odd
1
Number of “1” (bit15:9) and bit 7:0) is even
Description
0
Data in Write mode. Shall be set to 00h in Read mode
See register details
1
Table 11. MISO Bits Description
SPI_G
Description
0
NO Failure
1
Failure
Reset Condition
WU
Description
1
WU event
Description
Power On Reset / When initial event cleared on read
Report a CAN event (Diagnostic)
0
NO event
1
CAN event
Description
Power On Reset / When initial event cleared on read
Report a change in IOs state
0
NO IO transition
1
IO transition
Reset Condition
VPRE_G
Report a wake-up event. Logical OR of ALL wake-up sources
NO WU event
Reset Condition
IO_G
Power On Reset / When initial event cleared on read
0
Reset Condition
CAN_G
Report an error in the SPI communication
Description
Power On Reset / When initial event cleared on Read
Report an event from Vpre-regulator and battery monitoring (Status change or failure)
0
NO event
1
Event occurred
Reset Condition
Power On Reset / When initial event cleared on Read
33907_8
52
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 11. MISO Bits Description (continued)
VCORE_G
Report an event from VCORE regulator (Status change or failure)
Description
0
NO event
1
Event occurred
Power On Reset / When initial event cleared on Read
Reset Condition
VOTHERS_G
Report an event from VCCA, VAUX, or VCAN regulators (Status change or failure)
Description
0
NO event
1
Event occurred
Power On Reset / When initial event cleared on Read
Reset Condition
7.2.1
Register Address Table
Table 12 is a list of device registers and addresses coded in bits 13 to 9 in MOSI for main logic.
Table 12. Register Mapping of Main Logic
Address
Register
FS/M
A4
A3
A2
A1
A0
Hex
Write description
Table Ref
NOT USED
0
0
0
0
0
0
#0(00h)
N/A
N/A
INIT Vreg 1
0
0
0
0
0
1
#1(01h)
Write during INIT phase then read only
Table 15
INIT Vreg2
0
0
0
0
1
0
#2(02h)
Write during INIT phase then read only
Table 17
INIT CAN
0
0
0
0
1
1
#3(03h)
Write during INIT phase then read only
Table 19
INIT IO_WU1
0
0
0
1
0
0
#4(04h)
Write during INIT phase then read only
Table 21
INIT IO_WU2
0
0
0
1
0
1
#5(05h)
Write during INIT phase then read only
Table 23
INIT INT
0
0
0
1
1
0
#6(06h)
Write during INIT phase then read only
Table 25
NOT USED
0
0
0
1
1
1
#7(07h)
N/A
N/A
HW Config
0
0
1
0
0
0
#8(08h)
Read only
Table 27
WU source
0
0
1
0
0
1
#9(09h)
Read only
Table 29
NOT USED
0
0
1
0
1
0
#10(0Ah)
N/A
N/A
IO_input
0
0
1
0
1
1
#11(0Bh)
Read only
Table 31
Status Vreg#1
0
0
1
1
0
0
#12(0Ch)
Read only
Table 33
Status Vreg#2
0
0
1
1
0
1
#13(0Dh)
Read only
Table 35
Diag Vreg#1
0
0
1
1
1
0
#14(0Eh)
Read only
Table 37
Diag Vreg#2
0
0
1
1
1
1
#15(0Fh)
Read only
Table 39
Diag Vreg#3
0
1
0
0
0
0
#16(10h)
Read only
Table 41
Diag CAN1
0
1
0
0
0
1
#17(11h)
Read only
Table 43
Diag CAN2
0
1
0
0
1
0
#18(12h)
Read only
Table 45
Diag SPI
0
1
0
0
1
1
#19(13h)
Read only
Table 48
NOT USED
0
1
0
1
0
0
#20(14h)
N/A
N/A
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
53
Table 12. Register Mapping of Main Logic
Address
Register
FS/M
A4
A3
A2
A1
A0
Hex
Write description
Table Ref
MODE
0
1
0
1
0
1
#21(15h)
Write during Normal and Read
Table 50
Vreg_mode
0
1
0
1
1
0
#22(16h)
Write during Normal and Read
Table 52
IO_OUT/AMUX
0
1
0
1
1
1
#23(17h)
Write during Normal and Read
Table 54
CAN Mode
0
1
1
0
0
0
#24(18h)
Write during Normal and Read
Table 56
CAN Mode 2
0
1
1
0
0
1
#25(19h)
Write during Normal and Read
Table 58
Table 13 is a list of device registers and addresses coded in bits 13 to 9 in MOSI for Main logic
Table 13. Register Mapping of Fail-safe Logic
Address
Register
FS/M
A4
A3
A2
A1
A0
Hex
Write description
Table Ref
INIT Supervisor#1
1
0
0
0
0
1
#33(21h)
Write during INIT phase then Read only
Table 60
INIT Supervisor#2
1
0
0
0
1
0
#34(22h)
Write during INIT phase then Read only
Table 62
INIT Supervisor#3
1
0
0
0
1
1
#35(23h)
Write during INIT phase then Read only
Table 64
INIT FSSM#1
1
0
0
1
0
0
#36(24h)
Write during INIT phase then Read only
Table 66
INIT FSSM#2
1
0
0
1
0
1
#37(25h)
Write during INIT phase then Read only
Table 68
WD_Window
1
0
0
1
1
0
#38(26h)
Write (No restriction) and Read
Table 70
WD_LFSR
1
0
0
1
1
1
#39(27h)
Write (No restriction) and Read
Table 72
WD_answer
1
0
1
0
0
0
#40(28h)
Write (No restriction) and Read
Table 74
FS_OUT
1
0
1
0
0
1
#41(29h)
Write (No restriction)
Table 76
RSTb request
1
0
1
0
1
0
#42(2Ah)
Write (No restriction)
Table 78
INIT WD
1
0
1
0
1
1
#43(2Bh)
Write during INIT phase then Read only
Table 80
Diag FS1
1
0
1
1
0
0
#44(2Ch)
Read only
Table 82
WD_Counter
1
0
1
1
0
1
#45(2Dh)
Read only
Table 84
Diag_FS2
1
0
1
1
1
0
#46(2Eh)
Read only
Table 86
7.2.2
Secured SPI Command
Some SPI commands must be secured to avoid unwanted change of the critical bits.
In the fail-safe machine and in the main state machine, the secured bits are calculated from the data bits sent as follows:
Table 14. Secured SPI
•
•
•
•
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Data 3
Data 2
Data 1
Data 0
Secure 3
Secure2
Secure 1
Secure 0
Secure 3 = NOT(Bit5)
Secure 2 = NOT(Bit4)
Secure 1 = Bit7
Secure 0 = Bit6
33907_8
54
Analog Integrated Circuit Device Data
Freescale Semiconductor
7.3
Detail of Register Mapping
Default value of the reserved bit must be "0".
7.3.1
Init VREG 1
Table 15. INIT VREG1 Register Configuration
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
MOSI
1
0
0
0
0
0
1
P
0
MISO
SPI_G
WU
CAN_G
Reserve
d
IO_G
Vpre_G
0
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
MOSI
0
0
0
0
0
0
1
0
0
0
MISO
SPI_G
WU
CAN_G
Reserve
d
IO_G
Vpre_G
0
1
Vcore_ Vothers
G
_G
bit6
bit5
bit4
bit3
bit2
bit1
bit0
Reserv
Vpre_D
Ipff_DIS
ed
IS
0
0
Reserv
ed
0
Reserv
Vpre_D
Ipff_DIS
ed
IS
0
0
Reserv
ed
0
bit4
bit3
bit2
bit1
bit0
0
0
0
0
0
0
Ipff_DIS
Vpre_D
IS
0
0
1
0
bit3
bit2
bit1
bit0
Read
Vcore_ Vothers
G
_G
Table 16. Description and Configuration of the Bits (Default value in blue)
IPFF_DIS
Description
DISABLE the input Power Feed Forward (IPFF) function of Vpre
0
ENABLED
1
DISABLED
Reset condition Power On Reset
Vpre_DIS
Description
DISABLE Vpre SMPS (in all mode).
