IRF IRG4PH20KD

PD- 91777
IRG4PH20KD
Short Circuit Rated
UltraFast IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• High short circuit rating optimized for motor control,
tsc =10µs, VCC = 720V , TJ = 125°C,
VGE = 15V
• Combines low conduction losses with high
switching speed
• Tighter parameter distribution and higher efficiency
than previous generations
• IGBT co-packaged with HEXFREDTM ultrafast,
ultrasoft recovery antiparallel diodes
VCES = 1200V
VCE(on) typ. = 3.17V
G
@VGE = 15V, IC = 5.0A
E
n-ch an nel
Benefits
• Latest generation 4 IGBT's offer highest power density
motor controls possible
• HEXFREDTM diodes optimized for performance with IGBTs.
Minimized recovery characteristics reduce noise, EMI and
switching losses
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
tsc
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
1200
11
5.0
22
22
5.0
22
10
± 20
60
24
-55 to +150
V
A
µs
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.24
–––
6 (0.21)
2.1
3.5
–––
40
–––
Units
°C/W
g (oz)
1
6/25/98
IRG4PH20KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltageƒ 1200 —
Temperature Coeff. of Breakdown Voltage — 1.13
Collector-to-Emitter Saturation Voltage
— 3.17
— 4.04
— 2.84
Gate Threshold Voltage
3.5
—
Temperature Coeff. of Threshold Voltage
—
-10
Forward Transconductance „
2.3 3.5
Zero Gate Voltage Collector Current
—
—
—
—
Diode Forward Voltage Drop
—
2.5
—
2.2
Gate-to-Emitter Leakage Current
—
—
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
— V/°C VGE = 0V, IC = 2.5mA
4.3
IC = 5.0A
VGE = 15V
—
V
IC = 11A
See Fig. 2, 5
—
IC = 5.0A, TJ = 150°C
6.5
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 1mA
—
S
VCE = 100V, IC = 5.0A
250
µA
VGE = 0V, VCE = 1200V
1000
VGE = 0V, VCE = 1200V, TJ = 150°C
2.9
V
IC = 5.0A
See Fig. 13
2.6
IC = 5.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
28
43
IC = 5.0A
4.4 6.6
nC VCC = 400V
See Fig.8
12
18
VGE = 15V
50
—
30
—
TJ = 25°C
ns
100 150
IC = 5.0A, VCC = 800V
250 380
VGE = 15V, R G = 50Ω
0.62 —
Energy losses include "tail"
0.30 —
mJ and diode reverse recovery
0.92 1.2
See Fig. 9,10,18
—
—
µs
VCC = 720V, TJ = 125°C
VGE = 15V, R G = 50Ω
50
—
TJ = 150°C,
See Fig. 10,11,18
30
—
IC = 5.0A, VCC = 800V
ns
110
—
VGE = 15V, RG = 50Ω,
620
—
Energy losses include "tail"
1.6
—
mJ and diode reverse recovery
13
—
nH Measured 5mm from package
435
—
VGE = 0V
44
—
pF
VCC = 30V
See Fig. 7
8.3
—
ƒ = 1.0MHz
51
77
ns
TJ = 25°C See Fig.
68 102
TJ = 125°C
14
IF = 5.0A
6.0 9.0
A
TJ = 25°C See Fig.
7.0
11
TJ = 125°C
15
VR = 200V
183 274
nC
TJ = 25°C See Fig.
285 427
TJ = 125°C
16
di/dt = 200A/µs
380
—
A/µs TJ = 25°C See Fig.
