ANPEC APL5330KE-TRL

APL5330
Dual Input 2A Low Dropout Regulator
Features
General Description
•
•
The APL5330 integrates a power transistor to provide
Fast Transient Response
regulated voltage with maximum output current of 2A.
High Output Accuracy
It also incorporates current-limit, thermal shutdown and
- ±20mV over Load, Output Voltage Offset and
shutdown control functions into a single chip.
Temperature
•
The current-limit circuit limits the maximum output
Adjustable Output Voltage by External
current in overload or short-circuit conditions.
Resistors
•
•
•
•
•
The on-chip thermal shutdown provides protection
Current-Limit Protection
against any combination of overload that would create
On-Chip Thermal Shutdown
excessive junction temperature. The output voltage of
Shutdown for Standby or Suspend Mode
the APL5330 tracks the reference voltage on VREF
Simple SOP-8 and SOP-8 with Thermal Pad
pin. A resistor divider connected to VREF pin is
Packages
usually used to provide reference voltage to the IC. In
addition, an external ceramic capacitor and an open-drain
Lead Free Available (RoHS Compliant)
transistor connected to VREF pin provides soft-start and
shutdown control. Applying and holding a voltage below
Applications
•
•
0.35V (typ.) to VREF shuts off the output.
VGA Card Power
Chip Set Power
Pin Configuration
VIN
1
8
VCNTL
VIN
1
8
NC
GND
2
7
VCNTL
GND
2
7
NC
VREF
3
6
VCNTL
VREF
3
6
VCNTL
VOUT
4
5
VCNTL
VOUT
4
5
NC
SOP-8 (Top View)
SOP-8-P (Top View)
NC = No internal connection
= Thermal Pad
(connected to GND plane for better heat dissipation)
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
1
www.anpec.com.tw
APL5330
Ordering and Marking Information
Package Code
K : SOP-8
KA : SOP-8-P
Operating Ambient Temp. Range
E : -20 to 70 °C
Handling Code
TR : Tape & Reel
Lead Free Code
L : Lead Free Device Blank : Original Device
APL5330
Lead Free Code
Handling Code
Temp. Range
Package Code
APL5330KE-TR :
APL5330KAE-TR :
APL5330
XXXXX
XXXXX - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish;
which are fully compliant with RoHS and compatible with both SnPb and lead-free soldiering operations. ANPEC lead-free
products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for MSL classification at lead-free peak
reflow temperature.
Pin Description
PIN NAME
I/O
VIN
I
GND
O
VCNTL
I
VREF
I
VOUT
O
DESCRIPTION
Main power input pin. Connect this pin to a voltage source and an input
capacitor. The APL5330 provides current from VIN pin to VOUT pin by
controlling the NPN pass transistor.
Signal ground.
Power input pin for internal control circuitry. Connect this pin to a voltage source
to provide a bias for the internal control circuitry. A bypass capacitor is usually
connected near this pin.
Reference voltage input and active-low shutdown control pin. Connect this pin to
a resistor divider and a capacitor for soft-start and filtering noise purposes.
Pulling and holding the voltage on this pin low by an open-drain transistor shuts
down the output.
Output pin of the regulator. Connect this pin to load. Output capacitors
connected to this pin improves stability and transient response. The output
voltage tracks the reference voltage, and the output pin provides the maximum
current up to 2A.
Block Diagram
VIN
VCNTL
VREF
Voltage
Regulation
Thermal
Limit
Current
Limit
VOUT
Shutdown
GND
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
2
www.anpec.com.tw
APL5330
Absolute Maximum Ratings
Symbol
VCNTL
Parameter
VCNTL Supply Voltage, VCNTL to GND
VIN
VIN Supply Voltage, VIN to GND
PD
Power Dissipation
TJ
TSTG
Rating
-0.2 ~ 7
Unit
V
-0.2 ~ 3.9
V
Internally Limited
Junction Temperature
Storage Temperature
W
150
o
C
-65 ~ 150
o
C
o
C
TSDR
Soldering Temperature, 10 Seconds
300
VESD
Minimum ESD Rating (Human Body Mode)
±3
kV
Thermal Characteristics
Symbol
θJA
θJC
Parameter
Junction-to-Ambient Thermal Resistance in Free Air
SOP-8
SOP-8-P
Junction-to-Case Thermal Resistance
SOP-8
SOP-8-P
Value
Unit
75
55
o
C/W
28
20
o
C/W
Note : θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The
exposed pad of SOP-8-P is soldered directly on the PCB.
