STMICROELECTRONICS STM32F405XX_12

STM32F405xx
STM32F407xx
ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM, USB
OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera
Datasheet − production data
Features
■
■
■
■
●
■
■
■
■
■
FBGA
Core: ARM 32-bit Cortex™-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 168 MHz,
memory protection unit, 210 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
Memories
– Up to 1 Mbyte of Flash memory
– Up to 192+4 Kbytes of SRAM including 64Kbyte of CCM (core coupled memory) data
RAM
– Flexible static memory controller
supporting Compact Flash, SRAM,
PSRAM, NOR and NAND memories
LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
– 1.8 V to 3.6 V application supply and I/Os
– POR, PDR, PVD and BOR
– 4-to-26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC (1%
accuracy)
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
Low power
– Sleep, Stop and Standby modes
– VBAT supply for RTC, 20×32 bit backup
registers + optional 4 KB backup SRAM
3×12-bit, 2.4 MSPS A/D converters: up to 24
channels and 7.2 MSPS in triple interleaved
mode
2×12-bit D/A converters
General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
Up to 17 timers: up to twelve 16-bit and two 32bit timers up to 168 MHz, each with up to 4
IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input
Debug mode
– Serial wire debug (SWD) & JTAG interfaces
– Cortex-M4 Embedded Trace Macrocell™
May 2012
This is information on a product in full production.
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm)
LQFP176 (24 × 24 mm)
■
■
■
■
■
■
■
■
WLCSP90
UFBGA176
(10 × 10 mm)
Up to 140 I/O ports with interrupt capability
– Up to 136 fast I/Os up to 84 MHz
– Up to 138 5 V-tolerant I/Os
Up to 15 communication interfaces
– Up to 3 × I2C interfaces (SMBus/PMBus)
– Up to 4 USARTs/2 UARTs (10.5 Mbit/s,
ISO 7816 interface, LIN, IrDA, modem
control)
– Up to 3 SPIs (37.5 Mbits/s), 2 with muxed
full-duplex I2S to achieve audio class
accuracy via internal audio PLL or external
clock
– 2 × CAN interfaces (2.0B Active)
– SDIO interface
Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
– USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
– 10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
8- to 14-bit parallel camera interface up to
54 Mbytes/s
True random number generator
CRC calculation unit
96-bit unique ID
RTC: subsecond accuracy, hardware calendar
Table 1.
Reference
Device summary
Part number
STM32F405xx
STM32F405RG, STM32F405VG, STM32F405ZG,
STM32F405OG, STM32F405OE
STM32F407xx
STM32F407VG, STM32F407IG, STM32F407ZG,
STM32F407VE, STM32F407ZE, STM32F407IE
Doc ID 022152 Rev 3
1/180
www.st.com
1
Contents
STM32F405xx, STM32F407xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2/180
2.1
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1
ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . 19
2.2.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 19
2.2.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 20
2.2.6
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.7
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.8
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.9
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.10
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 22
2.2.11
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.12
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.13
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.14
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.15
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.16
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.17
Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 27
2.2.18
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.19
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.20
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.21
Inter-integrated circuit interface (I²C)
2.2.22
Universal synchronous/asynchronous receiver transmitters (USART) . 31
2.2.23
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.24
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.25
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.26
Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 33
2.2.27
Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 33
2.2.28
Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.29
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 34
Doc ID 022152 Rev 3
. . . . . . . . . . . . . . . . . . . . . . . . . . 31
STM32F405xx, STM32F407xx
Contents
2.2.30
Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 34
2.2.31
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.32
Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.33
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.34
Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.35
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.36
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.37
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.38
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2
VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.3
Operating conditions at power-up / power-down (regulator ON) . . . . . . 74
5.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . . 74
5.3.5
Embedded reset and power control block characteristics . . . . . . . . . . . 75
5.3.6
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.7
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.8
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.9
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.10
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.11
PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 98
5.3.12
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Doc ID 022152 Rev 3
3/180
Contents
6
7
STM32F405xx, STM32F407xx
5.3.13
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.14
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 103
5.3.15
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.16
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.17
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.18
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.20
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.21
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.22
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.23
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.24
DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.25
FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.26
Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 150
5.3.27
SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 150
5.3.28
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8
4/180
A.1
Main applications versus package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.2
Application example with regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.3
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 167
A.4
USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 169
A.5
Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
A.6
Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F405xx and STM32F407xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 13
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32F40x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
STM32F40x register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 73
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 74
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 74
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 78
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 81
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 82
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 82
Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 83
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Doc ID 022152 Rev 3
5/180
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
6/180
STM32F405xx, STM32F407xx
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 110
Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 111
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
USB FS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 122
Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 123
Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 124
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 133
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 134
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 140
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Switching characteristics for PC Card/CF read and write cycles
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Switching characteristics for PC Card/CF read and write cycles
in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 150
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . 153
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 154
LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 156
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 158
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data . . . . . . . 161
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 96.
Table 97.
List of tables
Main applications versus package for STM32F407xx microcontrollers . . . . . . . . . . . . . . 165
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Doc ID 022152 Rev 3
7/180
List of figures
STM32F405xx, STM32F407xx
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
8/180
Compatible board design between STM32F10xx/STM32F4xx for LQFP64 . . . . . . . . . . . . 15
Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
STM32F40x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Regulator ON/internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Startup in regulator OFF mode: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 26
Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 26
STM32F40x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STM32F40x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STM32F40x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
STM32F40x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STM32F40x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
STM32F40x WLCSP90 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
STM32F40x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 79
Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 79
Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 80
Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 80
Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 83
Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 84
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
List of figures
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 120
ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 128
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 128
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 133
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 134
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 135
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 136
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 140
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 142
PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 143
PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 145
PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 146
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 149
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 149
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
WLCSP90 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . 153
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 154
LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 156
LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 158
LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 161
LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Regulator OFF/internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Regulator OFF/internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
USB controller configured as peripheral-only and used
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 167
USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 168
Doc ID 022152 Rev 3
9/180
List of figures
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
10/180
STM32F405xx, STM32F407xx
USB controller configured as peripheral, host, or dual-mode
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Audio player solution using PLL, PLLI2S, USB and 1 crystal . . . . . . . . . . . . . . . . . . . . . . 171
Audio PLL (PLLI2S) providing accurate I2S clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Master clock (MCK) used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . . . . 172
Master clock (MCK) not used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . 172
MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
1
Introduction
Introduction
This datasheet provides the description of the STM32F405xx and STM32F407xx lines of
microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please
refer to Section 2.1: Full compatibility throughout the family.
The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the
STM32F4xx reference manual.
For information on programming, erasing and protection of the internal Flash memory,
please refer to the STM32F4xx Flash programming manual (PM0081).
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M4 core please refer to the Cortex™-M4 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439b/.
Doc ID 022152 Rev 3
11/180
Description
2
STM32F405xx, STM32F407xx
Description
The STM32F405xx and STM32F407xx family is based on the high-performance ARM®
Cortex™-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4
core features a Floating point unit (FPU) single precision which supports all ARM singleprecision data-processing instructions and data types. It also implements a full set of DSP
instructions and a memory protection unit (MPU) which enhances application security. The
Cortex-M4 core with FPU will be referred to as Cortex-M4F throughout this document.
The STM32F405xx and STM32F407xx family incorporates high-speed embedded
memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of
backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two
APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true random number generator (RNG). They also feature standard and advanced
communication interfaces.
●
Up to three I2Cs
●
Three SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals
can be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
●
Four USARTs plus two UARTs
●
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI),
●
Two CANs
●
An SDIO/MMC interface
●
Ethernet and the camera interface available on STM32F407xx devices only.
New advanced peripherals include an SDIO, an enhanced flexible static memory control
(FSMC) interface (for devices offered in packages of 100 pins and more), a camera interface
for CMOS sensors. Refer to Table 2: STM32F405xx and STM32F407xx: features and
peripheral counts for the list of peripherals available on each part number.
The STM32F405xx and STM32F407xx family operates in the –40 to +105 °C temperature
range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the
device operates in the 0 to 70 °C temperature range and an inverted reset signal is applied
to PDR_ON. A comprehensive set of power-saving mode allows the design of low-power
applications.
The STM32F405xx and STM32F407xx family offers devices in various packages ranging
from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.
These features make the STM32F405xx and STM32F407xx microcontroller family suitable
for a wide range of applications:
12/180
●
Motor drive and application control
●
Medical equipment
●
Industrial applications: PLC, inverters, circuit breakers
●
Printers, and scanners
●
Alarm systems, video intercom, and HVAC
●
Home audio appliances
Doc ID 022152 Rev 3
Table 2.
STM32F405xx and STM32F407xx: features and peripheral counts
Peripherals
STM32F405RG
STM32F405OG
Flash memory in Kbytes
STM32F405VG
STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx
1024
512
System
192(112+16+64)
Backup
4
512
1024
512
1024
STM32F407Ix
512
1024
SRAM in Kbytes
FSMC memory controller
Yes(1)
No
Ethernet
Doc ID 022152 Rev 3
Timers
No
Yes
General-purpose
10
Advanced-control
2
Basic
2
IWDG
Yes
WWDG
Yes
RTC
Yes
Random number generator
Yes
SPI / I2S
3/2 (full duplex)(2)
I2 C
3
USART/UART
Communication
interfaces
4/2
USB OTG FS
Yes
USB OTG HS
Yes
CAN
2
SDIO
Yes
Camera interface
GPIOs
12-bit DAC
Number of channels
13/180
Maximum CPU frequency
No
51
72
Yes
82
114
72
82
114
140
13
16
24
24
3
16
13
16
24
Yes
2
168 MHz
Description
12-bit ADC
Number of channels
STM32F405xx, STM32F407xx
Figure 5 shows the general block diagram of the device family.
STM32F405xx and STM32F407xx: features and peripheral counts (continued)
Peripherals
STM32F405RG
STM32F405OG
STM32F405VG
Operating voltage
STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx
1.8 to 3.6
STM32F407Ix
V(3)
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Description
14/180
Table 2.
Operating temperatures
Junction temperature: –40 to + 125 °C
Package
LQFP64
WLCSP90
LQFP100
LQFP144
WLCSP90
LQFP100
LQFP144
UFBGA176
LQFP176
1. For the LQFP100 package, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can
only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in the 0 to 70 °C temperature range and an inverted reset signal is applied to PDR_ON.
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
STM32F405xx, STM32F407xx
2.1
Description
Full compatibility throughout the family
The STM32F405xx and STM32F407xx are part of the STM32F4 family. They are fully pinto-pin, software and feature compatible with the STM32F2xx devices, allowing the user to
try different memory densities, peripherals, and performances (FPU, higher frequency) for a
greater degree of freedom during the development cycle.
The STM32F405xx and STM32F407xx devices maintain a close compatibility with the
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The
STM32F405xx and STM32F407xx, however, are not drop-in replacements for the
STM32F10xxx devices: the two families do not have the same power scheme, and so their
power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F40x
family remains simple as only a few pins are impacted.
Figure 4, Figure 3, Figure 2, and Figure 1 give compatible board designs between the
STM32F40x, STM32F2xxx, and STM32F10xxx families.
Figure 1.
Compatible board design between STM32F10xx/STM32F4xx for LQFP64
633
633
633
633
Doc ID 022152 Rev 3
ΩRESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
AI
15/180
Description
STM32F405xx, STM32F407xx
Figure 2.
Compatible board design STM32F10xx/STM32F2xx/STM32F4xx
for LQFP100 package
633
633
633
633
633
6$$ 6
33
6 33FOR34-&XX
6 $$FOR34-&XX
4WO Ω RESISTORSCONNECTEDTO
6$$ 633
6 33FORTHE34-&XX
6 33FORTHE34-&XX
6 336 $$OR.#FORTHE34-&XX
Figure 3.
Ω
ª RESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XXX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
AIC
Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx
for LQFP144 package
633
633
633
0$2?/.
)NVERTED
RESETSIGNAL
6$$ 6
33
633
4WO Ω RESISTORSCONNECTEDTO
6$$ 633
633FORTHE34-&XX
6 336 $$OR.#FORTHE34-&XX
6$$ORINVERTEDRESETSIGNALFORTHE34-&XX
16/180
ΩRESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
Doc ID 022152 Rev 3
6 33FOR34-&XX
6 $$FOR34-&XX
AIC
STM32F405xx, STM32F407xx
Figure 4.
Description
Compatible board design between STM32F2xx and STM32F4xx
for LQFP176 package
)NVERTED
RESETSIGNAL
0$2?/.
6$$ 6
33
4WO Ω RESISTORSCONNECTEDTO
6 336 $$OR.#FORTHE34-&XX
6$$ORINVERTEDRESETSIGNALFORTHE34-&XX
Doc ID 022152 Rev 3
-36
17/180
Description
STM32F405xx, STM32F407xx
2.2
Device overview
Figure 5.
STM32F40x block diagram
%XTERNALMEMORY
CONTROLLER&3-#
##-DATA2!-+"
*4!'37
%4-
$-!
3TREAMS
&)&/
$-!
3TREAMS
&)&/
2.'
32!-+"
32!-+"
!("-(Z
!("-(Z
(39.#639.#
05)8#,+$;=
#AMERA
INTERFACE
0(9
$-!
&)&/
&LASH
UPTO
-"
&)&/ &)&/
53"
/4'(3
!24!##%,
#!#(%
3"53
%THERNET-!# $-!
&)&/
0(9
$0$5,0)#+$;=$)2340.84
3#,3$!).4.)$6"533/&
#,+.%;=!;=
$;=/%.7%.
.",;=.,.2%'
.7!)4)/2$9#$
.)/2$)/72).4;=
).4..))3AS!&
32!-032!-./2&LASH
0##ARD!4!.!.$&LASH
$"53
!2-#ORTEX-
-(Z
)"53
&05
-))OR2-))AS!&
-$)/AS!&
!("
-05
.6)#
!("BUSMATRIX3
.*4234*4$)
*4#+37#,+
*4$/37$*4$/
42!#%#,+
42!#%$;=
53"
/4'&3
0OWERMANAGMT
6$$
6OLTAGE
REGULATOR
TO6
0";=
'0)/0/24!
'0)/0/24"
0#;=
'0)/0/24#
0$;=
'0)/0/24$
0%;=
'0)/0/24%
2#(3
0/2
RESET
2#,3
)NT
0,,
3UPPLY
SUPERVISION
0/20$2
"/2
06$
6"!4TO6
,3
0#,+X
6"!4
'0)/0/24)
,3
0);=
'0)/0/24(
/3#?).
/3#?/54
)7$'
3TANDBY
INTERFACE
'0)/0/24'
&#,+
0(;=
'0)/0/24&
(#,+X
0';=
84!,/3#
-(Z
2ESET
CLOCK
-!.!'4
CONTROL
6$$!633!
.234
6$$
6$$!
0&;=
6$$TO6
633
6#!06#0!
6$$
6$$!
0!;=
$0
$3#,3$!).4.)$6"533/&
84!,K(Z
24#
!75
"ACKUPREGISTER
/3#?).
/3#?/54
24#?!&
24#?!&
+""+032!-
$-!
3$)/--#
4)-07- B
4)-07- B
77$'
CHANNELSAS!&
4)-
B
CHANNELAS!&
4)-
B
CHANNELAS!&
4)-
B
SMCARD
53!24
IR$!
SMCARD
53!24
IR$!
30)
4)-
B
4)-
B
6$$!
6$$2%&?!$#
ANALOGINPUTSCOMMON
TOTHE!$#S
ANALOGINPUTSCOMMON
TOTHE!$#
ANALOGINPUTSFOR!$#
53!24-"PS
4EMPERATURESENSOR
!$#
CHANNELS%42AS!&
4)-
B
CHANNELS%42AS!&
4)-
B
CHANNELS
4)-
B
CHANNELSAS!&
4)-
B
CHANNELAS!&
4)-
B
CHANNELAS!&
SMCARD
53!24 IR$!
2848AS!&
#43243AS!&
SMCARD
53!24 IR$!
2848AS!&
#43243AS!&
5!24
2848AS!&
5!24
2848AS!&
30)3
-/3)3$-)3/3$?EXT3#+#+
.3373-#+AS!&
30)3
-/3)3$-)3/3$?EXT3#+#+
.3373-#+AS!&
)#3-"53
3#,3$!3-"!AS!&
)#3-"53
3#,3$!3-"!AS!&
)#3-"53
3#,3$!3-"!AS!&
6$$!
!$#
!$#
CHANNELS%42AS!&
B
$!#
)&
)4&
BX#!.
$!#
BX#!.
$!#?/54 $!#?/54
AS!&
AS!&
&)&/
2848#+
#43243AS!&
2848#+
#43243AS!&
-/3)-)3/
3#+.33AS!&
!0"-(Z
!0"-(ZMAX
OMPLCHANNELS4)-?#(;=.
CHANNELS4)-?#(;=%42
"+).AS!&
%84)47+50
!0"-(Z
OMPLCHANNELS4)-?#(;=.
CHANNELS4)-?#(;=%42
"+).AS!&
!("!0" !("!0"
!0"-(Z
$;=
#-$#+AS!&
B
4)-
$-!
&)&/
!&
4)-
4828
4828
-36
1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to APB1 are clocked
18/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Description
from TIMxCLK up to 84 MHz.
2. The camera interface and ethernet are available only on STM32F407xx devices.
2.2.1
ARM® Cortex™-M4F core with embedded Flash and SRAM
The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded
systems. It was developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing
and complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F405xx and STM32F407xx family is compatible with all ARM tools and software.
Figure 5 shows the general block diagram of the STM32F40x family.
Note:
Cortex-M4F is binary compatible with Cortex-M3.
2.2.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex™-M4F processors. It balances the inherent performance advantage
of the ARM Cortex-M4F over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher frequencies.
To release the processor full 210 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 168 MHz.
2.2.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
Doc ID 022152 Rev 3
19/180
Description
2.2.4
STM32F405xx, STM32F407xx
Embedded Flash memory
The STM32F40x devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for
storing programs and data.
2.2.5
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
2.2.6
Embedded SRAM
All STM32F40x products embed:
●
Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)
data RAM
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
●
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
2.2.7
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
20/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Multi-AHB matrix
3
3
3
3
53"?(3?-
-!#
53"/4'
%THERNET
(3
%4(%2.%4?-
$-!?0
$-!?-%-
$-!?-%-
'0
$-!
3
3
-
)#/$%
- $#/$%
!##%,
3
$-!?0)
)BUS
3
'0
$-!
3BUS
!2#ORTEX-
+BYTE
##-DATA2!-
$BUS
Figure 6.
Description
&LASH
MEMORY
-
32!-
+BYTE
-
32!+BYTE
!("
PERIPHERALS
!("
PERIPHERALS
-
-
-
&3-#
3TATIC-EM#TL
!0"
!0"
"USMATRIX3
AIB
2.2.8
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
●
SPI and I2S
●
I2C
●
USART
●
General-purpose, basic and advanced-control timers TIMx
●
DAC
●
SDIO
●
Camera interface (DCMI)
●
ADC.
Doc ID 022152 Rev 3
21/180
Description
2.2.9
STM32F405xx, STM32F407xx
Flexible static memory controller (FSMC)
The FSMC is embedded in the STM32F405xx and STM32F407xx family. It has four Chip
Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM,
NOR Flash and NAND Flash.
Functionality overview:
●
Write FIFO
●
Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz.
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
2.2.10
Nested vectored interrupt controller (NVIC)
The STM32F405xx and STM32F407xx embed a nested vectored interrupt controller able to
manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16
interrupt lines of the Cortex™-M4F.
●
Closely coupled NVIC gives low-latency interrupt processing
●
Interrupt entry vector table address passed directly to the core
●
Allows early processing of interrupts
●
Processing of late arriving, higher-priority interrupts
●
Support tail chaining
●
Processor state automatically saved
●
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
2.2.11
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected
to the 16 external interrupt lines.
2.2.12
Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full
temperature range. The application can then select as system clock either the RC oscillator
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is
detected, the system automatically switches back to the internal RC oscillator and a
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing
to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL
22/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Description
clock entry is available when necessary (for example if an indirectly used external oscillator
fails).
Several prescalers allow the configuration of the three AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB
buses is 168 MHz while the maximum frequency of the high-speed APB domains is 84 MHz.
The maximum allowed frequency of the low-speed APB domain is 42 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
2.2.13
Boot modes
At startup, boot pins are used to select one out of three boot options:
●
Boot from user Flash
●
Boot from system memory
●
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
2.2.14
Power supply schemes
●
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
●
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,
RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
●
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when VDD is not present.
Refer to Figure 19: Power supply scheme for more details.
Note:
VDD/VDDA minimum value of 1.7 V is obtained when the device operates in the 0 to 70 °C
temperature range and an inverted reset signal is applied to PDR_ON.
2.2.15
Power supply supervisor
The power supply supervisor is enabled by holding PDR_ON high.
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, BOR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold level is reached,
the option byte loading process starts, either to confirm or modify default thresholds, or to
disable BOR permanently. Three BOR thresholds are available through option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher
than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
Doc ID 022152 Rev 3
23/180
Description
STM32F405xx, STM32F407xx
All packages, except for the LQFP64 and LQFP100, have an internal reset controlled
through the PDR_ON signal.
2.2.16
Voltage regulator
The regulator has eight operating modes:
●
●
Regulator ON/internal reset ON
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
Regulator ON/internal reset OFF
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
●
Regulator OFF/internal reset ON
●
Regulator OFF/internal reset OFF
Regulator ON
●
Regulator ON/internal reset ON
The regulator ON/internal reset ON mode is always enabled on LQFP64 and LQFP100
package.
On LQFP144 package, this mode is activated by setting PDR_ON to VDD.
On UFBGA176 package, the internal regulator must be activated by connecting
BYPASS_REG to VSS, and PDR_ON to VDD.
On LQFP176 packages, the internal reset must be activated by connecting PDR_ON to
VDD.
There are three low-power modes:
●
–
MR is used in the nominal regulation mode (Run)
–
LPR is used in the Stop modes
–
Power-down is used in Standby mode: the regulator output is in high impedance:
the kernel circuitry is powered down, inducing zero consumption (but the contents
of the registers and SRAM are lost).
Regulator ON/internal reset OFF
The regulator ON with internal reset OFF mode is not available on LQFP64 and
LQFP100 packages.
On LQFP144, and LQFP176 packages, the internal reset is controlled by applying an
inverted reset signal to PDR_ON pin.
On UFBGA176 package, the internal regulator must be activated by connecting
BYPASS_REG to VSS.
On LQFP176 packages, the internal reset must be activated by applying an inverted
reset signal to PDR_ON pin.
VDD/VDDA minimum value of 1.7 V is obtained when the device operates in the 0 to
70 °C temperature range and an inverted reset signal is applied to PDR_ON.
The NRST pin should be controlled by an external reset controller to keep the device
under reset when VDD is below 1.8 V (see Figure 7).
24/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Figure 7.
Description
Regulator ON/internal reset OFF
6$$
0$26
TIME
.234
0$2?/.
.EXTRESET
ASSERTED
0$2?/.
TIME
-36
Regulator OFF
This mode allows to power the device as soon as VDD reaches 1.8 V.
●
Regulator OFF/internal reset ON
This mode is available only on UFBGA and WLCSP90 packages. It is activated by
setting BYPASS_REG and PDR_ON pins to VDD.
The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage
source through VCAP_1 and VCAP_2 pins, in addition to VDD.
The following conditions must be respected:
–
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
–
If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to
reach 1.8 V, then PA0 should be connected to the NRST pin (see Figure 8).
Otherwise, PA0 should be asserted low externally during POR until VDD reaches
1.8 V (see Figure 9).
–
If VCAP_1 and VCAP_2 go below 1.08 V and VDD is higher than 1.7 V, then a reset
must be asserted on PA0 pin.
In regulator OFF/internal reset ON mode, PA0 cannot be used as a GPIO pin since it
allows to reset the part of the 1.2 V logic which is not reset by the NRST pin, when the
internal voltage regulator in off.
●
Regulator OFF/internal reset OFF
This mode is available only on UFBGA and WLCSP packages. It is activated by setting
BYPASS_REG pin to VDD and by applying an inverted reset signal to PDR_ON, and
Doc ID 022152 Rev 3
25/180
Description
STM32F405xx, STM32F407xx
allows to supply externally a 1.2 V voltage source through VCAP_1 and VCAP_2 pins, in
addition to VDD.
The following conditions must be respected:
–
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
–
PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach
1.08 V and until VDD reaches 1.8 V (see Figure 8).
–
NRST should be controlled by an external reset controller to keep the device
under reset when VDD is below 1.8 V (see Figure 9).
Figure 8.
Startup in regulator OFF mode: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
6$$
0$26
6
6
6#!0? 6 #!0?
TIME
0!TIEDTO.234
.234
TIME
AIC
1. This figure is valid both whatever the internal reset mode (on or off).
Figure 9.
Startup in regulator OFF mode: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
6$$
0$26
6
6
6#!0? 6 #!0?
TIME
.234
0!ASSERTEDEXTERNALLY
TIME
AIC
1. This figure is valid both whatever the internal reset mode (on or off).
26/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
2.2.17
Description
Real-time clock (RTC), backup SRAM and backup registers
The backup domain of the STM32F405xx and STM32F407xx includes:
●
The real-time clock (RTC)
●
4 Kbytes of backup SRAM
●
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded
decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is
also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 2.2.18: Low-power modes). It can be
enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 2.2.18: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
2.2.18
Low-power modes
The STM32F405xx and STM32F407xx support three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
●
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
●
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
Doc ID 022152 Rev 3
27/180
Description
STM32F405xx, STM32F407xx
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).
●
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
The standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
Note:
When in Standby mode, only an RTC alarm/event or an external reset can wake up the
device provided VDD is supplied by an external battery.
2.2.19
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note:
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
2.2.20
Timers and watchdogs
The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight
general-purpose timers, two basic timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 3 compares the features of the advanced-control, general-purpose and basic timers.
28/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 3.
Description
Timer feature comparison
Counter Counter Prescaler
Timer type Timer
resolution type
factor
Max
Max
DMA
Capture/
Complementary interface timer
request compare
output
clock
clock
generation channels
(MHz) (MHz)
Advanced- TIM1,
control
TIM8
16-bit
Up,
Any integer
Down, between 1
Up/down and 65536
Yes
4
Yes
84
168
TIM2,
TIM5
32-bit
Up,
Any integer
Down, between 1
Up/down and 65536
Yes
4
No
42
84
TIM3,
TIM4
16-bit
Up,
Any integer
Down, between 1
Up/down and 65536
Yes
4
No
42
84
TIM9
16-bit
Up
Any integer
between 1
and 65536
No
2
No
84
168
TIM10,
TIM11
16-bit
Up
Any integer
between 1
and 65536
No
1
No
84
168
TIM12
16-bit
Up
Any integer
between 1
and 65536
No
2
No
42
84
TIM13,
TIM14
16-bit
Up
Any integer
between 1
and 65536
No
1
No
42
84
TIM6,
TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
42
84
General
purpose
Basic
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
●
Input capture
●
Output compare
●
PWM generation (edge- or center-aligned modes)
●
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
Doc ID 022152 Rev 3
29/180
Description
STM32F405xx, STM32F407xx
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F40x devices
(see Table 3 for differences).
