ETC 2SJ332L

2SJ332 L , 2SJ332 S
Silicon P Channel MOS FET
Application
DPAK–2
High speed power switching
4
Features
4
12
•
•
•
•
Low on–resistance
High speed switching
Low drive current
4 V Gate drive device can be driven from 5 V
Source
• Suitable for Switching regulator, DC – DC
converter
2, 4
12
3
3
1. Gate
2. Drain
3. Source
4. Drain
1
3
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
–20
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
–10
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
–40
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
–10
A
———————————————————————————————————————————
Channel dissipation
Pch**
20
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** Value at Tc = 25°C
2SJ332 L , 2SJ332 S
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
–20
—
—
V
ID = –10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
–100
µA
VDS = –16 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
–1.0
—
–2.5
V
ID = –1 mA, VDS = –10 V
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.05
0.08
Ω
ID = –5 A
VGS = –10 V *
————————————————————————
—
0.09
0.14
Ω
ID = –5 A
VGS = –4 V *
———————————————————————————————————————————
Forward transfer admittance
|yfs|
6
9
—
S
ID = –5 A
VDS = –10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
730
—
pF
VDS = –10 V
————————————————————————————————
Output capacitance
Coss
—
680
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
260
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
13
—
ns
ID = –5 A
————————————————————————————————
Rise time
tr
—
110
—
ns
————————————————————————————————
Turn–off delay time
td(off)
—
90
—
ns
VGS = –10 V
RL = 2 Ω
————————————————————————————————
Fall time
tf
—
110
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
VDF
—
–1.2
—
V
IF = –10 A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
50
—
µs
IF = –10 A, VGS = 0,
diF / dt = 50 A / µs
———————————————————————————————————————————
* Pulse Test
2SJ332 L , 2SJ332 S
Maximum Safe Operation Area
Power vs. Temperature Derating
–100
10 µs
I D (A)
1
10
5
–3
–1
Ta = 25 °C
50
100
150
Case Temperature
200
Ta (°C)
(A)
ID
–12
–3 V
–8
–4
0
Typical Tranfer Characteristics
Pulse Test
–3.5 V
VGS = –2.5 V
–2
–4
–6
Drain to Source Voltage
–8
–10
V DS (V)
PW = 10 ms
(1shot)
–20
Drain Current
I D (A)
–16
–10 V
–6 V
–4 V
D
(T .C
c Op
=
25 era
°C tio
) n
–0.1
–0.1 –0.3 –1
–3
–10 –30 –100
Drain to Source Voltage V DS (V)
Typical Output Characteristics
–20
Drain Current
s
–0.3
0
m
–10
O
Ar pe
e
by a rat
R is ion
D Lim in
S(
on ite Th
d is
)
15
100 µs
–30
Drain Current
Channel Dissipation
Pch (W)
20
–16
V DS = –10 V
Pulse Test
–12
–8
75 °C
Tc = 25 °C
–25 °C
–4
0
–1
–2
–3
Gate to Source Voltage
–4
–5
V GS (V)
2SJ332 L , 2SJ332 S
Static Drain to Source on State Resistance
vs. Drain Current
1
–0.8
I D = –10 A
–0.4
Static Drain to Source on State Resistance
R DS(on) ( Ω)
0
–2 A
–2
–4
–6
Gate to Source Voltage
0.12
0.08
–10
V GS (V)
V GS = –10 V
0
–40
–2 A
–10 A
0.04
0.2
VGS = –4 V
0.1
–10 V
0.01
–0.5 –1
–8
I D = –10 A
–5 A
V GS = –4 V
Pulse Test
0.02
Static Drain to Source on State Resistance
vs. Temperature
0.20
Pulse Test
0.16
0.5
0.05
–5 A
–0.2
Drain to Source On State Resistance
R DS(on) ( Ω )
–0.6
Pulse Test
–5 A
–2 A
0
40
80
120
160
Case Temperature Tc (°C)
–2
–5 –10 –20
Drain Current I D (A)
–50
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |y fs | (S)
V DS(on) (V)
–1.0
Drain to Source Voltage
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
20
–25 °C
10
5
Tc = 25 °C
75 °C
2
1
0.5
–0.2
V DS = –10 V
Pulse Test
–0.5 –1 –2
–5 –10 –20
Drain Current I D (A)
2SJ332 L , 2SJ332 S
Body–Drain Diode Reverse
Recovery Time
Typical Capacitance vs.
Drain to Source Voltage
10000
200
Capacitance C (pF)
Reverse Recovery Time trr (ns)
500
100
50
di / dt = 20 A / µs
VGS = 0, Pulse Test
20
Ciss
1000
Coss
Crss
100
10
VGS = 0
f = 1 MHz
5
–0.1 –0.2
–0.5 –1.0 –2
–5 –10
Reverse Drain Current I DR (A)
10
0
–4
V DS
V DD = –5 V
–10 V
–20 V
–30
–40
V GS (V)
–16
I D = –10 A
–50
0
–8
–12
V GS
8
16
24
32
Gate Charge Qg (nc)
–20
–20
40
500
Switching Time t (ns)
–20
–4
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
–10
–16
Switching Characteristics
0
V DD = –5 V
–10 V
–20 V
–12
Drain to Source Voltage V DS (V)
Dynamic Input Characteristics
0
–8
200
100
V GS = –10 V, V DD = –10 V
PW = 2 µs, duty < 1 %
tf
t d(off)
50
tr
20
t d(on)
10
5
–0.1 –0.2
–0.5 –1 –2
–5
Drain Current I D (A)
–10
2SJ332 L , 2SJ332 S
Reverse Drain Current vs.
Source to Drain Voltage
–20
–16
–12
–10 V
–8
–5 V
–4
V GS = 0, 5 V
0
–0.4
–0.8
–1.2
Drain to Source Voltage
–1.6
–20
V DS (V)
Normalized Transient Thermal Impedance vs. Pulse Width
3
Normalized Transient Thermal Impedance
γ s (t)
Reverse Drain Current I DR (A)
Pulse Test
Tc = 25°C
1
0.3
0.1
0.03
D=1
0.5
0.2
0.1
0.05
θ ch – c(t) = γ s (t) • θ ch – c
θ ch – c = 6.25 °C/W, Tc = 25 °C
0.02
1
0.0
t
ho
lse
PDM
Pu
1s
D=
PW
T
PW
T
0.01
10 µ
100 µ
1m
10 m
Pulse Width
100 m
PW (S)
1
10
2SJ332 L , 2SJ332 S
Switching Time Test Circuit
Waveforms
Vout
Monitor
Vin Monitor
Vin
10%
D.U.T.
RL
90%
Vin
10 V
50Ω
V DD
= 30 V
90%
90%
Vout
td(on)
10%
10%
tr
td(off)
tf