Recommended Operating Conditions
Symbol
VCNTL
VIN
Parameter
VCNTL Supply Voltage (Note 1)
VREF Input Voltage
VOUT
VOUT Output Voltage (Note 3)
VOUT Output Current (Note 4)
TJ
Unit
V
1.2 ~ 3.5
V
0.8 ~ 3
V
VREF ± 0.02
V
VIN Supply Voltage (Note 2)
VREF
IOUT
Range
3.1 ~ 6
2
-20 ~ 125
Junction Temperature
A
o
C
Notes :
1. Please refer to the VCNTL-to-Vin Dropout Voltage in the “Typical Characteristics” section for the minimun
supply voltage on VCNTL.
2. Please supply enough voltage to VIN for providing desired maximum output current. Please refer to the VIN.
Dropout Voltage vs Output Current in the Typical Characteristics.
3. The VOUT is regulated to the VREF with additional voltage offset and load regulation except over-load
conditions.
4. The maximum IOUT varies with the TJ and the voltages of VIN-VOUT and VOUT.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
3
www.anpec.com.tw
APL5330
Electrical Characteristics
Refer to the typical application circuit. These specifications apply over VCNTL = 3.3V, VIN = 2V, VREF = 1.2V and TA = -20
to 70°C, unless otherwise specified. Typical values are at TA = 25°C.
Symbol
Parameter
Test Conditions
APL5330
Min
Typ
Max
Unit
OUTPUT VOLTAGE
VOUT
VOUT Output Voltage
Load Regulation
IOUT = 0A
Over temperature, VOUT offset,
and load regulation
IOUT = 10mA to 2A
VIN Dropout Voltage
IOUT = 2A
System Accuracy
V
VREF
-20
-8
20
mV
mV
-3
0.7
0.47
V
PROTECTION
ILIM
TSD
TJ = 25°C
TJ = 125°C
Current Limit
2.4
Thermal Shutdown
Rising TJ
Temperature
Thermal Shutdown Hysteresis
2.7
2.6
A
170
o
30
o
C
C
INPUT CURRENT
IOUT = 0A
ICNTL
IVREF
2
4
IOUT = 2A (Normal Operation)
25
50
VREF = GND (Shutdown)
0.3
Normal operation
VREF Bias Current
(The current flows out of VREF) VREF = GND (Shutdown)
150
500
300
5000
0.35
0.65
VCNTL Supply Current
0.5
mA
nA
SHUTDOWN CONTROL
Shutdown Voltage Threshold
0.2
V
Typical Application Circuit
VCNTL
+3.3V
VIN
+2V
VIN
R1
3.5k
VREF
Shutdown
R2
2k
CSS
0.1uF
VCNTL
CIN
47uF
CCNTL
1uF
GND
COUT
330uF
GND
VOUT = VREFIN ⋅
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
VOUT
1.2V/2A
VREF GND VOUT
4
R2
(V)
R1 + R2
www.anpec.com.tw
APL5330
Typical Characteristics
Current-Limit
Quiescent VCNTL Current
vs. Junction Temperature
vs. Junction Temperature
2500
Quiescent VCNTL Current, ICNTL (µA)
3.5
VIN = 2V
VOUT=1.2V
Current-Limit, ILIM (A)
3
2.5
VCNTL = 5V
VCNTL = 3.3V
2
1.5
1
0.5
0
-50
-25
0
25
50
75
100
125
1500
VCNTL = 5V
VCNTL = 3.3V
1000
500
0
-50
-25
0
25
50
75
100
Junction Temperature (°C)
VREF Threshold Voltage
VREF Bias Current
vs. Junction Temperature
vs. VREF Supply Voltage
125
VREF Bias Current, IVREF (nA)
500
VCNTL = 5V
VREF Threshold Voltage (V)
2000
Junction Temperature (°C)
0.6
0.5
0.4
0.3
VCNTL = 3.3V
0.2
0.1
450
400
350
VCNTL= 3.3V
300
VCNTL= 5V
250
200
150
100
50
0
0
-50
IOUT= 0A
-25
0
25
50
75
100
0
125
1
1.5
2
2.5
3
VREF Supply Voltage (V)
Junction Temperature (°C)
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
0.5
5
www.anpec.com.tw
APL5330
Typical Characteristics (Cont.)