●
TIM2, TIM3, TIM4, TIM5
The STM32F40x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and
TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter
and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload
up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for
input capture/output compare, PWM or one-pulse mode output. This gives up to 16
input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
●
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the
main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
30/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Description
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
2.2.21
●
A 24-bit downcounter
●
Autoreload capability
●
Maskable system interrupt generation when the counter reaches 0
●
Programmable clock source.
Inter-integrated circuit interface (I²C)
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can
support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the
7-bit dual addressing mode (as slave). A hardware CRC generation/verification is
embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
2.2.22
Universal synchronous/asynchronous receiver transmitters (USART)
The STM32F405xx and STM32F407xx embed four universal synchronous/asynchronous
receiver transmitters (USART1, USART2, USART3 and USART6) and two universal
asynchronous receiver transmitters (UART4 and UART5).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at
up to 5.25 bit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
Doc ID 022152 Rev 3
31/180
Description
Table 4.
STM32F405xx, STM32F407xx
USART feature comparison
USART Standard Modem
SPI
LIN
irDA
name features (RTS/CTS)
master
Smartcard
(ISO 7816)
Max. baud rate Max. baud rate
in Mbit/s
in Mbit/s
(oversampling (oversampling
by 16)
by 8)
APB
mapping
USART1
X
X
X
X
X
X
5.25
10.5
APB2
(max.
84 MHz)
USART2
X
X
X
X
X
X
2.62
5.25
APB1
(max.
42 MHz)
USART3
X
X
X
X
X
X
2.62
5.25
APB1
(max.
42 MHz)
UART4
X
-
X
-
X
-
2.62
5.25
APB1
(max.
42 MHz)
UART5
X
-
X
-
X
-
2.62
5.25
APB1
(max.
42 MHz)
USART6
X
X
X
X
X
X
5.25
10.5
APB2
(max.
84 MHz)
2.2.23
Serial peripheral interface (SPI)
The STM32F40x feature up to three SPIs in slave and master modes in full-duplex and
simplex communication modes. SPI1 can communicate at up to 37.5 Mbits/s, SPI2 and
SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
2.2.24
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and simplex communication modes, and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
32/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
2.2.25
Description
Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
2.2.26
Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol
Rev1.1.
2.2.27
Ethernet MAC interface with dedicated DMA and IEEE 1588 support
Peripheral available only on the STM32F407xx devices.
The STM32F407xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The
STM32F407xx requires an external physical interface device (PHY) to connect to the
physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F407xx MII
port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz
(MII) from the STM32F407xx.
Doc ID 022152 Rev 3
33/180
Description
STM32F405xx, STM32F407xx
The STM32F407xx includes the following features:
2.2.28
●
Supports 10 and 100 Mbit/s rates
●
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F46x reference manual for details)
●
Tagged MAC frame support (VLAN support)
●
Half-duplex (CSMA/CD) and full-duplex operation
●
MAC control sublayer (control frames) support
●
32-bit CRC generation and removal
●
Several address filtering modes for physical and multicast address (multicast and group
addresses)
●
32-bit status code for each transmitted or received frame
●
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive
FIFO are both 2 Kbytes.
●
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
●
Triggers interrupt when system time becomes greater than target time
Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
2.2.29
Universal serial bus on-the-go full-speed (OTG_FS)
The STM32F405xx and STM32F407xx embed an USB OTG full-speed device/host/OTG
peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the
USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable
endpoint setting and supports suspend/resume. The USB OTG full-speed controller
requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE
oscillator. The major features are:
2.2.30
●
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
●
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
●
4 bidirectional endpoints
●
8 host channels with periodic OUT support
●
HNP/SNP/IP inside (no need for any external resistor)
●
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Universal serial bus on-the-go high-speed (OTG_HS)
The STM32F405xx and STM32F407xx devices embed a USB OTG high-speed (up to
480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and
high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and
features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using
the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.
34/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Description
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator.
The major features are:
2.2.31
●
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
●
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
●
6 bidirectional endpoints
●
12 host channels with periodic OUT support
●
Internal FS OTG PHY support
●
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
●
Internal USB DMA
●
HNP/SNP/IP inside (no need for any external resistor)
●
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Digital camera interface (DCMI)
The camera interface is not available in STM32F405xx devices.
STM32F407xx products embed a camera interface that can connect with camera modules
and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The
camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:
2.2.32
●
Programmable polarity for the input pixel clock and synchronization signals
●
Parallel data communication can be 8-, 10-, 12- or 14-bit
●
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
●
Supports continuous mode or snapshot (a single frame) mode
●
Capability to automatically crop the image
Random number generator (RNG)
All STM32F405xx and STM32F407xx products embed an RNG that delivers 32-bit random
numbers generated by an integrated analog circuit.
2.2.33
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.
Doc ID 022152 Rev 3
35/180
Description
2.2.34
STM32F405xx, STM32F407xx
Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
●
Simultaneous sample and hold
●
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
2.2.35
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally
connected to the ADC1_IN16 input channel which is used to convert the sensor output
voltage into a digital value.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
2.2.36
Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
●
two DAC converters: one for each output channel
●
8-bit or 12-bit monotonic output
●
left or right data alignment in 12-bit mode
●
synchronized update capability
●
noise-wave generation
●
triangular-wave generation
●
dual DAC channel independent or simultaneous conversions
●
DMA capability for each channel
●
external triggers for conversion
●
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
2.2.37
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
36/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Description
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be
re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch
between JTAG-DP and SW-DP.
2.2.38
Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F40x through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
Doc ID 022152 Rev 3
37/180
Pinouts and pin description
3
STM32F405xx, STM32F407xx
Pinouts and pin description
6$$
633 0"
0"
"//4
0"
0"
0"
0"
0"
0$
0#
0#
0#
0! 0!
Figure 10. STM32F40x LQFP64 pinout
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
,1&0
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
6$$ 6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0"
0"
6#!0?
6$$
6"!4
0#
0#
0#
0(
0(
.234
0#
0#
0#
0#
633!
6$$!
0!?7+50
0!
0!
AIB
38/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Pinouts and pin description
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
Figure 11. STM32F40x LQFP100 pinout
,1&0
6$$
633
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$
0%
0%
0%
0%
0%
6"!4
0#
0#
0#
633
6$$
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0!
0!
0!
AIC
Doc ID 022152 Rev 3
39/180
Pinouts and pin description
STM32F405xx, STM32F407xx
6$$
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0! 0! Figure 12. STM32F40x LQFP144 pinout
,1&0
6$$
633
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
6$$
633
0'
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
40/180
Doc ID 022152 Rev 3
6#!0?
6$$
0! 633
6$$
0! 0! 0! 0! 0#
0#
0"
0"
0"
0&
0&
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
0%
0%
0%
0%
0%
6"!4
0#
0#
0#
0&
0&
0&
0&
0&
0&
633
6$$
0&
0&
0&
0&
0&
0(
0(
.234
0#
0#
0#
0#
6$$
633!
62%&
6$$!
0! 0! 0! AIB
STM32F405xx, STM32F407xx
Pinouts and pin description
0$2?/.
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$
633
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
6$$
633
0)
0)
0)
0)
0)
0)
6
$$
Figure 13. STM32F40x LQFP176 pinout
0)
0)
0(
0(
0(
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
6$$
633
0'
0'
0'
0'
0'
0'
0'
0$
0$
6$$
633
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
6$$
633
0(
Doc ID 022152 Rev 3
6#!0?
6$$
0(
0(
0(
0(
0(
0(
633
6$$
0&
0&
0&
0'
0'
0%
0%
0%
633
6$$
0%
0%
0%
0%
0%
0%
0"
0"
,1&0
0(
0(
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
0%
0%
0%
0%
0%
6"!4
0)
0#
0#
0#
0)
0)
0)
633
6$$
0&
0&
0&
0&
0&
0&
633
6$$
0&
0&
0&
0&
0&
0(
0(
.234
0#
0#
0#
0#
6$$!
633!
62%&
6$$!
0!
0!
0!
0(
0(
-36
41/180
Pinouts and pin description
STM32F405xx, STM32F407xx
Figure 14. STM32F40x UFBGA176 ballout
!
0%
0%
0%
0%
0"
0"
0'
0'
0"
0"
0$
0#
0!
0!
0!
"
0%
0%
0%
0"
0"
0"
0'
0'
0'
0'
0$
0$
0#
0#
0!
#
6"!4
0)
0)
0)
6$$
0$2?/.
6$$
6$$
6$$
0'
0$
0$
0)
0)
0!
$
0#
0)
0)
0)
633
"//4
633
633
633
0$
0$
0$
0(
0)
0!
%
0#
0&
0)
0)
0(
0(
0)
0! &
0#
633
6$$
0(
633
633
633
633
633
633
6#!0?
0#
0! '
0(
633
6$$
0(
633
633
633
633
633
633
6$$
0#
0#
(
0(
0&
0&
0(
633
633
633
633
633
633
6$$
0'
0#
*
.234
0&
0&
0(
633
633
633
633
633
6$$
6$$
0'
0'
+
0&
0&
0&
6$$
633
633
633
633
633
0(
0'
0'
0'
,
0&
0&
0&
"90!33?
2%'
0(
0(
0$
0'
-
633!
0#
0#
0#
0#
0"
0'
633
633
0(
0(
0(
0$
0$
.
62%&
0! 0!
0!
0#
0&
0'
6$$
6$$
6$$
0%
0(
0$
0$
0$
0
62%&
0!
0! 0!
0#
0&
0&
0%
0%
0%
0%
0"
0"
0$
0$
2
6$$!
0! 0!
0"
0"
0&
0&
0%
0%
0%
0%
0"
0"
0"
0"
6#!0?
AIB
1. This figure shows the package top view.
42/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Pinouts and pin description
Figure 15. STM32F40x WLCSP90 ballout
0#
0$2?/.
"//4
0"
0$
0$
0#
0!
6$$
0#
6$$
0"
0"
0$
0$
0!
0)
6#!0?
0!
633
0"
0"
0$
0$
0#
0)
0!
0!
0#
"90!33?
2%'
0"
0"
0$
0#
0!
0!
0!
0!
%
0#
0#
633
633
6$$
633
6$$
0#
0#
0#
&
0(
0(
0!
6$$
0%
0%
6#!0?
0#
0$
0$
'
.234
6$$!
0!
0"
0%
0%
0%
0$
0$
0$
(
633!
0!
0!
0"
0%
0%
0"
0$
0$
0"
0!
0!
0!
0"
0%
0%
0"
0"
0"
0"
!
6"!4
0#
"
#
$
*
-36
1. This figure shows the package bump view.
Table 5.
Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TTa
3.3 V tolerant I/O directly connected to ADC
TC
Standard 3.3V I/O
B
Dedicated BOOT0 pin
RST
Bidirectional reset pin with embedded weak pull-up resistor
I/O structure
Notes
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Doc ID 022152 Rev 3
43/180
Pinouts and pin description
Table 5.
STM32F405xx, STM32F407xx
Legend/abbreviations used in the pinout table (continued)
Name
Abbreviation
Definition
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
44/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
LQFP100
LQFP144
UFBGA176
LQFP176
(function after
reset)(1)
Pin type
I / O structure
-
-
1
1
A2
1
PE2
I/O
FT
TRACECLK/ FSMC_A23 /
ETH_MII_TXD3 /
EVENTOUT
-
-
2
2
A1
2
PE3
I/O
FT
TRACED0/FSMC_A19 /
EVENTOUT
-
-
3
3
B1
3
PE4
I/O
FT
TRACED1/FSMC_A20 /
DCMI_D4/ EVENTOUT
-
-
4
4
B2
4
PE5
I/O
FT
TRACED2 / FSMC_A21 /
TIM9_CH1 / DCMI_D6 /
EVENTOUT
-
-
5
5
B3
5
PE6
I/O
FT
TRACED3 / FSMC_A22 /
TIM9_CH2 / DCMI_D7 /
EVENTOUT
1 A10 6
6
C1
6
VBAT
S
-
-
-
-
D2
7
PI8
I/O
FT (2)(3)
EVENTOUT
RTC_AF2
2
A9
7
7
D1
8
PC13
I/O
FT (2)(3)
EVENTOUT
RTC_AF1
3 B10 8
8
E1
9
PC14-OSC32_IN
I/O
(PC14)
FT (2)(3)
EVENTOUT
OSC32_IN(4)
4
B9
9
9
F1
10
PC15OSC32_OUT
(PC15)
I/O
FT (2)(3)
EVENTOUT
OSC32_OUT(4)
-
-
-
-
D3
11
PI9
I/O
FT
CAN1_RX / EVENTOUT
-
-
-
-
E3
12
PI10
I/O
FT
ETH_MII_RX_ER /
EVENTOUT
-
-
-
-
E4
13
PI11
I/O
FT
OTG_HS_ULPI_DIR /
EVENTOUT
-
-
-
-
F2
14
VSS
S
-
-
-
-
F3
15
VDD
S
-
-
-
10
E2
16
PF0
I/O
FT
FSMC_A0 / I2C2_SDA /
EVENTOUT
-
-
-
11
H3
17
PF1
I/O
FT
FSMC_A1 / I2C2_SCL /
EVENTOUT
-
-
-
12
H2
18
PF2
I/O
FT
FSMC_A2 / I2C2_SMBA /
EVENTOUT
-
-
-
13
J2
19
PF3
I/O
FT
(4)
FSMC_A3/EVENTOUT
ADC3_IN9
FSMC_A4/EVENTOUT
ADC3_IN14
FSMC_A5/EVENTOUT
ADC3_IN15
Pin number
Pin name
Notes
WLCSP90
STM32F40x pin and ball definitions
LQFP64
Table 6.
Pinouts and pin description
-
-
-
14
J3
20
PF4
I/O
FT
(4)
-
-
-
15
K3
21
PF5
I/O
FT
(4)
Alternate functions
Doc ID 022152 Rev 3
Additional functions
45/180
Pinouts and pin description
Notes
STM32F40x pin and ball definitions (continued)
I / O structure
Table 6.
STM32F405xx, STM32F407xx
Alternate functions
-
-
-
18
K2
24
PF6
I/O
FT
(4)
TIM10_CH1 /
FSMC_NIORD/
EVENTOUT
ADC3_IN4
-
-
-
19
K1
25
PF7
I/O
FT
(4)
TIM11_CH1/FSMC_NREG/
EVENTOUT
ADC3_IN5
-
-
-
20
L3
26
PF8
I/O
FT
(4)
TIM13_CH1 /
FSMC_NIOWR/
EVENTOUT
ADC3_IN6
-
-
-
21
L2
27
PF9
I/O
FT
(4)
TIM14_CH1 / FSMC_CD/
EVENTOUT
ADC3_IN7
-
-
-
22
L1
28
PF10
I/O
FT
(4)
FSMC_INTR/ EVENTOUT
ADC3_IN8
5 F10 12 23
G1
29
PH0-OSC_IN
(PH0)
I/O
FT
EVENTOUT
OSC_IN(4)
6
F9 13 24
H1
30
PH1-OSC_OUT
(PH1)
I/O
FT
EVENTOUT
OSC_OUT(4)
7 G10 14 25
J1
31
NRST
8 E10 15 26
M2
32
PC0
I/O
FT
(4)
OTG_HS_ULPI_STP/
EVENTOUT
ADC123_IN10
9
M3
33
PC1
I/O
FT
(4)
ETH_MDC/ EVENTOUT
ADC123_IN11
FT
(4)
SPI2_MISO /
OTG_HS_ULPI_DIR /
TH_MII_TXD2
/I2S2ext_SD/ EVENTOUT
ADC123_IN12
(4)
SPI2_MOSI / I2S2_SD /
OTG_HS_ULPI_NXT /
ETH_MII_TX_CLK/
EVENTOUT
ADC123_IN13
WLCSP90
LQFP144
UFBGA176
LQFP176
(function after
reset)(1)
-
C9 10 16
G2
22
VSS
S
-
B8 11 17
G3
23
VDD
S
-
LQFP100
LQFP64
Pin name
Pin type
Pin number
16 27
10 D10 17 28
11 E9 18 29
M4
34
PC2
I/O RST
I/O
M5
35
PC3
I/O
19 30
G3
36
VDD
S
12 H10 20 31
M1
37
VSSA
S
N1
-
VREF–
S
21 32
P1
38
VREF+
S
13 G9 22 33
R1
39
VDDA
S
-
-
-
-
-
-
46/180
-
-
Additional functions
FT
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
N3
(function after
reset)(1)
40
PA0-WKUP
(PA0)
Pin type
Pin name
LQFP176
14 C10 23 34
UFBGA176
LQFP144
LQFP100
WLCSP90
LQFP64
Pin number
I/O
Notes
STM32F40x pin and ball definitions (continued)
I / O structure
Table 6.
Pinouts and pin description
FT
USART2_CTS/ UART4_TX/
ETH_MII_CRS /
(5)
TIM2_CH1_ETR/
ADC123_IN0/WKUP(4)
TIM5_CH1 / TIM8_ETR/
EVENTOUT
Alternate functions
15 F8 24 35
N2
41
PA1
I/O
FT
(4)
USART2_RTS /
UART4_RX/
ETH_RMII_REF_CLK /
ETH_MII_RX_CLK /
TIM5_CH2 / TIMM2_CH2/
EVENTOUT
16 J10 25 36
P2
42
PA2
I/O
FT
(4)
USART2_TX/TIM5_CH3 /
TIM9_CH1 / TIM2_CH3 /
ETH_MDIO/ EVENTOUT
Additional functions
ADC123_IN1
ADC123_IN2
-
-
-
-
F4
43
PH2
I/O
FT
ETH_MII_CRS/EVENTOUT
-
-
-
-
G4
44
PH3
I/O
FT
ETH_MII_COL/EVENTOUT
-
-
-
-
H4
45
PH4
I/O
FT
I2C2_SCL /
OTG_HS_ULPI_NXT/
EVENTOUT
-
-
-
-
J4
46
PH5
I/O
FT
I2C2_SDA/ EVENTOUT
FT
(4)
USART2_RX/TIM5_CH4 /
TIM9_CH2 / TIM2_CH4 /
OTG_HS_ULPI_D0 /
ETH_MII_COL/
EVENTOUT
ADC123_IN3
I/O TC
(4)
SPI1_NSS / SPI3_NSS /
USART2_CK /
DCMI_HSYNC /
OTG_HS_SOF/ I2S3_WS/
EVENTOUT
ADC12_IN4
/DAC1_OUT
I/O TC
(4)
SPI1_SCK/
OTG_HS_ULPI_CK /
TIM2_CH1_ETR/
TIM8_CHIN/ EVENTOUT
ADC12_IN5/
DAC2_OUT
I/O
SPI1_MISO /
TIM8_BKIN/TIM13_CH1
/
(4)
DCMI_PIXCLK / TIM3_CH1
/ TIM1_BKIN/ EVENTOUT
17 H9 26 37
R2
47
PA3
I/O
18 E5 27 38
-
48
VSS
S
L4
-
BYPASS_REG
I
K4
49
VDD
S
D9
19 E4 28 39
20 J9 29 40
21 G8 30 41
22 H8 31 42
N4
P4
P3
50
51
52
PA4
PA5
PA6
FT
FT
Doc ID 022152 Rev 3
ADC12_IN6
47/180
Pinouts and pin description
Notes
STM32F40x pin and ball definitions (continued)
I / O structure
Table 6.
STM32F405xx, STM32F407xx
23 J8 32 43
R3
53
PA7
I/O
FT
SPI1_MOSI/ TIM8_CH1N /
TIM14_CH1/TIM3_CH2/
ETH_MII_RX_DV /
(4)
TIM1_CH1N /
RMII_CRS_DV/
EVENTOUT
24
-
33 44
N5
54
PC4
I/O
FT
(4)
ETH_RMII_RX_D0 /
ETH_MII_RX_D0/
EVENTOUT
ADC12_IN14
25
-
34 45
P5
55
PC5
I/O
FT
(4)
ETH_RMII_RX_D1 /
ETH_MII_RX_D1/
EVENTOUT
ADC12_IN15
FT
(4)
TIM3_CH3 / TIM8_CH2N/
OTG_HS_ULPI_D1/
ETH_MII_RXD2 /
TIM1_CH2N/ EVENTOUT
ADC12_IN8
(4)
TIM3_CH4 / TIM8_CH3N/
OTG_HS_ULPI_D2/
ETH_MII_RXD3 /
TIM1_CH3N/ EVENTOUT
ADC12_IN9
26 G7 35 46
R5
56
Pin name
(function after
reset)(1)
PB0
Pin type
LQFP176
UFBGA176
LQFP144
LQFP100
WLCSP90
LQFP64
Pin number
I/O
Alternate functions
27 H7 36 47
R4
57
PB1
I/O
FT
28 J7 37 48
M6
58
PB2-BOOT1
(PB2)
I/O
FT
EVENTOUT
-
-
-
49
R6
59
PF11
I/O
FT
DCMI_12/ EVENTOUT
-
-
-
50
P6
60
PF12
I/O
FT
FSMC_A6/ EVENTOUT
-
-
-
51
M8
61
VSS
S
-
-
-
52
N8
62
VDD
S
-
-
-
53
N6
63
PF13
I/O
FT
FSMC_A7/ EVENTOUT
-
-
-
54
R7
64
PF14
I/O
FT
FSMC_A8/ EVENTOUT
-
-
-
55
P7
65
PF15
I/O
FT
FSMC_A9/ EVENTOUT
-
-
-
56
N7
66
PG0
I/O
FT
FSMC_A10/ EVENTOUT
-
-
-
57
M7
67
PG1
I/O
FT
FSMC_A11/ EVENTOUT
-
G6 38 58
R8
68
PE7
I/O
FT
FSMC_D4/TIM1_ETR/
EVENTOUT
-
H6 39 59
P8
69
PE8
I/O
FT
FSMC_D5/ TIM1_CH1N/
EVENTOUT
-
J6 40 60
P9
70
PE9
I/O
FT
FSMC_D6/TIM1_CH1/
EVENTOUT
-
-
-
61
M9
71
VSS
S
-
-
-
62
N9
72
VDD
S
48/180
Doc ID 022152 Rev 3
Additional functions
ADC12_IN7
STM32F405xx, STM32F407xx
LQFP144
UFBGA176
LQFP176
(function after
reset)(1)
Pin type
I / O structure
-
F6 41 63
R9
73
PE10
I/O
FT
FSMC_D7/TIM1_CH2N/
EVENTOUT
-
J5 42 64 P10 74
PE11
I/O
FT
FSMC_D8/TIM1_CH2/
EVENTOUT
-
H5 43 65 R10 75
PE12
I/O
FT
FSMC_D9/TIM1_CH3N/
EVENTOUT
-
G5 44 66 N11 76
PE13
I/O
FT
FSMC_D10/TIM1_CH3/
EVENTOUT
-
F5 45 67 P11 77
PE14
I/O
FT
FSMC_D11/TIM1_CH4/
EVENTOUT
-
G4 46 68 R11 78
PE15
I/O
FT
FSMC_D12/TIM1_BKIN/
EVENTOUT
FT
SPI2_SCK / I2S2_CK /
I2C2_SCL/ USART3_TX /
OTG_HS_ULPI_D3 /
ETH_MII_RX_ER /
TIM2_CH3/ EVENTOUT
FT
I2C2_SDA/USART3_RX/
OTG_HS_ULPI_D4 /
ETH_RMII_TX_EN/
ETH_MII_TX_EN /
TIM2_CH4/ EVENTOUT
LQFP100
Pin number
29 H4 47 69 R12 79
Pin name
PB10
I/O
30 J4 48 70 R13 80
PB11
I/O
31 F4 49 71 M10 81
VCAP_1
S
VDD
S
50 72 N10 82
Notes
WLCSP90
STM32F40x pin and ball definitions (continued)
LQFP64
Table 6.
Pinouts and pin description
Alternate functions
32
-
-
-
-
-
M11 83
PH6
I/O
FT
I2C2_SMBA / TIM12_CH1 /
ETH_MII_RXD2/
EVENTOUT
-
-
-
-
N12 84
PH7
I/O
FT
I2C3_SCL /
ETH_MII_RXD3/
EVENTOUT
-
-
-
-
M12 85
PH8
I/O
FT
I2C3_SDA /
DCMI_HSYNC/
EVENTOUT
-
-
-
-
M13 86
PH9
I/O
FT
I2C3_SMBA / TIM12_CH2/
DCMI_D0/ EVENTOUT
-
-
-
-
L13 87
PH10
I/O
FT
TIM5_CH1 / DCMI_D1/
EVENTOUT
-
-
-
-
L12 88
PH11
I/O
FT
TIM5_CH2 / DCMI_D2/
EVENTOUT
Doc ID 022152 Rev 3
Additional functions
49/180
Pinouts and pin description
I/O
FT
TIM5_CH3 / DCMI_D3/
EVENTOUT
FT
SPI2_NSS / I2S2_WS /
I2C2_SMBA/
USART3_CK/ TIM1_BKIN /
CAN2_RX /
OTG_HS_ULPI_D5/
ETH_RMII_TXD0 /
ETH_MII_TXD0/
OTG_HS_ID/ EVENTOUT
FT
SPI2_SCK / I2S2_CK /
USART3_CTS/
TIM1_CH1N /CAN2_TX /
OTG_HS_ULPI_D6 /
ETH_RMII_TXD1 /
ETH_MII_TXD1/
EVENTOUT
FT
SPI2_MISO/ TIM1_CH2N /
TIM12_CH1 /
OTG_HS_DM/
USART3_RTS /
TIM8_CH2N/I2S2ext_SD/
EVENTOUT
LQFP100
LQFP144
-
-
-
-
K12 89
PH12
-
-
-
-
H12 90
VSS
S
-
-
-
-
J12 91
VDD
S
LQFP176
WLCSP90
Pin name
LQFP64
UFBGA176
Pin number
33 J3 51 73 P12 92
34 J1 52 74 P13 93
35 J2 53 75 R14 94
36 H1 54 76 R15 95
(function after
reset)(1)
PB12
PB13
PB14
I/O
I/O
I/O
Notes
I / O structure
STM32F40x pin and ball definitions (continued)
Pin type
Table 6.
STM32F405xx, STM32F407xx
Alternate functions
PB15
I/O
FT
SPI2_MOSI / I2S2_SD/
TIM1_CH3N / TIM8_CH3N
/ TIM12_CH2 /
OTG_HS_DP/ EVENTOUT
-
H2 55 77 P15 96
PD8
I/O
FT
FSMC_D13 / USART3_TX/
EVENTOUT
-
H3 56 78 P14 97
PD9
I/O
FT
FSMC_D14 / USART3_RX/
EVENTOUT
-
G3 57 79 N15 98
PD10
I/O
FT
FSMC_D15 / USART3_CK/
EVENTOUT
-
G1 58 80 N14 99
PD11
I/O
FT
FSMC_CLE /
FSMC_A16/USART3_CTS/
EVENTOUT
FT
FSMC_ALE/
FSMC_A17/TIM4_CH1 /
USART3_RTS/
EVENTOUT
-
G2 59 81 N13 100
50/180
PD12
I/O
Doc ID 022152 Rev 3
Additional functions
OTG_HS_VBUS
STM32F405xx, STM32F407xx
I/O
FT
FSMC_A18/TIM4_CH2/
EVENTOUT
-
-
-
83
102
VSS
S
-
-
-
84 J13 103
VDD
S
LQFP176
-
LQFP144
-
LQFP100
WLCSP90
Pin name
LQFP64
UFBGA176
Pin number
60 82 M15 101
-
(function after
reset)(1)
PD13
Notes
I / O structure
STM32F40x pin and ball definitions (continued)
Pin type
Table 6.