0
ENABLED
1
DISABLED
Reset condition Power On Reset
7.3.2
Init Vreg 2
Table 17. INIT VREG2 Register Configuration
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
MOSI
1
0
0
0
0
1
0
P
0
Tcca_li
m_off
Icca_li
m
0
reserve Taux_li Vaux_tr reserve
d
m_off
k_EN
d
MISO
SPI_G
WU
IO_G
Vpre_G
0
Tcca_li
m_off
Icca_li
m
0
reserve Taux_li Vaux_tr reserve
d
m_off
k_EN
d
CAN_G Reserved
Vcore_ Vothers
G
_G
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
55
Table 17. INIT VREG2 Register Configuration
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
IO_G
Vpre_G
0
Tcca_li
m_off
Icca_li
m
0
CAN_G Reserved
Vcore_ Vothers
G
_G
reserve Taux_li Vaux_tr reserve
d
m_off
k_EN
d
Table 18. INIT VREG2. Description and Configuration of the Bits (Default value in blue)
Tcca_lim_off
Icca_lim
Taux_lim_off
Vaux_trk_EN
7.3.3
Description
Configure the current limitation duration before regulator is switched off. Only used for external PNP
0
10 ms
1
50 ms
Reset condition
Power On Reset
Description
Configure the current limitation threshold. Only available for external PNP
0
Icca_lim_in
1
Icca_lim_out
Reset condition
Power On Reset
Description
Configure the current limitation duration before regulator is switched off. Only used for external PNP
0
10 ms
1
50 ms
Reset condition
Power On Reset
Description
Configure Vaux regulator as a tracker
0
No tracking. HW configuration is used
1
Tracking enabled
Reset condition
Power On Reset
Init CAN
Table 19. INIT CAN Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
MOSI
1
0
0
0
0
1
1
P
0
CAN_w Reserv CAN_T CAN_w
reserved reserved reserved
u_conf
ed
OY
u_TO
MISO
SPI_G
WU
CAN_G
Reserv
ed
IO_G
Vpre_G
0
CAN_w Reserv CAN_T CAN_w
reserved reserved reserved
u_conf
ed
OY
u_TO
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
Vcore_ Vothers
G
_G
bit6
bit5
bit4
bit3
bit2
bit1
bit0
Read
MOSI
33907_8
56
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 19. INIT CAN Register Description
MISO
SPI_G
WU
CAN_G
Reserv
ed
IO_G
Vpre_G
Vcore_ Vothers
G
_G
0
CAN_w
u_conf
0
CAN_T CAN_w
reserved reserved reserved
OY
u_TO
Table 20. INIT CAN. Description and Configuration of the Bits (Default value in blue)
CAN_wu_conf
Description
Define the CAN wake-up mechanism
0
3 dominant pulses
1
Single dominant pulse
Reset condition Power On Reset
CAN_TOY
Description
Configure the CAN block to be compliant with TOYOTA specification
0
Standard CAN
1
Toyota compliance
Reset condition Power On Reset
CAN_wu_to
Description
Define the CAN wake-up time-out (in case of CAN_wu_conf=0)
0
120 µs
1
360 µs
Reset condition Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
57
7.3.4
INIT IO_WU1
Table 21. INIT IO_WU1 Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
1
0
0
0
1
0
0
P
MISO
SPI_G
WU
CAN_G
Reserv
ed
IO_G
Vpre_G
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G
Reserv
ed
IO_G
Vpre_G
WU_0_ WU_0_ WU_1_ WU_1_ WU_2_ WU_2_ INT_inh INT_inh
1
0
1
0
1
0
_IO_1
_IO_0
Vcore_ Vothers WU_0_ WU_0_ WU_1_ WU_1_
WU_2_ INT_inh INT_inh
WU-2-1
G
_G
1
0
1
0
0
_IO_1
_IO_0
Read
Vcore_ Vothers WU_0_ WU_0_ WU_1_ WU_1_
WU_2_ INT_inh INT_inh
WU-2-1
G
_G
1
0
1
0
0
_IO_1
_IO_0
Table 22. INIT IO_WU1. Description and Configuration of the Bits (Default value in blue)
WU_0_1:0
Description
Wake-up configuration for IO_0
00
NO wake-up capability
01
Wake-up on rising edge only
10
Wake-up on falling edge only
11
Wake-up on any edge
Reset condition Power On Reset
WU_1_1:0
Description
Wake-up configuration for IO_1
00
NO wake-up capability
01
Wake-up on rising edge only
10
Wake-up on falling edge only
11
Wake-up on any edge
Reset condition Power On Reset
WU_2_1:0
Description
Wake-up configuration for IO_2
00
NO wake-up capability
01
Wake-up on rising edge only
10
Wake-up on falling edge only
11
Wake-up on any edge
Reset condition Power On Reset
INT_inh_IO_1
Description
Inhibit the INT pulse for IO_1. IO_1 masked in IO_G. Avoid INT when used in FS
0
INT NOT masked
1
INT masked
Reset condition Power On Reset
33907_8
58
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 22. INIT IO_WU1. Description and Configuration of the Bits (Default value in blue) (continued)
INT_inh_IO_0
Description
Inhibit the INT pulse for IO_0. IO_0 masked in IO_G. Avoid INT when used in FS
0
INT NOT masked
1
INT masked
Reset condition Power On Reset
7.3.5
INIT IO_WU2
Table 23. INIT IO_WU2 Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
0
0
0
1
0
1
P
MISO
SPI_G
WU
IO_G
Vpre_G
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
IO_G
Vpre_G
CAN_G Reserved
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
WU_3_ WU_3_ WU_4_ WU_4_ WU_5_ WU_5_ INT_inh INT_inh
1
0
1
0
1
0
_IO_23 _IO_45
Vcore_ Vothers WU_3_ WU_3_ WU_4_ WU_4_ WU_5_ WU_5_ INT_inh INT_inh
G
_G
1
0
1
0
1
0
_IO_23 _IO_45
Read
CAN_G Reserved
Vcore_ Vothers WU_3_ WU_3_ WU_4_ WU_4_ WU_5_ WU_5_ INT_inh INT_inh
G
_G
1
0
1
0
1
0
_IO_23 _IO_45
Table 24. INIT IO_WU2. Description and Configuration of the Bits (Default value in blue)
WU_3_1:0
Description
Wake-up configuration for IO_3
00
NO wake-up capability
01
Wake-up on rising edge only
10
Wake-up on falling edge only
11
Wake-up on any edge
Reset condition Power On Reset
WU_4_1:0
Description
Wake-up configuration for IO_4
00
NO wake-up capability
01
Wake-up on rising edge only
10
Wake-up on falling edge only
11
Wake-up on any edge
Reset condition Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
59
Table 24. INIT IO_WU2. Description and Configuration of the Bits (Default value in blue) (continued)
WU_5_1:0
Description
Wake-up configuration for IO_5
00
NO wake-up capability
01
Wake-up on rising edge only
10
Wake-up on falling edge only
11
Wake-up on any edge
Reset condition Power On Reset
INT_inh_IO_45
Description
Inhibit the INT pulse for IO_4 & IO_5. IO_4 & IO_5 masked in IO_G. Avoid INT when used in FS
0
INT NOT masked
1
INT masked
Reset condition Power On Reset
INT_inh_IO_23
Description
Inhibit the INT pulse for IO_2 & IO_3. IO_2 & IO_3 masked in IO_G. Avoid INT when used in FS
0
INT NOT masked
1
INT masked
Reset condition Power On Reset
7.3.6
INIT INT
Table 25. INIT INT Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
0
0
0
1
1
0
P
MISO
SPI_G
WU
IO_G
Vpre_G
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
IO_G
Vpre_G
CAN_G Reserved
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
INT_inh
INT_dur reserve INT_inh INT_inh INT_inh INT_inh
reserve
_Vother
ation
d
_all
_Vsns _Vpre _Vcore
d
s
Vcore_ Vothers INT_dur
G
_G
ation
0
INT_inh
INT_inh INT_inh INT_inh INT_inh
_Vother
_all
_Vsns _Vpre _Vcore
s
0
Read
CAN_G Reserved
Vcore_ Vothers INT_dur
G
_G
ation
0
INT_inh
INT_inh INT_inh INT_inh INT_inh
_Vother
_all
_Vsns _Vpre _Vcore
s
0
Table 26. INIT INT. Description and Configuration of the Bits (Default value in blue)
INT_duration
Description
Define the duration of the INTerrupt pulse
0
100 µs
1
25 µs
Reset condition Power On Reset
33907_8
60
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 26. INIT INT. Description and Configuration of the Bits (Default value in blue) (continued)
INT_inh_all
Description
Inhibit ALL the INT
0
All INT sources
1
inhibit ALL INT
Reset condition Power On Reset
INT_inh_Vsns
Description
Inhibit the INT for VSNS_UV
0
All INT sources
1
inhibit VSNS_UV
Reset condition Power On Reset
INT_inh_Vpre
Description
Inhibit the INT for Vpre status event (cf. register status Vreg1)
0
All INT sources
1
Vpre status changed INHIBITED
Reset condition Power On Reset
INT_inh_Vcore
Description
Inhibit the INT for Vcore status event (cf. register status Vreg2)
0
All INT sources
1
Vcore status changed INHIBITED
Reset condition Power On Reset
INT_inh_Vothers
Inhibit the INT for VCCA / VAUX and VCAN status event (cf. register status Vreg2)
Description
0
All INT sources
1
VCCA / VAUX / VCAN status changed INHIBITED
Reset condition Power On Reset
7.3.7
HW Config
Table 27. HW Config Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
x
0
DBG
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers LS_det
G
_G
ect
Vaux
not
used
Vcca_P Vcca_H Vaux_H
W
W
NP_det
ect
Table 28. HW Config. Description and Configuration of the Bits (Default value in blue)
LS_detect
Vaux not used
Description
Report the hardware configuration of Vpre (Buck only or Buck-Boost)
0
Buck-Boost
1
Buck only
Reset condition
Power On Reset / Refresh after LPOFF
Description
Report if Vaux is used
0
Vaux is used (external PNP is assumed to be connected, Vaux can be switched OFF/ON through SPI)
1
Vaux is not used
Reset condition
Power On Reset / Refresh after LPOFF
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
61
Table 28. HW Config. Description and Configuration of the Bits (Default value in blue) (continued)
Vcca_PNP_detect
Vcca_HW
Vaux_HW 1:0
DBG
Description
Report the connection of an external PNP on Vcca
0
External PNP connected
1
Internal MOSFET
Reset condition
Power On Reset / Refresh after LPOFF
Description
Report the hardware configuration for Vcca
0
3.3 V
1
5V
Reset condition
Power On Reset / Refresh after LPOFF