VIN Dropout Voltage
VIN Dropout Voltage
vs. Output Current
vs. Output Current
0.6
0.6
VCNTL = 3.3V
0.4
VREF = 1.2V
0.5
VIN Dropout Voltage (V)
0.5
VIN Dropout Voltage (V)
VCNTL = 5V
TJ = 125oC
VREF = 1.2V
TJ = 75oC
0.3
TJ = 25oC
0.2
TJ = -25oC
0.1
TJ = 125oC
0.4
TJ = 75oC
0.3
TJ = -25oC
TJ = 25oC
0.2
0.1
0
0
0
0.5
1
1.5
0
2
P.6
右上角的圖
0.5
1
1.5
Output Current (A)
Output Current (A)
VCNTL Input Current
VCNTL-to-VOUT Dropout Voltage
vs. VIN - VOUT Voltage at IOUT=1A
vs. VCNTL Input Current
Minimum VCNTL - VOUT Voltage (V)
VCNTL Input Current, ICNTL (mA)
140
IOUT = 1A
120
100
TJ = 125oC
TJ =
75oC
80
60
TJ = 25oC
TJ = -25oC
40
20
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
3.8
IOUT = 1A
3.4
3
2.6
TJ = 25oC
TJ = -25oC
2.2
TJ = 125oC
1.8
1.4
TJ = 75oC
1
0
20
40
60
80
100
120
VCNTL Input Current, ICNTL (mA)
VIN - VOUT Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
2
6
www.anpec.com.tw
APL5330
Typical Characteristics (Cont.)
VCNTL Input Current
VCNTL-to-VOUT Dropout Voltage
vs. VIN - VOUT Voltage at IOUT=1.5A
vs. VCNTL Input Current
Minimum VCNTL - VOUT Voltage (V)
VCNTL Input Current, ICNTL (mA)
140
IOUT = 1.5A
120
100
TJ = 125oC
TJ = 75oC
80
60
TJ = 25oC
40
TJ = -25oC
20
0
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
TJ = 25oC
2.6
TJ = -25oC
2.2
TJ = 125oC
1.8
1.4
TJ = 75oC
1
20
40
60
80
100
VCNTL Input Current, ICNTL (mA)
VCNTL Input Current
VCNTL-to-VOUT Dropout Voltage
vs. VIN - VOUT Voltage at IOUT=2A
vs. VCNTL Input Current
Minimum VCNTL - VOUT Voltage (V)
VCNTL Input Current, ICNTL (mA)
3
VIN - VOUT Voltage (V)
IOUT = 2A
120
TJ = 25oC
100
TJ = 75oC
80
TJ = 125oC
60
40
TJ = -25oC
0
0.4
IOUT = 1.5A
3.4
0
140
20
3.8
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
3.8
IOUT = 2A
3.4
3
2.6
TJ = 25oC
TJ = -25oC
2.2
1.8
TJ = 125oC
1.4
TJ = 75oC
1
0
20
40
60
80
100
120
VCNTL Input Current, ICNTL (mA)
VIN - VOUT Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
120
7
www.anpec.com.tw
APL5330
Operating Waveforms
1. Load Transient Response : IOUT = 10mA -> 2A -> 10mA
- VIN = 2V, VCNTL = 3.3V, VOUT = 1.2V
- VREF is 1.2V supplied by a regulator
- COUT = 330µF, ESR = 14mΩ
- IOUT slew rate = 2A/µs
Load Regulation = -2.8mV
V OUT
V OUT
V OUT
IOUT
IOUT
10mA
2
Ch1 : VOUT, 20mV/Div, AC
Ch2 : IOUT, 1A/Div
Time : 1µs/Div
1
1
1
IOUT
2A
2
2
Ch1 : VOUT, 20mV/Div, AC
Ch2 : IOUT, 1A/Div
Time : 10µs/Div
Ch1 : VOUT, 20mV/Div, AC
Ch2 : IOUT, 1A/Div
Time : 1µs/Div
2. Short-Circuit Test
- VIN = 2V, VCNTL = 3.3V, VOUT = 1.2V
VOUT is Shorted to GND
VOUT is Shorted to GND
V OUT
V OUT
1
1
IOUT
IOUT
2
2
Ch1 : VOUT, 1V/Div, DC
Ch2 : IOUT, 2A/Div
Time : 50µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
Ch1 : VOUT, 1V/Div, DC
Ch2 : IOUT, 2A/Div
Time : 50ms/Div
8
www.anpec.com.tw
APL5330
Operating Waveforms (Cont.)