Pinouts and pin description
Alternate functions
-
F2 61 85 M14 104
PD14
I/O
FT
FSMC_D0/TIM4_CH3/
EVENTOUT/ EVENTOUT
-
F1 62 86 L14 105
PD15
I/O
FT
FSMC_D1/TIM4_CH4/
EVENTOUT
-
-
-
87 L15 106
PG2
I/O
FT
FSMC_A12/ EVENTOUT
-
-
-
88 K15 107
PG3
I/O
FT
FSMC_A13/ EVENTOUT
-
-
-
89 K14 108
PG4
I/O
FT
FSMC_A14/ EVENTOUT
-
-
-
90 K13 109
PG5
I/O
FT
FSMC_A15/ EVENTOUT
-
-
-
91 J15 110
PG6
I/O
FT
FSMC_INT2/ EVENTOUT
-
-
-
92 J14 111
PG7
I/O
FT
FSMC_INT3 /USART6_CK/
EVENTOUT
-
-
-
93 H14 112
PG8
I/O
FT
USART6_RTS /
ETH_PPS_OUT/
EVENTOUT
-
-
-
94 G12 113
VSS
S
-
-
-
95 H13 114
VDD
S
FT
I2S2_MCK /
TIM8_CH1/SDIO_D6 /
USART6_TX /
DCMI_D0/TIM3_CH1/
EVENTOUT
37 F3 63 96 H15 115
PC6
I/O
38 E1 64 97 G15 116
PC7
I/O
FT
I2S3_MCK /
TIM8_CH2/SDIO_D7 /
USART6_RX /
DCMI_D1/TIM3_CH2/
EVENTOUT
39 E2 65 98 G14 117
PC8
I/O
FT
TIM8_CH3/SDIO_D0
/TIM3_CH3/ USART6_CK /
DCMI_D2/ EVENTOUT
FT
I2S_CKIN/ MCO2 /
TIM8_CH4/SDIO_D1 /
/I2C3_SDA / DCMI_D3 /
TIM3_CH4/ EVENTOUT
40 E3 66 99 F14 118
PC9
I/O
Doc ID 022152 Rev 3
Additional functions
51/180
Pinouts and pin description
Pin name
(function after
reset)(1)
Pin type
LQFP176
UFBGA176
LQFP144
LQFP100
WLCSP90
LQFP64
Pin number
Notes
STM32F40x pin and ball definitions (continued)
I / O structure
Table 6.
STM32F405xx, STM32F407xx
Alternate functions
41 D1 67 100 F15 119
PA8
I/O
FT
MCO1 / USART1_CK/
TIM1_CH1/ I2C3_SCL/
OTG_FS_SOF/
EVENTOUT
42 D2 68 101 E15 120
PA9
I/O
FT
USART1_TX/ TIM1_CH2 /
I2C3_SMBA / DCMI_D0/
EVENTOUT
43 D3 69 102 D15 121
PA10
I/O
FT
USART1_RX/ TIM1_CH3/
OTG_FS_ID/DCMI_D1/
EVENTOUT
44 C1 70 103 C15 122
PA11
I/O
FT
USART1_CTS / CAN1_RX
/ TIM1_CH4 /
OTG_FS_DM/ EVENTOUT
45 C2 71 104 B15 123
PA12
I/O
FT
USART1_RTS / CAN1_TX/
TIM1_ETR/ OTG_FS_DP/
EVENTOUT
46 F8 72 105 A15 124
PA13
(JTMS-SWDIO)
I/O
FT
JTMS-SWDIO/ EVENTOUT
47 B1 73 106 F13 125
VCAP_2
S
E7 74 107 F12 126
VSS
S
48 E6 75 108 G13 127
VDD
S
-
-
-
-
-
E12 128
PH13
I/O
FT
TIM8_CH1N / CAN1_TX/
EVENTOUT
-
-
-
-
E13 129
PH14
I/O
FT
TIM8_CH2N / DCMI_D4/
EVENTOUT
-
-
-
-
D13 130
PH15
I/O
FT
TIM8_CH3N / DCMI_D11/
EVENTOUT
-
C3
-
-
E14 131
PI0
I/O
FT
TIM5_CH4 / SPI2_NSS /
I2S2_WS / DCMI_D13/
EVENTOUT
-
B2
-
-
D14 132
PI1
I/O
FT
SPI2_SCK / I2S2_CK /
DCMI_D8/ EVENTOUT
-
-
-
-
C14 133
PI2
I/O
FT
TIM8_CH4 /SPI2_MISO /
DCMI_D9 / I2S2ext_SD/
EVENTOUT
-
-
-
-
C13 134
PI3
I/O
FT
TIM8_ETR / SPI2_MOSI /
I2S2_SD / DCMI_D10/
EVENTOUT
-
-
-
-
D9 135
VSS
S
-
-
-
-
C9 136
VDD
S
52/180
Doc ID 022152 Rev 3
Additional functions
OTG_FS_VBUS
STM32F405xx, STM32F407xx
I / O structure
49 A2 76 109 A14 137
PA14
(JTCK-SWCLK)
I/O
FT
JTCK-SWCLK/ EVENTOUT
50 B3 77 110 A13 138
PA15
(JTDI)
I/O
FT
JTDI/ SPI3_NSS/
I2S3_WS/TIM2_CH1_ETR
/ SPI1_NSS / EVENTOUT
FT
SPI3_SCK / I2S3_CK/
UART4_TX/SDIO_D2 /
DCMI_D8 / USART3_TX/
EVENTOUT
FT
UART4_RX/ SPI3_MISO /
SDIO_D3 /
DCMI_D4/USART3_RX /
I2S3ext_SD/ EVENTOUT
UFBGA176
LQFP144
LQFP100
WLCSP90
LQFP64
Pin number
51 D5 78 111 B14 139
52 C4 79 112 B13 140
53 A3 80 113 A12 141
Pin name
PC10
PC11
I/O
I/O
Notes
(function after
reset)(1)
Pin type
STM32F40x pin and ball definitions (continued)
LQFP176
Table 6.
Pinouts and pin description
Alternate functions
PC12
I/O
FT
UART5_TX/SDIO_CK /
DCMI_D9 / SPI3_MOSI
/I2S3_SD / USART3_CK/
EVENTOUT
-
D6 81 114 B12 142
PD0
I/O
FT
FSMC_D2/CAN1_RX/
EVENTOUT
-
C5 82 115 C12 143
PD1
I/O
FT
FSMC_D3 / CAN1_TX/
EVENTOUT
54 B4 83 116 D12 144
PD2
I/O
FT
TIM3_ETR/UART5_RX/
SDIO_CMD / DCMI_D11/
EVENTOUT
84 117 D11 145
PD3
I/O
FT
FSMC_CLK/USART2_CTS
/ EVENTOUT
-
A4 85 118 D10 146
PD4
I/O
FT
FSMC_NOE/USART2_RTS
/ EVENTOUT
-
C6 86 119 C11 147
PD5
I/O
FT
FSMC_NWE/USART2_TX/
EVENTOUT
-
-
-
-
-
120 D8 148
VSS
S
-
-
-
121 C8 149
VDD
S
-
B5 87 122 B11 150
PD6
I/O
FT
FSMC_NWAIT/
USART2_RX/ EVENTOUT
-
A5 88 123 A11 151
PD7
I/O
FT
USART2_CK/FSMC_NE1/
FSMC_NCE2/ EVENTOUT
PG9
I/O
FT
USART6_RX /
FSMC_NE2/FSMC_NCE3/
EVENTOUT
-
-
-
124 C10 152
Doc ID 022152 Rev 3
Additional functions
53/180
Pinouts and pin description
I/O
FT
FSMC_NCE4_1/
FSMC_NE3/ EVENTOUT
-
LQFP176
LQFP100
-
UFBGA176
WLCSP90
-
LQFP144
LQFP64
Pin number
125 B10 153
Pin name
(function after
reset)(1)
PG10
Notes
I / O structure
STM32F40x pin and ball definitions (continued)
Pin type
Table 6.
STM32F405xx, STM32F407xx
Alternate functions
-
-
-
126 B9 154
PG11
I/O
FT
FSMC_NCE4_2 /
ETH_MII_TX_EN/
ETH _RMII_TX_EN/
EVENTOUT
-
-
-
127 B8 155
PG12
I/O
FT
FSMC_NE4 /
USART6_RTS/
EVENTOUT
FT
FSMC_A24 /
USART6_CTS
/ETH_MII_TXD0/
ETH_RMII_TXD0/
EVENTOUT
FT
FSMC_A25 / USART6_TX
/ETH_MII_TXD1/
ETH_RMII_TXD1/
EVENTOUT
FT
USART6_CTS /
DCMI_D13/ EVENTOUT
-
-
-
128 A8 156
PG13
I/O
-
-
-
129 A7 157
PG14
I/O
-
E8
-
130 D7 158
VSS
S
-
F7
-
131 C7 159
VDD
S
-
-
-
132 B7 160
PG15
I/O
55 B6 89 133 A10 161
PB3
(JTDO/
TRACESWO)
I/O
FT
JTDO/ TRACESWO/
SPI3_SCK / I2S3_CK /
TIM2_CH2 / SPI1_SCK/
EVENTOUT
56 A6 90 134 A9 162
PB4
(NJTRST)
I/O
FT
NJTRST/ SPI3_MISO /
TIM3_CH1 / SPI1_MISO /
I2S3ext_SD/ EVENTOUT
FT
I2C1_SMBA/ CAN2_RX /
OTG_HS_ULPI_D7 /
ETH_PPS_OUT/TIM3_CH
2 / SPI1_MOSI/
SPI3_MOSI / DCMI_D10 /
I2S3_SD/ EVENTOUT
FT
I2C1_SCL/ TIM4_CH1 /
CAN2_TX /
DCMI_D5/USART1_TX/
EVENTOUT
57 D7 91 135 A6 163
58 C7 92 136 B6 164
54/180
PB5
PB6
I/O
I/O
Doc ID 022152 Rev 3
Additional functions
STM32F405xx, STM32F407xx
Pin type
LQFP176
UFBGA176
LQFP144
LQFP100
WLCSP90
LQFP64
Pin number
Pin name
(function after
reset)(1)
59 B7 93 137 B5 165
PB7
I/O
FT
60 A7 94 138 D6 166
BOOT0
I
B
61 D8 95 139 A5 167
62 C8 96 140 B4 168
PB8
I/O
Notes
STM32F40x pin and ball definitions (continued)
I / O structure
Table 6.
Pinouts and pin description
Alternate functions
I2C1_SDA / FSMC_NL /
DCMI_VSYNC /
USART1_RX/ TIM4_CH2/
EVENTOUT
VPP
FT
TIM4_CH3/SDIO_D4/
TIM10_CH1 / DCMI_D6 /
ETH_MII_TXD3 /
I2C1_SCL/ CAN1_RX/
EVENTOUT
PB9
I/O
FT
SPI2_NSS/ I2S2_WS /
TIM4_CH4/ TIM11_CH1/
SDIO_D5 / DCMI_D7 /
I2C1_SDA / CAN1_TX/
EVENTOUT
-
-
97 141 A4 169
PE0
I/O
FT
TIM4_ETR / FSMC_NBL0 /
DCMI_D2/ EVENTOUT
-
-
98 142 A3 170
PE1
I/O
FT
FSMC_NBL1 / DCMI_D3/
EVENTOUT
63
-
99
VSS
S
-
A8
-
PDR_ON
I
VDD
S
64 A1
-
D5
-
143 C6 171
10
144 C5 172
0
Additional functions
FT
-
-
-
-
D4 173
PI4
I/O
FT
TIM8_BKIN / DCMI_D5/
EVENTOUT
-
-
-
-
C4 174
PI5
I/O
FT
TIM8_CH1 /
DCMI_VSYNC/
EVENTOUT
-
-
-
-
C3 175
PI6
I/O
FT
TIM8_CH2 / DCMI_D6/
EVENTOUT
-
-
-
-
C2 176
PI7
I/O
FT
TIM8_CH3 / DCMI_D7/
EVENTOUT
1. Function availability depends on the chosen device.
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:
www.st.com.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
Doc ID 022152 Rev 3
55/180
Pinouts and pin description
STM32F405xx, STM32F407xx
5. If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal
reset ON mode), then PA0 is used as an internal Reset (active low).
Table 7.
FSMC pin definition
FSMC
Pins
(1)
CF
LQFP100(2)
PE2
A23
A23
Yes
PE3
A19
A19
Yes
PE4
A20
A20
Yes
PE5
A21
A21
Yes
PE6
A22
A22
Yes
WLCSP90
(2)
PF0
A0
A0
-
-
PF1
A1
A1
-
-
PF2
A2
A2
-
-
PF3
A3
A3
-
-
PF4
A4
A4
-
-
PF5
A5
A5
-
-
PF6
NIORD
-
-
PF7
NREG
-
-
PF8
NIOWR
-
-
PF9
CD
-
-
PF10
INTR
-
-
PF12
A6
A6
-
-
PF13
A7
A7
-
-
PF14
A8
A8
-
-
PF15
A9
A9
-
-
PG0
A10
A10
-
-
A11
-
-
PG1
56/180
NOR/PSRAM/
NOR/PSRAM Mux NAND 16 bit
SRAM
PE7
D4
D4
DA4
D4
Yes
Yes
PE8
D5
D5
DA5
D5
Yes
Yes
PE9
D6
D6
DA6
D6
Yes
Yes
PE10
D7
D7
DA7
D7
Yes
Yes
PE11
D8
D8
DA8
D8
Yes
Yes
PE12
D9
D9
DA9
D9
Yes
Yes
PE13
D10
D10
DA10
D10
Yes
Yes
PE14
D11
D11
DA11
D11
Yes
Yes
PE15
D12
D12
DA12
D12
Yes
Yes
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 7.
Pinouts and pin description
FSMC pin definition (continued)
FSMC
Pins
(1)
CF
NOR/PSRAM/
NOR/PSRAM Mux NAND 16 bit
SRAM
LQFP100(2)
WLCSP90
(2)
PD8
D13
D13
DA13
D13
Yes
Yes
PD9
D14
D14
DA14
D14
Yes
Yes
PD10
D15
D15
DA15
D15
Yes
Yes
PD11
A16
A16
CLE
Yes
Yes
PD12
A17
A17
ALE
Yes
Yes
PD13
A18
A18
Yes
PD14
D0
D0
DA0
D0
Yes
PD15
D1
D1
DA1
D1
Yes
PG2
A12
-
-
PG3
A13
-
-
PG4
A14
-
-
PG5
A15
-
-
PG6
INT2
-
-
PG7
INT3
-
-
PD0
D2
D2
DA2
D2
Yes
Yes
PD1
D3
D3
DA3
D3
Yes
Yes
CLK
CLK
PD3
Yes
PD4
NOE
NOE
NOE
NOE
Yes
Yes
PD5
NWE
NWE
NWE
NWE
Yes
Yes
PD6
NWAIT
NWAIT
NWAIT
NWAIT
Yes
Yes
PD7
NE1
NE1
NCE2
Yes
Yes
PG9
NE2
NE2
NCE3
-
-
NE3
NE3
-
-
-
-
PG10
NCE4_1
PG11
NCE4_2
PG12
NE4
NE4
-
-
PG13
A24
A24
-
-
PG14
A25
A25
-
-
PB7
NADV
NADV
Yes
Yes
PE0
NBL0
NBL0
Yes
PE1
NBL1
NBL1
Yes
1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on
smaller packages are given in the dedicated package column.
2. Ports F and G are not available in devices delivered in 100-pin packages.
Doc ID 022152 Rev 3
57/180
Alternate function mapping
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
USART2_CTS
UART4_TX
ETH_MII_CRS
EVENTOUT
UART4_RX
ETH_MII _RX_CLK
ETH_RMII__REF_
CLK
EVENTOUT
ETH_MDIO
EVENTOUT
Port
SYS
PA0
TIM1/2
TIM3/4/5
TIM8/9/10/11
TIM2_CH1
TIM2_ETR
TIM 5_CH1
TIM8_ETR
PA1
TIM2_CH2
TIM5_CH2
USART2_RTS
PA2
TIM2_CH3
TIM5_CH3
TIM9_CH1
PA3
TIM2_CH4
TIM5_CH4
TIM9_CH2
Port A
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
USART2_RX
SPI1_NSS
TIM2_CH1
TIM2_ETR
TIM8_CH1N
SPI3_NSS
I2S3_WS
OTG_HS_ULPI_D0
AF12
AF13
ETH
FSMC/SDIO/
OTG_FS
DCMI
SPI1_SCK
AF014
ETH _MII_COL
DCMI_HSYNC
OTG_HS_ULPI_CK
TIM1_BKIN
TIM3_CH1
TIM8_BKIN
SPI1_MISO
TIM13_CH1
TIM1_CH1N
TIM3_CH2
TIM8_CH1N
SPI1_MOSI
TIM14_CH1
AF15
EVENTOUT
OTG_HS_SOF
PA7
MCO1
AF11
USART2_CK
PA6
PA8
AF10
USART2_TX
PA4
PA5
AF9
EVENTOUT
EVENTOUT
DCMI_PIXCK
ETH_MII _RX_DV
ETH_RMII _CRS_DV
EVENTOUT
EVENTOUT
Doc ID 022152 Rev 3
TIM1_CH1
I2C3_SCL
USART1_CK
PA9
TIM1_CH2
I2C3_SMBA
USART1_TX
PA10
TIM1_CH3
USART1_RX
PA11
TIM1_CH4
USART1_CTS
CAN1_RX
OTG_FS_DM
EVENTOUT
PA12
TIM1_ETR
USART1_RTS
CAN1_TX
OTG_FS_DP
EVENTOUT
PA13
JTMS-SWDIO
PA14
JTCK-SWCLK
PA15
JTDI
OTG_FS_SOF
OTG_FS_ID
Pinouts and pin description
58/180
Table 8.
EVENTOUT
DCMI_D0
EVENTOUT
DCMI_D1
EVENTOUT
EVENTOUT
EVENTOUT
TIM 2_CH1
TIM 2_ETR
SPI1_NSS
SPI3_NSS/
I2S3S_WS
EVENTOUT
STM32F405xx, STM32F407xx
Alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
Port
SYS
AF9
AF10
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
AF11
AF12
AF13
ETH
FSMC/SDIO/
OTG_FS
DCMI
TIM1/2
TIM3/4/5
TIM8/9/10/11
PB0
TIM1_CH2N
TIM3_CH3
TIM8_CH2N
OTG_HS_ULPI_D1
ETH _MII_RXD2
PB1
TIM1_CH3N
TIM3_CH4
TIM8_CH3N
OTG_HS_ULPI_D2
ETH _MII_RXD3
AF014
AF15
EVENTOUT
EVENTOUT
PB2
EVENTOUT
PB3
JTDO/
TRACESWO
PB4
NJTRST
TIM2_CH2
SPI1_SCK
TIM3_CH1
SPI3_SCK
I2S3_CK
SPI1_MISO
SPI3_MISO
SPI1_MOSI
SPI3_MOSI
I2S3_SD
EVENTOUT
I2S3ext_SD
PB5
TIM3_CH2
I2C1_SMBA
PB6
TIM4_CH1
I2C1_SCL
USART1_TX
PB7
TIM4_CH2
I2C1_SDA
USART1_RX
PB8
TIM4_CH3
EVENTOUT
CAN2_RX
OTG_HS_ULPI_D7
ETH _PPS_OUT
DCMI_D10
CAN2_TX
EVENTOUT
DCMI_D5
EVENTOUT
FSMC_NL
DCMI_VSYNC
EVENTOUT
SDIO_D4
DCMI_D6
EVENTOUT
SDIO_D5
DCMI_D7
STM32F405xx, STM32F407xx
Table 8.
Port B
PB9
TIM4_CH4
TIM10_CH1
TIM11_CH1
I2C1_SCL
I2C1_SDA
Doc ID 022152 Rev 3
PB10
TIM2_CH3
I2C2_SCL
PB11
TIM2_CH4
I2C2_SDA
PB12
TIM1_BKIN
TIM1_CH1N
PB14
TIM1_CH2N
TIM8_CH2N
SPI2_MISO
TIM1_CH3N
TIM8_CH3N
SPI2_MOSI
I2S2_SD
RTC_50Hz
ETH _MII_TXD3
CAN1_TX
SPI2_NSS
I2S2_WS
SPI2_SCK
I2S2_CK
PB13
PB15
I2C2_SMBA
CAN1_RX
SPI2_NSS
I2S2_WS
SPI2_SCK
I2S2_CK
I2S2ext_SD
USART3_TX
OTG_HS_ULPI_D3
USART3_RX
OTG_HS_ULPI_D4
ETH_ MII_RX_ER
ETH _MII_TX_EN
ETH _RMII_TX_EN
ETH _MII_TXD0
ETH _RMII_TXD0
ETH _MII_TXD1
ETH _RMII_TXD1
EVENTOUT
USART3_CK
CAN2_RX
OTG_HS_ULPI_D5
USART3_CTS
CAN2_TX
OTG_HS_ULPI_D6
USART3_RTS
TIM12_CH1
OTG_HS_DM
EVENTOUT
TIM12_CH2
OTG_HS_DP
EVENTOUT
PC0
OTG_HS_ID
EVENTOUT
EVENTOUT
OTG_HS_ULPI_STP
PC1
PC2
SPI2_MISO
PC3
SPI2_MOSI
I2S2_SD
I2S2ext_SD
OTG_HS_ULPI_DIR
EVENTOUT
ETH_MDC
EVENTOUT
ETH _MII_TXD2
EVENTOUT
OTG_HS_ULPI_NXT ETH _MII_TX_CLK
EVENTOUT
ETH_MII_RXD0
ETH_RMII_RXD0
ETH _MII_RXD1
ETH _RMII_RXD1
PC4
PC5
TIM3_CH1
TIM8_CH1
PC7
TIM3_CH2
TIM8_CH2
PC8
TIM3_CH3
TIM8_CH3
TIM3_CH4
TIM8_CH4
I2S2_MCK
USART6_TX
I2S3_MCK
EVENTOUT
EVENTOUT
SDIO_D6
DCMI_D0
EVENTOUT
USART6_RX
SDIO_D7
DCMI_D1
EVENTOUT
USART6_CK
SDIO_D0
DCMI_D2
EVENTOUT
SDIO_D1
DCMI_D3
EVENTOUT
SDIO_D2
DCMI_D8
EVENTOUT
Port C
PC9
MCO2
I2C3_SDA
I2S_CKIN
PC10
PC11
PC12
PC13
59/180
PC14
PC15
I2S3ext_SD
SPI3_SCK/
I2S3S_CK
USART3_TX/
UART4_TX
SPI3_MISO/
USART3_RX
UART4_RX
SDIO_D3
DCMI_D4
EVENTOUT
SPI3_MOSI
I2S3_SD
USART3_CK
UART5_TX
SDIO_CK
DCMI_D9
EVENTOUT
Pinouts and pin description
PC6
EVENTOUT
EVENTOUT
Alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
Port
SYS
TIM1/2
TIM3/4/5
TIM8/9/10/11
AF9
AF10
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
AF11
AF12
AF13
ETH
FSMC/SDIO/
OTG_FS
DCMI
AF014
AF15
PD0
CAN1_RX
FSMC_D2
EVENTOUT
PD1
CAN1_TX
FSMC_D3
EVENTOUT
PD2
TIM3_ETR
UART5_RX
SDIO_CMD
DCMI_D11
EVENTOUT
PD3
USART2_CTS
FSMC_CLK
EVENTOUT
PD4
USART2_RTS
FSMC_NOE
EVENTOUT
EVENTOUT
PD5
USART2_TX
FSMC_NWE
PD6
USART2_RX
FSMC_NWAIT
EVENTOUT
PD7
USART2_CK
FSMC_NE1/
FSMC_NCE2
EVENTOUT
PD8
USART3_TX
FSMC_D13
EVENTOUT
Port D
Doc ID 022152 Rev 3
PD9
USART3_RX
FSMC_D14
EVENTOUT
PD10
USART3_CK
FSMC_D15
EVENTOUT
PD11
USART3_CTS
FSMC_A16
EVENTOUT
USART3_RTS
FSMC_A17
EVENTOUT
PD12
TIM4_CH1
PD13
TIM4_CH2
FSMC_A18
EVENTOUT
PD14
TIM4_CH3
FSMC_D0
EVENTOUT
PD15
TIM4_CH4
FSMC_D1
PE0
TIM4_ETR
FSMC_NBL0
DCMI_D2
FSMC_BLN1
DCMI_D3
PE1
PE2
TRACECLK
PE3
TRACED0
ETH _MII_TXD3
Pinouts and pin description
60/180
Table 8.
EVENTOUT
EVENTOUT
EVENTOUT
FSMC_A23
EVENTOUT
FSMC_A19
EVENTOUT
TRACED1
FSMC_A20
DCMI_D4
EVENTOUT
PE5
TRACED2
TIM9_CH1
FSMC_A21
DCMI_D6
EVENTOUT
PE6
TRACED3
TIM9_CH2
FSMC_A22
DCMI_D7
EVENTOUT
PE7
TIM1_ETR
FSMC_D4
EVENTOUT
PE8
TIM1_CH1N
FSMC_D5
EVENTOUT
Port E
PE9
TIM1_CH1
FSMC_D6
EVENTOUT
PE10
TIM1_CH2N
FSMC_D7
EVENTOUT
PE11
TIM1_CH2
FSMC_D8
EVENTOUT
PE12
TIM1_CH3N
FSMC_D9
EVENTOUT
PE13
TIM1_CH3
FSMC_D10
EVENTOUT
PE14
TIM1_CH4
FSMC_D11
EVENTOUT
PE15
TIM1_BKIN
FSMC_D12
EVENTOUT
STM32F405xx, STM32F407xx
PE4
Alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
Port
SYS
TIM1/2
TIM3/4/5
TIM8/9/10/11
AF9
AF10
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
AF11
AF12
AF13
ETH
FSMC/SDIO/
OTG_FS
DCMI
AF014
AF15
PF0
I2C2_SDA
FSMC_A0
EVENTOUT
PF1
I2C2_SCL
FSMC_A1
EVENTOUT
PF2
I2C2_SMBA
FSMC_A2
EVENTOUT
PF3
FSMC_A3
EVENTOUT
PF4
FSMC_A4
EVENTOUT
PF5
FSMC_A5
EVENTOUT
PF6
TIM10_CH1
FSMC_NIORD
EVENTOUT
PF7
TIM11_CH1
FSMC_NREG
EVENTOUT
EVENTOUT
STM32F405xx, STM32F407xx
Table 8.
