CREE C2M0080120D

VDS
1200 V
ID @ 25˚C 31.6 A
C2M0080120D
Silicon Carbide Power MOSFET
TM
Z-FET MOSFET
RDS(on)
80 mΩ
N-Channel Enhancement Mode
Features
•
•
•
•
•
•
Package
High Speed Switching with Low Capacitances
High Blocking Voltage with Low RDS(on)
Easy to Parallel and Simple to Drive
Avalanche Ruggedness
Resistant to Latch-Up
Halogen Free, RoHS Compliant
TO-247-3
Benefits
•
•
•
Higher System Efficiency
Reduced Cooling Requirements
Increased System Switching Frequency
Applications
•
•
•
•
•
Solar Inverters
High Voltage DC/DC Converters
Motor Drives
Switch Mode Power Supplies
UPS
Part Number
Package
C2M0080120D
TO-247-3
Maximum Ratings (TC = 25 ˚C unless otherwise specified)
Symbol
IDS (DC)
Parameter
Continuous Drain Current
IDS (pulse) Pulsed Drain Current
VGS
Gate Source Voltage
Ptot
Power Dissipation
TJ , Tstg
1
Operating Junction and Storage Temperature
Value
31.6
20
A
A
-10/+25
V
208
W
-55 to
+150
˚C
˚C
Solder Temperature
260
Md
Mounting Torque
1
8.8
Test Conditions
[email protected] V, TC = 25˚C
Note
Fig. 16
[email protected] V, TC = 100˚C
80
TL
C2M0080120D Rev. A
Unit
Pulse width tP = 50 μs
duty limited by Tjmax, TC = 25˚C
TC=25˚C
1.6mm (0.063”) from case for 10s
Nm
M3 or 6-32 screw
lbf-in
Fig. 15
Electrical Characteristics (TC = 25˚C unless otherwise specified)
Symbol
V(BR)DSS
Parameter
Drain-Source Breakdown Voltage
Min.
Max. Unit
1200
1.7
VGS(th)
Typ.
V
2.2
V
3.2
Gate Threshold Voltage
1.2
1.7
V
TBD
1
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate-Source Leakage Current
RDS(on)
10
Drain-Source On-State Resistance
80
98
150
208
9.8
Transconductance
Ciss
Input Capacitance
Coss
Output Capacitance
80
Crss
Reverse Transfer Capacitance
6.5
Eoss
Coss Stored Energy
40
Fall Time
18.4
Turn-Off Delay Time
23.2
trv
Rise Time
13.6
RG
Internal Gate Resistance
td(off)v
VDS = 10V, ID = 1 mA
VDS = 10V, ID = 10 mA
VDS = 10V, ID = 1 mA, TJ = 150ºC
Fig. 8
VDS = 10V, ID = 10 mA, TJ = 150ºC
VDS = 1200 V, VGS = 0 V
VDS = 1200 V, VGS = 0 V
TJ = 150ºC
μA
VGS = 20 V, VDS = 0 V
mΩ
950
12.0
Note
VGS = 0 V, ID = 100 μA
μA
S
8.5
Turn-On Delay Time
tfv
250
0.25
gfs
td(on)v
100
Test Conditions
VGS = 20 V, ID = 20 A
VGS = 20 V, ID = 20A, TJ = 150ºC
VDS= 20 V, IDS= 20 A
VDS= 20 V, IDS= 20 A, TJ = 150ºC
VGS = 0 V
pF
VDS = 1000 V
Fig. 6
Fig. 4
Fig.
13, 14
f = 1 MHz
μJ
VAC = 25 mV
Fig. 12
VDD = 800 V, VGS = 0/20 V
ID = 20 A
ns
RG(ext) = 0 Ω, RL = 40 Ω
Fig. 20
Timing relative to VDS
4.6
Ω
f = 1 MHz, VAC = 25 mV
Built-in SiC Body Diode Characteristics
Symbol
Parameter
VSD
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Irrm
Typ.
Max.