3. Power on/off
- VIN = 2V, VCNTL = 3.3V, VOUT = 1.2V
V IN
V IN
1
1
V OUT
V OUT
2
2
IOUT
IOUT
3
3
Ch1 : VIN, 1V/Div, DC
Ch2 : VOUT, 1V/Div, DC
Ch3 : IOUT, 1A/Div
Time : 1ms/Div
Ch1 : VIN, 1V/Div, DC
Ch2 : VOUT, 1V/Div, DC
Ch3 : IOUT, 1A/Div
Time : 10ms/Div
4. Enable/Shutdown
- VIN = 2V, VCNTL = 3.3V, VOUT = 1.2V
VREF
VREF
1
V OUT
V OUT
2
2
IOUT
IOUT
3
3
Ch1 : VREF, 1V/Div, DC
Ch2 : VOUT, 1V/Div, DC
Ch3 : IOUT, 1A/Div
Time : 2ms/Div
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
1
Ch1 : VREF, 1V/Div, DC
Ch2 : VOUT, 1V/Div, DC
Ch3 : IOUT, 1A/Div
Time : 2ms/Div
9
www.anpec.com.tw
APL5330
Application Information
General
The output voltage tracks the VREF voltage rises. The
soft start function limits the input current.
The APL5330 is a linear regulator and is capable of
providing output current up to 2A. The APL5330 is
Thermal Shutdown
designed with the fast transient response, accurate
A thermal shutdown circuit limits the junction temperature
output voltage, active-low shutdown control and fault
of the APL5330. When the junction temperature
protections (current-limit, thermal shutdown). The
exceeds TJ= +170oC, a thermal sensor turns off the
APL5330 is available in two packages to meet wide range
bypass transistor, allowing the device to cool down.
of power dissipation requirements in various applications.
The regulator starts to regulate again after the junction temperature reduces by 30oC, resulting in a
Output Voltage Regulation
pulsed output during continuous thermal overload
The output voltage on VOUT pin tracks the reference
conditions. The thermal limit designed with a 30oC
voltage on VREF pin. A bypass NPN transistor controlled
hysteresis lowers the average TJ during continuous
by a high bandwidth error amplifier regulates the
thermal overload conditions to extend life time of the
output voltage by providing output current from VIN
APL5330.
pin to the output. The base current of the pass transistor
is provided by the VCNTL pin. An internal kelvin
Power Inputs
sensing scheme is used at the VOUT pin for perfect
Input power sequencing is not necessary for VIN and
load regulation. Since the APL5330 exhibits very fast
VCNTL voltage supplies. However, do not apply a
load transient response, lesser amount of capacitors
voltage to VOUT when there is no VCNTL voltage. This
can be used.
is because the internal parasitic diodes connected from
Current Limit
VOUT to VIN or VCNTL is forward bias. The APL5330
can supply few current to load when the input voltage on
The APL5330 monitors the output current, and limits
VIN is not present.
the maximum output current to prevent damages
during overload or short-circuit conditions. To increase
Reference Voltage
the input voltage on VIN or VCNTL will get higher
The reference voltage is applied to the VREF pin
current-limit points.
connected with a resistor divider. Normally the bias
Shutdown and Soft-Start
current of the VREF pin flows out of the IC and is
about 150nA (typ.), creating a voltage offset to the
The VREF pin is a dual-function input pin, acting as
resistor divider and affecting the output voltage
reference input and shutdown control input. Applying
accuracy. The recommended resistors are <5kΩ to
and holding a voltage below 0.35V(typ.) to VREF pin
maintain the accurate output voltage. An external
shuts down the output of the regulator. An NPN
bypass capacitor is also connected to VREF. The
transistor or N-channel MOSFET is normaly used to
pull down the VREF voltage while applying a “high”
signal to turn on the transistor. When release the VREF
capacitor (>0.1µF) and the resistor divider form a
low-pass filter to reduce the inherent reference noise.
Connect the capacitor as close to VREF as possible
pin, the current through the resistor divider charges
for optimal effect. More capacitance and large resistor
the soft-start capacitor to initiate a soft-start process.
divider will increase the soft-start interval. Do not place
any additional loading on this reference input pin.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
10
www.anpec.com.tw
APL5330
Application Information (Cont.)