Port F
PF8
TIM13_CH1
FSMC_NIOWR
PF9
TIM14_CH1
FSMC_CD
EVENTOUT
FSMC_INTR
EVENTOUT
PF10
Doc ID 022152 Rev 3
PF11
EVENTOUT
FSMC_A6
EVENTOUT
PF13
FSMC_A7
EVENTOUT
PF14
FSMC_A8
EVENTOUT
PF15
FSMC_A9
EVENTOUT
PG0
FSMC_A10
EVENTOUT
PG1
FSMC_A11
EVENTOUT
PG2
FSMC_A12
EVENTOUT
PG3
FSMC_A13
EVENTOUT
PG4
FSMC_A14
EVENTOUT
PG5
FSMC_A15
EVENTOUT
PG6
FSMC_INT2
EVENTOUT
FSMC_INT3
EVENTOUT
PG7
USART6_CK
PG8
USART6_RTS
PG9
USART6_RX
ETH _PPS_OUT
PG10
ETH _MII_TX_EN
ETH _RMII_TX_EN
PG11
61/180
PG12
USART6_RTS
PG13
UART6_CTS
PG14
USART6_TX
PG15
USART6_CTS
EVENTOUT
FSMC_NE2/
FSMC_NCE3
FSMC_NCE4_1/
FSMC_NE3
ETH _MII_TXD0
ETH _RMII_TXD0
ETH _MII_TXD1
ETH _RMII_TXD1
EVENTOUT
EVENTOUT
FSMC_NCE4_2
EVENTOUT
FSMC_NE4
EVENTOUT
FSMC_A24
EVENTOUT
FSMC_A25
EVENTOUT
DCMI_D13
EVENTOUT
Pinouts and pin description
Port G
DCMI_D12
PF12
Alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
I2C1/2/3
SPI1/SPI2/
I2S2/I2S2ext
SPI3/I2Sext/
I2S3
USART1/2/3/
I2S3ext
UART4/5/
USART6
Port
SYS
TIM1/2
TIM3/4/5
TIM8/9/10/11
AF9
AF10
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
AF11
AF12
AF13
ETH
FSMC/SDIO/
OTG_FS
DCMI
AF014
AF15
PH0
PH1
PH2
ETH _MII_CRS
EVENTOUT
PH3
ETH _MII_COL
EVENTOUT
PH4
I2C2_SCL
PH5
I2C2_SDA
PH6
I2C2_SMBA
PH7
I2C3_SCL
OTG_HS_ULPI_NXT
EVENTOUT
EVENTOUT
TIM12_CH1
ETH _MII_RXD2
EVENTOUT
ETH _MII_RXD3
EVENTOUT
Pinouts and pin description
62/180
Table 8.
Port H
PH8
I2C3_SDA
PH9
I2C3_SMBA
DCMI_HSYNC
TIM12_CH2
EVENTOUT
DCMI_D0
EVENTOUT
Doc ID 022152 Rev 3
PH10
TIM5_CH1
DCMI_D1
EVENTOUT
PH11
TIM5_CH2
DCMI_D2
EVENTOUT
PH12
TIM5_CH3
DCMI_D3
TIM8_CH1N
PH14
TIM8_CH2N
DCMI_D4
EVENTOUT
PH15
TIM8_CH3N
DCMI_D11
EVENTOUT
DCMI_D13
EVENTOUT
DCMI_D8
EVENTOUT
DCMI_D9
EVENTOUT
DCMI_D10
EVENTOUT
PI0
CAN1_TX
EVENTOUT
PH13
EVENTOUT
SPI2_NSS
I2S2_WS
SPI2_SCK
I2S2_CK
TIM5_CH4
PI1
TIM8_CH4
SPI2_MISO
I2S2ext_SD
PI3
TIM8_ETR
SPI2_MOSI
I2S2_SD
PI4
TIM8_BKIN
DCMI_D5
EVENTOUT
PI5
TIM8_CH1
DCMI_VSYNC
EVENTOUT
PI6
TIM8_CH2
DCMI_D6
EVENTOUT
PI7
TIM8_CH3
DCMI_D7
EVENTOUT
Port I
PI8
PI9
CAN1_RX
EVENTOUT
PI10
PI11
ETH _MII_RX_ER
OTG_HS_ULPI_DIR
EVENTOUT
EVENTOUT
STM32F405xx, STM32F407xx
PI2
STM32F405xx, STM32F407xx
4
Memory mapping
Memory mapping
The memory map is shown in Figure 16.
Figure 16. STM32F40x memory map
2ESERVED
#/24%8-INTERNALPERIPHERALS
2ESERVED
!("
2ESERVED
X%X&&&&&&&&
X%X%&&&&&
X!X$&&&&&&&
X!&&&
X
X#X&&&&&&&
X"&&
!("
X&&&&&&&&
X%
X$&&&&&&&
-BYTE
BLOCK
#ORTEX-gS
INTERNAL
PERIPHERALS
2ESERVED
X
XX&&&&&&&
X&&&&
-BYTE
BLOCK
.OTUSED
X#
X"&&&&&&&
!("
-BYTE
BLOCK
&3-#REGISTERS
X!
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
-BYTE
BLOCK
&3-#BANK
BANK
2ESERVED
X
XX&&&&
X&&
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
0ERIPHERALS
!0"
X
X&&&&&&&
-BYTE
BLOCK
32!X
X&&&&&&&
-BYTE
BLOCK
#ODE
X
2ESERVED
32!-+"ALIASED
BYBITBANDING
XX&&&&&&&
32!-+"ALIASED
BYBITBANDING
XX"&&&
X#X&&&&
2ESERVED
/PTION"YTES
2ESERVED
3YSTEMMEMORY
2ESERVED
##-DATA2!-
+"DATA32!-
X&&&#X&&&&&&&
X&&&#X&&&#
X&&&!X&&&&&&
X&&&X&&&!&
XX&&%&&&&
2ESERVED
&LASH
2ESERVED
!LIASEDTO&LASHSYSTEM
MEMORYOR32!-DEPENDING
ONTHE"//4PINS
XX&&&&&&&
XX&&&&&
XX&&&&&&
2ESERVED
X
XX&&&&
X&&&
!0"
XX&&&&
XX&&&&&
X
AIE
Doc ID 022152 Rev 3
63/180
Memory mapping
STM32F405xx, STM32F407xx
Table 9.
STM32F40x register boundary addresses
Bus
Cortex-M4
AHB3
AHB2
64/180
Boundary address
Peripheral
0xE00F FFFF - 0xFFFF FFFF
Reserved
0xE000 0000 - 0xE00F FFFF
Cortex-M4 internal peripherals
0xA000 1000 - 0xDFFF FFFF
Reserved
0xA000 0000 - 0xA000 0FFF
FSMC control register
0x9000 0000 - 0x9FFF FFFF
FSMC bank 4
0x8000 0000 - 0x8FFF FFFF
FSMC bank 3
0x7000 0000 - 0x7FFF FFFF
FSMC bank 2
0x6000 0000 - 0x6FFF FFFF
FSMC bank 1
0x5006 0C00- 0x5FFF FFFF
Reserved
0x5006 0800 - 0X5006 0BFF
RNG
0x5005 0400 - 0X5006 07FF
Reserved
0x5005 0000 - 0X5005 03FF
DCMI
0x5004 0000- 0x5004 FFFF
Reserved
0x5000 0000 - 0X5003 FFFF
USB OTG FS
0x4008 0000- 0x4FFF FFFF
Reserved
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 9.
Memory mapping
STM32F40x register boundary addresses (continued)
Bus
Boundary address
Peripheral
0x4004 0000 - 0x4007 FFFF
USB OTG HS
0x4002 9400 - 0x4003 FFFF
Reserved
0x4002 9000 - 0x4002 93FF
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
ETHERNET MAC
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
AHB1
0x4002 6800 - 0x4002 7FFF
Reserved
0x4002 6400 - 0x4002 67FF
DMA2
0x4002 6000 - 0x4002 63FF
DMA1
0X4002 5000 - 0X4002 5FFF
Reserved
0x4002 4000 - 0x4002 4FFF
BKPSRAM
0x4002 3C00 - 0x4002 3FFF
Flash interface register
0x4002 3800 - 0x4002 3BFF
RCC
0X4002 3400 - 0X4002 37FF
Reserved
0x4002 3000 - 0x4002 33FF
CRC
0x4002 2400 - 0x4002 2FFF
Reserved
0x4002 2000 - 0x4002 23FF
GPIOI
0x4002 1C00 - 0x4002 1FFF
GPIOH
0x4002 1800 - 0x4002 1BFF
GPIOG
0x4002 1400 - 0x4002 17FF
GPIOF
0x4002 1000 - 0x4002 13FF
GPIOE
0X4002 0C00 - 0x4002 0FFF
GPIOD
0x4002 0800 - 0x4002 0BFF
GPIOC
0x4002 0400 - 0x4002 07FF
GPIOB
0x4002 0000 - 0x4002 03FF
GPIOA
0x4001 5800- 0x4001 FFFF
Reserved
Doc ID 022152 Rev 3
65/180
Memory mapping
Table 9.
STM32F405xx, STM32F407xx
STM32F40x register boundary addresses (continued)
Bus
APB2
66/180
Boundary address
Peripheral
0x4001 4C00 - 0x4001 57FF
Reserved
0x4001 4800 - 0x4001 4BFF
TIM11
0x4001 4400 - 0x4001 47FF
TIM10
0x4001 4000 - 0x4001 43FF
TIM9
0x4001 3C00 - 0x4001 3FFF
EXTI
0x4001 3800 - 0x4001 3BFF
SYSCFG
0x4001 3400 - 0x4001 37FF
Reserved
0x4001 3000 - 0x4001 33FF
SPI1
0x4001 2C00 - 0x4001 2FFF
SDIO
0x4001 2400 - 0x4001 2BFF
Reserved
0x4001 2000 - 0x4001 23FF
ADC1 - ADC2 - ADC3
0x4001 1800 - 0x4001 1FFF
Reserved
0x4001 1400 - 0x4001 17FF
USART6
0x4001 1000 - 0x4001 13FF
USART1
0x4001 0800 - 0x4001 0FFF
Reserved
0x4001 0400 - 0x4001 07FF
TIM8
0x4001 0000 - 0x4001 03FF
TIM1
0x4000 7800- 0x4000 FFFF
Reserved
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 9.
Memory mapping
STM32F40x register boundary addresses (continued)
Bus
APB1
Boundary address
Peripheral
0x4000 7800 - 0x4000 7FFF
Reserved
0x4000 7400 - 0x4000 77FF
DAC
0x4000 7000 - 0x4000 73FF
PWR
0x4000 6C00 - 0x4000 6FFF
Reserved
0x4000 6800 - 0x4000 6BFF
CAN2
0x4000 6400 - 0x4000 67FF
CAN1
0x4000 6000 - 0x4000 63FF
Reserved
0x4000 5C00 - 0x4000 5FFF
I2C3
0x4000 5800 - 0x4000 5BFF
I2C2
0x4000 5400 - 0x4000 57FF
I2C1
0x4000 5000 - 0x4000 53FF
UART5
0x4000 4C00 - 0x4000 4FFF
UART4
0x4000 4800 - 0x4000 4BFF
USART3
0x4000 4400 - 0x4000 47FF
USART2
0x4000 4000 - 0x4000 43FF
I2S3ext
0x4000 3C00 - 0x4000 3FFF
SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF
SPI2 / I2S2
0x4000 3400 - 0x4000 37FF
I2S2ext
0x4000 3000 - 0x4000 33FF
IWDG
0x4000 2C00 - 0x4000 2FFF
WWDG
0x4000 2800 - 0x4000 2BFF
RTC & BKP Registers
0x4000 2400 - 0x4000 27FF
Reserved
0x4000 2000 - 0x4000 23FF
TIM14
0x4000 1C00 - 0x4000 1FFF
TIM13
0x4000 1800 - 0x4000 1BFF
TIM12
0x4000 1400 - 0x4000 17FF
TIM7
0x4000 1000 - 0x4000 13FF
TIM6
0x4000 0C00 - 0x4000 0FFF
TIM5
0x4000 0800 - 0x4000 0BFF
TIM4
0x4000 0400 - 0x4000 07FF
TIM3
0x4000 0000 - 0x4000 03FF
TIM2
Doc ID 022152 Rev 3
67/180
Electrical characteristics
STM32F405xx, STM32F407xx
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 17.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 18.
Figure 17. Pin loading conditions
Figure 18. Pin input voltage
34-&PIN
#P&
34-&PIN
/3#?/54(I:WHEN
USING(3%OR,3%
-36
68/180
Doc ID 022152 Rev 3
6).
/3#?/54(I:WHEN
USING(3%OR,3%
-36
STM32F405xx, STM32F407xx
5.1.6
Electrical characteristics
Power supply scheme
Figure 19. Power supply scheme
6"!4
6"!4
TO6
'0)/S
).
§—&
)/
,OGIC
+ERNELLOGIC
#05
DIGITAL
2!-
6#!0?
6#!0?
6$$
§N&
§—&
,EVELSHIFTER
/54
6$$
"ACKUPCIRCUITRY
/3#+24#
7AKEUPLOGIC
"ACKUPREGISTERS
BACKUP2!-
0O WERSWI TCH
6OLTAGE
REGULATOR
633
&LASHMEMORY
"90!33?2%'
0$2?/.
6$$
6$$!
62%&
N&
—&
2ESET
CONTROLLER
N&
—&
62%&
62%&
!$#
!NALOG
2#S0,,
633!
-36
1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be
placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality
of the device.
2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator.
3. The two 2.2 µF ceramic capacitors should not be connected when the voltage regulator is OFF.
4. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
5. VDDA=VDD and VSSA=VSS.
Doc ID 022152 Rev 3
69/180
Electrical characteristics
5.1.7
STM32F405xx, STM32F407xx
Current consumption measurement
Figure 20. Current consumption measurement scheme
IDD_VBAT
VBAT
IDD
VDD
VDDA
ai14126
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 10: Voltage characteristics,
Table 11: Current characteristics, and Table 12: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 10.
Voltage characteristics
Symbol
Ratings
Min
Max
VDD–VSS
External main supply voltage (including VDDA, VDD)(1)
–0.3
4.0
VSS–0.3
VDD+4
VSS–0.3
4.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins
-
50
Input voltage on five-volt tolerant
VIN
|ΔVDDx|
|VSSX − VSS|
VESD(HBM)
pin(2)
Input voltage on any other pin
Electrostatic discharge voltage (human body model)
Unit
V
mV
see Section 5.3.14:
Absolute maximum
ratings (electrical
sensitivity)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum value must always be respected. Refer to Table 11 for the values of the maximum allowed
injected current.
70/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 11.
Electrical characteristics
Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into VDD power lines (source)(1)
150
IVSS
(1)
150
Total current out of VSS ground lines (sink)
IIO
Output current sunk by any I/O and control pin
25
Output current source by any I/Os and control pin
25
(3)
Injected current on five-volt tolerant I/O
IINJ(PIN) (2)
ΣIINJ(PIN)
Injected current on any other pin
(4)
mA
–5/+0
(4)
Total injected current (sum of all I/O and control pins)
Unit
±5
(5)
±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC
characteristics.
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 10 for the values of the maximum allowed input voltage.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 10 for the values of the maximum allowed input voltage.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 12.
Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Unit
–65 to +150
°C
125
°C
Maximum junction temperature
5.3
Operating conditions
5.3.1
General operating conditions
Table 13.
General operating conditions
Symbol
Value
Parameter
Conditions
Min
Max
VOS bit in PWR_CR register = 0(1)
0
144
VOS bit in PWR_CR register= 1
0
168
fHCLK
Internal AHB clock frequency
fPCLK1
Internal APB1 clock frequency
0
42
fPCLK2
Internal APB2 clock frequency
0
84
Standard operating voltage
1.8(2)
3.6
Analog operating voltage
(ADC limited to 1.2 M samples)
1.8(2)
3.6
2.4
3.6
1.65
3.6
Unit
MHz
VDD
VDDA(3)(4)
VBAT
Analog operating voltage
(ADC limited to 1.4 M samples)
Must be the same potential as VDD
Backup operating voltage
Doc ID 022152 Rev 3
(5)
V
V
V
71/180
Electrical characteristics
Table 13.
STM32F405xx, STM32F407xx
General operating conditions (continued)
Symbol
Parameter
VCAP1
When the internal regulator is ON,
VCAP_1 and VCAP_2 pins are used to
connect a stabilization capacitor.
When the internal regulator is OFF
(BYPASS_REG connected to VDD),
VCAP_1 and VCAP_2 must be supplied
from 1.2 V.
VCAP2
PD
Conditions
Power dissipation at TA = 85 °C for
suffix 6 or TA = 105 °C for suffix 7(6)
Min
Max
Unit
1.1
1.3
V
LQFP64
-
435
LQFP100
-
465
LQFP144
-
500
LQFP176
-
526
UFBGA176
-
513
WLCSP90
-
543
–40
85
–40
105
–40
105
–40
125
6 suffix version
–40
105
7 suffix version
–40
125
mW
Ambient temperature for 6 suffix
version
Maximum power dissipation
Ambient temperature for 7 suffix
version
Maximum power dissipation
Low power dissipation
(7)
°C
TA
TJ
Low power dissipation
(7)
°C
Junction temperature range
°C
1. The average expected gain in power consumption when VOS = 0 compared to VOS = 1 is around 10% for the whole
temperature range, when the system clock frequency is between 30 and 144 MHz.
2. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device operates in a reduced
temperature range (0 to 70 °C).
3. When the ADC is used, refer to Table 67: ADC characteristics.
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
6. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
7. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
72/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 14.
Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
(fFlashmax)
VDD =1.8 to
2.1 V(2)
Conversion
time up to
1.2 Msps
16 MHz with
no Flash
memory wait
state(3)
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
18 MHz with
no Flash
memory wait
state
Conversion
time up to
2.4 Msps
24 MHz with
no Flash
memory wait
state
VDD = 2.4 to
2.7 V
VDD = 2.7 to
3.6 V(5)
Electrical characteristics
Conversion
time up to
2.4 Msps
30 MHz with
no Flash
memory wait
state
Number of wait
states at
maximum CPU
frequency(1)
I/O operation
Maximum
FSMC_CLK
frequency for
synchronous
accesses
Possible
Flash
memory
operations
(3)(4)
– Degraded
speed
performance up to 30 MHz
– No I/O
compensation
8-bit erase
and program
operations
only
7(4)
– Degraded
speed
performance up to 30 MHz
– No I/O
compensation
16-bit erase
and program
operations
6(4)
– Degraded
speed
performance
up to 48 MHz
– I/O
compensation
works
16-bit erase
and program
operations
5(4)
– up to
60 MHz
– Full-speed
when VDD =
operation
3.0 to 3.6 V
– I/O
– up to
compensation
48 MHz
works
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
7
1. The number of wait states can be reduced by reducing the CPU frequency.
2. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device operates in a reduced
temperature range (0 to 70 °C).
3. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
4. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
5. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.
Doc ID 022152 Rev 3
73/180
Electrical characteristics
5.3.2
STM32F405xx, STM32F407xx
VCAP1/VCAP2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor CEXT to
the VCAP1/VCAP2 pins. CEXT is specified in Table 15.
Figure 21. External capacitor CEXT
C
ESR
R Leak
MS19044V1
1. Legend: ESR is the equivalent series resistance.
Table 15.
5.3.3
VCAP1/VCAP2 operating conditions
Symbol
Parameter
Conditions
CEXT
Capacitance of external capacitor
2.2 µF
ESR
ESR of external capacitor
<2Ω
Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 16.
Symbol
tVDD
5.3.4
Operating conditions at power-up / power-down (regulator ON)
Parameter
Min
Max
VDD rise time rate
20
∞
VDD fall time rate
20
∞
Unit
µs/V
Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 17.
Symbol
tVDD
tVCAP
Operating conditions at power-up / power-down (regulator OFF)(1)
Parameter
Conditions
Min
Max
VDD rise time rate
Power-up
20
∞
VDD fall time rate
Power-down
20
∞
VCAP_1 and VCAP_2 rise time
Power-up
rate
20
∞
VCAP_1 and VCAP_2 fall time
rate
20
∞
Power-down
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
74/180
Doc ID 022152 Rev 3
Unit
µs/V
STM32F405xx, STM32F407xx
5.3.5
Electrical characteristics
Embedded reset and power control block characteristics
The parameters given in Table 18 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 13.
Table 18.
Symbol
VPVD
Embedded reset and power control block characteristics
Parameter
Programmable voltage
detector level selection
VPVDhyst(3)
PVD hysteresis
VPOR/PDR
Power-on/power-down
reset threshold
VPDRhyst(3)
PDR hysteresis
Conditions
Min
Typ
Max
Unit
PLS[2:0]=000 (rising
edge)
2.09
2.14
2.19
V
PLS[2:0]=000 (falling
edge)
1.98
2.04
2.08
V
PLS[2:0]=001 (rising
edge)
2.23
2.30
2.37
V
PLS[2:0]=001 (falling
edge)
2.13
2.19
2.25
V
PLS[2:0]=010 (rising
edge)
2.39
2.45
2.51
V
PLS[2:0]=010 (falling
edge)
2.29
2.35
2.39
V
PLS[2:0]=011 (rising
edge)
2.54
2.60
2.65
V
PLS[2:0]=011 (falling
edge)
2.44
2.51
2.56
V
PLS[2:0]=100 (rising
edge)
2.70
2.76
2.82
V
PLS[2:0]=100 (falling
edge)
2.59
2.66
2.71
V
PLS[2:0]=101 (rising
edge)
2.86
2.93
2.99
V
PLS[2:0]=101 (falling
edge)
2.65
2.84
3.02
V
PLS[2:0]=110 (rising
edge)
2.96
3.03
3.10
V
PLS[2:0]=110 (falling
edge)
2.85
2.93
2.99
V
PLS[2:0]=111 (rising
edge)
3.07
3.14
3.21
V
PLS[2:0]=111 (falling
edge)
2.95
3.03
3.09
V
-
100
-
mV
Falling edge
1.60(1)
1.68
1.76
V
Rising edge
1.64
1.72
1.80
V
-
40
-
mV
Doc ID 022152 Rev 3
75/180
Electrical characteristics
Table 18.
STM32F405xx, STM32F407xx
Embedded reset and power control block characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Brownout level 1
threshold
Falling edge
2.13
2.19
2.24
V
VBOR1
Rising edge
2.23
2.29
2.33
V
Brownout level 2
threshold
Falling edge
2.44
2.50
2.56
V
VBOR2
Rising edge
2.53
2.59
2.63
V
Brownout level 3
threshold
Falling edge
2.75
2.83
2.88
V
VBOR3
Rising edge
2.85
2.92
2.97
V
VOS bit in PWR_CR
register = 0
1.08
1.14
1.20
V
VOS bit in PWR_CR
register = 1
1.20
1.26
1.32
V
-
100
-
mV
0.5
1.5
3.0
ms
-
160
200
mA
-
-
5.4
µC
1.2 V domain
voltage(2)(3)
V12
VBORhyst(3)
TRSTTEMPO
(3)(4)
BOR hysteresis
Reset temporization
IRUSH(3)
InRush current on
voltage regulator
power-on (POR or
wakeup from Standby)
(3)
InRush energy on
voltage regulator
power-on (POR or
wakeup from Standby)
ERUSH
VDD = 1.8 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. The average expected gain in power consumption when VOS = 0 compared to VOS = 1 is around 10% for
the whole temperature range, when the system clock frequency is between 30 and 144 MHz.
3. Guaranteed by design, not tested in production.
4. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
5.3.6
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 20: Current consumption
measurement scheme.
All Run mode current consumption measurements given in this section are performed using
a CoreMark-compliant code.
76/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Typical and maximum current consumption
The MCU is placed under the following conditions:
Table 19.
●
At startup, all I/O pins are configured as analog inputs by firmware.
●
All peripherals are disabled except if it is explicitly mentioned.
●
The Flash memory access time is adjusted to fHCLK frequency (0 wait state from 0 to
30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states
from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to
168 MHz).
●
When the peripherals are enabled HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2, except is explicitly mentioned.
●
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature
(TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Max(1)
Typ
Symbol
Parameter
Conditions
fHCLK
168 MHz
93
109
117
144 MHz
76
89
96
120 MHz
67
79
86
90 MHz
53
65
73
60 MHz
37
49
56
30 MHz
20
32
39
25 MHz
16
27
35
16 MHz
11
23
30
8 MHz
6
18
25
4 MHz
4
16
23
2 MHz
3
15
22
168 MHz
46
61
69
144 MHz
40
52
60
120 MHz
37
48
56
90 MHz
30
42
50
60 MHz
22
33
41
30 MHz
12
24
31
25 MHz
10
21
29
16 MHz
7
19
26
8 MHz
4
16
23
4 MHz
3
15
22
2 MHz
2
14
21
External clock(2),
all peripherals
enabled(3)(4)
IDD
Supply current
in Run mode
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
External clock(2),
all peripherals
disabled(3)(4)
mA
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
Doc ID 022152 Rev 3
77/180
Electrical characteristics
STM32F405xx, STM32F407xx
3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption
should be considered.
4.
When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC
for the analog part.
Table 20.
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM (1)
Max(2)
Typ
Symbol
Parameter
Conditions
External clock(3), all
peripherals enabled(4)(5)
fHCLK
TA =
25 °C
TA =
85 °C
TA =
105 °C
168 MHz
87
102
109
144 MHz
67
80
86
120 MHz
56
69
75
90 MHz
44
56
62
60 MHz
30
42
49
30 MHz
16
28
35
25 MHz
12
24
31
9
20
28
8 MHz
5
17
24
4 MHz
3
15
22
2 MHz
2
14
21
168 MHz
40
54
61
144 MHz
31
43
50
120 MHz
26
38
45
90 MHz
20
32
39
60 MHz
14
26
33
30 MHz
8
20
27
25 MHz
6
18
25
16 MHz(6)
5
16
24
8 MHz
3
15
22
4 MHz
2
14
21
2 MHz
2
14
21
16
IDD
Supply current in
Run mode
External clock(3), all
peripherals disabled(4)(5)
MHz(6)
Unit
mA
1. Code and data processing running from SRAM1 using boot pins.
2. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
6. In this case HCLK = system clock/2.
78/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 22. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF
)$$25.M!
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
Figure 23. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON
)$$25.M!
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
Doc ID 022152 Rev 3
79/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 24. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF
)$$25.M!
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
Figure 25. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON
)$$25.M!
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
80/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 21.
Electrical characteristics
Typical and maximum current consumption in Sleep mode
Max(1)
Typ
Symbol
Parameter
Conditions
External clock(2),
all peripherals enabled(3)
IDD
Supply current in
Sleep mode
External clock(2), all
peripherals disabled
fHCLK
TA = 25 °C TA = 85 °C
TA =
105 °C
168 MHz
59
77
84
144 MHz
46
61
67
120 MHz
38
53
60
90 MHz
30
44
51
60 MHz
20
34
41
30 MHz
11
24
31
25 MHz
8
21
28
16 MHz
6
18
25
8 MHz
3
16
23
4 MHz
2
15
22
2 MHz
2
14
21
168 MHz
12
27
35
144 MHz
9
22
29
120 MHz
8
20
28
90 MHz
7
19
26
60 MHz
5
17
24
30 MHz
3
16
23
25 MHz
2
15
22
16 MHz
2
14
21
8 MHz
1
14
21
4 MHz
1
13
21
2 MHz
1
13
21
Unit
mA
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
Doc ID 022152 Rev 3
81/180
Electrical characteristics
Table 22.