Unit
3.3
V
3.1
40
ns
Reverse Recovery Charge
165
nC
Peak Reverse Recovery Current
6.4
A
Test Conditions
Note
VGS = -5 V, IF=10 A, TJ = 25 ºC
VGS = -2 V, IF=10 A, TJ = 25 ºC
VGS = -5 V, IF=20 A, TJ = 25 ºC
VR = 800 V,
diF/dt= 350 A/μs
Thermal Characteristics
Symbol
Parameter
Typ.
Max.
RθJC
Thermal Resistance from Junction to Case
0.60
0.65
RθCS
Case to Sink, w/ Thermal Compound
TBD
RθJA
Thermal Resistance From Junction to Ambient
Unit
Test Conditions
K/W
Note
Fig. 17
40
Gate Charge Characteristics
Symbol
2
Parameter
Typ.
Qgs
Gate to Source Charge
10.8
Qgd
Gate to Drain Charge
18.0
Qg
Gate Charge Total
49.2
C2M0080120D Rev. A
Max.
Unit
nC
Test Conditions
Note
VDS = 800 V, VGS = 0/20 V
ID =20 A
Per JEDEC24 pg 27
Fig. 28
Typical Performance
100
VGS = 18 V
80
VGS = 16 V
60
VGS = 14 V
40
VGS = 12 V
20
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
100
VGS = 20 V
Conditions:
TJ = -55 °C
tp = 50 µs
VGS = 10 V
0
VGS = 20 V
Conditions:
TJ = 25 °C
tp = 50 µs
VGS = 18 V
80
VGS = 16 V
VGS = 14 V
60
VGS = 12 V
40
VGS = 10 V
20
0
0
3
6
9
12
15
18
0
3
6
Drain-Source Voltage VDS (V)
Figure 1. Typical Output Characteristics TJ = -55 ºC
Conditions:
TJ = 150 °C
tp = 50 µs
VGS = 18 V
18
Parameters:
VDS = 20 V
VGS = 20 V
VGS = 16 V
60
VGS = 14 V
VGS = 12 V
40
VGS = 10 V
20
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
15
Figure 2. Typical Output Characteristics TJ = 25 ºC
0
0
3
6
9
12
15
30
150 °C
20
25 °C
10
0
18
0
Drain-Source Voltage VDS (V)
2
Figure 3. Typical Output Characteristics TJ = 150 ºC
0.20
6
8
10
12
Gate-Source Voltage, VGS (V)
Parameters:
VGS = 20 V
Parameters:
VGS = 20 V
IDS = 20 A
2.0
4
150 °C
125 °C
0.16
On Resistance, RDS On (Ω)
1.8
1.5
1.3
1.0
14
Figure 4. Typical Transfer Characteristics
2.3
On Resistance, RDS On (pu)
12
40
80
100 °C
0.12
75 °C
25 °C
0 °C
0.08
-55 °C
0.8
0.5
0.04
-50
-25
0
25
50
75
100
125
150
Junction Temperature, TJ (°C)
Figure 5. Normalized On-Resistance vs. Temperature
3
9
Drain-Source Voltage VDS (V)
C2M0080120D Rev. A
0
10
20
30
Drain-Source Current, IDS (A)
Figure 6. On-Resistance vs. Drain Current
40
Typical Performance
0.30
3.5
Parameters:
IDS = 20 A
0.25
Threshold Voltage, Vth (V)
On Resistance, RDS On (Ω)
-55 °C
0.20
150 °C
0.15
0.10
Conditions:
VDS = 10 V
IDS = 1 mA
3.0
25 °C
0.05
2.5
Typical
2.0
1.5
Minimum
1.0
0.5
0.00
0.0
10
12
14
16
18
20
-50
-25
0
25
Gate-Source Voltage, VGS (V)
-4
-3
-2
-1
0
-5
-4
150
-3
-2
-1
0
0
-20
VGS = 5 V
VGS = 0 V
-30
VGS = 10 V
VGS = 15 V
VGS = 20 V
-40
-10
Drain-Source Current, IDS (A)
Drain-Source Current, IDS (A)
125
Conditions:
TJ = 25 °C
-10
-20
VGS = 10 V
VGS = 15 V
VGS = 20 V
-3
-2
-1
-30
-40
-50
Drain-Source Voltage, VDS (V)
Figure 9. Typical 3rd Quadrant Characteristics
TJ = -55 ºC
-4
VGS = 5 V
VGS = 0 V
-50
Drain-Source Voltage, VDS (V)
Conditions:
TJ = 150 °C
100
0
Conditions:
TJ = -55 °C
-5
75
Figure 8. Typical and Minimum Threshold Voltage vs.
