VISHAY IDL620

VISHAY
ILD620/ 620GB / ILQ620/ 620GB
Vishay Semiconductors
Optocoupler, Phototransistor Output, AC Input (Dual, Quad
Channel)
Features
•
•
•
•
•
Identical Channel to Channel Footprint
ILD620 Crosses to TLP620-2
ILQ620 Crosses to TLP620-4
High Collector-Emitter Voltage, BVCEO = 70 V
Dual and Quad Packages Feature:
- Reduced Board Space
- Lower Pin and Parts Count
- Better Channel to Channel CTR Match
- Improved Common Mode Rejection
• Isolation Test Voltage 5300 VRMS
Agency Approvals
Dual Channel
Quad Channel
8
C
A/C 2
7
E
A/C
3
6
C
A/C
4
5
E
16 C
A/C 1
• UL File #E52744 System Code H or J
• CSA 93751
• DIN EN 60747-5-2(VDE0884)
DIN EN 60747-5-5 pending
Available with Option 1
• BSI IEC60950 IEC60965
Description
A/C 1
A/C 2
15 E
A/C 3
14 C
A/C 4
13 E
A/C 5
12 C
A/C 6
11 E
A/C
7
10 C
A/C 8
9 E
i179053
The ILD620/ ILQ620 and ILD620GB/ ILQ620GB are
multi-channel input phototransistor optocouplers that
use inverse parallel GaAs IRLED emitter and high
gain NPN silicon phototransistors per channel. These
devices are constructed using over/under leadframe
optical coupling and double molded insulation resulting in a withstand test voltage of 5300 VRMS.
The LED parameters and the linear CTR characteristics make these devices well suited for AC voltage
detection. the ILD/Q620GB with its low IF quaranteed
CTRCEsat minimizes power dissipation of the AC voltage detection network that is placed in series with the
LEDs. Eliminating the phototransistor base connection provides added electrical noise immunity from the
transients found in many industrial control environments.
Order Information
Part
Remarks
ILD620
CTR > 50 %, DIP-8
ILD620GB
CTR > 100 %, DIP-8
ILQ620
CTR > 50 %, DIP-16
ILQ620GB
CTR > 100 %, DIP-16
ILD620-X007
CTR > 50 %, SMD-8 (option 7)
ILD620-X009
CTR > 50 %, SMD-8 (option 9)
ILD620GB-X009
CTR > 100 %, SMD-8 (option 9)
ILQ620-X009
CTR > 50 %, SMD-16 (option 9)
ILQ620GB-X009
CTR > 100 %, SMD-16 (option 9)
For additional information on the available options refer to
Option Information.
Document Number 83653
Rev. 1.3, 26-Apr-04
www.vishay.com
1
ILD620/ 620GB / ILQ620/ 620GB
VISHAY
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
Parameter
Test condition
Symbol
Value
Unit
IF
± 60
mA
Surge current
IFSM
± 1.5
A
Power dissipation
Pdiss
100
mW
1.3
mW/°C
Symbol
Value
Unit
BVCEO
70
V
IC
50
mA
IC
100
mA
Pdiss
150
mW
2.0
mW/°C
Forward current
Derate linearly from 25 °C
Output
Parameter
Test condition
Collector-emitter breakdown
voltage
Collector current
t < 1.0 sec:
Power dissipation
Derate from 25 °C
Coupler
Parameter
Isolation test voltage
Test condition
Part
t = 1.0 sec.
Package dissipation
Symbol
Value
Unit
VISO
5300
VRMS
ILD620
400
mW
ILD620GB
400
mW
Derate from 25 °C
5.33
mW/°C
ILQ620
500
mW
ILQ620GB
500
mW
Derate from 25 °C
6.67
mW/°C
Creepage
≥ 7.0
mm
Clearance
≥ 7.0
mm
Package dissipation
Isolation resistance
VIO = 500 V, Tamb = 25 °C
RIO
≥ 1012
Ω
VIO = 500 V, Tamb = 100 °C
RIO
11
Ω
≥ 10
Storage temperature
Tstg
- 55 to + 150
°C
Operating temperature
Tamb
- 55 to + 100
°C
Tj
100
°C
Tsld
260
°C
Junction temperature
Soldering temperature
www.vishay.com
2
2.0 mm from case bottom
Document Number 83653
Rev. 1.3, 26-Apr-04
ILD620/ 620GB / ILQ620/ 620GB
VISHAY
Vishay Semiconductors
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Symbol
Min
Typ.