STM32F405xx, STM32F407xx
Typical and maximum current consumptions in Stop mode
Typ
Symbol
Parameter
Supply current
in Stop mode
with main
regulator in
Run mode
IDD_STOP
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
Flash in Stop mode, low-speed and high-speed
internal RC oscillators and high-speed
oscillator OFF (no independent watchdog)
0.60
2.10
11.00
20.00
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.55
2.10
11.00
20.00
Flash in Stop mode, low-speed and high-speed
Supply current internal RC oscillators and high-speed
in Stop mode oscillator OFF (no independent watchdog)
with main
Flash in Deep power down mode, low-speed
regulator in
and high-speed internal RC oscillators and
Low Power
high-speed oscillator OFF (no independent
mode
watchdog)
Table 23.
Symbol
Conditions
Unit
mA
0.40
1.30
8.00
15.00
0.35
1.30
8.00
15.00
Typical and maximum current consumptions in Standby mode(1)
Parameter
Conditions
Backup SRAM ON, low-speed
oscillator and RTC ON
Supply current Backup SRAM OFF, lowIDD_STBY in Standby
speed oscillator and RTC ON
mode
Backup SRAM ON, RTC OFF
Backup SRAM OFF, RTC OFF
Typ
Max
TA = 25 °C
TA = 85 °C TA = 105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V
3.0
3.4
4.0
TBD(2)
TBD(2)
2.4
2.7
3.3
TBD(2)
TBD(2)
2.4
2.6
3.0
12.5(2)
24.8(2)
1.7
1.9
2.2
9.8(2)
19.2(2)
1. TBD stands for “to be defined”.
2. Based on characterization, not tested in production.
82/180
Max
Doc ID 022152 Rev 3
Unit
VDD = 3.6 V
µA
STM32F405xx, STM32F407xx
Electrical characteristics
Typical and maximum current consumptions in VBAT mode(1)
Table 24.
Typ
Symbol
Parameter
Max
TA = 25 °C
Conditions
TA = 85 °C
VBAT = VBAT= VBAT =
1.8 V 2.4 V 3.3 V
Backup SRAM ON, low-speed
oscillator and RTC ON
Backup
Backup SRAM OFF, low-speed
IDD_VBAT domain supply oscillator and RTC ON
current
Backup SRAM ON, RTC OFF
Backup SRAM OFF, RTC OFF
TA =
105 °C
VBAT = 3.6 V
1.29
1.42
1.68
TBD(2)
TBD(2)
0.62
0.73
0.96
TBD(2)
TBD(2)
0.79
0.10
0.81
0.10
Unit
(2)
0.86
9
0.10
5(2)
µA
(2)
16
7(2)
1. TBD stands for “to be defined”.
2. Based on characterization, not tested in production.
Figure 26. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF)
3.5
3
IVBAT in (μA)
2.5
1.65V
1.8V
2
2V
2.4V
1.5
2.7V
3V
3.3V
1
3.6V
0.5
0
0
10
20
30
40
50
60
70
80
90
100
Temperature in (°C)
-36
Doc ID 022152 Rev 3
83/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 27. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON)
6
5
IVBAT in (μA)
4
1.65V
1.8V
2V
3
2.4V
2.7V
3V
2
3.3V
3.6V
1
0
0
10
20
30
40
50
60
70
80
90
100
Temperature in (°C)
-36
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 46: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 26: Peripheral current consumption), the I/Os used by an application also contribute to
the current consumption. When an I/O pin switches, it uses the current from the MCU supply
84/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or
external) connected to the pin:
I SW = V DD × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
Doc ID 022152 Rev 3
85/180
Electrical characteristics
Table 25.
Symbol
STM32F405xx, STM32F407xx
Switching output I/O current consumption
Parameter
Conditions(1)
I/O toggling
frequency (fSW)
Typ
2 MHz
0.02
8 MHz
0.14
25 MHz
0.51
50 MHz
0.86
60 MHz
1.30
2 MHz
0.10
8 MHz
0.38
25 MHz
1.18
50 MHz
2.47
60 MHz
2.86
2 MHz
0.17
8 MHz
0.66
25 MHz
1.70
50 MHz
2.65
60 MHz
3.48
2 MHz
0.23
8 MHz
0.95
25 MHz
3.20
50 MHz
4.69
60 MHz
8.06
2 MHz
0.30
8 MHz
1.22
25 MHz
3.90
50 MHz
8.82
60 MHz
-(3)
VDD = 3.3 V(2)
C = CINT
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
IDDIO
I/O switching
current
VDD = 3.3 V
CEXT = 10 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT+ CS
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
2. This test is performed by cutting the LQFP package pin (pad removal).
3. At 60 MHz, C maximum load is specified 30 pF.
86/180
Doc ID 022152 Rev 3
Unit
mA
STM32F405xx, STM32F407xx
Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 26. The MCU is placed
under the following conditions:
●
At startup, all I/O pins are configured as analog pins by firmware.
●
All peripherals are disabled unless otherwise mentioned
●
The code is running from Flash memory and the Flash memory access time is equal to
5 wait states at 168 MHz.
●
The code is running from Flash memory and the Flash memory access time is equal to
4 wait states at 144 MHz, and the power scale mode is set to 2.
●
ART accelerator and Cache off.
●
The given value is calculated by measuring the difference of current consumption
–
with all peripherals clocked off
–
with one peripheral clocked on (with only the clock applied)
●
When the peripherals are enabled: HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2.
●
The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise
specified.
Table 26.
Peripheral current consumption
Peripheral(1)
AHB1
168 MHz
144 MHz
GPIO A
0.49
0.36
GPIO B
0.45
0.33
GPIO C
0.45
0.34
GPIO D
0.45
0.34
GPIO E
0.47
0.35
GPIO F
0.45
0.33
GPIO G
0.44
0.33
GPIO H
0.45
0.34
GPIO I
0.44
0.33
OTG_HS + ULPI
4.57
3.55
CRC
0.07
0.06
BKPSRAM
0.11
0.08
DMA1
6.15
4.75
DMA2
6.24
4.8
ETH_MAC +
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
3.28
2.54
OTG_FS
4.59
3.69
DCMI
1.04
0.80
AHB2
Unit
mA
mA
Doc ID 022152 Rev 3
87/180
Electrical characteristics
Table 26.
STM32F405xx, STM32F407xx
Peripheral current consumption (continued)
Peripheral(1)
AHB3
168 MHz
144 MHz
FSMC
2.18
1.67
TIM2
0.80
0.61
TIM3
0.58
0.44
TIM4
0.62
0.48
TIM5
0.79
0.61
TIM6
0.15
0.11
TIM7
0.16
0.12
TIM12
0.33
0.26
TIM13
0.27
0.21
TIM14
0.27
0.21
PWR
0.04
0.03
USART2
0.17
0.13
USART3
0.17
0.13
UART4
0.17
0.13
UART5
0.17
0.13
I2C1
0.17
0.13
I2C2
0.18
0.13
APB1
I2C3
0.18
0.13
SPI2/I2S2
(2)
0.17/0.16
0.13/0.12
SPI3/I2S3
(2)
0.16/0.14
0.12/0.12
CAN1
0.27
0.21
CAN2
0.26
0.20
DAC
0.14
0.10
(3)
0.91
0.89
2(4)
0.91
0.89
DAC channel 1 and 2(3)(4)
1.69
1.68
WWDG
0.04
0.04
DAC channel 1
DAC channel
88/180
Doc ID 022152 Rev 3
Unit
mA
STM32F405xx, STM32F407xx
Table 26.
Electrical characteristics
Peripheral current consumption (continued)
Peripheral(1)
168 MHz
144 MHz
SDIO
0.64
0.54
TIM1
1.47
1.14
TIM8
1.58
1.22
TIM9
0.68
0.54
TIM10
0.45
0.36
TIM11
0.47
0.38
(5)
2.20
2.10
ADC2(5)
2.04
1.93
(5)
2.10
2.00
SPI1
0.14
0.12
USART1
0.34
0.27
USART6
0.34
0.28
APB2
ADC1
ADC3
Unit
mA
1. HSE oscillator with 4 MHz crystal and PLL are ON.
2. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.
3. EN1 bit is set in DAC_CR register.
4. EN2 bit is set in DAC_CR register.
5. ADON bit set in ADC_CR2 register.
5.3.7
Wakeup time from low-power mode
The wakeup times given in Table 27 is measured on a wakeup phase with a 16 MHz HSI RC
oscillator. The clock source used to wake up the device depends from the current operating
mode:
●
Stop or Standby mode: the clock source is the RC oscillator
●
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 13.
Table 27.
Low-power mode wakeup timings
Symbol
tWUSLEEP(2)
tWUSTOP(2)
tWUSTDBY(2)(3)
Min(1)
Typ(1)
Max(1)
Unit
Wakeup from Sleep mode
-
1
-
µs
Wakeup from Stop mode (regulator in Run mode)
-
13
-
Wakeup from Stop mode (regulator in low power mode)
-
17
40
Wakeup from Stop mode (regulator in low power mode
and Flash memory in Deep power down mode)
-
110
-
260
375
480
Parameter
Wakeup from Standby mode
µs
µs
1. Based on characterization, not tested in production.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.
Doc ID 022152 Rev 3
89/180
Electrical characteristics
5.3.8
STM32F405xx, STM32F407xx
External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 28 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 13.
Table 28.
High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
-
50
MHz
fHSE_ext
External user clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
5
-
-
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1)
-
-
10
OSC_IN input capacitance(1)
-
5
-
pF
45
-
55
%
-
-
±1
µA
Cin(HSE)
ns
DuCy(HSE) Duty cycle
IL
V
VSS ≤ VIN ≤ VDD
OSC_IN Input leakage current
1. Guaranteed by design, not tested in production.
Low-speed external user clock generated from an external source
The characteristics given in Table 29 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 13.
Table 29.
Low-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level voltage
0.7VDD
-
VDD
VLSEL
OSC32_IN input pin low level voltage
VSS
-
0.3VDD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1)
450
-
-
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1)
-
-
50
OSC32_IN input capacitance(1)
-
5
-
pF
30
-
70
%
-
-
±1
µA
Cin(LSE)
DuCy(LSE)
IL
ns
Duty cycle
OSC32_IN Input leakage current
VSS ≤ VIN ≤ VDD
1. Guaranteed by design, not tested in production.
90/180
V
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 28. High-speed external clock source AC timing diagram
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
t
tW(HSE)
tW(HSE)
THSE
External
clock source
fHSE_ext
OSC _IN
IL
STM32F
ai17528
Figure 29. Low-speed external clock source AC timing diagram
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
tW(LSE)
OSC32_IN
IL
tW(LSE)
t
TLSE
External
clock source
fLSE_ext
STM32F
ai17529
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Table 30. In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Doc ID 022152 Rev 3
91/180
Electrical characteristics
Table 30.
Symbol
fOSC_IN
RF
IDD
gm
tSU(HSE(3)
STM32F405xx, STM32F407xx
HSE 4-26 MHz oscillator characteristics(1) (2)
Parameter
Conditions
Min
Typ
Max
Unit
Oscillator frequency
4
-
26
MHz
Feedback resistor
-
200
-
kΩ
VDD=3.3 V,
ESR= 30 Ω,
CL=5 [email protected] MHz
-
449
-
VDD=3.3 V,
ESR= 30 Ω,
CL=10 [email protected] MHz
-
532
-
Startup
5
-
-
mA/V
VDD is stabilized
-
2
-
ms
HSE current consumption
Oscillator transconductance
Startup time
µA
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 30). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 30. Typical application with an 8 MHz crystal
Resonator with
integrated capacitors
CL1
fHSE
OSC_IN
8 MH z
resonator
CL2
REXT(1)
RF
OSC_OU T
Bias
controlled
gain
STM32F
ai17530
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Table 31. In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
92/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 31.
Electrical characteristics
LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
RF
Feedback resistor
-
18.4
-
MΩ
IDD
LSE current consumption
-
-
1
µA
gm
Oscillator Transconductance
2.8
-
-
µA/V
-
2
-
s
tSU(LSE)(2) startup time
VDD is stabilized
1. Guaranteed by design, not tested in production.
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer
Note:
For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the
5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see
Figure 31). CL1 and CL2, are usually the same size. The crystal manufacturer typically
specifies a load capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Note:
For information on electing the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Caution:
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Figure 31. Typical application with a 32.768 kHz crystal
Resonator with
integrated capacitors
CL1
fLSE
OSC32_IN
32.768 kH z
resonator
CL2
RF
Bias
controlled
gain
OSC32_OU T
STM32F
ai17531
Doc ID 022152 Rev 3
93/180
Electrical characteristics
5.3.9
STM32F405xx, STM32F407xx
Internal clock source characteristics
The parameters given in Table 32 and Table 33 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 13.
High-speed internal (HSI) RC oscillator
Low-speed internal (LSI) RC oscillator
Table 32.
Symbol
HSI oscillator characteristics (1)
Parameter
Conditions
Min
Typ
Max
Unit
-
16
-
MHz
-
-
1
%
TA = –40 to 105 °C
–8
-
4.5
%
TA = –10 to 85 °C
–4
-
4
%
TA = 25 °C
–1
-
1
%
HSI oscillator
startup time
-
2.2
4
µs
HSI oscillator
power consumption
-
60
80
µA
Frequency
fHSI
User-trimmed with the RCC_CR
register(2)
Accuracy of the HSI
oscillator
Factorycalibrated
ACCHSI
tsu(HSI)(3)
IDD(HSI)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the
ST website www.st.com.
3. Guaranteed by design, not tested in production.
Table 33.
LSI oscillator characteristics (1)
Symbol
fLSI(2)
tsu(LSI)
(3)
IDD(LSI)(3)
Parameter
Min
Typ
Max
Unit
17
32
47
kHz
LSI oscillator startup time
-
15
40
µs
LSI oscillator power consumption
-
0.4
0.6
µA
Frequency
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
94/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 32. ACCLSI versus temperature
MAX
AVG
MIN
.ORMALIZEDDEVIATI ON
4EMPERAT URE #
-36
5.3.10
PLL characteristics
The parameters given in Table 34 and Table 35 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 13.
Table 34.
Symbol
Main PLL characteristics
Parameter
fPLL_IN
PLL input clock(1)
fPLL_OUT
PLL multiplier output clock
fPLL48_OUT
48 MHz PLL multiplier output
clock
fVCO_OUT
PLL VCO output
tLOCK
PLL lock time
Conditions
Min
Typ
Max
Unit
0.95(2)
1
2.10
MHz
24
-
168
MHz
-
48
75
MHz
192
-
432
MHz
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
µs
Doc ID 022152 Rev 3
95/180
Electrical characteristics
Table 34.
Symbol
STM32F405xx, STM32F407xx
Main PLL characteristics (continued)
Parameter
Conditions
Min
Typ
Max
RMS
-
25
-
peak
to
peak
-
±150
-
RMS
-
15
-
peak
to
peak
-
±200
-
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples
-
32
-
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples
-
40
-
Bit Time CAN jitter
Cycle to cycle at 1 MHz
on 1000 samples
-
330
-
IDD(PLL)(4)
PLL power consumption on VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
mA
IDDA(PLL)(4)
PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
mA
Cycle-to-cycle jitter
System clock
120 MHz
Period Jitter
(3)
Jitter
Unit
ps
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Based on characterization, not tested in production.
Table 35.
Symbol
PLLI2S (audio PLL) characteristics(1)
Parameter
fPLLI2S_IN
PLLI2S input clock(2)
fPLLI2S_OUT
PLLI2S multiplier output clock
fVCO_OUT
PLLI2S VCO output
tLOCK
PLLI2S lock time
Conditions
Min
Typ
Max
Unit
0.95(3)
1
2.10
MHz
-
-
216
MHz
192
-
432
MHz
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
RMS
-
90
-
peak
to
peak
-
±280
-
ps
TBD
-
TBD
ps
-
400
-
ps
µs
Cycle to cycle at
12,343 MHz on
48KHz period,
N=432, P=4, R=5
Master I2S clock jitter
Average frequency of
12,343 MHz
N = 432, P = 4, R = 5
on 256 samples
(4)
Jitter
WS I2S clock jitter
96/180
Cycle to cycle at 48 KHz
on 1000 samples
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 35.
Electrical characteristics
PLLI2S (audio PLL) characteristics(1) (continued)
Symbol
Parameter
Conditions
IDD(PLLI2S)(5)
PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
IDDA(PLLI2S)(5)
PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
Min
Typ
Max
Unit
0.15
0.45
-
0.40
0.75
mA
-
0.40
0.85
mA
0.30
0.55
1. TBD stands for “to be defined”.
2. Take care of using the appropriate division factor M to have the specified PLL input clock values.
3. Guaranteed by design, not tested in production.
4. Value given with main PLL running.
5. Based on characterization, not tested in production.
Doc ID 022152 Rev 3
97/180
Electrical characteristics
5.3.11
STM32F405xx, STM32F407xx
PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 42: EMI characteristics). It is available only on the main PLL.
Table 36.
SSCG parameters constraint
Symbol
Parameter
Min
Typ
Max(1)
Unit
fMod
Modulation frequency
-
-
10
KHz
md
Peak modulation depth
0.25
-
2
%
-
215
-
MODEPER * INCSTEP
-
−1
1. Guaranteed by design, not tested in production.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER = round [ f PLL_IN ⁄ ( 4 × fMod ) ]
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
6
3
MODEPER = round [ 10 ⁄ ( 4 × 10 ) ] = 250
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
INCSTEP = round [ ( ( 2
15
– 1 ) × md × PLLN ) ⁄ ( 100 × 5 × MODEPER ) ]
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
INCSTEP = round [ ( ( 2
15
– 1 ) × 2 × 240 ) ⁄ ( 100 × 5 × 250 ) ] = 126md(quantitazed)%
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
md quantized % = ( MODEPER × INCSTEP × 100 × 5 ) ⁄ ( ( 2
15
– 1 ) × PLLN )
As a result:
md quantized % = ( 250 × 126 × 100 × 5 ) ⁄ ( ( 2
98/180
Doc ID 022152 Rev 3
15
– 1 ) × 240 ) = 2.002%(peak)
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 33. PLL output clock waveforms in center spread mode
&REQUENCY0,,?/54
MD
&
MD
TMODE
4IME
TMODE
AI
Figure 34. PLL output clock waveforms in down spread mode
&REQUENCY0,,?/54
&
MD
TMODE
4IME
TMODE
AI
5.3.12
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
Table 37.
Symbol
IDD
Flash memory characteristics
Parameter
Supply current
Conditions
Min
Typ
Max
Write / Erase 8-bit mode, VDD = 1.8 V
-
5
-
Write / Erase 16-bit mode, VDD = 2.1 V
-
8
-
Write / Erase 32-bit mode, VDD = 3.3 V
-
12
-
Doc ID 022152 Rev 3
Unit
mA
99/180
Electrical characteristics
Table 38.
Symbol
tprog
STM32F405xx, STM32F407xx
Flash memory programming
Word programming time
tERASE16KB Sector (16 KB) erase time
tERASE64KB Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Vprog
Conditions
Min(1)
Typ
Max(1) Unit
Program/erase parallelism
(PSIZE) = x 8/16/32
-
16
100(2)
Program/erase parallelism
(PSIZE) = x 8
-
400
800
Program/erase parallelism
(PSIZE) = x 16
-
300
600
Program/erase parallelism
(PSIZE) = x 32
-
250
500
Program/erase parallelism
(PSIZE) = x 8
-
1200
2400
Program/erase parallelism
(PSIZE) = x 16
-
700
1400
Program/erase parallelism
(PSIZE) = x 32
-
550
1100
Program/erase parallelism
(PSIZE) = x 8
-
2
4
Program/erase parallelism
(PSIZE) = x 16
-
1.3
2.6
Program/erase parallelism
(PSIZE) = x 32
-
1
2
Program/erase parallelism
(PSIZE) = x 8
-
16
32
Program/erase parallelism
(PSIZE) = x 16
-
11
22
Program/erase parallelism
(PSIZE) = x 32
-
8
16
32-bit program operation
2.7
-
3.6
V
16-bit program operation
2.1
-
3.6
V
8-bit program operation
1.8
-
3.6
V
Parameter
Mass erase time
Programming voltage
µs
ms
ms
s
s
1. Based on characterization, not tested in production.
2. The maximum programming time is measured after 100K erase operations.
Table 39.
Flash memory programming with VPP
Symbol
Parameter
tprog
Double word programming
tERASE16KB
Sector (16 KB) erase time
tERASE64KB
Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Vprog
100/180
Conditions
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
Mass erase time
Programming voltage
Doc ID 022152 Rev 3
Min(1)
Typ
Max(1)
Unit
-
16
100(2)
µs
-
230
-
-
490
-
-
875
-
-
6.9
-
s
2.7
-
3.6
V
ms
STM32F405xx, STM32F407xx
Table 39.
Electrical characteristics
Flash memory programming with VPP (continued)
Symbol
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
VPP
VPP voltage range
7
-
9
V
IPP
Minimum current sunk on
the VPP pin
10
-
-
mA
-
-
1
hour
tVPP(3)
Cumulative time during
which VPP is applied
1. Guaranteed by design, not tested in production.
2. The maximum programming time is measured after 100K erase operations.
3. VPP should only be connected during programming/erasing.
Table 40.
Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
Min(1)
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
1 kcycle(2) at TA = 105 °C
10
10 kcycles
(2)
at TA = 55 °C
Unit
kcycles
Years
20
1. Based on characterization, not tested in production.
2. Cycling performed over the whole temperature range.
5.3.13
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the
device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
●
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
●
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 41. They are based on the EMS levels and classes
defined in application note AN1709.
Doc ID 022152 Rev 3
101/180
Electrical characteristics
Table 41.
STM32F405xx, STM32F407xx
EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP176, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 168 MHz, conforms to
induce a functional disturbance
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP176, TA = +25 °C,
fHCLK = 168 MHz, conforms to
IEC 61000-4-2
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
●
Corrupted program counter
●
Unexpected reset
●
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
102/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 42.
Symbol
EMI characteristics
Parameter
Max vs.
[fHSE/fCPU]
Monitored
frequency band
Conditions
Unit
25/168 MHz
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator enabled
SEMI
5.3.14
0.1 to 30 MHz
32
30 to 130 MHz
25
130 MHz to 1GHz
29
SAE EMI Level
4
0.1 to 30 MHz
19
30 to 130 MHz
16
130 MHz to 1GHz
18
SAE EMI level
3.5
dBµV
-
Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running from Flash with
ART accelerator and clock dithering
enabled
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 43.
Symbol
ESD absolute maximum ratings
Conditions
Class
Maximum
value(1)
TA = +25 °C conforming to JESD22-A114
2
2000(2)
Ratings
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
Unit
V
TA = +25 °C conforming to JESD22-C101
II
500
1. Based on characterization results, not tested in production.
2. On VBAT pin, VESD(HBM) is limited to 1000 V.
Doc ID 022152 Rev 3
103/180
Electrical characteristics
STM32F405xx, STM32F407xx
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
●
A supply overvoltage is applied to each power supply pin
●
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
Table 44.
Electrical sensitivities
Symbol
LU
5.3.15
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into the
I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 45.
Table 45. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
104/180
Description
Negative
injection
Positive
injection
Injected current on all FT pins
–5
+0
Injected current on any other pin
–5
+5
Unit
mA
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
5.3.16
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the conditions summarized in Table 13. All I/Os are CMOS and TTL
compliant.
Table 46.
I/O static characteristics
Symbol
VIL
VIH(1)
VIL
Parameter
Conditions
Typ
Max
VSS–0.3
-
0.8
2.0
-
VDD+0.3
2.0
-
5.5
VSS–0.3
-
0.3VDD
-
3.6(4)
-
5.2(4)
-
5.5(4)
-
200
-
5% VDD(4)
-
-
VSS ≤ VIN ≤ VDD
-
-
±1
VIN = 5 V
-
-
3
30
40
50
8
11
15
Input low level voltage
TTa/TC(2) I/O input high level voltage
(3)
FT
TTL ports
2.7 V ≤ VDD ≤ 3.6 V
I/O input high level voltage
Input low level voltage
CMOS ports
1.8 V ≤ VDD ≤ 3.6 V
TTa/TC I/O input high level voltage
VIH(1)
Min
0.7VDD
FT I/O input high level voltage
CMOS ports
2.0 V ≤ VDD ≤ 3.6 V
I/O Schmitt trigger voltage hysteresis(5)
Vhys
IO FT Schmitt trigger voltage
hysteresis(5)
I/O input leakage current (6)
Ilkg
RPU
I/O FT input leakage current
Weak pull-up equivalent
resistor(7)
(6)
All pins
except for
PA10 and
PB12
Unit
V
mV
µA
VIN = VSS
PA10 and
PB12
kΩ
RPD
Weak pull-down
equivalent resistor
All pins
except for
PA10 and
PB12
PA10 and
PB12
CIO(8)
30
40
50
8
11
15
VIN = VDD
I/O pin capacitance
5
pF
1. If VIH maximum value cannot be respected, the injection current must be limited externally to IINJ(PIN) maximum value.
2. TTa = 3.3 V tolerant I/O directly connected to ADC; TC = standard 3.3 V I/O.
3. FT = 5 V tolerant.
4. With a minimum of 100 mV.
5. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
6. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.
7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
8. Guaranteed by design, not tested in production.
Doc ID 022152 Rev 3
105/180
Electrical characteristics
STM32F405xx, STM32F407xx
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters.
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the
speed should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2. In particular:
●
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 11).
●
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 11).
Output voltage levels
Unless otherwise specified, the parameters given in Table 47 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 13. All I/Os are CMOS and TTL compliant.
Table 47.
Symbol
VOL(2)
VOH
(3)
VOL (2)
VOH
(3)
Output voltage characteristics(1)
Parameter
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(2)(4)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(3)(4)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(2)(4)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(3)(4)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
Conditions
Min
Max
TTL port
IIO = +8 mA
2.7 V < VDD < 3.6 V
-
0.4
CMOS port
IIO =+ 8mA
2.7 V < VDD < 3.6 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
IIO = +6 mA
2 V < VDD < 2.7 V
Unit
V
VDD–0.4
-
-
0.4
V
2.4
-
-
1.3
V
VDD–1.3
-
-
0.4
V
VDD–0.4
-
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed
should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current
source (e.g. to drive an LED).
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 11
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 11 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
106/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
4. Based on characterization data, not tested in production.
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 35 and
Table 48, respectively.
Unless otherwise specified, the parameters given in Table 48 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 13.
Table 48.
OSPEEDRy
[1:0] bit
value(1)
I/O AC characteristics(1)(2)(3)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(4)
00
tf(IO)out
Output high to low level fall
time
tr(IO)out
Output low to high level rise
time
fmax(IO)out Maximum frequency(4)
01
Min
Typ
Max
Unit
CL = 50 pF, VDD > 2.70 V
-
-
2
CL = 50 pF, VDD > 1.8 V
-
-
2
CL = 10 pF, VDD > 2.70 V
-
-
TBD
CL = 10 pF, VDD > 1.8 V
-
-
TBD
-
-
TBD
-
-
TBD
CL = 50 pF, VDD > 2.70 V
-
-
25
CL = 50 pF, VDD > 1.8 V
-
-
12.5(5)
CL = 10 pF, VDD > 2.70 V
-
-
50(5)
CL = 10 pF, VDD > 1.8 V
-
-
TBD
MHz
CL = 50 pF, VDD = 1.8 V to
3.6 V
ns
Output high to low level fall
time
CL = 50 pF, VDD < 2.7 V
-
-
TBD
tf(IO)out
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 50 pF, VDD < 2.7 V
-
-
TBD
tr(IO)out
Output low to high level rise
time
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 40 pF, VDD > 2.70 V
-
-
50(5)
CL = 40 pF, VDD > 1.8 V
-
-
25
CL = 10 pF, VDD > 2.70 V
-
-
100(5)
CL = 10 pF, VDD > 1.8 V
-
-
TBD
CL = 50 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 50 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
fmax(IO)out Maximum frequency(4)
10
tf(IO)out
Output high to low level fall
time
tr(IO)out
Output low to high level rise
time
Doc ID 022152 Rev 3
MHz
ns
MHz
ns
107/180
Electrical characteristics
Table 48.