Temperature
Figure 7. On-Resistance vs. Gate Voltage
-5
50
Junction Temperature, TJ (°C)
Figure 10. Typical 3rd Quadrant Characteristics
TJ = 25 ºC
0
60
0
VGS = 0 V
VGS = 5 V
50
VGS = 10 V
VGS = 15 V
VGS = 20 V
-20
-30
-40
Stored Energy, EOSS (µJ)
Drain-Source Current, IDS (A)
-10
40
30
20
10
0
Drain-Source Voltage, VDS (V)
-50
Figure 11. Typical 3rd Quadrant Characteristics
TJ = 150 ºC
4
C2M0080120D Rev. A
0
200
400
600
800
1000
Drain-Source Voltage, VDS (V)
Figure 12. Typical transfer Characteristics
1200
Typical Performance
10000
10000
CISS
CISS
1000
Capacitance (pF)
Capacitance (pF)
1000
COSS
100
COSS
100
CRSS
10
10
1
0
50
100
150
200
Figure 13. Typical Typical Capacitances vs. Drain-Source
Voltage (0 - 200V)
CRSS
1
0
Drain-Source Voltage, VDS (V)
200
Continuous Drain-Source Current, IDS (A)
200
150
100
50
0
1000
30
25
20
15
10
5
-25
0
25
50
75
100
125
150
-50
-25
Case Temperature, TC (°C)
25
50
75
100
125
Figure 16. Continuous Current Derating Curve
1.000
100
DC:
Limited
by RDS(on)
0.5
Drain-Source Current, IDS (A)
0.3
0.1
0.05
0.02
0.010
0.01
tp
SinglePulse
0.001
0.000001
0
Case Temperatrue, TC (oC)
Figure 15. Power Dissipation Derating Curve
Junctino-Case Thermal Impedance, ZthJC (oC/W)
800
0
-50
0.00001
0.001
0.01
Pulse Time, tp (s)
C2M0080120D Rev. A
1
0.1
T
0.0001
10
D = tp / T
0.1
Figure 17. Typical Transient Thermal Impedance
(Junction - Case) with Duty Cycle
5
600
35
Condition:
TJ = 150 °C
0.100
400
Drain-Source Voltage, VDS (V)
Figure 14. Typical Typical Capacitances vs. Drain-Source
Voltage (0 - 1000V)
250
Dissipated Power, PD (W)
Conditions
VGS = 0 V
ftest = 1 MHz
Conditions:
VGS = 0 V
ftest = 1 MHz
1
1
10
100
Drain-Source Voltage, VDS (V)
Figure 18. Safe Operating Area
1000
150
Typical Performance
20
80
Conditions:
VDS = 800 V
IDS = 20 A
IGS = 10 mA
TJ = 25 C
60
tD(off)
tr
50
12
Time (ns)
Gate-Source Voltage, VGS (V)
16
Conditions:
VGS = 0 / 20 V
VDS = 800 V
RL = 40 Ω
IDS = 20 A
TJ = 25 °C
70
8
tf
40
30
20
4
tD(on)
10
0
0
0
10
20
30
40
50
0
Gate-Source Charge, QGS (nC)
Figure 19. Typical Gate Characteristic 25 ºC
15
20
25
600
Conditions:
VGS = 0 / 20 V
RG = 2.5 Ω
VDS = 800 V
L = 856 µH
FWD = C4D10120
TJ = 25 °C
ETOT,SW
500
ETOT,SW
Switching Energy (µJ)
400
Switching Energy (µJ)
10
External Gate Resistor (Ω)
Figure 20. Resistive Switching Times vs. RG
500
300
EON
200
EOFF
100
400
EON
300
EOFF
200
Conditions:
VGS = 0 / 20 V
RG = 6.8 Ω
VDS = 800 V
L = 856 µH
FWD = C4D10120
IDS = 20 A
100
0
0
0
5
10
15
Peak Drain-Source Current, IDS (A)
Figure 21. Clamped Inductive Switching Energy vs.