Max
Forward voltage
Parameter
IF = ± 10 mA
Test condition
VF
1.0
1.15
1.3
V
Forward current
VR = ± 0.7 V
IF
2.5
20
µA
Capacitance
VF = 0 V, f = 1.0 MHz
Thermal resistance, junction to
lead
Unit
CO
25
pF
RTHJL
750
K/W
Output
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
10
100
nA
ICEO
2.0
50
RTHJL
500
Collector-emitter capacitance
VCE = 5.0 V, f = 1.0 MHz
CCE
6.8
Collector-emitter leakage
current
VCE = 24 V
ICEO
TA = 85 °C, VCE = 24 V
Thermal resistance, junction to
lead
pF
µA
K/W
Coupler
Parameter
Test condition
Off-state collector current
VF = ± 0.7 V, VCE = 24 V
Collector-emitter saturation
voltage
IF = ± 8.0 mA, ICE = 2.4 mA
IF = ± 1.0 mA, ICE = 0.2 mA
Part
Symbol
Min
ICE(OFF)
Typ.
Max
Unit
1.0
10
µA
ILD620
VCEsat
0.4
V
ILQ620
VCEsat
0.4
V
ILD620GB
VCEsat
0.4
V
ILQ620GB
VCEsat
0.4
V
Current Transfer Ratio
Parameter
Test condition
Channel/Channel CTR match
IF = ± 5.0 mA, VCE = 5.0 V
CTR symmetry
ICE(IF = - 5.0 mA)/
ICE(IF = + 5.0 mA)
Current Transfer Ratio
(collector-emitter saturated)
IF = ± 1.0 mA, VCE = 0.4 V
Current Transfer Ratio
(collector-emitter)
Current Transfer Ratio
(collector-emitter saturated)
Current Transfer Ratio
(collector-emitter)
Document Number 83653
Rev. 1.3, 26-Apr-04
IF = ± 5.0 mA, VCE = 5.0 V
IF = ± 1.0 mA, VCE = 0.4 V
IF = ± 5.0 mA, VCE = 5.0 V
Part
Symbol
Min
CTRX/CTRY
1 to 1
Typ.
3 to 1
Max
ICE(RATIO)
0.5
2.0
Unit
ILD620
CTRCEsat
60
%
ILQ620
CTRCEsat
60
%
ILD620
CTRCE
50
80
600
%
ILQ620
CTRCE
50
80
600
%
ILD620GB
CTRCEsat
30
%
ILQ620GB
CTRCEsat
30
%
ILD620GB
CTRCE
100
200
600
%
ILQ620GB
CTRCE
100
200
600
%
www.vishay.com
3
ILD620/ 620GB / ILQ620/ 620GB
VISHAY
Vishay Semiconductors
Switching Characteristics
Non-saturated
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
On time
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
ton
3.0
µs
Rise time
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
tr
20
µs
Off time
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
toff
2.3
µs
Fall time
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
tf
2.0
µs
Propagation H-L
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
tPHL
1.1
µs
Propagation L-H
IF = ± 10 mA, VCC = 5.0 V,
RL = 75 Ω, 50 % of VPP
tPLH
2.5
µs
Saturated
Parameter
Test condition
Symbol
Min
Typ.
Max
Unit
On time
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
ton
4.3
µs
Rise time
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
tr
2.8
µs
Off time
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
toff
2.5
µs
Fall time
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
tf
11
µs
Propagation H-L
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
tPHL
2.6
µs
Propagation L-H
IF = ± 10 mA, VCC = 5.0 V,
RL = 1.0 KΩ, VTH = 1.5 V
tPLH
7.2
µs
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
IF = 10 mA
F = 10 KHz,
DF = 50%
VCC = 5 V
VCC = 5 V
RL = 1 kΩ
VO
F = 10 KHz,
DF = 50%
iild620_01
Fig. 1 Non-saturated Switching Timing
www.vishay.com
4
VO
RL = 75 Ω
IF = 10 mA
iild620_02
Fig. 2 Saturated Switching Timing
Document Number 83653
Rev. 1.3, 26-Apr-04
ILD620/ 620GB / ILQ620/ 620GB
VISHAY
Vishay Semiconductors
10 5
ICEO - Collector-Emitter - nA
IF
tPLH
tPLH
VO
tS
50%
tD
10 2
Vce = 10 V
10 1
Typical
10 0
10 -1
0
20
40
60
80
100
TA - Ambient Temperature - °C
toff
ton
iild620_03
10 3
10 -2
-20
tF
tR
10 4
iild620_06
Fig. 6 Collector-Emitter Leakage vs. Temperature
Fig. 3 Non-saturated Switching Timing
tD
tR
VO
t PLH
VTH = 1.5 V
tF
tS
t PHL
IF - Maximum LED Current - mA
120
IF
iild620 _04
100
80
60
TJ (MAX) = 100 °C
40
20
0
-60
-40
-20
0
20
40
60
80
100
Ta - Ambient Temperature - °C