OSPEEDRy
[1:0] bit
value(1)
STM32F405xx, STM32F407xx
I/O AC characteristics(1)(2)(3) (continued)
Symbol
Parameter
Conditions
Fmax(IO)out Maximum frequency(4)
11
-
tf(IO)out
Output high to low level fall
time
tr(IO)out
Output low to high level rise
time
tEXTIpw
Pulse width of external signals
detected by the EXTI
controller
Min
Typ
Max
CL = 30 pF, VDD > 2.70 V
-
-
100(5)
CL = 30 pF, VDD > 1.8 V
-
-
50(5)
CL = 10 pF, VDD > 2.70 V
-
-
200(5)
CL = 10 pF, VDD > 1.8 V
-
-
TBD
CL = 20 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 20 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
10
-
-
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a
description of the GPIOx_SPEEDR GPIO port output speed register.
3. TBD stands for “to be defined”.
4. The maximum frequency is defined in Figure 35.
5. For maximum frequencies above 50 MHz, the compensation cell should be used.
Figure 35. I/O AC characteristics definition
90%
10%
50%
90%
10%
EXT ERNAL
OUTPUT
ON 50pF
tr(I O)out
tr(I O)out
T
Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%)
when loaded by 50pF
ai14131
108/180
Doc ID 022152 Rev 3
MHz
ns
1. Based on characterization data, not tested in production.
50%
Unit
ns
STM32F405xx, STM32F407xx
5.3.17
Electrical characteristics
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 46).
Unless otherwise specified, the parameters given in Table 49 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 13.
Table 49.
NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIL(NRST)(1)
NRST Input low level voltage
–0.5
-
0.8
VIH(NRST)(1)
NRST Input high level voltage
2
-
VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis
-
200
-
mV
30
40
50
kΩ
-
-
100
ns
Weak pull-up equivalent resistor(2)
RPU
VF(NRST)
V
(1)
VIN = VSS
NRST Input filtered pulse
VNF(NRST)(1)
NRST Input not filtered pulse
VDD > 2.7 V
300
-
-
ns
TNRST_OUT
Generated reset pulse duration
Internal
Reset source
20
-
-
µs
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
Figure 36. Recommended NRST pin protection
6$$
%XTERNAL
RESETCIRCUIT
.234
205
)NTERNAL2ESET
&ILTER
—&
34-&XXX
AIC
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 49. Otherwise the reset is not taken into account by the device.
Doc ID 022152 Rev 3
109/180
Electrical characteristics
5.3.18
STM32F405xx, STM32F407xx
TIM timer characteristics
The parameters given in Table 50 and Table 51 are guaranteed by design.
Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 50.
Symbol
tres(TIM)
Characteristics of TIMx connected to the APB1 domain(1)
Parameter
Timer resolution time
Conditions
AHB/APB1
prescaler distinct
from 1, fTIMxCLK =
84 MHz
AHB/APB1
prescaler = 1,
fTIMxCLK = 42 MHz
fEXT
ResTIM
tCOUNTER
Min
Max
Unit
1
-
tTIMxCLK
11.9
-
ns
1
-
tTIMxCLK
23.8
-
ns
Timer external clock
frequency on CH1 to CH4
0
fTIMxCLK/2
MHz
0
42
MHz
Timer resolution
-
16/32
bit
65536
tTIMxCLK
780
µs
-
tTIMxCLK
51130563
µs
-
65536 × 65536
tTIMxCLK
-
51.1
s
16-bit counter clock period
1
when internal clock is
fTIMxCLK = 84 MHz
0.0119
selected
APB1= 42 MHz
32-bit counter clock period
1
when internal clock is
0.0119
selected
tMAX_COUNT Maximum possible count
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.
110/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 51.
Symbol
tres(TIM)
Electrical characteristics
Characteristics of TIMx connected to the APB2 domain(1)
Parameter
Timer resolution time
Conditions
AHB/APB2
prescaler distinct
from 1, fTIMxCLK =
168 MHz
AHB/APB2
prescaler = 1,
fTIMxCLK = 84 MHz
fEXT
ResTIM
tCOUNTER
Timer external clock
frequency on CH1 to CH4
Timer resolution
fTIMxCLK = 168 MHz
16-bit counter clock
APB2 = 84 MHz
period when internal clock
is selected
tMAX_COUNT Maximum possible count
Min
Max
Unit
1
-
tTIMxCLK
5.95
-
ns
1
-
tTIMxCLK
11.9
-
ns
0
fTIMxCLK/2
MHz
0
84
MHz
-
16
bit
1
65536
tTIMxCLK
-
32768
tTIMxCLK
1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.
5.3.19
Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Table 52 are derived from tests
performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Table 13.
The STM32F405xx and STM32F407xx I2C interface meets the requirements of the
standard I2C communication protocol with the following restrictions: the I/O pins SDA and
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS
connected between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 52. Refer also to Section 5.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Doc ID 022152 Rev 3
111/180
Electrical characteristics
Table 52.
STM32F405xx, STM32F407xx
I2C characteristics
Standard mode I2C(1)
Symbol
Fast mode I2C(1)(2)
Parameter
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
20 + 0.1Cb
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
μs
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
-
1.3
-
μs
Cb
Capacitive load for each bus
line
-
400
-
400
pF
µs
ns
µs
1. Guaranteed by design, not tested in production.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
3. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
112/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 37. I2C bus AC waveforms and measurement circuit
6$$
KΩ
6$$
KΩ
Ω
34-&XX
3$!
Ω
)£#BUS
3#,
3 4!242%0%!4%$
3 4!24
3 4!24
TSU34!
3$!
TF3$!
TR3$!
TH34!
3#,
TW3#,(
TSU3$!
TW3#,,
TR3#,
TW34/34!
3 4/0
TH3$!
TSU34/
TF3#,
AIB
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 53.
SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x8019
300
0x8021
200
0x8032
100
0x0096
50
0x012C
20
0x02EE
2
1. RP = External pull-up resistance, fSCL = I C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
Doc ID 022152 Rev 3
113/180
Electrical characteristics
STM32F405xx, STM32F407xx
I2S - SPI interface characteristics
Unless otherwise specified, the parameters given in Table 54 for SPI or in Table 55 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 13.
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 54.
Symbol
fSCK
1/tc(SCK)
SPI characteristics(1)(2)
Parameter
Conditions
Min
Max
Master mode
-
37.5
Slave mode
-
37.5
-
8
ns
%
SPI clock frequency
Unit
MHz
tr(SCL)
tf(SCL)
SPI clock rise and fall
time
Capacitive load: C = 30 pF
DuCy(SCK)
SPI slave input clock
duty cycle
Slave mode
30
70
tsu(NSS)(3)
NSS setup time
Slave mode
4tPCLK
-
th(NSS)(3)
NSS hold time
Slave mode
2tPCLK
-
TBD
TBD
Master mode
5
-
Slave mode
5
-
Master mode
5
-
Slave mode
4
-
(3)
tw(SCLH)
tw(SCLL)(3)
SCK high and low time Master mode, fPCLK = TBD MHz
tsu(MI) (3)
tsu(SI)(3)
Data input setup time
th(MI) (3)
th(SI)(3)
Data input hold time
ta(SO)(3)(4)
Data output access
time
Slave mode, fPCLK = 20 MHz
0
3 tPCLK
tdis(SO)(3)(5)
Data output disable
time
Slave mode
2
10
tv(SO) (3)(1)
Data output valid time
Slave mode (after enable edge)
-
25
(3)(1)
Data output valid time
Master mode (after enable edge)
-
5
Slave mode (after enable edge)
15
-
Master mode (after enable edge)
2
-
tv(MO)
th(SO)(3)
th(MO)(3)
ns
Data output hold time
1. Remapped SPI1 characteristics to be determined.
2. TBD stands for “to be defined”.
3. Based on characterization, not tested in production.
4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
114/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 38. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
SCK Input
tSU(NSS)
CPHA= 0
CPOL=0
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
B I T1 IN
M SB IN
LSB IN
th(SI)
ai14134c
Figure 39. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
SCK Input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
B I T1 IN
M SB IN
LSB IN
ai14135
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Doc ID 022152 Rev 3
115/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 40. SPI timing diagram - master mode(1)
High
NSS input
SCK Input
CPHA= 0
CPOL=0
SCK Input
tc(SCK)
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
MS BIN
BI T6 IN
LSB IN
th(MI)
MOSI
OUTUT
M SB OUT
B I T1 OUT
tv(MO)
LSB OUT
th(MO)
ai14136
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
116/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 55.
Electrical characteristics
I2S characteristics(1)
Symbol
Parameter
Conditions
Min
Max
TBD
TBD
Slave
0
TBD
-
TBD
Master
fCK
1/tc(CK)
I2S clock frequency
tr(CK)
tf(CK)
I2S clock rise and fall time
capacitive load
CL = 50 pF
tv(WS) (2)
WS valid time
Master
TBD
-
th(WS) (2)
WS hold time
Master
TBD
-
WS setup time
Slave
TBD
-
WS hold time
Slave
TBD
-
tw(CKH)
tw(CKL) (2)
CK high and low time
Master fPCLK= TBD,
presc = TBD
TBD
-
tsu(SD_MR) (2)
tsu(SD_SR) (2)
Data input setup time
Master receiver
Slave receiver
TBD
TBD
-
th(SD_MR)(2)(3)
th(SD_SR) (2)(3)
Data input hold time
Master receiver
Slave receiver
TBD
TBD
-
Data input hold time
Master fPCLK = TBD
Slave fPCLK = TBD
TBD
TBD
-
Slave transmitter
(after enable edge)
-
TBD
fPCLK = TBD
-
TBD
Slave transmitter
(after enable edge)
TBD
-
Master transmitter
(after enable edge)
-
TBD
fPCLK = TBD
TBD
TBD
Master transmitter
(after enable edge)
TBD
-
tsu(WS)
th(WS)
(2)
(2)
(2)
th(SD_MR) (2)
th(SD_SR) (2)
tv(SD_ST)
(2)(3)
Data output valid time
th(SD_ST) (2)
Data output hold time
tv(SD_MT) (2)(3)
Data output valid time
th(SD_MT) (2)
Data output hold time
Unit
MHz
ns
1. TBD stands for “to be defined”.
2. Based on design simulation and/or characterization results, not tested in production.
3. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.
Doc ID 022152 Rev 3
117/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 41. I2S slave timing diagram (Philips protocol)(1)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 42. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. Based on characterization, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
118/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
USB OTG FS characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Table 56.
USB OTG FS startup time
Symbol
tSTARTUP(1)
Parameter
USB OTG FS transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design, not tested in production.
Table 57.
USB OTG FS DC electrical characteristics
Symbol
VDD
Input
levels
Parameter
Conditions
USB OTG FS operating
voltage
Min.(1) Typ. Max.(1) Unit
3.0(2)
-
3.6
VDI(3) Differential input sensitivity
I(USB_FS_DP/DM,
USB_HS_DP/DM)
0.2
-
-
VCM(3)
Differential common mode
range
Includes VDI range
0.8
-
2.5
VSE(3)
Single ended receiver
threshold
1.3
-
2.0
VOL
Static output level low
-
-
0.3
2.8
-
3.6
17
21
24
0.65
1.1
2.0
Output
levels
VOH
Static output level high
RL of 1.5 kΩ to 3.6 V(4)
RL of 15 kΩ to
VSS(4)
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
RPD
RPU
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
V
V
V
VIN = VDD
kΩ
PA12, PB15 (USB_FS_DP,
USB_HS_DP)
VIN = VSS
1.5
1.8
2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS
0.25
0.37
0.55
1. All the voltages are measured from the local ground potential.
2. The STM32F405xx and STM32F407xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design, not tested in production.
4. RL is the load connected on the USB OTG FS drivers
Doc ID 022152 Rev 3
119/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 43. USB OTG FS timings: definition of data signal rise and fall time
Crossover
points
Differen tial
data lines
VCRS
VS S
Table 58.
tr
tf
ai14137
USB OTG FS electrical characteristics(1)
Driver characteristics
Symbol
tr
tf
trfm
VCRS
Parameter
Rise time(2)
Fall
time(2)
Conditions
Min
Max
Unit
CL = 50 pF
4
20
ns
CL = 50 pF
4
20
ns
tr/tf
90
110
%
1.3
2.0
V
Rise/ fall time matching
Output signal crossover voltage
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
Table 59.
USB FS clock timing parameters(1)(2)
Parameter
Symbol
Min
fHCLK value to guarantee proper operation of
USB FS interface
-
14.2
Max
Unit
MHz
FSTART_8BIT
TBD
TBD
TBD
MHz
Frequency (steady state) ±500 ppm
FSTEADY
TBD
TBD
TBD
MHz
Duty cycle (first transition)
DSTART_8BIT
TBD
TBD
TBD
%
DSTEADY
TBD
TBD
TBD
%
-
-
TBD
ms
Frequency (first transition)
8-bit ±10%
8-bit ±10%
Duty cycle (steady state) ±500 ppm
Time to reach the steady state frequency and
TSTEADY
duty cycle after the first transition
Clock startup time after the
de-assertion of SuspendM
Peripheral
TSTART_DEV
-
-
TBD
Host
TSTART_HOST
-
-
-
-
-
-
PHY preparation time after the first transition
TPREP
of the input clock
1. Guaranteed by design, not tested in production.
2. TBD stands for “to be defined”.
120/180
Nominal
Doc ID 022152 Rev 3
ms
µs
STM32F405xx, STM32F407xx
Electrical characteristics
USB HS characteristics
Table 60 shows the USB HS operating voltage.
Table 60.
USB HS DC electrical characteristics
Symbol
Input level
Parameter
VDD
USB OTG HS operating voltage
Min.(1)
Max.(1)
Unit
2.7
3.6
V
Nominal
Max
1. All the voltages are measured from the local ground potential.
Table 61.
USB HS clock timing parameters(1)
Parameter
Symbol
Min
fHCLK value to guarantee proper operation of
USB HS interface
Frequency (first transition)
8-bit ±10%
30
FSTEADY
Duty cycle (first transition)
DSTART_8BIT
8-bit ±10%
Duty cycle (steady state) ±500 ppm
DSTEADY
60
66
MHz
59.97
60
60.03
MHz
40
50
60
%
49.975
50
50.025
%
-
-
1.4
ms
Time to reach the steady state frequency and
TSTEADY
duty cycle after the first transition
Clock startup time after the
de-assertion of SuspendM
MHz
54
FSTART_8BIT
Frequency (steady state) ±500 ppm
Unit
Peripheral
TSTART_DEV
-
-
5.6
Host
TSTART_HOST
-
-
-
-
-
-
ms
PHY preparation time after the first transition
TPREP
of the input clock
µs
1. Guaranteed by design, not tested in production.
Figure 44. ULPI timing diagram
#LOCK
#ONTROL)N
5,0)?$)2
5,0)?.84
T3#
T(#
T3$
T($
DATA)N
BIT
T$#
#ONTROLOUT
5,0)?340
DATAOUT
BIT
T$#
T$$
AIC
Doc ID 022152 Rev 3
121/180
Electrical characteristics
Table 62.
STM32F405xx, STM32F407xx
ULPI timing
Value(1)
Parameter
Symbol
Control in (ULPI_DIR) setup time
tSC
Control in (ULPI_NXT) setup time
Unit
Min.
Max.
-
2.0
-
1.5
-
Control in (ULPI_DIR, ULPI_NXT) hold time
tHC
Data in setup time
tSD
-
2.0
Data in hold time
tHD
0
-
Control out (ULPI_STP) setup time and hold time
tDC
-
9.2
Data out available from clock rising edge
tDD
-
10.7
Min.(1)
Max.(1)
Unit
2.7
3.6
V
ns
1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.
Ethernet characteristics
Table 63 shows the Ethernet operating voltage.
Table 63.
Ethernet DC electrical characteristics
Symbol
Input level
Parameter
VDD
Ethernet operating voltage
1. All the voltages are measured from the local ground potential.
Table 64 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 45 shows the corresponding timing diagram.
Figure 45. Ethernet SMI timing diagram
tMDC
ETH_MDC
td(MDIO)
ETH_MDIO(O)
tsu(MDIO)
th(MDIO)
ETH_MDIO(I)
ai15666c
Table 64.
Symbol
Dynamics characteristics: Ethernet MAC signals for SMI(1)
Rating
Min
Typ
Max
Unit
tMDC
MDC cycle time (1.71 MHz, AHB = 72 MHz)
TBD
TBD
TBD
ns
td(MDIO)
MDIO write data valid time
TBD
TBD
TBD
ns
TBD
TBD
TBD
ns
TBD
TBD
TBD
ns
tsu(MDIO) Read data setup time
th(MDIO)
Read data hold time
1. TBD stands for “to be defined”.
122/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Table 65 gives the list of Ethernet MAC signals for the RMII and Figure 46 shows the
corresponding timing diagram.
Figure 46. Ethernet RMII timing diagram
RMII_REF_CLK
td(TXEN)
td(TXD)
RMII_TX_EN
RMII_TXD[1:0]
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
RMII_RXD[1:0]
RMII_CRS_DV
ai15667
Table 65.
Dynamics characteristics: Ethernet MAC signals for RMII
Symbol
Rating
Min
Typ
Max
Unit
tsu(RXD)
Receive data setup time
2
-
-
ns
tih(RXD)
Receive data hold time
1
-
-
ns
tsu(CRS)
Carrier sense set-up time
0.5
-
-
ns
tih(CRS)
Carrier sense hold time
2
-
-
ns
td(TXEN)
Transmit enable valid delay time
8
9.5
11
ns
td(TXD)
Transmit data valid delay time
8.5
10
11.5
ns
Table 66 gives the list of Ethernet MAC signals for MII and Figure 46 shows the
corresponding timing diagram.
Figure 47. Ethernet MII timing diagram
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
MII_TX_CLK
td(TXEN)
td(TXD)
MII_TX_EN
MII_TXD[3:0]
ai15668
Doc ID 022152 Rev 3
123/180
Electrical characteristics
Table 66.
STM32F405xx, STM32F407xx
Dynamics characteristics: Ethernet MAC signals for MII(1)
Symbol
Rating
Min
Typ
Max
Unit
tsu(RXD)
Receive data setup time
TBD
TBD
TBD
ns
tih(RXD)
Receive data hold time
TBD
TBD
TBD
ns
tsu(DV)
Data valid setup time
TBD
TBD
TBD
ns
tih(DV)
Data valid hold time
TBD
TBD
TBD
ns
tsu(ER)
Error setup time
TBD
TBD
TBD
ns
tih(ER)
Error hold time
TBD
TBD
TBD
ns
td(TXEN)
Transmit enable valid delay time
13.4
15.5
17.7
ns
td(TXD)
Transmit data valid delay time
12.9
16.1
19.4
ns
1. TBD stands for “to be defined”.
CAN (controller area network) interface
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANTX and CANRX).
5.3.20
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 67 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 13.
Table 67.
Symbol
ADC characteristics
Parameter
VDDA
Power supply
VREF+
Positive reference voltage
fADC
fTRIG(4)
VAIN
RAIN(4)
ADC clock frequency
External trigger frequency
Conditions
VDDA = 1.8(1)(3) to 2.4 V
VDDA = 2.4 to 3.6
V(3)
fADC = 30 MHz,
12-bit resolution
Conversion voltage range(5)
External input impedance
See Equation 1 for
details
RADC(4)(6) Sampling switch resistance
CADC(4)
tlat(4)
124/180
Internal sample and hold
capacitor
Injection trigger conversion
latency
fADC = 30 MHz
Min
Typ
Max
Unit
1.8(1)
-
3.6
V
1.8(1)(2)(3)
-
VDDA
V
0.6
15
18
MHz
0.6
30
36
MHz
-
-
1764
kHz
-
-
17
1/fADC
0 (VSSA or VREFtied to ground)
-
VREF+
V
-
-
50
kΩ
-
-
6
kΩ
-
4
-
pF
-
-
0.100
µs
-
3(7)
1/fADC
-
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 67.
Symbol
ADC characteristics (continued)
Parameter
tlatr(4)
Regular trigger conversion
latency
tS(4)
Sampling time
tSTAB(4)
Power-up time
tCONV(4)
Electrical characteristics
Conditions
Min
Typ
Max
Unit
fADC = 30 MHz
-
-
0.067
µs
-
-
2(7)
1/fADC
0.100
-
16
µs
3
-
480
1/fADC
-
2
3
µs
fADC = 30 MHz
12-bit resolution
0.50
-
16.40
µs
fADC = 30 MHz
10-bit resolution
0.43
-
16.34
µs
fADC = 30 MHz
8-bit resolution
0.37
-
16.27
µs
fADC = 30 MHz
6-bit resolution
0.30
-
16.20
µs
fADC = 30 MHz
Total conversion time (including
sampling time)
9 to 492 (tS for sampling +n-bit resolution for successive
approximation)
Sampling rate
fS(4)
IVREF+(4)
IVDDA(4)
(fADC = 30 MHz, and
tS = 3 ADC cycles)
ADC VREF DC current
consumption in conversion
mode
ADC VDDA DC current
consumption in conversion
mode
1/fADC
12-bit resolution
Single ADC
-
-
2
Msps
12-bit resolution
Interleave Dual ADC
mode
-
-
3.75
Msps
12-bit resolution
Interleave Triple ADC
mode
-
-
6
Msps
fADC = 30 MHz
3 sampling time
12-bit resolution
-
300
500
µA
fADC = 30 MHz
480 sampling time
12-bit resolution
-
-
16
µA
fADC = 30 MHz
3 sampling time
12-bit resolution
-
1.6
1.8
mA
fADC = 30 MHz
480 sampling time
12-bit resolution
-
-
60
µA
1. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device operates in a reduced
temperature range (0 to 70 °C).
2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.
3. VDDA -VREF+ < 1.2 V.
4. Based on characterization, not tested in production.
5. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
6. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.
Doc ID 022152 Rev 3
125/180
Electrical characteristics
STM32F405xx, STM32F407xx
7. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 67.
Equation 1: RAIN max formula
R AIN
( k – 0.5 )
- – R ADC
= ------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
a
Table 68.
Symbol
ADC accuracy at fADC = 30 MHz(1)
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fPCLK2 = 60 MHz,
fADC = 30 MHz, RAIN < 10 kΩ,
VDDA = 1.8(3) to 3.6 V
Typ
Max(2)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Based on characterization, not tested in production.
3. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device
operates in a reduced temperature range (0 to 70 °C).
Note:
126/180
ADC accuracy vs. negative injection current: injecting a negative current on any analog input
pins should be avoided as this significantly reduces the accuracy of the conversion being
performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 5.3.16 does not affect the ADC accuracy.
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 48. ADC accuracy characteristics
6
6$$!
;,3")$%!, 2%& ORDEPENDINGONPACKAGE=
%'
%4
%/
%,
%$
, 3")$%!,
633!
6$$!
AIC
1. See also Table 68.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 49. Typical connection diagram using the ADC
STM32F
VDD
RAIN(1)
Sample and hold ADC
converter
VT
0.6 V
RADC(1)
AINx
VAIN
Cparasitic
VT
0.6 V
IL±1 µA
12-bit
converter
CADC(1)
ai17534
1. Refer to Table 67 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
Doc ID 022152 Rev 3
127/180
Electrical characteristics
STM32F405xx, STM32F407xx
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 50 or Figure 51,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 50. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F
V REF+
(See note 1)
1 µF // 10 nF
V DDA
1 µF // 10 nF
V SSA/V REF(See note 1)
ai17535
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
Figure 51. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F
VREF+/VDDA
(See note 1)
1 µF // 10 nF
VREF–/VSSA
(See note 1)
ai17536
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA.
128/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
5.3.21
Temperature sensor characteristics
Table 69.
TS characteristics
Symbol
Parameter
TL(1)
Avg_Slope
(1)
V25(1)
tSTART(2)
TS_temp
(3)(2)
Min
Typ
Max
Unit
VSENSE linearity with temperature
-
±1
±2
°C
Average slope
-
2.5
mV/°C
Voltage at 25 °C
-
0.76
V
Startup time
-
6
10
µs
10
-
-
µs
ADC sampling time when reading the temperature (1 °C accuracy)
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
5.3.22
VBAT monitoring characteristics
Table 70.
VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
KΩ
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
2
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
1 mV accuracy
5
-
-
µs
(1)
Er
TS_vbat(2)(2)
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
5.3.23
Embedded reference voltage
The parameters given in Table 71 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 13.
Table 71.
Embedded internal reference voltage
Symbol
VREFINT
TS_vrefint(1)
VRERINT_s(2)
Parameter
Internal reference voltage
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.18
1.21
1.24
V
10
-
-
µs
-
3
5
mV
ADC sampling time when reading the
internal reference voltage
Internal reference voltage spread over the
temperature range
VDD = 3 V
TCoeff(2)
Temperature coefficient
-
30
50
ppm/°C
tSTART(2)
Startup time
-
6
10
µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
Doc ID 022152 Rev 3
129/180
Electrical characteristics
STM32F405xx, STM32F407xx
5.3.24
DAC electrical characteristics
Table 72.
DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
Comments
VDDA
Analog supply voltage
1.8(1)
-
3.6
V
VREF+
Reference supply voltage
1.8(1)
-
3.6
V
VSSA
Ground
0
-
0
V
RLOAD(2)
Resistive load with buffer ON
5
-
-
kΩ
RO(2)
Impedance output with buffer
OFF
-
-
15
kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
CLOAD(2)
Capacitive load
-
-
50
pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT Lower DAC_OUT voltage
min(2)
with buffer ON
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
with buffer ON
max(2)
-
-
VDDA – 0.2
V
DAC_OUT Lower DAC_OUT voltage
min(2)
with buffer OFF
-
0.5
-
mV
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(2)
-
-
VREF+ – 1LSB
-
170
240
IVREF+(3)
IDDA(3)
DNL(3)
130/180
Differential non linearity
Difference between two
consecutive code-1LSB)
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x1C7) to (0xE38) at
VREF+ = 1.8 V
It gives the maximum output
excursion of the DAC.
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
DAC DC VDDA current
consumption in quiescent
mode (Standby mode)
VREF+ ≤ VDDA
V
With no load, worst code (0x800)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
50
75
-
280
380
µA
With no load, middle code (0x800)
on the inputs
-
475
625
µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
-
±0.5
LSB
Given for the DAC in 10-bit
configuration.
-
-
±2
LSB
Given for the DAC in 12-bit
configuration.
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 72.