Description
Report the hardware configuration for Vaux
0
5V
1
3.3 V
Reset condition
Power On Reset / Refresh after LPOFF
Description
Report the configuration of the DEBUG mode
0
Normal operation
1
DEBUG mode selected
Reset condition
Power On Reset / Refresh after LPOFF
33907_8
62
Analog Integrated Circuit Device Data
Freescale Semiconductor
WU SOURCE
Table 29. WU SOURCE Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
IO_5_
WU
IO_4_
WU
IO_3_
WU
IO_2_
WU
IO_1_
WU
IO_0_
WU
Vreg_
WU
Phy_W
U
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers
G
_G
Table 30. WU source. Description and Configuration of the Bits (Default value in blue)
IO_5_WU
IO_4_WU
IO_3_WU
IO_2_WU
IO_1_WU
IO_0_WU
Phy_WU
Description
Report a wake-up event from IO_5
0
No Wake-up
1
WU event detected
Reset condition
Power On Reset / Read
Description
Report a wake-up event from IO_4
0
No Wake-up
1
WU event detected
Reset condition
Power On Reset / Read
Description
Report a wake-up event from IO_3
0
No Wake-up
1
WU event detected
Reset condition
Power On Reset / Read
Description
Report a wake-up event from IO_2
0
No Wake-up
1
WU event detected
Reset condition
Power On Reset / Read
Description
Report a wake-up event from IO_1
0
No Wake-up
1
WU event detected
Reset condition
Power On Reset / Read
Description
Report a wake-up event from IO_0
0
No Wake-up
1
WU event detected
Reset condition
Power On Reset / Read
Description
Report a wake-up event from CAN
0
No Wake-up
1
WU event detected
Reset condition
Power On Reset/ Read CAN_wu
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
63
IO INPUT
Table 31. IO INPUT Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
IO_5
IO_4
0
IO_3
IO_2
0
IO_1
IO_0
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers
G
_G
Table 32. IO input. Description and Configuration of the Bits
IO_5
IO_4
IO_3
IO_2
IO_1
IO_0
Description
Report IO_5 digital state in Normal mode. No update in LPOFF mode since wake-up features available
0
Low
1
High
Reset condition
Power On Reset
Description
Report IO_4 digital state in Normal mode. No update in LPOFF mode since wake-up features available
0
Low
1
High
Reset condition
Power On Reset
Description
Report IO_3 digital state in Normal mode. No update in LPOFF mode since wake-up features available
0
Low
1
High
Reset condition
Power On Reset
Description
Report IO_2 digital state in Normal mode. No update in LPOFF mode since wake-up features available
0
Low
1
High
Reset condition
Power On Reset
Description
Report IO_1 digital state in Normal mode. No update in LPOFF mode since wake-up features available
0
Low
1
High
Reset condition
Power On Reset
Description
Report IO_0 digital state in Normal mode. No update in LPOFF mode since wake-up features available
0
Low
1
High
Reset condition
Power On Reset
33907_8
64
Analog Integrated Circuit Device Data
Freescale Semiconductor
STATUS VREG1
Table 33. STATUS VREG1 Register Description
Read
bit15 bit14 bit13 bit12 bit11 bit10
MOSI
0
0
MISO
SPI_
G
WU
0
1
1
CAN Res IO_
_G erve G
d
0
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
Vpre_ Vcore Vothers_
G
_G
G
IpFF
Ilim_pr Twarm_ BoB Vpre_sta
e
pre
te
Table 34. Status Vreg1. Description and Configuration of the Bits (Default value in blue)
IpFF
Ilim_pre
Twarm_pre
BoB
Vpre_state
Description
Input Power Feed Forward
0
Normal Operation
1
Ipff mode activated
Reset condition
Power On Reset / Read
Description
Report a current limitation condition on Vpre
0
No current limitation (Ipre_pk < Ipre_lim)
1
Current limitation (Ipre_pk > Ipre_lim)
Reset condition
Power On Reset / Read
Description
Report a thermal warning from Vpre
0
No thermal warning (Tj < Twarm_pre)
1
Thermal warning (Tj > Twarm_pre)
Reset condition
Power On Reset / Read
Description
Report a running mode of Vpre
0
Buck
1
Boost
Reset condition
Power On Reset
Description
Report the activation state of Vpre SMPS
0
SMPS OFF
1
SMPS ON
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
65
STATUS VREG2
Table 35. STATUS VREG2 Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
Vcore_
state
Twarm
_cca
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers Ilim_cor Twarm
G
_G
e
_core
Ilim_cc Ilim_au Ilim_ca
a
x
n
0
Table 36. Status Vreg2. Description and Configuration of the Bits (Default value in blue)
Ilim_core
Twarm_core
Vcore_state
Twarm_cca
Ilim_cca
Ilim_aux
Ilim_can
Description
Report a current limitation condition on Vcore
0
No current limitation (Icore_pk < Icore_lim)
1
Current limitation (Icore_pk > Icore_lim)
Reset condition
Power On Reset / Read
Description
Report a thermal warning from Vcore
0
No thermal warning (Tj < Twarm_core)
1
Thermal warning (Tj > Twarm_core)
Reset condition
Power On Reset / Read
Description
Report the activation state of Vcore SMPS
0
SMPS OFF
1
SMPS ON
Reset condition
Power On Reset
Description
Report a thermal warning from Vcca. Available only for internal pass MOSFET
0
No thermal warning (Tj < Twarm_cca)
1
Thermal warning (Tj > Twarm_cca)
Reset condition
Power On Reset
Description
Report a current limitation condition on Vcca
0
No current limitation (Icca < Icca_lim)
1
Current limitation (Icca > Icca_lim)
Reset condition
Power On Reset / Read
Description
Report a current limitation condition on Vaux
0
No current limitation (Iaux < Iaux_lim)
1
Current limitation (Iaux > Iaux_lim)
Reset condition
Power On Reset / Read
Description
Report a current limitation condition on Vcan
0
NO current limitation (Ican < Ican_lim)
1
Current limitation (Ican > Ican _lim)
Reset condition
Power On Reset / Read
33907_8
66
Analog Integrated Circuit Device Data
Freescale Semiconductor
DIAG VREG1
Table 37. DIAG VREG1 Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers Vsns_u Vsup_u Tsd_pr Vpre_O Vpre_u Tsd_co Vcore_ Vcore_
G
_G
v
v_7
e
V
v
re
OV
uv
Table 38. Diag Vreg1. Description and Configuration of the Bits (Default value in blue)
Vsns_uv
Vsup_uv_7
Tsd_pre
Vpre_OV
Vpre_UV
Tsd_core
Vcore_OV
Vcore_UV
Description
Detection of Vbattery below Vsns_uv
0
Vbat > Vsns_uv
1
Vbat < Vsns_uv
Reset condition
Power On Reset / Read
Description
Detection of Vsup below Vsup_uv_7
0
Vsup > Vsup_uv_7
1
Vsup < Vsup_uv_7
Reset condition
Power On Reset / Read
Description
Thermal shutdown of Vpre
0
No TSD (Tj < Tsd_pre)
1
TSD occurred (Tj > Tsd_pre)
Reset condition
Power On Reset / Read
Description
Vpre overvoltage detection
0
No overvoltage (Vpre < Vpre_ov)
1
Overvoltage detected (Vpre> Vpre_ov)
Reset condition
Power On Reset
Description
Vpre undervoltage detection
0
No undervoltage (Vpre > Vpre_uv)
1
Under voltage detected (Vpre < Vpre_uv)
Reset condition
Power On Reset / Read
Description
Thermal shutdown of Vcore
0
No TSD (Tj < Tsd_core)
1
TSD occurred (Tj > Tsd_core)
Reset condition
Power On Reset / Read
Description
Vcore overvoltage detection
0
No overvoltage (Vcore < Vcore_ov)
1
Overvoltage detected (Vcore > Vcore_ov)
Reset condition
Power On Reset / Read
Description
Vcore undervoltage detection
0
No undervoltage (Vcore > Vcore_uv)
1
Undervoltage (Vcore < Vcore_uv)
Reset condition
Power On Reset / Read
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
67
DIAG VREG2
Table 39. DIAG VREG2 Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
Vcan_u
v
0
Vaux_
OV
Vaux_u
v
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers Tsd_Ca Vcan_
G
_G
n
OV
Tsd_au Ilim_au
x
x_off
Table 40. Diag Vreg2. Description and Configuration of the Bits (Default value in blue)
Tsd_can
Vcan_OV
Vcan_uv
Tsd_aux
Ilim_aux_off
Vaux_OV
Vaux_UV
Description
Thermal shutdown of Vcan
0
NO TSD (Tj < Tsd_can)
1
TSD occurred (Tj > Tsd_can)
Reset condition
Power On Reset / Read
Description
Vcan Overvoltage detection
0
No Overvoltage (Vcan < Vcan_OV)
1
Overvoltage detected (Vcan > Vcan_OV)
Reset condition
Power On Reset / Read
Description
Vcan undervoltage detection
0
No undervoltage (Vcan > Vcan_uv)
1
Undervoltage detected (Vcan < Vcan_uv)
Reset condition
Power On Reset / Read
Description
Thermal shutdown of Vaux
0
No TSD (Tj < Tsd_aux)
1
TSD occurred (Tj > Tsd_aux)
Reset condition
Power On Reset
Description
Maximum current limitation duration
0
T_limitation < Taux_lim_off
1
T_limitation >Taux_lim_off
Reset condition
Power On Reset / Read
Description
Vaux overvoltage detection
0
No overvoltage (Vaux < Vaux_OV)
1
Overvoltage detected (Vaux > Vaux_OV)
Reset condition
Power On Reset / Read
Description
Vaux undervoltage detection
0
No undervoltage (Vaux > Vaux_uv)
1
undervoltage detected (Vaux < Vaux_uv)
Reset condition
Power On Reset / Read
33907_8
68
Analog Integrated Circuit Device Data
Freescale Semiconductor
DIAG VREG 3
Table 41. DIAG VREG3 Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
0
Ilimcca_off
0
Vcca_
OV
0
Vcca_U
V
0
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers Tsd_cc
G
_G
a
Table 42. Diag Vreg3. Description and Configuration of the Bits (Default value in blue)
Tsd_cca
Ilim_cca_off
Vcca_OV
Vcca_UV
Description
Thermal shutdown of Vcca
0
NO TSD (Tj < Tsd_cca)
1
TSD occurred (Tj > Tsd_cca)