Output Capacitor
For VCNTL pin, a capacitor of 1µF (ceramic chip
capacitor) or greater (aluminum electrolytic capacitor)
The APL5330 requires a proper output capacitor to
is recommended. For VIN pin, an aluminum electrolytic
maintain stability and improve transient response.
capacitor (>47µF) is recommended. It is not necessary
The APL5330 can work stably with wide range of
to use low-ESR capacitors.
capacitance and ESR (equivalent series resistance).
Layout and Thermal Consideration
A low-ESR solid tantalum, aluminum electrolytic or
ceramic output capacitor works extremely well and
The input capacitors for VIN and VCNTL pins are normally
provides good transient response and stability over
placed near each pin for good performances. Ceramic
temperature.
decoupling capacitors of output must be placed as
close to the load to reduce the parasitic inductance of
The output capacitors also reduce the slew rate of load
traces. It is also recommended to place the APL5330
current and help the APL5330 to minimize variations
and output capacitors near the load for good load
of the output voltage. For this purpose, the low-ESR
regulation and load transient response. Please connect
capacitors which depend on the step size and slew
the negative pins of the input and output capacitors
rate of load current are recommended.
and the GND pin of the APL5330 to the power ground
25
plane of the load.
ESR (m Ω)
20
See figure 1. The SOP-8-P utilizes a bottom thermal
pad to minimize the thermal resistance of the package
15
and make the package suitable for high current
Stable Region
applications. The thermal pad is soldered to the top
10
ground pad connected to the internal or bottom ground
plane by several vias. The printed circuit board (PCB)
5
forms a heat sink and dissipates most of the heat
into ambient air. It is recommended that the vias have
0
10
100
proper size to retain solder and help heat conduction.
1000
Capacitance (uF)
Thermal resistance consists of two main elements,
Input Capacitor
θJC (junction-to-case thermal resistance) and θCA
The input capacitors of VCNTL and VIN pins are not
(case-to-ambient thermal resistance). θJC is specified
required for stability but for supplying surge current
from the IC junction to the bottom of the thermal pad
during large load transients. This will prevent the input
directly below the die. θCA is the resistance from the
rail from dropping and improve the performance of the
bottom of thermal pad to the ambient air and it includes
APL5330. The parasitic inductors between voltage
θCS (case-to-sink thermal resistance) and θSA (sink-to-
sources or bulk capacitors and the power input pins
ambient thermal resistance). The specified path for
will limit the slew rate of the surge currents during
heat flow is the lowest resistance path and it dissipates
large load transients, resulting in voltage drop at VIN
majority of the heat to the ambient air. Typically, θCA is
and VCNTL pins.
the dominant thermal resistance. Therefore, enlarging
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
11
www.anpec.com.tw
APL5330
Application Information (Cont.)
Layout and Thermal Consideration (Cont.)
the internal or bottom ground plane reduces the
resistance θ CA . The relationship between power
di s s ipa tio n and temperatures is the following
equation:
PD = (TJ - TA) / ≤ θJA
where,
PD : Power dissipation
TJ : Junction Temperature
TA : Ambient Temperature
θJA : Junction-to-Ambient Thermal Resistance
102 mil
118 mil
SOP-8-P
Die
Thermal
pad
Top
ground
pad
Ambient
Air
Vias
Internal Printed
g r o u n d circuit
plane
board
Figure 1 Top and side view of layout around
the APL5330
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
12
www.anpec.com.tw
APL5330
Packaging Information
E
e1
0.015X45
SOP-8 pin (Reference JEDEC Registration MS-012)
H
e2
D
A1
A
1
L
0.004max.
Dim
Millimeters
Inches
Min.
Max.
Min.
Max.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.004
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
H
5.80
6.20
0.228
0.244
L
0.40
1.27
0.016
0.050
e1
0.33
0.51
0.013
0.020
e2
φ1
1.27BSC
0°
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
0.50BSC
8°
13
0°
8°
www.anpec.com.tw
APL5330
Packaging Information
E1
E
0.015X45
SOP-8-P pin ( Reference JEDEC Registration MS-012)
H
D1
e1
e2
D
A1
A
1
L
0.004max.
Dim
Millimeters
Inches
Min.