Drain Current (Fig. 24)
6
5
C2M0080120D Rev. A
20
25
50
75
100
Junction Temperature, TJ (°C)
125
Figure 22. Clamped Inductive Switching Energy vs.
Junction Temperature (Fig. 24)
150
Clamped Inductive Switch Testing Fixture and Waveforms
C4D10120D
10A, 1200V
SiC Schottky
L = 856 µH
V = 800 V
C = 42.3 µF
D.U.T.
C2M0080120D
Figure 23. Clamped Inductive Switching Waveform Test Circuit
t On
VDS
td (On)
t Off
tr
td (Off)
tf
VDS On
90%
90%
10%
VDS Off
10%
VGS On
90%
VGS
10%
VGS Off
Figure 24. Switching Test Waveforms for Transition Times
D.U.T.
C2M0080120D
L = 856 µH
V = 800 V
C = 42.3 µF
C2M0080120D
Figure 25. Body Diode Recovery Test Circuit
7
C2M0080120D Rev. A
Test Circuit Diagrams and Waveforms
trr
Qrr= id dt
tx
∫
trr
Ic
tx
10% Irr
10% Vcc
Vcc
Vpk
Irr
Diode Recovery
Waveforms
t2
Erec= id dt
t1
∫
Diode Reverse
Recovery Energy
t1
t2
Figure 26. Body Diode Recovery Waveform
EA = 1/2L x ID2
FOR OFFICIAL USE ONLY – Not Cleared for Open Release
FOR OFFICIAL USE ONLY – Not Cleared for Open Release
Figure 27. Unclamped Inductive Switching Test
Circuit
Figure 28. Unclamped Inductive Switching waveform for Avalanche Energy
ESD Ratings
8
ESD Test
Total Devices Sampled
Resulting Classification
ESD-HBM
All Devices Passed 1000V
2 (>2000V)
ESD-MM
All Devices Passed 400V
C (>400V)
ESD-CDM
All Devices Passed 1000V
IV (>1000V)
C2M0080120D Rev. A
Package Dimensions
Package TO-247-3
POS
A
(2)
(1)
(3)
Inches
Millimeters
Min
Max
Min
Max
.190
.205
4.83
5.21
A1
.090
.100
2.29
2.54
A2
.075
.085
1.91
2.16
b
.042
.052
1.07
1.33
b1
.075
.095
1.91
2.41
b2
.075
.085
1.91
2.16
b3
.113
.133
2.87
3.38
b4
.113
.123
2.87
3.13
c
.022
.027
0.55
0.68
D
.819
.831
20.80
21.10
D1
.640
.695
16.25
17.65
D2
.037
.049
0.95
1.25
E
.620
.635
15.75
16.13
E1
.516
.557
13.10
14.15
E2
.145
.201
3.68
5.10
E3
.039
.075
1.00
1.90
E4
.487
.529
12.38
13.43
e
.214 BSC
5.44 BSC
N
3
3
L
.780
.800
19.81
20.32
L1
.161
.173
4.10
4.40
ØP
.138
.144
3.51
3.65
Q
.216
.236
5.49
6.00
S
.238
.248
6.04
6.30
Recommended Solder Pad Layout
Part Number
Package
Marking
C2M0080120D
TO-247-3
C2M0080120
TO-247-3
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems, or weapons systems.
Copyright © 2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the
Cree logo are registered trademarks and Z-REC and Z-FET are trademarks of Cree, Inc.
9
C2M0080120D Rev. A
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power