Reset condition
Power On Reset / Read
Description
Maximum current limitation duration. Available only when an external PNP is connected
0
T_limitation < Tcca_lim_off
1
T_limitation >Tcca_lim_off
Reset condition
Power On Reset / Read
Description
Vcca overvoltage detection
0
No overvoltage (Vcca < Vcca_OV)
1
Overvoltage detected (Vcca > Vcca_OV)
Reset condition
Power On Reset / Read
Description
Vcca undervoltage detection
0
No undervoltage (Vcca > Vcca_uv)
1
Undervoltage detected (Vcca < Vcca_uv)
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
69
DIAG CAN1
Table 43. DIAG CAN1 Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers CANH_ CANH_ CANL_ CANL_ CAN_d
G
_G
batt
gnd
batt
gnd
ominan
t
0
RXD_r TXD_d
ecessiv ominan
t
e
Table 44. Diag CAN1. Description and Configuration of the Bits (Default value in blue)
CANH_batt
CANH_gnd
CANL_batt
CANL_gnd
CAN_dominant
RXD_recessive
TXD_dominant
Description
CANH short circuit to battery detection
0
NO failure
1
Failure detected
Reset condition
Power On Reset / Read
Description
CANH short circuit to gnd detection
0
NO failure
1
Failure detected
Reset condition
Power On Reset / Read
Description
CANL short circuit to battery detection
0
NO failure
1
Failure detected
Reset condition
Power On Reset / Read
Description
CANL short circuit to gnd detection
0
NO failure
1
Failure detected
Reset condition
Power On Reset / Read
Description
CAN Bus dominant clamping detection
0
NO failure
1
Failure detected
Reset condition
Power On Reset / Read
Description
RXD recessive clamping detection (short circuit to 5V)
0
NO failure
1
Failure detected
Reset condition
Power On Reset / Read
Description
TXD dominant clamping detection (short circuit to GND)
0
NO failure
1
Failure detected
Reset condition
Power On Reset / Read
33907_8
70
Analog Integrated Circuit Device Data
Freescale Semiconductor
DIAG CAN2
Table 45. DIAG CAN2 Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers reserve reserve
G
_G
d
d
0
reserve reserve
d
d
0
CAN_O CAN_O
T
C
Table 46. Diag CAN2. Description and Configuration of the Bits (Default value in blue)
CAN_OT
CAN_OC
Description
CAN overtemperature detection
0
NO failure
1
Failure detected
Reset condition
Power On Reset / Read
Description
CAN overcurrent detection
0
NO failure
1
Failure detected
Reset condition
Power On Reset / Read
Table 47. Distinguish between CAN Diagnostic and CAN Error
Register
DIAG CAN1
Bit
Flag Type
Effect
CANH_batt
Diagnostic
No impact
CANH_gnd
Diagnostic
No impact
CANL_batt
Diagnostic
No impact
CANL_gnd
Diagnostic
No impact
CAN_dominant
Error
Turn OFF CAN transceiver
RXD_recessive
Error
Turn OFF CAN transceiver
TXD_dominant
Error
Turn OFF CAN transceiver
CAN_OT
Error
Turn OFF CAN transceiver
CAN_OC
Diagnostic
No impact
DIAG CAN2
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
71
DIAG SPI
Table 48. DIAG SPI Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
0
SPI_clk
0
SPI_re
q
0
SPI_pa
rity
0
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers SPI_err
G
_G
Table 49. Diag SPI. Description and Configuration of the Bits (Default value in blue)
SPI_err
SPI_CLK
SPI_req
SPI_parity
Description
Secured SPI communication check
0
No error
1
Error detected in the secured bits
Reset condition
Power On Reset / Read
Description
SCLK error detection
0
16 clock cycles during NCS low
1
Wrong number of clock cycles (<16 or > 16)
Reset condition
Power On Reset / Read
Description
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address)
0
No error
1
SPI violation
Reset condition
Power On Reset / Read
Description
SPI parity bit error detection
0
Parity bit OK
1
Parity bit error
Reset condition
Power On Reset / Read
33907_8
72
Analog Integrated Circuit Device Data
Freescale Semiconductor
MODE
Table 50. MODE Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
0
1
0
1
0
1
P
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers
G
_G
bit7
bit6
bit5
bit4
reserve reserve Goto_L INT_re
d
d
POFF
quest
bit3
bit2
bit1
bit0
Secure Secure Secure Secure
_3
_2
_1
_0
0
0
0
0
INIT
Normal reserve reserve
d
d
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
0
0
0
0
INIT
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers
G
_G
Normal reserve reserve
d
d
Table 51. MODE. Description and Configuration of the Bits (Default value in blue)
Goto_LPOFF
INIT
Normal
INT_request
Secure 3:0
Description
Configure the device in Low Power mode Vreg OFF (LPOFF)
0
No action
1
LPOFF mode
Reset condition
Power On Reset
Description
Report if INIT mode of the main logic state machine is entered
0
Not in INIT mode
1
INIT MODE
Reset condition
Power On Reset
Description
Report if Normal mode of the main logic state machine is entered
0
Not in Normal mode
1
Normal mode
Reset condition
Power On Reset
Description
Request for an INT pulse
0
No Request
1
Request for an INT pulse
Reset condition
Power On Reset
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
73
VREG MODE
Table 52. VREG MODE Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
0
1
0
1
1
0
P
MISO
SPI_G
WU
CAN_G Reserved
IO_G
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
Vcore_ Vcca_E Vaux_E Vcan_E Secure Secure Secure Secure
EN
N
N
N
_3
_2
_1
_0
Vpre_G Vcore_ Vothers reserve reserve reserve reserve Vcore_ Vcca_E Vaux_E Vcan_E
G
_G
d
d
d
d
EN
N
N
N
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers reserve reserve reserve reserve Vcore_ Vcca_E Vaux_E Vcan_E
G
_G
d
d
d
d
EN
N
N
N
Table 53. VREG MODE. Description and Configuration of the Bits (Default value in blue)
Vcore_EN
Vcca_EN
Vaux_EN
VCAN_EN
Secure 3:0
Description
Vcore control (Switch OFF not possible if Vcore is SAFETY critical)
0
DISABLED
1
ENABLED
Reset condition
Power On Reset
Description
Vcca control (Switch OFF NOT possible if Vcca is SAFETY critical)
0
DISABLED
1
ENABLED
Reset condition
Power On Reset
Description
Vaux control (Switch OFF NOT possible if Vaux is SAFETY critical)
0
DISABLED
1
ENABLED
Reset condition
Power On Reset
Description
Vcan control
0
DISABLED
1
ENABLED
Reset condition
Power On Reset
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
33907_8
74
Analog Integrated Circuit Device Data
Freescale Semiconductor
IO_OUT-AMUX
Table 54. IO_OUT-AMUX Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
MOSI
1
0
1
0
1
1
1
P
IO_out
_4_EN
IO_out
_4
IO_out
_5_EN
IO_out
_5
MISO
SPI_G
WU
Vpre_G Vcore_ Vothers IO_out IO_oou IO_out
G
_G
_4_EN
t_4
_5_EN
IO_out
_5
CAN_G Reserv
ed
IO_G
bit3
bit2
bit1
bit0
Reserv Amux_
ed
2
Amux_
1
Amux_
0
Reserv Amux_
ed
2
Amux_
1
Amux_
0
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
1
0
1
1
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
Amux_
1
Amux_
0
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers IO_out IO_oou IO_out
G
_G
_4_EN
t_4
_5_EN
IO_out
_5
Reserv Amux_
ed
2
Table 55. IO_OUT-AMUX. Description and Configuration of the Bits (Default value in blue)
IO_out_4_EN
IO_out_4
IO_out_5_EN
IO_out_5
AMUX_2:0
Description
Enable the output gate driver capability for IO_4
0
High impedance (IO_4 configured as input)
1
ENABLED (IO_4 configured as output gate driver)
Reset condition
Power On Reset
Description
Configure IO_4 output gate driver state
0
LOW
1
HIGH
Reset condition
Power On Reset
Description
Enable the output gate driver capability for IO_5
0
High impedance (IO_5 configured as input)
1
ENABLED (IO_5 configured as output gate driver)
Reset condition
Power On Reset
Description
Configure IO_5 output gate driver state
0
LOW
1
HIGH
Reset condition
Power On Reset
Description
Select AMUX output
000
Vref
001
Vsns wide range
010
IO_0 wide range
011
IO_1 wide range
100
Vsns tight range
101
IO_0 tight range
110
IO_1 tight range
111
Die temp. Sense
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
75
CAN MODE
Table 56. CAN MODE Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
0
1
1
0
0
0
P
MISO
SPI_G
WU
CAN_G Reserved
IO_G
bit7
bit6
bit5
bit4
bit3
bit2
CAN_m CAN_m CAN_a reserve reserve reserve
ode_1 ode_0 uto_dis
d
d
d
bit1
bit0
0
0
Vpre_G Vcore_ Vothers CAN_m CAN_m CAN_a reserve reserve reserve CAN_w reserve
G
_G
ode_1 ode_0 uto_dis
d
d
d
u
d
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers CAN_m CAN_m CAN_a reserve reserve reserve CAN_w reserve
G
_G
ode_1 ode_0 uto_dis
d
d
d
u
d
Table 57. CAN MODE. Description and Configuration of the Bits (Default value in blue)
CAN_mode_1:0
CAN_auto_dis
CAN_wu
Description
Configure the CAN mode
00
Sleep / NO wake up capability
01
LISTEN ONLY
10
Sleep / Wake-up capability
11
Normal operation mode
Reset condition
Power On Reset
Description
Automatic CAN Tx disable
0
NO auto disable
1
Reset CAN_mode from “11” to “01” on CAN over temp or TXD dominant or RXD recessive event
Reset condition
Power On Reset
Description
Report a wake up event from the CAN
0
No wake-up
1
wake-up detected
Reset condition
Power On Reset / Read
Notes
19. When the device is in Normal mode, the CAN mode bits cannot be read back by the SPI when the CAN transceiver is configured in Low
Power mode.