Symbol
INL(3)
Offset(3)
Gain
error(3)
Electrical characteristics
DAC characteristics (continued)
Parameter
Min
Typ
Max
Unit
-
-
±1
LSB
Given for the DAC in 10-bit
configuration.
-
-
±4
LSB
Given for the DAC in 12-bit
configuration.
-
-
±10
mV
Given for the DAC in 12-bit
configuration
-
-
±3
LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
-
-
±0.5
%
Given for the DAC in 12-bit
configuration
-
3
6
µs
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
Gain error
Settling time (full scale: for a
10-bit input code transition
(3) between the lowest and the
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±4LSB
Comments
THD(3)
Total Harmonic Distortion
Buffer ON
-
-
-
dB
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and
highest possible ones.
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
Wakeup time from off state
tWAKEUP(3) (Setting the ENx bit in the
DAC Control register)
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
1. If an inverted reset signal is applied to PDR_ON, this value can be lowered to 1.7 V when the device operates in a reduced
temperature range (0 to 70 °C).
2. Guaranteed by design, not tested in production.
3. Guaranteed by characterization, not tested in production.
Doc ID 022152 Rev 3
131/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 52. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
R LOAD
DACx_OUT
12-bit
digital to
analog
converter
C LOAD
ai17157
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
5.3.25
FSMC characteristics
Asynchronous waveforms and timings
Figure 53 through Figure 56 represent asynchronous waveforms and Table 73 through
Table 76 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
●
AddressSetupTime = 1
●
AddressHoldTime = 0x1
●
DataSetupTime = 0x1
●
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
132/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
TW.%
&3-#?.%
TV./%?.%
T W./%
T H.%?./%
&3-#?./%
&3-#?.7%
TV!?.%
&3-#?!;=
T H!?./%
!DDRESS
TV",?.%
T H",?./%
&3-#?.",;=
T H$ATA?.%
T SU$ATA?./%
TH$ATA?./%
T SU$ATA?.%
$ATA
&3-#?$;=
T V.!$6?.%
TW.!$6
&3-#?.!$6 AIC
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 73.
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
Symbol
tw(NE)
tv(NOE_NE)
Parameter
FSMC_NE low time
Max
2THCLK–0.5 2 THCLK+1
Unit
ns
0.5
3
ns
2THCLK–2
2THCLK+ 2
ns
FSMC_NOE high to FSMC_NE high hold time
0
-
ns
FSMC_NEx low to FSMC_A valid
-
4.5
ns
th(A_NOE)
Address hold time after FSMC_NOE high
4
-
ns
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
-
1.5
ns
th(BL_NOE)
FSMC_BL hold time after FSMC_NOE high
0
-
ns
tsu(Data_NE)
Data to FSMC_NEx high setup time
THCLK+4
-
ns
tsu(Data_NOE)
Data to FSMC_NOEx high setup time
THCLK+4
-
ns
th(Data_NOE)
Data hold time after FSMC_NOE high
0
-
ns
th(Data_NE)
Data hold time after FSMC_NEx high
0
-
ns
tv(NADV_NE)
FSMC_NEx low to FSMC_NADV low
-
2
ns
FSMC_NADV low time
-
THCLK
ns
tw(NOE)
th(NE_NOE)
tv(A_NE)
tw(NADV)
FSMC_NEx low to FSMC_NOE low
Min
FSMC_NOE low time
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Doc ID 022152 Rev 3
133/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
tw(NE)
FSMC_NEx
FSMC_NOE
tv(NWE_NE)
tw(NWE)
t h(NE_NWE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:0]
th(A_NWE)
Address
tv(BL_NE)
FSMC_NBL[1:0]
th(BL_NWE)
NBL
tv(Data_NE)
th(Data_NWE)
Data
FSMC_D[15:0]
t v(NADV_NE)
tw(NADV)
FSMC_NADV(1)
ai14990
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 74.
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Symbol
tw(NE)
tv(NWE_NE)
tw(NWE)
th(NE_NWE)
tv(A_NE)
Parameter
Min
Max
Unit
3THCLK
3THCLK+ 4
ns
THCLK–0.5
THCLK+0.5
ns
FSMC_NWE low time
THCLK–1
THCLK+2
ns
FSMC_NWE high to FSMC_NE high hold time
THCLK–1
-
ns
-
0
ns
THCLK– 2
-
ns
-
1.5
ns
THCLK– 1
-
ns
FSMC_NE low time
FSMC_NEx low to FSMC_NWE low
FSMC_NEx low to FSMC_A valid
th(A_NWE)
Address hold time after FSMC_NWE high
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE high
tv(Data_NE)
Data to FSMC_NEx low to Data valid
-
THCLK+3
ns
th(Data_NWE)
Data hold time after FSMC_NWE high
THCLK–1
-
ns
tv(NADV_NE)
FSMC_NEx low to FSMC_NADV low
-
2
ns
FSMC_NADV low time
-
THCLK+0.5
ns
tw(NADV)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
134/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 55. Asynchronous multiplexed PSRAM/NOR read waveforms
tw(NE)
FSMC_NE
tv(NOE_NE)
t h(NE_NOE)
FSMC_NOE
t w(NOE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:16]
t h(A_NOE)
Address
tv(BL_NE)
th(BL_NOE)
FSMC_NBL[1:0]
NBL
th(Data_NE)
tsu(Data_NE)
t v(A_NE)
tsu(Data_NOE)
Address
FSMC_AD[15:0]
t v(NADV_NE)
th(Data_NOE)
Data
th(AD_NADV)
tw(NADV)
FSMC_NADV
ai14892b
Table 75.
Symbol
tw(NE)
tv(NOE_NE)
tw(NOE)
th(NE_NOE)
tv(A_NE)
tv(NADV_NE)
tw(NADV)
th(AD_NADV)
Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
Parameter
Min
Max
Unit
3THCLK–1
3THCLK+1
ns
2THCLK–0.5
2THCLK+0.5
ns
THCLK–1
THCLK+1
ns
FSMC_NOE high to FSMC_NE high hold time
0
-
ns
FSMC_NEx low to FSMC_A valid
-
3
ns
FSMC_NEx low to FSMC_NADV low
1
2
ns
THCLK– 2
THCLK+1
ns
THCLK
-
ns
THCLK–1
-
ns
FSMC_NE low time
FSMC_NEx low to FSMC_NOE low
FSMC_NOE low time
FSMC_NADV low time
FSMC_AD(adress) valid hold time after
FSMC_NADV high)
th(A_NOE)
Address hold time after FSMC_NOE high
th(BL_NOE)
FSMC_BL time after FSMC_NOE high
0
-
ns
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
-
2
ns
tsu(Data_NE)
Data to FSMC_NEx high setup time
THCLK+4
-
ns
tsu(Data_NOE) Data to FSMC_NOE high setup time
THCLK+4
-
ns
th(Data_NE)
Data hold time after FSMC_NEx high
0
-
ns
th(Data_NOE)
Data hold time after FSMC_NOE high
0
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Doc ID 022152 Rev 3
135/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 56. Asynchronous multiplexed PSRAM/NOR write waveforms
tw(NE)
FSMC_NEx
FSMC_NOE
tv(NWE_NE)
tw(NWE)
t h(NE_NWE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:16]
th(A_NWE)
Address
tv(BL_NE)
th(BL_NWE)
FSMC_NBL[1:0]
NBL
t v(A_NE)
t v(Data_NADV)
Address
FSMC_AD[15:0]
t v(NADV_NE)
th(Data_NWE)
Data
th(AD_NADV)
tw(NADV)
FSMC_NADV
ai14891B
Table 76.
Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
Symbol
Min
Max
Unit
FSMC_NE low time
4THCLK–0.5
4THCLK+3
ns
FSMC_NEx low to FSMC_NWE low
THCLK–0.5
THCLK -0.5
ns
FSMC_NWE low tim e
2THCLK–0.5
2THCLK+3
ns
THCLK
-
ns
FSMC_NEx low to FSMC_A valid
-
0
ns
FSMC_NEx low to FSMC_NADV low
1
2
ns
FSMC_NADV low time
THCLK– 2
THCLK+ 1
ns
th(AD_NADV)
FSMC_AD(address) valid hold time after
FSMC_NADV high)
THCLK–2
-
ns
th(A_NWE)
Address hold time after FSMC_NWE high
THCLK
-
ns
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE high
THCLK–2
-
ns
FSMC_NEx low to FSMC_BL valid
-
1.5
ns
tv(Data_NADV)
FSMC_NADV high to Data valid
-
THCLK–0.5
ns
th(Data_NWE)
Data hold time after FSMC_NWE high
THCLK
-
ns
tw(NE)
tv(NWE_NE)
tw(NWE)
th(NE_NWE)
tv(A_NE)
tv(NADV_NE)
tw(NADV)
tv(BL_NE)
Parameter
FSMC_NWE high to FSMC_NE high hold time
1. CL = 30 pF.
2. Based on characterization, not tested in production.
136/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Synchronous waveforms and timings
Figure 57 through Figure 60 represent synchronous waveforms and Table 78 through
Table 80 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
●
BurstAccessMode = FSMC_BurstAccessMode_Enable;
●
MemoryType = FSMC_MemoryType_CRAM;
●
WriteBurst = FSMC_WriteBurst_Enable;
●
CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual)
●
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period (with maximum
FSMC_CLK = 60 MHz).
Figure 57. Synchronous multiplexed NOR/PSRAM read timings
"53452.
TW#,+
TW#,+
&3-#?#,+
$ATALATENCY
TD#,+,.%X,
T D#,+,.%X(
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!)6
TD#,+,!6
&3-#?!;=
TD#,+,./%,
TD#,+,./%(
&3-#?./%
TD#,+,!$)6
TSU!$6#,+(
TD#,+,!$6
&3-#?!$;=
!$;=
TH#,+(!$6
TSU!$6#,+(
$
TSU.7!)46#,+(
TH#,+(!$6
$
TH#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
AIG
Doc ID 022152 Rev 3
137/180
Electrical characteristics
Table 77.
STM32F405xx, STM32F407xx
Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Symbol
tw(CLK)
Parameter
FSMC_CLK period
Max
Unit
2THCLK
-
ns
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
0
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
2
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
2
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
2
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
0
-
ns
td(CLKL-NOEL)
FSMC_CLK low to FSMC_NOE low
-
0
ns
td(CLKL-NOEH)
FSMC_CLK low to FSMC_NOE high
2
-
ns
td(CLKL-ADV)
FSMC_CLK low to FSMC_AD[15:0] valid
-
4.5
ns
td(CLKL-ADIV)
FSMC_CLK low to FSMC_AD[15:0] invalid
0
-
ns
tsu(ADV-CLKH)
FSMC_A/D[15:0] valid data before FSMC_CLK high
6
-
ns
th(CLKH-ADV)
FSMC_A/D[15:0] valid data after FSMC_CLK high
0
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
138/180
Min
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 58. Synchronous multiplexed PSRAM write timings
"53452.
TW#,+
TW#,+
&3-#?#,+
$ATALATENCY
TD#,+,.%X,
TD#,+,.%X(
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!6
TD#,+,!)6
&3-#?!;=
TD#,+,.7%,
TD#,+,.7%(
&3-#?.7%
TD#,+,!$)6
TD#,+,$ATA
TD#,+,$ATA
TD#,+,!$6
!$;=
&3-#?!$;=
$
$
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
TD#,+,.",(
&3-#?.",
AIG
Table 78.
Synchronous multiplexed PSRAM write timings(1)(2)
Symbol
tw(CLK)
Parameter
FSMC_CLK period
Min
Max
Unit
2THCLK
-
ns
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
1
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
1
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
0
ns
0
-
ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
8
-
ns
td(CLKL-NWEL)
FSMC_CLK low to FSMC_NWE low
-
0.5
ns
td(CLKL-NWEH)
FSMC_CLK low to FSMC_NWE high
0
-
ns
td(CLKL-ADIV)
FSMC_CLK low to FSMC_AD[15:0] invalid
0
-
ns
td(CLKL-DATA)
FSMC_A/D[15:0] valid data after FSMC_CLK low
-
3
ns
td(CLKL-NBLH)
FSMC_CLK low to FSMC_NBL high
0
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Doc ID 022152 Rev 3
139/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 59. Synchronous non-multiplexed NOR/PSRAM read timings
"53452.
TW#,+
TW#,+
&3-#?#,+
TD#,+,.%X,
TD#,+,.%X(
$ATALATENCY
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!)6
TD#,+,!6
&3-#?!;=
TD#,+,./%,
TD#,+,./%(
&3-#?./%
TSU$6#,+(
TH#,+($6
TSU$6#,+(
&3-#?$;=
$
TSU.7!)46#,+(
TH#,+($6
$
TH#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
T H#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
AIF
Table 79.
Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol
Parameter
Max
Unit
2THCLK –0.5
-
ns
tw(CLK)
FSMC_CLK period
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
0.5
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
0
-
ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low
-
2
ns
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high
3
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
2
-
ns
td(CLKL-NOEL)
FSMC_CLK low to FSMC_NOE low
-
0.5
ns
td(CLKL-NOEH)
FSMC_CLK low to FSMC_NOE high
1.5
-
ns
tsu(DV-CLKH)
FSMC_D[15:0] valid data before FSMC_CLK high
6
-
ns
th(CLKH-DV)
FSMC_D[15:0] valid data after FSMC_CLK high
3
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
140/180
Min
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 60. Synchronous non-multiplexed PSRAM write timings
TW#,+
"53452.
TW#,+
&3-#?#,+
TD#,+,.%X,
TD#,+,.%X(
$ATALATENCY
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!6
TD#,+,!)6
&3-#?!;=
TD#,+,.7%,
TD#,+,.7%(
&3-#?.7%
TD#,+,$ATA
&3-#?$;=
TD#,+,$ATA
$
$
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TD#,+,.",(
TH#,+(.7!)46
&3-#?.",
AIG
Table 80.
Synchronous non-multiplexed PSRAM write timings(1)(2)
Symbol
tw(CLK)
Parameter
Max Unit
2THCLK
-
ns
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
1
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
1
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
7
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
6
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
6
-
ns
td(CLKL-NWEL)
FSMC_CLK low to FSMC_NWE low
-
1
ns
td(CLKL-NWEH)
FSMC_CLK low to FSMC_NWE high
2
-
ns
td(CLKL-Data)
FSMC_D[15:0] valid data after FSMC_CLK low
-
3
ns
td(CLKL-NBLH)
FSMC_CLK low to FSMC_NBL high
3
-
ns
t
d(CLKL-NExL)
FSMC_CLK period
Min
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Doc ID 022152 Rev 3
141/180
Electrical characteristics
STM32F405xx, STM32F407xx
PC Card/CompactFlash controller waveforms and timings
Figure 61 through Figure 66 represent synchronous waveforms, and Table 81 and Table 82
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
●
COM.FSMC_SetupTime = 0x04;
●
COM.FSMC_WaitSetupTime = 0x07;
●
COM.FSMC_HoldSetupTime = 0x04;
●
COM.FSMC_HiZSetupTime = 0x00;
●
ATT.FSMC_SetupTime = 0x04;
●
ATT.FSMC_WaitSetupTime = 0x07;
●
ATT.FSMC_HoldSetupTime = 0x04;
●
ATT.FSMC_HiZSetupTime = 0x00;
●
IO.FSMC_SetupTime = 0x04;
●
IO.FSMC_WaitSetupTime = 0x07;
●
IO.FSMC_HoldSetupTime = 0x04;
●
IO.FSMC_HiZSetupTime = 0x00;
●
TCLRSetupTime = 0;
●
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Figure 61. PC Card/CompactFlash controller waveforms for common memory read
access
FSMC_NCE4_2(1)
FSMC_NCE4_1
th(NCEx-AI)
tv(NCEx-A)
FSMC_A[10:0]
th(NCEx-NREG)
th(NCEx-NIORD)
th(NCEx-NIOWR)
td(NREG-NCEx)
td(NIORD-NCEx)
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
FSMC_NWE
td(NCE4_1-NOE)
FSMC_NOE
tw(NOE)
tsu(D-NOE)
th(NOE-D)
FSMC_D[15:0]
ai14895b
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
142/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 62. PC Card/CompactFlash controller waveforms for common memory write
access
FSMC_NCE4_1
FSMC_NCE4_2
High
tv(NCE4_1-A)
th(NCE4_1-AI)
FSMC_A[10:0]
th(NCE4_1-NREG)
th(NCE4_1-NIORD)
th(NCE4_1-NIOWR)
td(NREG-NCE4_1)
td(NIORD-NCE4_1)
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NCE4_1-NWE)
tw(NWE)
td(NWE-NCE4_1)
FSMC_NWE
FSMC_NOE
MEMxHIZ =1
td(D-NWE)
tv(NWE-D)
th(NWE-D)
FSMC_D[15:0]
ai14896b
Doc ID 022152 Rev 3
143/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 63. PC Card/CompactFlash controller waveforms for attribute memory read
access
FSMC_NCE4_1
tv(NCE4_1-A)
FSMC_NCE4_2
th(NCE4_1-AI)
High
FSMC_A[10:0]
FSMC_NIOWR
FSMC_NIORD
td(NREG-NCE4_1)
th(NCE4_1-NREG)
FSMC_NREG
FSMC_NWE
td(NCE4_1-NOE)
tw(NOE)
td(NOE-NCE4_1)
FSMC_NOE
tsu(D-NOE)
th(NOE-D)
FSMC_D[15:0](1)
ai14897b
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
144/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 64. PC Card/CompactFlash controller waveforms for attribute memory write
access
FSMC_NCE4_1
FSMC_NCE4_2
High
tv(NCE4_1-A)
th(NCE4_1-AI)
FSMC_A[10:0]
FSMC_NIOWR
FSMC_NIORD
td(NREG-NCE4_1)
th(NCE4_1-NREG)
FSMC_NREG
td(NCE4_1-NWE)
tw(NWE)
FSMC_NWE
td(NWE-NCE4_1)
FSMC_NOE
tv(NWE-D)
FSMC_D[7:0](1)
ai14898b
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 65. PC Card/CompactFlash controller waveforms for I/O space read access
FSMC_NCE4_1
FSMC_NCE4_2
th(NCE4_1-AI)
tv(NCEx-A)
FSMC_A[10:0]
FSMC_NREG
FSMC_NWE
FSMC_NOE
FSMC_NIOWR
tw(NIORD)
td(NIORD-NCE4_1)
FSMC_NIORD
tsu(D-NIORD)
td(NIORD-D)
FSMC_D[15:0]
ai14899B
Doc ID 022152 Rev 3
145/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 66. PC Card/CompactFlash controller waveforms for I/O space write access
&3-#?.#%?
&3-#?.#%?
TV.#%X!
TH.#%?!)
&3-#?!;=
&3-#?.2%'
&3-#?.7%
&3-#?./%
&3-#?.)/2$
TD.#%?.)/72
TW.)/72
&3-#?.)/72
!44X():
TV.)/72$
TH.)/72$
&3-#?$;=
AIC
Table 81.
Switching characteristics for PC Card/CF read and write cycles
in attribute/common space(1)(2)
Symbol
Parameter
Min
Max
Unit
tv(NCEx-A)
FSMC_Ncex low to FSMC_Ay valid
-
0
ns
th(NCEx_AI)
FSMC_NCEx high to FSMC_Ax invalid
4
-
ns
td(NREG-NCEx)
FSMC_NCEx low to FSMC_NREG valid
-
3.5
ns
th(NCEx-NREG)
FSMC_NCEx high to FSMC_NREG invalid
THCLK+4
-
ns
td(NCEx-NWE)
FSMC_NCEx low to FSMC_NWE low
-
5THCLK+0.5
ns
td(NCEx-NOE)
FSMC_NCEx low to FSMC_NOE low
-
5THCLK +0.5
ns
8THCLK–1
8THCLK+1
ns
5THCLK+2.5
-
ns
4.5
-
ns
3
-
ns
8THCLK–0.5
8THCLK+ 3
ns
5THCLK–1
-
ns
tw(NOE)
td(NOE_NCEx)
tsu (D-NOE)
FSMC_NOE low width
FSMC_NOE high to FSMC_NCEx high
FSMC_D[15:0] valid data before FSMC_NOE high
th(N0E-D)
FSMC_N0E high to FSMC_D[15:0] invalid
tw(NWE)
FSMC_NWE low width
td(NWE_NCEx)
FSMC_NWE high to FSMC_NCEx high
td(NCEx-NWE)
FSMC_NCEx low to FSMC_NWE low
-
5THCLK+ 1
ns
FSMC_NWE low to FSMC_D[15:0] valid
-
0
ns
tv(NWE-D)
th (NWE-D)
FSMC_NWE high to FSMC_D[15:0] invalid
8THCLK –1
-
ns
td (D-NWE)
FSMC_D[15:0] valid before FSMC_NWE high
13THCLK –1
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
146/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 82.
Electrical characteristics
Switching characteristics for PC Card/CF read and write cycles
in I/O space(1)(2)
Symbol
Parameter
tw(NIOWR)
FSMC_NIOWR low width
tv(NIOWR-D)
FSMC_NIOWR low to FSMC_D[15:0] valid
th(NIOWR-D)
FSMC_NIOWR high to FSMC_D[15:0] invalid
Min
Max
Unit
8THCLK –1
-
ns
-
5THCLK– 1
ns
8THCLK– 2
-
ns
-
5THCLK+ 2.5
ns
5THCLK–1.5
-
ns
-
5THCLK+ 2
ns
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid
th(NCEx-NIOWR)
FSMC_NCEx high to FSMC_NIOWR invalid
td(NIORD-NCEx)
FSMC_NCEx low to FSMC_NIORD valid
th(NCEx-NIORD)
FSMC_NCEx high to FSMC_NIORD) valid
5THCLK– 1.5
-
ns
FSMC_NIORD low width
8THCLK–0.5
-
ns
tw(NIORD)
tsu(D-NIORD)
FSMC_D[15:0] valid before FSMC_NIORD high
9
-
ns
td(NIORD-D)
FSMC_D[15:0] valid after FSMC_NIORD high
0
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
NAND controller waveforms and timings
Figure 67 through Figure 70 represent synchronous waveforms, and Table 83 and Table 84
provide the corresponding timings. The results shown in this table are obtained with the
following FSMC configuration:
●
COM.FSMC_SetupTime = 0x01;
●
COM.FSMC_WaitSetupTime = 0x03;
●
COM.FSMC_HoldSetupTime = 0x02;
●
COM.FSMC_HiZSetupTime = 0x01;
●
ATT.FSMC_SetupTime = 0x01;
●
ATT.FSMC_WaitSetupTime = 0x03;
●
ATT.FSMC_HoldSetupTime = 0x02;
●
ATT.FSMC_HiZSetupTime = 0x01;
●
Bank = FSMC_Bank_NAND;
●
MemoryDataWidth = FSMC_MemoryDataWidth_16b;
●
ECC = FSMC_ECC_Enable;
●
ECCPageSize = FSMC_ECCPageSize_512Bytes;
●
TCLRSetupTime = 0;
●
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Doc ID 022152 Rev 3
147/180
Electrical characteristics
STM32F405xx, STM32F407xx
Figure 67. NAND controller waveforms for read access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
&3-#?.7%
TD!,%./%
TH./%!,%
&3-#?./%.2%
TSU$./%
TH./%$
&3-#?$;=
AIC
Figure 68. NAND controller waveforms for write access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
TD!,%.7%
TH.7%!,%
&3-#?.7%
&3-#?./%.2%
TV.7%$
TH.7%$
&3-#?$;=
AIC
148/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 69. NAND controller waveforms for common memory read access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
TD!,%./%
TH./%!,%
&3-#?.7%
TW./%
&3-#?./%
TSU$./%
TH./%$
&3-#?$;=
AIC
Figure 70. NAND controller waveforms for common memory write access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
TD!,%./%
TW.7%
TH./%!,%
&3-#?.7%
&3-#?./%
TD$.7%
TV.7%$
TH.7%$
&3-#?$;=
AIC
Table 83.
Symbol
tw(N0E)
Switching characteristics for NAND Flash read cycles(1)
Parameter
FSMC_NOE low width
Min
Max
Unit
4THCLK–
0.5
4THCLK+ 3
ns
tsu(D-NOE)
FSMC_D[15-0] valid data before FSMC_NOE high
10
-
ns
th(NOE-D)
FSMC_D[15-0] valid data after FSMC_NOE high
0
-
ns
td(ALE-NOE)
FSMC_ALE valid before FSMC_NOE low
-
3THCLK
ns
th(NOE-ALE)
FSMC_NWE high to FSMC_ALE invalid
3THCLK– 2
-
ns
1. CL = 30 pF.
Doc ID 022152 Rev 3
149/180
Electrical characteristics
STM32F405xx, STM32F407xx
Switching characteristics for NAND Flash write cycles(1)
Table 84.
Symbol
Parameter
tw(NWE)
FSMC_NWE low width
Min
Max
Unit
4THCLK–1
4THCLK+ 3
ns
-
0
ns
tv(NWE-D)
FSMC_NWE low to FSMC_D[15-0] valid
th(NWE-D)
FSMC_NWE high to FSMC_D[15-0] invalid
3THCLK –2
-
ns
td(D-NWE)
FSMC_D[15-0] valid before FSMC_NWE high
5THCLK–3
-
ns
-
3THCLK
ns
3THCLK–2
-
ns
td(ALE-NWE)
FSMC_ALE valid before FSMC_NWE low
th(NWE-ALE)
FSMC_NWE high to FSMC_ALE invalid
1. CL = 30 pF.
5.3.26
Camera interface (DCMI) timing specifications
Table 85.
DCMI characteristics
Symbol
Parameter
Conditions
Min
(1)
Frequency ratio DCMI_PIXCLK/fHCLK
Max
0.4
1. Maximum value of DCMI_PIXCLK = 54 MHz.
5.3.27
SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 86 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 13.
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (D[7:0], CMD, CK).
Figure 71. SDIO high-speed mode
tf
tr
tC
tW(CKH)
tW(CKL)
CK
tOV
tOH
D, CMD
(output)
tISU
tIH
D, CMD
(input)
ai14887
150/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Electrical characteristics
Figure 72. SD default mode
CK
tOVD
tOHD
D, CMD
(output)
ai14888
Table 86.
Symbol
SD / MMC characteristics(1)
Parameter
Conditions
Min
Max
Unit
TBD
TBD
MHz
-
TBD
-
fPP
Clock frequency in data transfer
mode
CL ≤ 30 pF
-
SDIO_CK/fPCLK2 frequency ratio
-
tW(CKL)
Clock low time, fPP = 16 MHz
CL ≤ 30 pF
TBD
-
tW(CKH)
Clock high time, fPP = 16 MHz
CL ≤ 30 pF
TBD
-
tr
Clock rise time
CL ≤ 30 pF
-
TBD
tf
Clock fall time
CL ≤ 30 pF
-
TBD
ns
CMD, D inputs (referenced to CK)
tISU
Input setup time
CL ≤ 30 pF
TBD
-
tIH
Input hold time
CL ≤ 30 pF
TBD
-
ns
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV
Output valid time
CL ≤ 30 pF
-
TBD
tOH
Output hold time
CL ≤ 30 pF
TBD
-
ns
CMD, D outputs (referenced to CK) in SD default mode(2)
tOVD
Output valid default time
CL ≤ 30 pF
-
TBD
tOHD
Output hold default time
CL ≤ 30 pF
TBD
-
ns
1. TBD stands for “to be defined”.
2. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.