iild620_07
Fig. 7 Maximum LED Current vs. Ambient Temperature
Fig. 4 Saturated Switching Timing
200
40
85 °C
20
25 °C
0
–55 °C
-20
-40
PLED - LED Power - mW
I F - LED Forward Current - mA
60
150
100
50
-60
-1.5
iild620_05
-1.0
-0.5
0.0
0.5
1.0
V F - LED Forward Voltage - V
Fig. 5 LED Forward Current vs.Forward Voltage
Document Number 83653
Rev. 1.3, 26-Apr-04
1.5
0
-60 -40
iild620_08
-20
0
20
40
60
Ta - Ambient Temperature - °C
80
100
Fig. 8 Maximum LED Power Dissipation
www.vishay.com
5
ILD620/ 620GB / ILQ620/ 620GB
VISHAY
100
50
Normalized to
IF = 10 mA
VCE = 5 V
10
5.0
2.5
CTRNF - Normalized CTR Factor
IC- Normalized Collector Current
Vishay Semiconductors
ILD/Q620GB
ILD/Q620
1.0
0.5
0.1
1
5
10
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
1.0
NCTRce
0.5
NCTRce(sat)
TA = 100 °C
0.0
.1
20
1
10
IF - LED Current - mA
Forward Current - IF mA
iild620_09
iild620_12
Fig. 9 Collector Current vs. Diode Forward Current
Fig. 12 Normalization Factor for Non-saturated and Saturated CTR
vs. IF
10000
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
NCTRce
1.0
NCTRce(sat)
0.5
TA = 50 °C
0.0
.1
1
10
IF - LED Current - mA
100
If(pk) - Peak LED Current - mA
CTRNF - Normalized CTR Factor
100
τˇ
Duty Factor
1000
100
.005
.01
.02
.05
.1
.2
.5
t
τ
DF = /t
10
10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1
t - LED Pulse Duration - s
iild620_10
iild620_13
Fig. 13 Peak LED Current vs. Pulse Duration, Tau
200
2.0
Normalized to:
VCE = 10 V, IF = 5 mA,
CTRce(sat) VCE = 0.4 V
1.5
NCTRce
1.0
NCTRce(sat)
0.5
TA = 70 °C
0.0
.1
1
10
IF - LED Current - mA
100
PDET - Detector Power - mW
CTRNF - Normalized CTR Factor
Fig. 10 Normalization Factor for Non-saturated and Saturated CTR
vs. IF
150
100
50
0
-60
-40
-20
0
20
40
60
80
100
Ta - Ambient Temperature - °C
iild620_11
Fig. 11 Normalization Factor for Non-saturated and Saturated CTR
vs. IF
www.vishay.com
6
iild620_14
Fig. 14 Maximum Detector Power Dissipation
Document Number 83653
Rev. 1.3, 26-Apr-04
ILD620/ 620GB / ILQ620/ 620GB
VISHAY
Vishay Semiconductors
ICE - Collector Current - mA
1000
Rth = 500 °C/W
100
10
25 °C
50 °C
75 °C
90 °C
1
.1
.1
10
1
VCE - Collector-Emitter Voltage - V
100
iild620_15
Fig. 15 Maximum Collector Current vs. Collector Voltage
Package Dimensions in Inches (mm)
pin one ID
4
3
2
1
5
6
7
8
.255 (6.48)
.268 (6.81)
ISO Method A
.379 (9.63)
.390 (9.91)
.030 (0.76)
.045 (1.14)
4° typ.
.031 (0.79)
.300 (7.62)
typ.
.130 (3.30)
.150 (3.81)
.050 (1.27)
.018 (.46)
.022 (.56)
i178006
Document Number 83653
Rev. 1.3, 26-Apr-04
.020 (.51 )
.035 (.89 )
.100 (2.54) typ.
10°
3°–9°
.008 (.20)
.012 (.30)
.230(5.84)
.110 (2.79) .250(6.35)
.130 (3.30)
www.vishay.com
7
ILD620/ 620GB / ILQ620/ 620GB
VISHAY
Vishay Semiconductors
Package Dimensions in Inches (mm)
pin one ID
8
7
6
5
4
3
2
1
.255 (6.48)
.265 (6.81)
9
10
11 12 13
14
15
16
ISO Method A
.779 (19.77 )
.790 (20.07)
.030 (.76)
.045 (1.14)
.300 (7.62)
typ.
.031(.79)
.130 (3.30)
.150 (3.81)
4°
.020(.51)
.035 (.89)
.018 (.46)
.022 (.56)
.100 (2.54)typ.
.050 (1.27)
10°
typ.
3°–9°
.008 (.20)
.012 (.30)
.110 (2.79)
.130 (3.30) .230 (5.84)
.250 (6.35)
i178007
Option 7
Option 9
.375 (9.53)
.395 (10.03)
.300 (7.62)
TYP.
.300 (7.62)
ref.
.028 (0.7)
MIN.
.180 (4.6)
.160 (4.1) .0040 (.102)
.315 (8.0)
MIN.
.331 (8.4)
MIN.
.406 (10.3)
MAX.
www.vishay.com
8
.0098 (.249)
.012 (.30) typ.
.020 (.51)
.040 (1.02)
.315 (8.00)
min.
15° max.
18494
Document Number 83653
Rev. 1.3, 26-Apr-04
ILD620/ 620GB / ILQ620/ 620GB
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
Document Number 83653
Rev. 1.3, 26-Apr-04
www.vishay.com
9