20. CAN mode is automatically configured to "sleep + wake-up capability [10]" if CAN mode was different than "sleep + no wake-up capability
[00]" before the device enters in LPOFF. After LPOFF, the initial CAN mode prior to enter LPOFF is restored.
33907_8
76
Analog Integrated Circuit Device Data
Freescale Semiconductor
CAN_MODE_2
Table 58. CAN_MODE_2 Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
0
1
1
0
0
1
P
MISO
SPI_G
WU
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
bit7
bit6
bit5
bit4
bit3
reserve reserve reserve Vcan_ secure
_3
d
d
d
OV_Mo
n
bit2
bit1
bit0
secure
_2
secure
_1
secure
_0
Vpre_G Vcore_ Vothers Reserv Reserv Reserv Reserv Vcan_ Reserv Reserv Reserv
ed
ed
ed
G
_G
ed
ed
ed
ed
OV_Mo
n
Read
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers Reserv Reserv Reserv Reserv Vcan_ Reserv Reserv Reserv
ed
ed
ed
G
_G
ed
ed
ed
ed
OV_Mo
n
Table 59. CAN_MODE_2. Description and Configuration of the Bits (Default value in blue)
Vcan_OV_Mon
Secure 3:0
Description
VCAN OV Monitoring
0
OFF. Vcan OV is not monitored. Flag is ignored
1
ON. Vcan OV flag is under monitoring. In case of OV the Vcan regulator is switched OFF.
Reset condition
Power On Reset
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
77
INIT SUPERVISOR1
Table 60. INIT SUPERVISOR1 Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
1
0
0
0
0
1
P
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
bit7
bit6
bit5
bit4
bit3
Vcore_ Vcore_ Vcca_F Vcca_F secure
FS1
FS_0
S_1
S_0
_3
bit2
bit1
bit0
Secure Secure Secure
_2
_1
_0
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS Vcore_ Vcore_ Vcca_F Vcca_F
G
_G
_err
_CLK
_Req _Parity
FS1
FS_0
S_1
S_0
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS Vcore_ Vcore_ Vcca_F Vcca_F
G
_G
_err
_CLK
_Req _Parity
FS1
FS_0
S_1
S_0
Table 61. INIT SUPERVISOR1. Description and Configuration of the Bits (Default value in blue)
Vcore_FS1:0
Vcca_FS1:0
Secure3:0
Description
Vcore safety input.
00
No effect of Vcore_OV and Vcore_uv on RSTb and FSxx
01
Vcore_OV DOES HAVE an impact on RSTb and FSxx. Vcore_UV DOES HAVE an impact on RSTb
only
10
Vcore_OV DOES HAVE an impact on RSTb and FSxx. No effect of Vcore_UV on RSTb and FSxx
11
Both Vcore_OV and Vcore_UV DO HAVE an impact on RSTb and FSxx
Reset condition
Power On Reset
Description
Vcca safety input.
00
No effect of Vcca_OV and Vcca_uv on RSTb and FSxx
01
Vcca_OV DOES HAVE an impact on RSTb and FSxx. Vcca_UV DOES HAVE an impact on RSTb only
10
Vcca_OV DOES HAVE an impact on RSTb and FSxx. No effect of Vcca_UV on RSTb and FSxx
11
Both Vcca_OV and Vcca_UV DO HAVE an impact on RSTb and FSxx
Reset condition
Power On Reset
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
SPI_FS_err
SPI_FS_CLK
Description
Secured SPI communication check
0
No error
1
Error detected in the secured bits
Reset condition
Power On Reset
Description
SCLK error detection, concerns internal error in Fail-safe logic only and external errors (at pin level)
for both Main and Fail-safe logics. Other errors flagged by SPI_CLK_ bit
0
16 clock cycles during NCS low
1
Wrong number of clock cycles (<16 or >16)
Reset condition
Power On Reset
33907_8
78
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 61. INIT SUPERVISOR1. Description and Configuration of the Bits (Default value in blue)
SPI_FS_Req
SPI_FS_Parity
Description
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address),
concerns Fail-safe logic only.
0
No error
1
SPI violation
Reset condition
Power On Reset
Description
SPI parity bit error detection, concerns Fail-safe logic only
0
Parity bit OK
1
Parity bit ERROR
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
79
INIT SUPERVISOR 2
Table 62. INIT SUPERVISOR2 Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
1
0
0
0
1
0
P
MISO
SPI_G
WU
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
bit7
bit6
Vaux_F Vaux_F
S1
S_0
bit5
0
bit4
bit3
bit2
bit1
bit0
DIS_8s Secure Secure Secure Secure
_3
_2
_1
_0
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS
G
_G
_err
_CLK
_req
_Parity
0
DIS_8s Vaux_F Vaux_F
S1
S_0
Read
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS
G
_G
_err
_CLK
_req
_Parity
0
DIS_8s Vaux_F Vaux_F
S1
S_0
Table 63. INIT SUPERVISOR2. Description and Configuration of the Bits (Default value in blue)
Vaux_FS1:0
DIS_8s
Secure3:0
Description
Vaux safety input.
00
No effect of Vaux_OV and Vaux_uv on RSTb and FSxx
01
Vaux_OV DOES HAVE an impact on RSTb and FSxx. Vaux_UV DOES HAVE an impact on RSTb only
10
Vaux_OV DOES HAVE an impact on RSTb and FSxx. No effect of Vaux_UV on RSTb and FSxx
11
Both Vaux_OV and Vaux_UV DO HAVE an impact on RSTb and FSxx
Reset condition
Power On Reset
Description
Disable the 8s timer used to enter Deep FAILSAFE mode
0
ENABLED
1
DISABLED
Reset condition
Power On Reset
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
SPI_FS_err
SPI_FS_CLK
Description
Secured SPI communication check, concerns Fail-safe logic only.
0
No error
1
Error detected in the secured bits
Reset condition
Power On Reset
Description
SCLK error detection, concerns internal error in Fail-safe logic only and external errors (at pin level)
for both Main and Fail-safe logics. Other errors flagged by SPI_CLK_ bit
0
16 clock cycles during NCS low
1
Wrong number of clock cycles (<16 or >16)
Reset condition
Power On Reset
33907_8
80
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 63. INIT SUPERVISOR2. Description and Configuration of the Bits (Default value in blue)
SPI_FS_Req
SPI_FS_Parity
Description
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address),
concerns Fail-safe Logic only
0
No error
1
SPI violation
Reset condition
Power On Reset
Description
SPI parity bit error detection, concerns Fail-safe logic only
0
Parity bit OK
1
Parity bit ERROR
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
81
INIT SUPERVISOR 3
Table 64. INIT SUPERVISOR3 Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
1
0
0
0
1
1
P
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
bit7
bit6
bit5
bit4
Vcore_ Vcca_5 Vaux_5
5D
D
D
0
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS
G
_G
_err
_CLK
_req
_Parity
bit3
bit2
bit1
bit0
Secure Secure Secure Secure
_3
_2
_1
_0
0
Vcore_ Vcca_5 Vaux_5
5D
D
D
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS
G
_G
_err
_CLK
_req
_Parity
0
Vcore_ Vcca_5 Vaux_5
5D
D
D
Table 65. INIT SUPERVISOR3. Description and Configuration of the Bits (Default value in blue)
Vcore_5D
Vcca_5D
Vaux_5D
Secure3:0
Description
Configure the Vcore undervoltage in degraded mode. Only valid for 5V
0
Normal 5 V undervoltage detection threshold (Vcore_uv)
1
Degraded mode, i.e lower under voltage detection threshold applied (Vcore_uv_D)
Reset condition
Power On Reset
Description
Configure the Vcca undervoltage in degraded mode. Only valid for 5V
0
Normal 5 V undervoltage detection threshold (Vcca_uv_5)
1
Degraded mode, i.e lower under voltage detection threshold applied (Vcca_uv_D)
Reset condition
Power On Reset
Description
Configure the Vaux undervoltage in degraded mode. Only valid for 5V
0
Normal 5 V undervoltage detection threshold (Vaux_uv_5)
1
Degraded mode, i.e lower under voltage detection threshold applied (Vaux_uv_5D)
Reset condition
Power On Reset
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
SPI_FS_err
SPI_FS_CLK
Description
Secured SPI communication check, concerns fail-safe logic only
0
No error
1
Error detected in the secured bits
Reset condition
Power On Reset
Description
SCLK error detection, concerns internal error in Fail-safe logic only and external errors (at pin level)
for both Main and Fail-safe logics. Other errors flagged by SPI_CLK_ bit
0
16 clock cycles during NCS low
1
Wrong number of clock cycles (<16 or >16)
Reset condition
Power On Reset
33907_8
82
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 65. INIT SUPERVISOR3. Description and Configuration of the Bits (Default value in blue)
SPI_FS_Req
SPI_FS_Parity
Description
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address),
concerns Fail-Safe Logic only
0
No error
1
SPI violation
Reset condition
Power On Reset
Description
SPI parity bit error detection, concerns Fail-safe logic only
0
Parity bit OK
1
Parity bit ERROR
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
83
INIT FSSM1
Table 66. INIT FSSM1 Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
MOSI
1
1
0
0
1
0
0
P
IO_01_
FS
0
MISO
SPI_G
WU
CAN_G Reserved
IO_G
bit5
bit4
bit3
bit2
bit1
bit0
IO_45_ RSTb_l Secure Secure Secure Secure
FS
ow
_3
_2
_1
_0
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS IO_01_
G
_G
_err
_CLK
_req
_Parity
FS
0
IO_45_ RSTb_l
FS
ow
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS IO_01_
G
_G
_err
_CLK
_req
_Parity
FS
0
IO_45_ RSTb_l
FS
ow
Table 67. INIT FSSM1. Description and Configuration of the Bits (Default value in blue)
IO_01_FS
IO_45_FS
RSTb_low
Secure3:0
Description
Configure the couple of IO_1:0 as safety inputs
0