Max.
Min.
Max.
A
1.35
1.75
0.053
0.069
A1
0
0.15
0
0.006
D
4.80
5.00
0.189
0.197
4.00
0.150
D1
E
3.00REF
3.80
E1
0.118REF
2.60REF
0.157
0.102REF
H
5.80
6.20
0.228
0.244
L
0.40
1.27
0.016
0.050
e1
0.33
0.51
0.013
0.020
e2
1.27BSC
0.50BSC
φ1
8°
8°
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
14
www.anpec.com.tw
APL5330
Physical Specifications
Terminal Material
Lead Solderability
Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb), 100%Sn
Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.
Reflow Condition
(IR/Convection or VPR Reflow)
tp
TP
Critical Zone
T L to T P
Temperature
Ramp-up
TL
tL
Tsmax
Tsmin
Ramp-down
ts
Preheat
25
t 25 °C to Peak
Tim e
Classification Reflow Profiles
Profile Feature
Average ramp-up rate
(TL to TP)
Preheat
- Temperature Min (Tsmin)
- Temperature Max (Tsmax)
- Time (min to max) (ts)
Time maintained above:
- Temperature (TL)
- Time (tL)
Peak/Classificatioon Temperature (Tp)
Time within 5°C of actual
Peak Temperature (tp)
Ramp-down Rate
Sn-Pb Eutectic Assembly
Pb-Free Assembly
3°C/second max.
3°C/second max.
100°C
150°C
60-120 seconds
150°C
200°C
60-180 seconds
183°C
60-150 seconds
217°C
60-150 seconds
See table 1
See table 2
10-30 seconds
20-40 seconds
6°C/second max.
6°C/second max.
6 minutes max.
8 minutes max.
Time 25°C to Peak Temperature
Notes: All temperatures refer to topside of the package .Measured on the body surface.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
15
www.anpec.com.tw
APL5330
Classification Reflow Profiles(Cont.)
Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures
3
3
Package Thickness
Volum e m m
Volume mm
<350
≥350
<2.5 m m
240 +0/-5°C
225 +0/-5°C
≥2.5 m m
225 +0/-5°C
225 +0/-5°C
Table 2. Pb-free Process – Package Classification Reflow Temperatures
3
3
3
Package Thickness
Volume mm
Volume mm
Volume mm
<350
350-2000
>2000
<1.6 m m
260 +0°C*
260 +0°C*
260 +0°C*
1.6 m m – 2.5 m m
260 +0°C*
250 +0°C*
245 +0°C*
≥2.5 m m
250 +0°C*
245 +0°C*
245 +0°C*
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and
including the stated classification temperature (this means Peak reflow temperature +0°C.
For example 260°C+0°C) at the rated MSL level.
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TST
ESD
Latch-Up
Method
MIL-STD-883D-2003
MIL-STD-883D-1005.7
JESD-22-B,A102
MIL-STD-883D-1011.9
MIL-STD-883D-3015.7
JESD 78
Description
245°C, 5 SEC
1000 Hrs Bias @125°C
168 Hrs, 100%RH, 121°C
-65°C~150°C, 200 Cycles
VHBM > 2KV, VMM > 200V
10ms, 1 tr > 100mA
Carrier Tape
t
D
P
Po
E
P1
Bo
F
W
Ko
Ao
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
D1
16
www.anpec.com.tw
APL5330
Carrier Tape(Cont.)
T2
J
C
A
B
T1
Application
SOP- 8/
SOP-8-P
A
B
C
J
T1
T2
W
P
E
330 ± 1
62 +1.5
12.75+ 0.15
2 ± 0.5
12.4 ± 0.2
2 ± 0.2
12± 0. 3
8± 0.1
1.75±0.1
F
D
D1
Po
P1
Ao
Bo
Ko
t
4.0 ± 0.1
2.0 ± 0.1
6.4 ± 0.1
5.2± 0. 1
5.5± 1
1.55 +0.1 1.55+ 0.25
2.1± 0.1 0.3±0.013
(mm)
Cover Tape Dimensions
Application
SOP- 8 / SOP-8-P
Carrier Width
12
Cover Tape Width
9.3
Devices Per Reel
2500
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
7F, No. 137, Lane 235, Pac Chiao Rd.,
Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.
Tel : 886-2-89191368
Fax : 886-2-89191369
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Jun., 2006
17
www.anpec.com.tw