307
—
TJ = 125°C
17
www.irf.com
IRG4PH20KD
10
F o r b o th :
D u ty c y c le : 5 0 %
TJ = 1 2 5 ° C
T sink = 9 0 ° C
G a te d riv e a s s p e c ifie d
P o w e r D is s ip a tio n = 15 W
LOAD CURRENT (A)
8
S q u a re w a v e :
5
6 0% of rate d
volta ge
I
3
Id e a l d io d e s
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C , Collector-to-Emitter Current (A)
10
TJ = 150 °C
1
TJ = 25 °C
V GE = 15V
20µs PULSE WIDTH
0.1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
100
100
10
TJ = 150 °C
TJ = 25 °C
V CC = 50V
5µs PULSE WIDTH
1
6
8
10
12
14
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PH20KD
5.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
12
9
6
3
0
25
50
75
100
125
150
TC , Case Temperature ( °C)
VGE = 15V
80 us PULSE WIDTH
IC = 10 A
4.0
IC =
3.0
5A
IC = 2.5 A
2.0
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC)
10
1
D = 0.50
0.20
0.10
P DM
0.05
0.1
0.01
0.00001
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH20KD
20
VGE =
Cies =
Cres =
Coes =
0V,
f = 1MHz
Cge + Cgc , Cce SHORTED
Cgc
Cce + Cgc
VGE , Gate-to-Emitter Voltage (V)
800
C, Capacitance (pF)
600
Cies
400
200
Coes
VCC = 400V
I C = 11A
16
12
8
4
C res
0
1
10
0
100
0
VCE , Collector-to-Emitter Voltage (V)
Total Switching Losses (mJ)
Total Switching Losses (mJ)
10
0.90
0.85
0.80
10
20
30
40
RGR,GGate
, GateResistance
Resistance (Ohm)
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
15
20
25
30
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
V CC = 800V
960V
V GE = 15V
TJ = 25 °C
I C = 5.0A
0
10
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.95
5
50
Ω
RG = 50Ohm
VGE = 15V
VCC =800V
960V
IC = 10 A
IC =
5A
IC = 2.5 A
1
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PH20KD
100
Ω
= 5.0Ohm
= 150 °C
=800V
960V
= 15V
I C, Collector Current (A)
RG
TJ
VCC
3.2 VGE
2.4
1.6
VGE = 20V
T J = 125 o C
10
0.8
SAFE OPERATING AREA
0.0
0
2
4
6
8
1
10
1
I C , Collector Current (A)
10
100
1000
10000
VCE, Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector Current
100
Instantaneous Forward Current ( A )
Total Switching Losses (mJ)
4.0
10
TJ = 1 5 0 °C
TJ = 1 2 5 °C
TJ = 2 5 °C
1
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
F o rward V olta ge Drop - V F M (V )
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH20KD
100
100
I F = 2 .5 A
80
I F = 1 0A
IIRRM - ( A )
I F = 5 .0A
trr- ( ns)
60
40
10
I F = 2.5 A
I F = 10A
I F = 5.0 A
20
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
0
100
d i f /dt - (A /µs)
1
100
1000
1000
d i f /d t - (A /µ s )
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
1000
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
600
di(rec)M/dt - ( A/µs)
QIRR - ( nC )
800
I F = 10 A
I F = 5.0 A
I F = 2.5 A
400
I F = 2.5 A
I F = 1 0A
1000
I F = 5.0A
200
0
100
di f /dt - (A /µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
100
100
1000
di f /dt - (A /µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4PH20KD
Same ty pe
device as
D .U.T.
90%
10%
Vge
430µF
80%
of Vce
D .U .T.
VC
90%
t d(off)
10%
IC 5%
tf
tr
t d(on)
t=5µs
Fig. 18a - Test Circuit for Measurement of
Eon
Eoff
E ts = (Eon +Eoff )
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
∫
trr
id d t
tx
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
t1
5% Vce
∫
t2
E o n = V ce ie d t
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
V d id d t
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PH20KD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
960V
4 X I C @25°C
0 - 960V
50V
600 0µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PH20KD
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0Ω (figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
Case Outline - TO-247AC
3 .6 5 (.1 4 3 )
3 .5 5 (.1 4 0 )
0 .2 5 ( .0 1 0 )
1 5 .9 0 (.6 2 6 )
1 5 .3 0 (.6 0 2 )
-B-
-D-
M
D B M
-A5 .5 0 (.2 17 )
2 0 .3 0 (.8 0 0 )
1 9 .7 0 (.7 7 5 )
2X
1
2
5 .3 0 (.2 0 9 )
4 .7 0 (.1 8 5 )
2.5 0 ( .0 8 9)
1.5 0 ( .0 5 9)
4
5.5 0 (.2 1 7)
4.5 0 (.1 7 7)
LEAD
1234-
3
-C-
*
1 4 .8 0 (.5 8 3 )
1 4 .2 0 (.5 5 9 )
2 .4 0 (.0 9 4 )
2 .0 0 (.0 7 9 )
2X
5 .4 5 (.2 1 5 )
2X
4 .3 0 (.1 7 0 )
3 .7 0 (.1 4 5 )
3X
1 .4 0 ( .0 56 )
1 .0 0 ( .0 39 )
0.2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 )
3 .0 0 (.1 1 8 )
NOTE S:
1 D IM E N S IO N S & T O LE R A N C IN G
P E R A N S I Y 14 .5M , 1 98 2 .
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 D IM E N S IO N S A R E S H O W N
M IL LIM E T E R S (IN C H E S ).
4 C O N F O R M S T O J E D E C O U T L IN E
T O -2 4 7A C .
*
A S S IG N M E N T S
GAT E
COLLECTO R
E M IT T E R
COLLECTO R
LO N G E R LE A D E D (2 0m m )
V E R S IO N A V A IL A B L E (T O -2 47 A D )
T O O R D E R A D D "-E " S U F F IX
TO PAR T NUM BER
0 .8 0 (.0 3 1 )
0 .4 0 (.0 1 6 )
2 .6 0 ( .1 0 2 )
2 .2 0 ( .0 8 7 )
3X
C A S
CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P)
D im e n s io n s in M illim e te rs a n d (In c h e s )
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
6/98
10
www.irf.com