NOT SAFETY
1
SAFETY CRITICAL
Reset condition
Power On Reset
Description
Configure the couple of IO_5:4 as safety inputs
0
NOT SAFETY
1
SAFETY CRITICAL
Reset condition
Power On Reset
Description
Configure the Rstb LOW duration time
0
10 ms
1
1ms
Reset condition
Power On Reset
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
SPI_FS_err
SPI_FS_CLK
Description
Secured SPI communication check, concerns Fail-safe logic only
0
No error
1
Error detected in the secured bits
Reset condition
Power On Reset
Description
SCLK error detection, concerns internal error in Fail-safe logic only and external errors (at pin level)
for both Main and Fail-safe logics. Other errors flagged by SPI_CLK_ bit
0
16 clock cycles during NCS low
1
Wrong number of clock cycles (<16 or >16)
Reset condition
Power On Reset
33907_8
84
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 67. INIT FSSM1. Description and Configuration of the Bits (Default value in blue)
SPI_FS_Req
SPI_FS_Parity
Description
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address),
concerns Fail-safe logic only
0
No error
1
SPI violation
Reset condition
Power On Reset
Description
SPI parity bit error detection, concerns Fail-safe logic only
0
Parity bit OK
1
Parity bit ERROR
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
85
INIT FSSM2
Table 68. INIT FSSM2 Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
1
0
0
1
0
1
P
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
bit7
bit6
RSTb_ IO_23_
err_FS
FS
bit5
bit4
PS
0
bit3
bit2
bit1
bit0
Secure Secure Secure Secure
_3
_2
_1
_0
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS RSTb_ IO_23_
G
_G
_err
_CLK
_req
_Parity err_FS
FS
PS
0
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
PS
0
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS RSTb_ IO_23_
G
_G
_err
_CLK
_req
_Parity err_FS
FS
Table 69. INIT FSSM2. Description and Configuration of the Bits (Default value in blue)
IO_23_FS
RSTb_err_FS
PS
Secure3:0
Description
Configure the couple of IO_3:2 as safety inputs for FCCU monitoring
0
NOT SAFETY
1
SAFETY CRITICAL
Reset condition
Power On Reset
Description
Configure the values of the RSTb error counter
0
intermediate=3; final=6
1
intermediate=1; final=2
Reset condition
Power On Reset
Description
Configure the Fccu polarity
0
Fccu_eaout_1:0 active HIGH
1
Fccu_eaout_1:0 active LOW
Reset condition
Power On Reset
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
SPI_FS_err
SPI_FS_CLK
Description
Secured SPI communication check, concerns Fail-safe logic only
0
No error
1
Error detected in the secured bits
Reset condition
Power On Reset
Description
SCLK error detection, concerns internal error in Fail-safe logic only and external errors (at pin level)
for both Main and Fail-safe logics. Other errors flagged by SPI_CLK_ bit
0
16 clock cycles during NCS low
1
Wrong number of clock cycles (<16 or >16)
Reset condition
Power On Reset
33907_8
86
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 69. INIT FSSM2. Description and Configuration of the Bits (Default value in blue)
SPI_FS_Req
SPI_FS_Parity
Description
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address),
concerns Fail-safe Logic only
0
No error
1
SPI violation
Reset condition
Power On Reset
Description
SPI parity bit error detection, concerns Fail-safe logic only
0
Parity bit OK
1
Parity bit ERROR
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
87
WD WINDOW
Table 70. WD WINDOW Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
1
0
0
1
1
0
P
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
WD_wi WD_wi WD_wi WD_wi Secure Secure Secure Secure
ndow3 ndow2 ndow1 ndow0
_3
_2
_1
_0
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS WD_wi WD_wi WD_wi WD_wi
G
_G
_err
_CLK
_req
_Parity ndow3 ndow2 ndow1 ndow0
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers SPI_FS SPI_FS SPI_FS SPI_FS WD_wi WD_wi WD_wi WD_wi
G
_G
_err
_CLK
_req
_Parity ndow3 ndow2 ndow1 ndow0
Any WRITE command to the WD_window in the Normal mode must be followed by a READ command to verify the correct change of the
WD window duration
Table 71. WD Window. Description and Configuration of the Bits (Default value in blue)
WD_Window_3:0
Secure3:0
Description
Configure the watchdog window duration. Duty cycle if set to 50%
0000
DISABLE
0001
1 ms
0010
2 ms
0011
3 ms
0100
4 ms
0101
6 ms
0110
8 ms
0111
12 ms
1000
16 ms
1001
24 ms
1010
32 ms
1011
64 ms
1100
128 ms
1101
256 ms
1110
512 ms
1111
1024 ms
Reset condition
Power On Reset
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
33907_8
88
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 71. WD Window. Description and Configuration of the Bits (Default value in blue)
SPI_FS_err
SPI_FS_CLK
SPI_FS_Req
SPI_FS_Parity
Description
Secured SPI communication check, concerns Fail-safe logic only
0
No error
1
Error detected in the secured bits
Reset condition
Power On Reset
Description
SCLK error detection, concerns internal error in Fail-safe logic only and external errors (at pin level)
for both Main and Fail-safe logics. Other errors flagged by SPI_CLK bit.
0
16 clock cycles during NCS low
1
Wrong number of clock cycles (<16 or >16)
Reset condition
Power On Reset
Description
Invalid SPI access (Wrong Write or Read, Write to INIT registers in normal mode, wrong address),
concerns Fail-safe logic only
0
No error
1
SPI violation
Reset condition
Power On Reset
Description
SPI parity bit error detection, concerns Fail-safe logic only
0
Parity bit OK
1
Parity bit ERROR
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
89
WD_LFSR
Table 72. WD LFSR Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
1
0
0
1
1
1
P
MISO
SPI_G
WU
bit15
bit14
bit13
bit12
bit11
bit10
bit9
MOSI
0
1
0
0
1
1
1
MISO
SPI_G
WU
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers
G
_G
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF
SR_7
SR_6
SR_5
SR_4
SR_3
SR_2
SR_1
SR_0
0
0
0
0
0
0
0
0
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
0
0
0
0
0
0
0
0
0
Read
CAN_G Reserved
IO_G
Vpre_G Vcore_ Vothers WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF WD_LF
G
_G
SR_7
SR_6
SR_5
SR_4
SR_3
SR_2
SR_1
SR_0
Table 73. WD LFSR. Description and Configuration of the Bits (Default value in blue)
WD_LFSR_7:0
Description
WD 8 bits LFSR value. Used to write the seed at any time
0...
bit7:bit0: 10110010 default value at startup or after a Power on reset: 0xB2 (21)
1...
Reset condition
Power On Reset
Notes
21. Value Bit7:Bit0: 1111 1111 is prohibited.
33907_8
90
Analog Integrated Circuit Device Data
Freescale Semiconductor
WD ANSWER
Table 74. WD ANSWER Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
1
0
1
0
0
0
P
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
WD_an WD_an WD_an WD_an WD_an WD_an WD_an WD_an
swer_7 swer_6 swer_5 swer_4 swer_3 swer_2 swer_1 swer_0
Vpre_G Vcore_ Vothers
G
_G
RSTb
FS0
WD
FS0_G IO_FS_
G
0
FS_EC FS_reg
C
_Ecc
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
RSTb
FS0
WD
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers
G
_G
FS0_G IO_FS_
G
0
FS_EC FS_reg
C
_Ecc
Table 75. WD answer. Description and Configuration of the Bits (Default value in blue)
WD_answer_7:0
Description
WD answer from the MCU
0...
Answer = (NOT(((LFSR x 4)+6)-4))/4
1...
RSTb
FS0b
WD
FS0_G
IO_FS_G
Reset condition
Power On Reset / RSTb LOW
Description
Report a reset event
0
No Reset
1
Reset occurred
Reset condition
Power On Reset / Read
Description
Report a fail-safe event
0
No Fail-safe
1
Fail safe event occurred / Also default state at power-up after LPOFF as FS0b is asserted low
Reset condition
Power On Reset / Read
Description
Report a watchdog refresh ERROR
0
WD refresh OK
1
WRONG WD refresh
Reset condition
Power On Reset / Read
Description
Report a fail-safe output failure
0
NO failure
1
Failure
Reset condition
Power On Reset / Read
Description
Report an IO monitoring error
0
No error
1
Error detected
Reset condition
Power On Reset
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
91
Table 75. WD answer. Description and Configuration of the Bits (Default value in blue)
FS_ECC
FS_req_ECC
Description
Report an error code correction on Fail-safe state machine
0
NO ECC
1
ECC done
Reset condition
Power On Reset / Read
Description
Report an error code correction on Fail-safe registers
0
NO ECC
1
ECC done
Reset condition
Power On Reset / Read
33907_8
92
Analog Integrated Circuit Device Data
Freescale Semiconductor
FAIL-SAFE OUT (FS_OUT)
Table 76. FAIL-SAFE OUT Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
1
0
1
0
0
1
P
MISO
SPI_G
WU
CAN_G Reserv
ed
IO_G
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
FS_out FS_out FS_out FS_out FS_out FS_out FS_out FS_out
_7
_6
_5
_4
_3
_2
_1
_0
Vpre_G Vcore_ Vothers
G
_G
0
0
0
0
0
0
0
0
bit2
bit1
bit0
Table 77. Fail-Safe OUT. Description and Configuration of the Bits (Default value in blue)
FS_out_7:0
Description
Secured 8 bits word to release the FS0b
0...