5.3.28
RTC characteristics
Table 87.
RTC characteristics
Symbol
Parameter
-
fPCLK1/RTCCLK frequency ratio
Conditions
Any read/write operation
from/to an RTC register
Doc ID 022152 Rev 3
Min
Max
4
-
151/180
Package characteristics
STM32F405xx, STM32F407xx
6
Package characteristics
6.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
152/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Package characteristics
Figure 73. WLCSP90 - 0.400 mm pitch wafer level chip size package outline
E
!BALLLOCATION
$
E
E
$ETAIL!
%
E
'
!
&
!
"UMPSIDE
3IDEVIEW
7AFERBACKSIDE
$ETAIL!
ROTATEDBY #
!
EEE
B
3EATINGPLANE
!*7?-%
Table 88.
WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.520
0.570
0.620
0.0205
0.0224
0.0244
A1
0.165
0.190
0.215
0.0065
0.0075
0.0085
A2
0.350
0.380
0.410
0.0138
0.015
0.0161
b
0.240
0.270
0.300
0.0094
0.0106
0.0118
D
4.178
4.218
4.258
0.1645
0.1661
0.1676
E
3.964
3.969
4.004
0.1561
0.1563
0.1576
e
0.400
0.0157
e1
3.600
0.1417
e2
3.200
0.126
F
0.312
0.0123
G
0.385
0.0152
eee
0.050
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 022152 Rev 3
153/180
Package characteristics
STM32F405xx, STM32F407xx
Figure 74. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
A
A2
A1
E
b
E1
e
D1
D
c
L1
L
ai14398b
1. Drawing is not to scale.
Table 89.
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
Max
0.0630
0.150
0.0020
0.0059
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
0.0079
D
12.000
0.4724
D1
10.000
0.3937
E
12.000
0.4724
E1
10.000
0.3937
e
0.500
0.0197
θ
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
1.000
0.0394
Number of pins
N
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
154/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Package characteristics
Figure 75. LQFP64 recommended footprint
48
33
0.3
49
12.7
32
0.5
10.3
10.3
64
17
1.2
1
16
7.8
12.7
ai14909
1. Drawing is not to scale.
2. Dimensions are in millimeters.
Doc ID 022152 Rev 3
155/180
Package characteristics
STM32F405xx, STM32F407xx
Figure 76. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline
MM
INCH
'!'%0,!.%
K
$
$
,
,
#
$
B
% % %
CCC
0IN
IDENTIFICATION
#
!
!
!
E
,?-%
1. Drawing is not to scale.
Table 90.
LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data(1)
millimeters
inches
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
15.800
D1
13.800
D3
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
16.000
16.200
0.6220
0.6299
0.6378
14.000
14.200
0.5433
0.5512
0.5591
12.000
0.0059
0.0079
0.4724
E
15.80v
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
12.000
0.4724
e
0.500
0.0197
L
0.450
L1
k
ccc
0.600
0.750
0°
3.5°
0.0236
0.0295
0.0394
7°
0.080
1. Values in inches are converted from mm and rounded to 4 decimal digits.
156/180
0.0177
1.000
Doc ID 022152 Rev 3
0°
3.5°
7°
0.0031
STM32F405xx, STM32F407xx
Package characteristics
Figure 77. LQFP100 recommended footprint
AI
1. Drawing is not to scale.
2. Dimensions are in millimeters.
Doc ID 022152 Rev 3
157/180
Package characteristics
STM32F405xx, STM32F407xx
Figure 78. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline
3EATINGPLANE
#
! !!
C
B
MM
GAGEPLANE
CCC #
$
$
K
!
$
,
,
% %
%
0IN
IDENTIFICATION
E
-%?!
1. Drawing is not to scale.
Table 91.
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
21.800
D1
19.800
D3
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
22.000
22.200
0.8583
0.8661
0.874
20.000
20.200
0.7795
0.7874
0.7953
17.500
0.0059
0.0079
0.689
E
21.800
22.000
22.200
0.8583
0.8661
0.8740
E1
19.800
20.000
20.200
0.7795
0.7874
0.7953
E3
17.500
0.6890
e
0.500
0.0197
L
0.450
L1
k
ccc
0.600
0.750
1.000
0°
3.5°
0.0236
0.0295
0.0394
7°
0.080
1. Values in inches are converted from mm and rounded to 4 decimal digits.
158/180
0.0177
Doc ID 022152 Rev 3
0°
3.5°
7°
0.0031
STM32F405xx, STM32F407xx
Package characteristics
Figure 79. LQFP144 recommended footprint
AIC
1. Drawing is not to scale.
2. Dimensions are in millimeters.
Doc ID 022152 Rev 3
159/180
Package characteristics
STM32F405xx, STM32F407xx
Figure 80. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,
package outline
# 3EATINGPLANE
!
DDD
!
#
!
$
"ALL!
E
"ALL!
&
!
&
%
E
2
"/44/-6)%7
4/06)%7
!%?-%?6
1. Drawing is not to scale.
Table 92.
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.002
0.0031
0.0043
A4
0.400
0.450
0.500
0.0157
0.0177
0.0197
b
0.230
0.280
0.330
0.0091
0.0110
0.0130
D
9.900
10.000
10.100
0.3898
0.3937
0.3976
E
9.900
10.000
10.100
0.3898
0.3937
0.3976
e
F
0.650
0.425
0.450
0.0256
0.475
0.0167
0.0187
ddd
0.080
0.0031
eee
0.150
0.0059
fff
0.080
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
160/180
0.0177
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Package characteristics
Figure 81. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline
# 3EATINGPLANE
MM
GAUGEPLANE
! !
K
C
!
CCC#
!
($
,
$
,
:$
:%
B
%
0IN
IDENTIFICATION
(%
E
4?-%
1. Drawing is not to scale.
Table 93.
LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
Max
0.0630
A1
0.050
0.150
0.0020
A2
1.350
1.450
0.0531
0.0060
b
0.170
0.270
0.0067
0.0106
C
0.090
0.200
0.0035
0.0079
D
23.900
24.100
0.9409
0.9488
E
23.900
24.100
0.9409
0.9488
e
0.500
0.0197
HD
25.900
26.100
1.0200
1.0276
HE
25.900
26.100
1.0200
1.0276
L
0.450
0.750
0.0177
0.0295
L1
1.000
0.0394
ZD
1.250
0.0492
ZE
1.250
0.0492
ccc
k
0.080
0°
7°
0.0031
0°
7°
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 022152 Rev 3
161/180
Package characteristics
STM32F405xx, STM32F407xx
Figure 82. LQFP176 recommended footprint
4?&0?6
1. Dimensions are expressed in millimeters.
162/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
6.2
Package characteristics
Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
●
TA max is the maximum ambient temperature in °C,
●
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
●
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
●
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 94.
Package thermal characteristics
Symbol
ΘJA
Parameter
Value
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
43
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch
40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch
38
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.65 mm pitch
39
Unit
°C/W
Thermal resistance junction-ambient
WLCSP90 - 0.400 mm pitch
38.1
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Doc ID 022152 Rev 3
163/180
Part numbering
STM32F405xx, STM32F407xx
7
Part numbering
Table 95.
Ordering information scheme
Example:
STM32
F
405 R
E
T
6
xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
405 = STM32F40x, connectivity
407= STM32F40x, connectivity, camera interface, Ethernet
Pin count
R = 64 pins
O = 90 pins
V = 100 pins
Z = 144 pins
I = 176 pins
Flash memory size
E = 512 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
T = LQFP
H = UFBGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
164/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Appendix A
A.1
Application block diagrams
Application block diagrams
Main applications versus package
Table 96 gives examples of configurations for each package.
Table 96.
Main applications versus package for STM32F407xx microcontrollers
64 pins
100 pins
144 pins
176 pins
Config Config Config Config Config Config Config Config Config Config Config Config Config
1
2
3
1
2
3
4
1
2
3
4
1
2
USB 1
USB 2
OTG
FS
X
X
X
X
X
X
-
X
FS
X
X
X
X
X
X
X
X
X
HS
ULPI
-
-
-
X
-
-
-
X
X
X
X
OTGFS
-
-
-
X
X
X
X
X
FS
-
-
-
X
X
X
X
X
X
MII
-
-
-
-
-
X
X
RMII
-
-
-
-
X
X
X
X
-
X
-
-
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Ethernet
SPI/I2S2
SPI/I2S3
SDIO
SDIO
8bits
Data
10bits
Data
-
SDIO
or
DCMI
SDIO
or
DCMI
-
X
SDIO
or
DCMI
SDIO
or
DCMI
SDIO
or
DCMI
X
X
X
SDIO
or
DCMI
X
X
SDIO
or
DCMI
DCMI
12bits
Data
FSMC
CAN
-
X
X
X
X
X
X
X
X
X
14bits
Data
-
-
-
-
-
-
-
NOR/
RAM
Muxed
-
-
-
X
X
X
X
NOR/
RAM
-
-
-
NAND
-
-
-
X
X
X
CF
-
-
-
-
-
-
X
X
-
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
-
X
X
X
X
X
X
X
X
-
-
X
X
-
X
Doc ID 022152 Rev 3
165/180
Application block diagrams
A.2
STM32F405xx, STM32F407xx
Application example with regulator OFF
Figure 83. Regulator OFF/internal reset ON
0OWERDOWNRESETRISEN
AFTER6#!0?6#!0?STABILIZATION
0OWERDOWNRESETRISEN
BEFORE6#!0?6#!0?STABILIZATION
!PPLICATIONRESET
6#!0?MONITORING
%XTRESETCONTROLLERACTIVE SIGNALOPTIONAL
WHEN6 #!0?6
!PPLICATIONRESETSIGNAL
OPTIONAL
6$$
0!
6$$
6$$
.234
0!
6$$
.234
0$2?/.
0$2?/.
"90!33?2%'
"90!33?2%'
6
6
6#!0?
6#!0?
6#!0?
6#!0?
AI
1. This mode is available only on UFBGA176 and WLCSP90 packages.
Figure 84. Regulator OFF/internal reset OFF
6$$
6$$MONITORING
%XTRESETCONTROLLERACTIVE
WHEN6 $$6
OR6 #!0?6#!0?6
6$$
6$$
.234 0!
"90!33?2%'
0$2?/.
6$$
6
6#!0?
6#!0?
AI
1. This mode is available only on UFBGA176 and WLCSP90 packages.
166/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
USB OTG full speed (FS) interface solutions
Figure 85. USB controller configured as peripheral-only and used
in Full speed mode
6$$
6TO6$$
6OLATGEREGULATOR 6"53
0!0"
$-
/3#?).
0!0"
$0
0!0"
633
/3#?/54
53"3TD"CONNECTOR
34-&XX
-36
1. External voltage regulator only needed when building a VBUS powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 86. USB controller configured as host-only and used in full speed mode
6$$
%.
'0)/
'0)/)21
34-&XX
/VERCURRENT
60WR
0!0"
/3#?).
#URRENTLIMITER
POWERSWITCH 0!0"
0!0"
6"53
$$0
633
/3#?/54
53"3TD!CONNECTOR
A.3
Application block diagrams
-36
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Doc ID 022152 Rev 3
167/180
Application block diagrams
STM32F405xx, STM32F407xx
Figure 87. USB controller configured in dual mode and used in full speed mode
6$$
6TO6$$
VOLTAGEREGULATOR 6$$
'0)/)21
/VERCURRENT
#URRENTLIMITER
POWERSWITCH 60WR
34-&XX
0!0"
0!0"
/3#?).
/3#?/54
0!0"
0!0"
6"53
$$0
)$
633
53"MICRO!"CONNECTOR
'0)/
%.
-36
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
168/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
A.4
Application block diagrams
USB OTG high speed (HS) interface solutions
Figure 88. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode
34-&XX
&30(9
53"(3
/4'#TRL
$0
$-
NOTCONNECTED
$0
5,0)?#,+
$-
5,0)?$;=
5,0)
)$
5,0)?$)2
6"53
5,0)?340
53"
CONNECTOR
633
5,0)?.84
(IGHSPEED
/4'0(9
0,,
84
OR-(Z84
-#/OR-#/
8)
-36
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F40x
with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible
connection.
2. The ID pin is required in dual role only.
Doc ID 022152 Rev 3
169/180
Application block diagrams
A.5
STM32F405xx, STM32F407xx
Complete audio player solutions
Two solutions are offered, illustrated in Figure 89 and Figure 90.
Figure 89 shows storage media to audio DAC/amplifier streaming using a software Codec.
This solution implements an audio crystal to provide audio class I2S accuracy on the master
clock (0.5% error maximum, see the Serial peripheral interface section in the reference
manual for details).
Figure 89. Complete audio player solution 1
34-&XX
84!,
-(Z
OR-(Z
#ORTEX-&CORE
UPTO-(Z
0ROGRAMMEMORY
/4'
HOST
MODE
0(9
53"
-ASSSTORAGE
DEVICE
30)
3$)/
--#
3$#ARD
&ILE
3YSTEM
30)
&3-#
,#$
TOUCH
SCREEN
'0)/
#ONTROL
BUTTONS
$!#
!UDIO
AMPLI
)3
!UDIO
#/$%#
5SER
APPLICATION
-36
Figure 90 shows storage media to audio Codec/amplifier streaming with SOF
synchronization of input/output audio streaming using a hardware Codec.
Figure 90. Complete audio player solution 2
34-&XX
84!,
-(Z
OR-(Z
#ORTEX-&CORE
UPTO-(Z
0ROGRAMMEMORY
53"
-ASSSTORAGE
DEVICE
3/&
--#
3$#ARD
/4'
0(9
30)
3$)/
&ILE
3YSTEM
30)
&3-#
,#$
TOUCH
SCREEN
'0)/
#ONTROL
BUTTONS
)3
5SER
APPLICATION
!UDIO
#/$%#
!UDIO
AMPLI
3/&SYNCHRONIZATIONOFINPUTOUTPUT
AUDIOSTREAMING
-36
170/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Application block diagrams
Figure 91. Audio player solution using PLL, PLLI2S, USB and 1 crystal
34-&XX
$IV
BY-
/3#
84!,
-(Z
OR-(Z
0,,
X.
$IV
BY0
#ORTEX-&CORE
UPTO-(Z
$IV
BY1
/4'
-(Z
0,,)3
X.
$IV
BY2
0(9
-#/02%
-#/02%
-#/
-#/
)3
ACCURACY
-#,+
IN
-#,+OUT
3#,+
$!#
!UDIO
AMPLI
-36
Figure 92. Audio PLL (PLLI2S) providing accurate I2S clock
0,,)3
0HASELOCKDETECTOR
#,+).
-
-(Z
0HASE#
6#/
TO-(Z
)3?-#+§&3!5$)/
-(ZFORK(Z
-(ZFORK(Z
.
.
2
2
)3#/-?#+
)3#4,
)3?-#+
)3$
AIB
Doc ID 022152 Rev 3
171/180
Application block diagrams
STM32F405xx, STM32F407xx
Figure 93. Master clock (MCK) used to drive the external audio DAC
)3CONTROLLER
)3?#+
)3?-#+§&3!5$)/
-(ZFOR&3!5$)/K(Z
-(ZFOR&3!5$)/K(Z
)3$
)3?3#+)3?-#+FORBITSTEREO
)3?-#+FORBITSTEREO
X
&3!5$)/
FORBITSTEREO
X
&3!5$)/
FORBITSTEREO
AI
1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).
Figure 94. Master clock (MCK) not used to drive the external audio DAC
)3CONTROLLER
)3#/-?#+
)3$
)3?3#+
X
&3!5$)/
FORBITSTEREO
X
&3!5$)/
FORBITSTEREO
AI
1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).
172/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
A.6
Application block diagrams
Ethernet interface solutions
Figure 95. MII mode using a 25 MHz crystal
34-
-#5
-))?48?#,+
-))?48?%.
-))?48$;=
-))?#23
-))?#/,
%THERNET
-!#
(#,+
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
%THERNET
0(9
-))
PINS
-))?28?#,+
-))?28$;=
-))?28?$6
-))?28?%2
-))-$#
PINS
-$)/
-$#
003?/54
84!,
-(Z
/3#
0,,
(#,+
-#/-#/
0(9?#,+-(Z
84
-36
1. fHCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP optional signal.
Figure 96. RMII with a 50 MHz oscillator
34-
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
2-))?#28?$6
2-))?2%&?#,+
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))
PINS
2-))-$#
PINS
-$)/
-$#
OR
OR-(Z SYNCHRONOUS -(Z
/3#
-(Z
0,,
(#,+
0(9?#,+-(Z
84
-(Z
-36
1. fHCLK must be greater than 25 MHz.
Doc ID 022152 Rev 3
173/180
Application block diagrams
STM32F405xx, STM32F407xx
Figure 97. RMII with a 25 MHz crystal and PHY with PLL
34-&
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
)%%%040
2-))?#28?$6
2-))?2%&?#,+
2-))
PINS
2%&?#,+
-$)/
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))-$#
PINS
-$#
OR
OR-(Z SYNCHRONOUS -(Z
84!,
-(Z
/3#
0,,
(#,+
0,,
-#/-#/
0(9?#,+-(Z 84
-36
1. fHCLK must be greater than 25 MHz.
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.
174/180
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
8
Revision history
Revision history
Table 97.
Document revision history
Date
Revision
15-Sep-2011
1
Initial release.
2
Added WLCSP90 package on cover page.
Renamed USART4 and USART5 into UART4 and UART5, respectively.
Updated number of USB OTG HS and FS in Table 2: STM32F405xx
and STM32F407xx: features and peripheral counts.
Updated Figure 3: Compatible board design between
STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package and
Figure 4: Compatible board design between STM32F2xx and
STM32F4xx for LQFP176 package, and removed note 1 and 2.
Updated Section 2.2.9: Flexible static memory controller (FSMC).
Modified I/Os used to reprogram the Flash memory for CAN2 and
USB OTG FS in Section 2.2.13: Boot modes.
Updated note in Section 2.2.14: Power supply schemes.
PDR_ON no more available on LQFP100 package. Updated
Section 2.2.16: Voltage regulator. Updated condition to obtain a
minimum supply voltage of 1.7 V in the whole document.
Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for
UART4 and UART5 in Table 4: USART feature comparison.
Removed support of I2C for OTG PHY in Section 2.2.29: Universal
serial bus on-the-go full-speed (OTG_FS).
Added Table 5: Legend/abbreviations used in the pinout table.
Table 6: STM32F40x pin and ball definitions: replaced VSS_3, VSS_4,
and VSS_8 by VSS; reformatted Table 6: STM32F40x pin and ball
definitions to better highlight I/O structure, and alternate functions
versus additional functions; signal corresponding to LQFP100 pin 99
changed from PDR_ON to VSS; EVENTOUT added in the list of
alternate functions for all I/Os; ADC3_IN8 added as alternate function
for PF10; FSMC_CLE and FSMC_ALE added as alternate functions for
PD11 and PD12, respectively; PH10 alternate function
TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PA5 I/O
structure to TTa.
Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 6:
STM32F40x pin and ball definitions and Table 8: Alternate function
mapping.
Changed TCM data RAM to CCM data RAM in Figure 16: STM32F40x
memory map.
Added IVDD and IVSS maximum values in Table 11: Current
characteristics.
Added Note 1 related to fHCLK, updated Note 2 in Table 13: General
operating conditions, and added maximum power dissipation values.
Updated Table 14: Limitations depending on the operating power
supply range.
24-Jan-2012
Changes
Doc ID 022152 Rev 3
175/180
Revision history
STM32F405xx, STM32F407xx
Table 97.
Document revision history (continued)
Date
24-Jan-2012
176/180
Revision
Changes
Added V12 in Table 18: Embedded reset and power control block
characteristics.
Updated Table 19: Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory (ART
accelerator disabled) and Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM. Added Figure ,
Figure 23, Figure 24, and Figure 25.
Updated Table 21: Typical and maximum current consumption in Sleep
mode and removed Note 1.
Updated Table 22: Typical and maximum current consumptions in Stop
mode and Table 23: Typical and maximum current consumptions in
Standby mode, Table 24: Typical and maximum current consumptions
in VBAT mode, and Table 25: Switching output I/O current consumption.
Section : On-chip peripheral current consumption: modified conditions,
and updated Table 26: Peripheral current consumption and Note 2.
Changed fHSE_ext to 50 MHz and tr(HSE)/tf(HSE) maximum value in
Table 28: High-speed external user clock characteristics.
Added Cin(LSE) in Table 29: Low-speed external user clock
2
characteristics.
(continued)
Updated maximum PLL input clock frequency, removed related note,
and deleted jitter for MCO for RMII Ethernet typical value in Table 34:
Main PLL characteristics. Updated maximum PLLI2S input clock
frequency and removed related note in Table 35: PLLI2S (audio PLL)
characteristics.
Updated Section : Flash memory to specify that the devices are
shipped to customers with the Flash memory erased. Updated
Table 37: Flash memory characteristics, and added tME in Table 38:
Flash memory programming.
Updated Table 41: EMS characteristics, and Table 42: EMI
characteristics.
Updated Table 55: I2S characteristics
Updated Figure 44: ULPI timing diagram and Table 62: ULPI timing.
Added tCOUNTER and tMAX_COUNT in Table 50: Characteristics of TIMx
connected to the APB1 domain and Table 51: Characteristics of TIMx
connected to the APB2 domain. Updated Table 65: Dynamics
characteristics: Ethernet MAC signals for RMII.
Removed USB-IF certification in Section : USB OTG FS
characteristics.
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 97.
Revision history
Document revision history (continued)
Date
24-Jan-2012
Revision
Changes
Updated Table 59: USB FS clock timing parameters and Table 61: USB
HS clock timing parameters
Updated Table 67: ADC characteristics.
Updated Table 68: ADC accuracy at fADC = 30 MHz.
Updated Note 1 in Table 72: DAC characteristics.
Section 5.3.25: FSMC characteristics: updated Table 73 toTable 84,
changed CL value to 30 pF, and modified FSMC configuration for
asynchronous timings and waveforms. Updated Figure 58:
Synchronous multiplexed PSRAM write timings.
Updated Table 94: Package thermal characteristics.
2
Appendix A.3: USB OTG full speed (FS) interface solutions: modified
(continued) Figure 85: USB controller configured as peripheral-only and used in
Full speed mode added Note 2, updated Figure 86: USB controller
configured as host-only and used in full speed mode and added
Note 2, changed Figure 87: USB controller configured in dual mode
and used in full speed mode and added Note 3.
Appendix A.4: USB OTG high speed (HS) interface solutions: removed
figures USB OTG HS device-only connection in FS mode and USB
OTG HS host-only connection in FS mode, and updated Figure 88:
USB controller configured as peripheral, host, or dual-mode and used
in high speed mode and added Note 2.
Added Appendix A.6: Ethernet interface solutions.
Doc ID 022152 Rev 3
177/180
Revision history
STM32F405xx, STM32F407xx
Table 97.
Document revision history (continued)
Date
31-May-2012
178/180
Revision
Changes
3
Updated Figure 5: STM32F40x block diagram and Figure 7: Regulator
ON/internal reset OFF
Added SDIO, added notes related to FSMC and SPI/I2S in Table 2:
STM32F405xx and STM32F407xx: features and peripheral counts.
Starting from Silicon revision Z, USB OTG full-speed interface is now
available for all STM32F405xx devices.
Added full information on WLCSP90 package together with
corresponding part numbers.
Changed number of AHB buses to 3.
Modified available Flash memory sizes in Section 2.2.4: Embedded
Flash memory.
Modified number of maskable interrupt channels in Section 2.2.10:
Nested vectored interrupt controller (NVIC).
Updated case of Regulator ON/internal reset ON, Regulator
ON/internal reset OFF, and Regulator OFF/internal reset ON in
Section 2.2.16: Voltage regulator.
Updated standby mode description in Section 2.2.18: Low-power
modes.
Added Note 1 below Figure 14: STM32F40x UFBGA176 ballout.
Added Note 1 below Figure 15: STM32F40x WLCSP90 ballout.
Updated Table 6: STM32F40x pin and ball definitions.
Added Table 7: FSMC pin definition.
Removed OTG_HS_INTN alternate function in Table 6: STM32F40x
pin and ball definitions and Table 8: Alternate function mapping.
Removed I2S2_WS on PB6/AF5 in Table 8: Alternate function
mapping.
Replaced JTRST by NJTRST, removed ETH_RMII _TX_CLK, and
modified I2S3ext_SD on PC11 in Table 8: Alternate function mapping.
Table 8: Alternate function mapping.
Added Table 9: STM32F40x register boundary addresses.
Updated Figure 16: STM32F40x memory map.
Updated VDDA and VREF+ decoupling capacitor in Figure 19: Power
supply scheme.
Added power dissipation maximum value for WLCSP90 in Table 13:
General operating conditions.
Updated VPOR/PDR in Table 18: Embedded reset and power control
block characteristics.
Updated notes in Table 19: Typical and maximum current consumption
in Run mode, code with data processing running from Flash memory
(ART accelerator disabled), Table 20: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM, and Table 21:
Typical and maximum current consumption in Sleep mode.
Updated maximum current consumption at TA = 25 °n Table 22:
Typical and maximum current consumptions in Stop mode.
Doc ID 022152 Rev 3
STM32F405xx, STM32F407xx
Table 97.
Revision history
Document revision history (continued)
Date
31-May-2012
Revision
Changes
Removed fHSE_ext typical value in Table 28: High-speed external user
clock characteristics. Updated Table 30: HSE 4-26 MHz oscillator
characteristics and Table 31: LSE oscillator characteristics (fLSE =
32.768 kHz).
Added fPLL48_OUT maximum value in Table 34: Main PLL
characteristics.
Modified equation 1 and 2 in Section 5.3.11: PLL spread spectrum
clock generation (SSCG) characteristics.
Updated Table 37: Flash memory characteristics, Table 38: Flash
memory programming, and Table 39: Flash memory programming with
VPP.
Updated Section : Output driving current.
Table 52: I2C characteristics: Note 3 updated and applied to th(SDA) in
Fast mode, and removed note 4 related to th(SDA) minimum value.
Updated Table 67: ADC characteristics. Updated note concerning ADC
accuracy vs. negative injection current below Table 68: ADC accuracy
3
at fADC = 30 MHz.
(continued)
Added WLCSP90 thermal resistance in Table 94: Package thermal
characteristics.
Updated Table 88: WLCSP90 - 0.400 mm pitch wafer level chip size
package mechanical data.
Updated Figure 80: UFBGA176+25 - ultra thin fine pitch ball grid array
10 × 10 × 0.6 mm, package outline and Table 92: UFBGA176+25 ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data.
Added Figure 82: LQFP176 recommended footprint.
Removed 256 and 768 Kbyte Flash memory density from Table 95:
Ordering information scheme.
Appendix A.1: Main applications versus package: Removed number of
address lines for FSMC/NAND in Table 96: Main applications versus
package for STM32F407xx microcontrollers.
Appendix A.5: Complete audio player solutions: updated Figure 89:
Complete audio player solution 1 and Figure 90: Complete audio player
solution 2.
Doc ID 022152 Rev 3
179/180
STM32F405xx, STM32F407xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
180/180
Doc ID 022152 Rev 3