Depend on LFSR_out value and calculation
1...
Reset condition
Power On Reset -> Default = 00h
RSTB REQUEST
Table 78. RSTb REQUEST register description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
MOSI
1
1
0
1
0
1
0
P
0
0
RSTb_r
equest
0
MISO
SPI_G
WU
0
0
0
0
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers
G
_G
bit3
Secure Secure Secure Secure
_3
_2
_1
_0
0
0
0
0
Table 79. RSTb Request. Description and configuration of the bits (Default value in blue)
RSTb_request
Secure3:0
Description
Request a RSTb low pulse
0
No request
1
Request a RSTb low pulse
Reset condition
Power On Reset / When RSTb done
Description
Secured bits based on write bits
secured_3 = NOT(bit5)
Secured_2= NOT(bit4)
Secured_1=bit7
Secured_0=bit6
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
93
INIT_WD
Table 80. INIT WD Register Description
Write
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
MOSI
1
1
0
1
0
1
1
P
MISO
SPI_G
WU
CAN_G
Reserved
IO_G
Vpre_G
bit7
bit6
bit5
bit4
WD_CN WD_cnt_ WD_CN WD_CN
T_refres refresh_ T_error_ T_error_
h_1
0
1
0
bit3
bit2
bit1
bit0
secure3
secure2
secure1
secure0
Vcore_G Vothers_ SPI_FS_ SPI_FS_ SPI_FS_ SPI_FS_ WD_CN WD_cnt_ WD_CN WD_CN
G
err
CLK
Req
Parity
T_refres refresh_ T_error_ T_error_
h_1
0
1
0
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
CAN_G Reserve
d
IO_G
Vpre_G Vcore_ Vothers SPI_FS_ SPI_FS_ SPI_FS_ SPI_FS_ WD_CN WD_cnt_ WD_CN WD_CN
err
CLK
Req
Parity
T_refres refresh_ T_error_ T_error_
G
_G
h_1
0
1
0
Table 81. INIT WD. Description and Configuration of the Bits (Default value in blue)
WD_CNT_error_1:0
WD_CNT_refresh_1
:0
Description
Configure the maximum value of the WD error counter
00
6
01
6
10
4
11
2
Reset Condition
Power On Reset
Description
Configure the maximum value of the WD refresh counter
00
6
01
6
10
4
11
1
Reset Condition
Power On Reset
33907_8
94
Analog Integrated Circuit Device Data
Freescale Semiconductor
DIAG FS1
Table 82. DIAG FS1 Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
RSTb_
diag
0
0
0
0
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers RSTb_
G
_G
ext
FS0b_d FS0b_d
iag_1
iag_0
Table 83. Diag FS1. Description and Configuration of the Bits (Default value in blue)
RSTb_diag
RSTb_ext
FS0b_diag_1:0
Description
Report a RSTb short-circuit to HIGH
0
NO Failure
1
short circuit HIGH
Reset condition
Power On Reset / Read
Description
Report an external RSTb
0
No external RSTb
1
external RSTb
Reset condition
Power On Reset / Read
Description
Report a failure on FS0b
00
No Failure
01
Short-circuit LOW / open load
1X
short-circuit HIGH
Reset condition
Power On Reset / Read
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
95
WD COUNTER
Table 84. WD COUNTER Register Description
Read
bit15 bit14 bit13 bit12 bit11 bit10
MOSI
0
1
MISO
SPI_
G
WU
0
1
1
CAN Res IO_
_G erve G
d
0
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
1
0
0
0
0
0
0
0
0
0
Vpre_ Vcore Vothers_ WD_err WD_err WD_err
G
_G
G
_2
_1
_0
0
WD_re WD_ref WD_ref
fresh_ resh_1 resh_0
2
0
Table 85. WD counter. Description and Configuration of the Bits (Default value in blue)
WD_err_2:0
Description
Report the value of the watchdog error counter
000
From 0 to 5 (6 generates a Reset and this counter is reset to 0)
to 110
WD_refresh_2:0
Reset condition
Power On Reset
Description
Report the value of the watchdog refresh counter
000
From 0 to 6 (7 generate a decrease of the RST_err_cnt and this counter is reset to 0)
to 111
Reset condition
Power On Reset
33907_8
96
Analog Integrated Circuit Device Data
Freescale Semiconductor
DIAG FS2
Table 86. DIAG FS2 Register Description
Read
bit15
bit14
bit13
bit12
bit11
bit10
bit9
bit8
bit7
bit6
bit5
bit4
bit3
bit2
bit1
bit0
MOSI
0
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
MISO
SPI_G
WU
RSTb_
err_1
RSTb_
err_0
0
0
IO_01_
fail
CAN_G Reserv
ed
IO_G
Vpre_G Vcore_ Vothers RSTb_
G
_G
err_2
IO_45_ IO_23_
fail
fail
Table 87. Diag FS1. Description and Configuration of the Bits (Default value in blue)
RSTb_err_2:0
IO_45_fail
IO_23_fail
IO_01_fail
Description
Report the value of the RSTb error counter
000
001
…
110
Error counter is set to 1 by default
Reset condition
Power On Reset
Description
Report an error in the IO_45 protocol
0
NO error
1
Error detected
Reset condition
Power On Reset / Read
Description
Report an error in the FCCU protocol
0
NO error
1
Error detected
Reset condition
Power On Reset / Read
Description
Report an error in the IO_01 protocol
0
NO error
1
Error detected
Reset condition
Power On Reset / Read
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
97
8
List of Interruptions and Description
The INTb output pin generates a low pulse when an Interrupt condition occurs. The INTb behavior as well as the pulse duration
are set through SPI during INIT phase.
It is possible to mask some Interruption source (see register mapping).
Table 88. Interruptions list
Event
Description
VSNS_UV
Detection of Vbattery below 8.5V
VSUP_UV_7
Detection of VSUP below 7V (after reverse current protection diode)
IPFF
Input power feed forward. Based on VSUP and IPRE_PEAK
ILIM_PRE
Pre-Regulator Current Limitation
TWARN_PRE
Temperature warning on the pass transistor
BoB
Return the running state of VPRE converter (Buck or Boost mode)
VPRE_STATE
(VPRE_SMPS_EN)
Return the activation state of VPRE DC/DC converter
VPRE OV
Report a VPRE overvoltage detection
VPRE UV
Report a VPRE under voltage detection
ILIM_CORE
VCORE Current limitation
TWARN_CORE
Temperature warning on the pass transistor
VCORE_STATE
(VCORE_SMPS_EN)
Return the activation state of VCORE DC/DC converter
VCORE OV
Report a VCORE overvoltage detection
VCORE UV
Report a VCORE under voltage detection
ILIM_CCA
VCCA Current limitation
TWARN_CCA
Temperature warning on the pass transistor (Internal Pass transistor only)
TSDVCCA
Temperature shutdown of the VCCA
ILIM_CCA_OFF
Current limitation maximum duration expiration. Only used when external PNP
connected.
VCCA OV
Report a VCCA overvoltage detection
VCCA UV
Report a VCCA under voltage detection
ILIM_AUX
VAUX Current limitation
ILIM_AUX_OFF
Current limitation maximum duration expiration. Only used when external PNP
connected.
VAUX OV
Report a VAUX overvoltage detection
VAUX UV
Report a VAUX under voltage detection
TSDVAUX
Temperature shutdown of the VAUX
ILIM_CAN
VCAN Current limitation
VCAN OV
Report a VCAN overvoltage detection
VCAN UV
Report a VCAN under voltage detection
TSDCAN
Temperature shutdown on the pass transistor. Auto restart when TJ < (TSDCAN TSDCAN_HYST).
33907_8
98
Analog Integrated Circuit Device Data
Freescale Semiconductor
Table 88. Interruptions list
IO_0
Report IO_0 digital state change
IO_1
Report IO_1 digital state change
IO_2
Report IO_2 digital state change
IO_3
Report IO_3 digital state change
IO_4
Report IO_4 digital state change
IO_5
Report IO_5 digital state change
IO_0_WU
Report IO_0 WU event
IO_1_WU
Report IO_1 WU event
IO_2_WU
Report IO_2 WU event
IO_3_WU
Report IO_3 WU event
IO_4_WU
Report IO_4 WU event
IO_5_WU
Report IO_5 WU event
CANLBATT
CANL short-circuit to battery detection
CANLGND
CANL short-circuit to GND detection
CANHBATT
CANH short-circuit to battery detection
CANHGND
CANH short-circuit to GND detection
CAN_WU
Report a CAN wake-up event
CAN_OT
CAN overtemperature detection
RXD_recessive
CAN RXD recessive clamping detection (short circuit to 5 V)
TXD_dominant
CAN TXD dominant clamping detection (short circuit to GND)
CAN_dominant
CAN bus dominant clamping detection
CAN_OC
CAN overcurrent detection
INT_Request
MCU request for an Interrupt pulse
SPI_err
Secured SPI communication check
SPI_CLK
Report a wrong number of CLK pulse different than 16 during the NCS low pulse in
Main state machine
SPI_Req
Invalid SPI access (Wrong write or read, write to INIT registers in normal mode, wrong
address)
SPI_Parity
Report a Parity error in Main state machine
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
99
Typical Applications
PGND
100nF
Vcca_B
5.1K +/-5%
12K +/-5%
24K +/-5%
51K +/-5%
Optional
GND
Vbat
RSelect
Key on
Resistor must be
close to Select pin
GND
5.1 k
SELECT
IO_0
Vcca (5 V or 3.3 V), available configurations
Whithout Ext. PNP : 100 mA capability +/-1% accuracy for 5 V
configuration, +/-1.5% accuracy for 3.3V configuration,
With Ext. PNP : < 200mA +/-2% accuracy
With Ext. PNP : 300 mA capability +/-3% accuracy
IO_1
Optional
Recommended
connection for IOs not
used in the application
IO_3
5.1 k
GND
IO_5
5.1 k
0R
MUX_OUT
MCU inputs
GND
INTb
MCU Int.
VDDIO
GND
MCU RESET
VDDIO
or VSUP3
GND
5.1K if connected to VDDIO
>10K if connected to Vsup3
To Fail Safe
circuitry
5.1K
Vpre
FS0b
10K
GND
120
Ground Connections
PGND ground plane connected to DGND pin
GND ground plane connected to AGND and GND_COM pins
PGND (DGND) and GND (AGND & GND_COM) connected together far from
PGND ground plane.
CANL
GNDA
GND_Com
DGND
GND
GND
PGND
DEBUG
RXD
TXD
DEBUG
mode
10 nF
CANH
100nF
MCU SPI
GND
CAN BUS
4
GND
RSTb
MUX_OUT (output selected by SPI)
 Vsense or
 VIO_0 or
 VIO_1 or
 Internal 2.5V reference voltage (2.5V +/-1%) or
 Temp
IO_4
MOSI
MISO
SCLK
NCS
5.1K
Vaux (5 V or 3.3 V)
300 mA capability +/-3% accuracy
IO_2
FCCU monitoring
from Freescale
MCU
C1 R2(+/‐5%) C2 Cout 220pF 39K
1nF 2*10µF
680pF 18K
150pF 2*10µF
10 nF
CAN-5V
R1(+/‐5%)
200
510
(If connected to Vcore, must be
connected closed to coutx 10µF x 2)
1 nF
1µF
R4(+/‐1%)
8.06K
8.06K
10 µF
GND
Connected to Vcca or Vcore
VDDIO
Components selection for Vcore voltage (current range 10mA ‐> 800mA, DI/DT = 2A/µs)
Vcore voltage R3(+/‐1%)
1.23V
4.32K
3.3V
24.9K
EMI sup. Capacitor must be connected
closed to load (220nF) and connected to
GND
4.7 µF
Capacitor closed to
Vcca pin
Capacitor must be
close to Vaux pin
GND
Example of IO
connection and usage
< 7 10.8 <<13.2 21.6 <<26.4 45.9 <<56.1
ESR cap.
<100m
Vcca
Recommended Value
100 nF
Vaux
3.3V 5V 5V 3.3V Vcca_PNP
10 nF
4.7µF
3.3V 5V 3.3V 5V
Vaux_B
ESR cap.
<100m
Optional
1 nF
Vaux_PNP
EMI sup. Capacitor must be connected
closed to load (100nF + 100pF) and
connected to GND
Rselect (K)
C2
R2
GND
Vaux_E
PGND
R4
Vcca_E
Vaux PGND
GND
Comp_core
SELECT pin Configuration for VCCA & VAUX
(R select connected to GND)
Vcca 10 µF
2.2nF
10 µF
10 µF
33907_08
Vsense
1µF
PGND
R1
GND
Vcore_sns
FB_core
Boot_core
Vpre
5.1 k
SW_core
Vsup3
R3
330pF
PGND
Gate_LS
Boot_pre
SW_pre2
SW_pre1
Vsup1
PGND
Vsup2
GND
GND
C1
PGND
Vcore Voltage
ESR cap.
<10m
Capacitors must be close to Vpre pin
PGND
GND
1K
PGND
Optional
4.7 µF
4.7 µF
22 µF
22 µF
PGND
PGND PGND
2.2 µH
22 pF
PGND
ESR cap.
<10m
7.5 
Vbat
ESR cap.
<100m
10 µF
8.0
1 µH
Snubber values must be fine tuned as
linked also to board layout performance
22 µH
100nF
2.2nF
Snubber values must be fine tuned as
linked also to board layout performance
10 µF
9
11K
GND
GND
MCU CAN
Figure 34. PowerSBC10/20 Simplified Application Schematic with Non-inverting Buck-boost Configuration
33907_08
Vcca_E
Vaux_B
Vcca_B
Vcca
ESR cap.
<100m
Cout_Vaux
Vaux
RSelect
GND
Optional
Vcca_PNP
ESR cap.
<100m
Cout_Vcca
Vaux_PNP
Vaux_E
GND
SELECT
GND
Figure 35. Vaux/Vcca Connection
33907_8
100
Analog Integrated Circuit Device Data
Freescale Semiconductor
Vpre
NC
33907_08
Vaux_E
Vcca_E
Vaux_B
Vcca_B
Optional
Vcca_PNP
ESR cap .
<100 m
NC
Cout_Vcca
Vcca
Vaux
RSelect
GND
SELECT
Figure 36. VCCA Connection, Vaux Not Used
NC
33907_08
Vaux_E
Vcca_E
Vaux_B
Vcca_B
Vcca
NC
Vaux
RSelect
NC
ESR cap.
<100m
Cout_Vcca
Vpre
GND
SELECT
Figure 37. Vaux Not Used, Vcca Configuration up to 100 mA
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
101
10
Packaging
10.1
Package Mechanical Dimensions
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to
www.freescale.com and perform a keyword search for the drawing’s document number.
Table 89. Package Mechanical Dimensions
Package
7.0 x 7.0, 48-Pin LQFP Exposed Pad, with
0.5 mm pitch, and a 4.5 x 4.5 exposed pad
Suffix
AE
Package Outline Drawing Number
98ASA00173D
33907_8
102
Analog Integrated Circuit Device Data
Freescale Semiconductor
AE SUFFIX
48-PIN LQFP-EP
98ASA00173D
ISSUE A
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
103
AE SUFFIX
48-PIN LQFP-EP
98ASA00173D
ISSUE A
33907_8
104
Analog Integrated Circuit Device Data
Freescale Semiconductor
AE SUFFIX
48-PIN LQFP-EP
98ASA00173D
ISSUE A
33907_8
Analog Integrated Circuit Device Data
Freescale Semiconductor
105
11
Revision History
REVISION
DATE
DESCRIPTION OF CHANGES
1.0
11/2013
• Initial release
2.0
12/2013
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3.0
2/2014
•
•
•
•
•
•
•
•
•
Updated Figure 2
Deleted Rk: IO_1 can also be used to monitor a second external resistor bridge (in parallel of the one
for VCORE output voltage set) for safety purposes from Table 2 on page 8
Updated Gun Test in Table 3 on page 10
Added IOs maximum current capability to Table 3 on page 10
Updated VCCA voltage in Table 4 on page 14
Updated VAUX_LIM_HYST in Table 4 on page 15
Updated VCORE_FB_UV_D in Table 4 on page 16
Updated VAMUX_TP_CO in Table 4 on page 17
Updated VSPI_IL in Table 4 on page 18
Deleted VCORE_FB_DRIFT
Deleted IIO_IN1
Deleted tRDRIFT
Updated tRSTB_POR in Table 5 on page 22
Added T_DFS_recovery time in Table 5 on page 22
Updated DVSUP/DT voltage in Table 5 on page 23
Updated tPRE_UV_4p3 in Table 5 on page 24
Updated tPRE_TSD, tCORE_TSD, and tCCA_TSD values in Table 5 on page 24
Updated tCAN_TSD and tCAN_UV values in Table 5 on page 25
Added a formula for temperature sensor
Deleted Vreg_WU from Table 30 on page 63
Updated Figure 10, Figure 16, Figure 17, and Figure 22
Updated Table 15, Table 16, Table 19, Table 20,Table 27, Table 28, Table 56, Table 67, Table 71,
Table 75, and Table 87
Added note (21)
Updated Figure 34, Figure 35, and Figure 36
Added new Figure 37
Added notes to Table 57
Changed to Advance Information
Changed Orderable Parts numbers 33907 and 33908 to MC
Added new reference to Table 73 in Normal Operation (First Watchdog Refresh)
Changed default in Status Vreg1. Description and Configuration of the Bits (Default value in blue) for
Vpre_state, for Vcore_state in Status Vreg2. Description and Configuration of the Bits (Default value in
blue), for CAN_mode_1:0 in CAN MODE. Description and Configuration of the Bits (Default value in blue),
and RSTb_err_2:0 in Diag FS1. Description and Configuration of the Bits (Default value in blue)
Corrected SW_PRE pin names
33907_8
106
Analog Integrated Circuit Device Data
Freescale Semiconductor
How to Reach Us:
Information in this document is provided solely to enable system and software implementers to use Freescale products.
Home Page:
freescale.com
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based
Web Support:
freescale.com/support
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no
on the information in this document.
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
Freescale, the Freescale logo, Energy Efficient Solutions logos are trademarks of Freescale Semiconductor, Inc., Reg.
U.S. Pat. & Tm. Off. SafeAssure and SMARTMOS, are trademarks of Freescale Semiconductor, Inc. All other product or
service names are the property of their respective owners.
© 2014 Freescale Semiconductor, Inc.
Document Number: MC33907_08
Rev. 3.0
2/2014