INTEGRATED CIRCUITS DATA SHEET SAA8115HL Digital camera USB interface Preliminary specification Supersedes data of 1999 Jun 28 File under Integrated Circuits, IC22 2000 Jan 27 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL CONTENTS 1 FEATURES 2 APPLICATIONS 3 GENERAL DESCRIPTION 4 ORDERING INFORMATION 5 QUICK REFERENCE DATA 6 BLOCK DIAGRAM 7 PINNING 8 FUNCTIONAL DESCRIPTION 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 Video synchronization Frame rate converter and SDRAM interface Video formatter: downsampler and cutter Compression engine Transfer buffer USB video FIFO PSIE-MMU, I2C-bus interface and USB RAM space ATX interface Audio Sensor pulse pattern generator Power management Power supply 9 CONTROL REGISTER DESCRIPTION 9.1 9.2 SNERT (UART) I2C-bus interface 2000 Jan 27 10 LIMITING VALUES 11 THERMAL CHARACTERISTICS 12 OPERATING CHARACTERISTICS 13 TIMING 14 APPLICATION INFORMATION 15 PACKAGE OUTLINE 16 SOLDERING 16.1 Introduction to soldering surface mount packages Reflow soldering Wave soldering Manual soldering Suitability of surface mount IC packages for wave and reflow soldering methods 16.2 16.3 16.4 16.5 2 17 DEFINITIONS 18 LIFE SUPPORT APPLICATIONS 19 PURCHASE OF PHILIPS I2C COMPONENTS Philips Semiconductors Preliminary specification Digital camera USB interface 1 SAA8115HL FEATURES • VGA (progressive mode), CIF and medium resolution (PAL non-interlaced mode) CCD sensors compliant • D1 digital video input (8 bits YUV 4 : 2 : 2 time multiplexed) • Internal Pulse Pattern Generator (PPG) dedicated for VGA Panasonic, CIF and medium resolution Sharp sensors or compatibles, and frame rate selection • Frame rate converter • SDRAM interface for high quality VGA snapshot (uncompressed 4 : 2 : 2 or 4 : 2 : 0) 2 • Downsampler and scaler (programmable formatter for CIF, QCIF, sub-QCIF, SIF and QSIF) controlled via SNERT (UART) interface Low-cost desktop video applications with USB interface. 3 • Flexible compression engine controlled via SNERT (UART) interface GENERAL DESCRIPTION The SAA8115HL is the second generation of integrated circuit applicable in PC video cameras to convert D1 video signals and analog audio signals to properly formatted USB packets. • Selectable output frame rate (up to 15 fps in VGA, up to 30 fps in CIF and QCIF) • Video packetizer FIFO This powerful successor of the SAA8117HL can handle up to 15 fps in VGA format or 30 fps in CIF format. High snapshot quality is achievable using the SDRAM interface to an external memory. • I2C-bus interface for communication between the USB protocol hardware and the external microcontroller • Microphone/audio input to USB (microphone supply, controllable gain and ADC) It is designed as a back-end of the SAA8112HL (general camera digital processing IC) and is optimized for use with the TDA8784 to TDA8787 (camera pre-processing ICs). • Integrated analog bus driver (ATX) • Integrated main oscillator • Integrated 5 V power supply and reset circuit including functionalities for bus-powered USB device • Programmable (frequency and duty cycle) switch mode power signal for CCD supply • Miscellaneous functions (e.g. power management, PLL for audio frequencies). 2000 Jan 27 APPLICATIONS 3 Philips Semiconductors Preliminary specification Digital camera USB interface 4 SAA8115HL ORDERING INFORMATION PACKAGE TYPE NUMBER NAME SAA8115HL LQFP144 DESCRIPTION VERSION plastic low profile quad flat package; 144 leads; body 20 × 20 × 1.4 mm SOT486-1 5 QUICK REFERENCE DATA Measured over full voltage and temperature range SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT VDDD digital supply voltage 3.0 3.3 3.6 V VDDA analog supply voltage 3.0 3.3 3.6 V VDDA_USB analog supply voltage from USB note 1 4.0 5.0 5.5 V IDD(tot) total supply current VDDD = 3.3 V − − tbf mA VI input signal levels 3.0 V < VDDD < 3.6 V low voltage TTL compatible VO output signal levels 3.0 V < VDDD < 3.6 V fclk clock frequency Ptot total power dissipation Tamb = 25 °C V low voltage TTL compatible V − 48 − MHz − − tbf mW Tstg storage temperature −55 − − °C Tamb ambient temperature 0 25 70 °C Tj junction temperature −40 − +125 °C Tamb = 70 °C Note 1. This concerns pins VBUS1 and VBUS2. 2000 Jan 27 4 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... SMP SUSPREADYNOT SNAPSHOT TRC CLOCKON 103 100 109 112 110 111 108 83, 86, 89, 96, 97, 129 USB RAM SPACE SDRAM INTERFACE SUSPEND GENPOR REF1 to REF3 RESERVED1 to RESERVED6 AGND1 to AGND6 M3 to M0 RESET DGND1 to DGND4 VDDA1 to VDDA6 VDD1 to VDD6 CSB DQM CLKEN SDCLK WEB CASB RASB VDDD1 to VDDD3 GND1 to GND7 126, 127, 128 POWER MANAGEMENT 99 104 105 UCINT UCPOR UCCLK Philips Semiconductors LLC HREF VS 23, 29, 33 115, 116, 79, 88, 6, 18, 54, 101 117, 118 93, 119, 49, 68, 123, 134 78, 98, 142 Digital camera USB interface YUV7 to YUV0 77, 76, 75, 74, 67, 65, 62, 60, 61, 63, 64, 66, 70, 71, 72, 73 7, 16, 82, 84, 37, 50, 85, 122, 69, 141 124, 125 BLOCK DIAGRAM DQ15 to DQ0 52 56 57 58 55 59 51 6 handbook, full pagewidth 2000 Jan 27 AD10 to AD0 24, 53, 102 48, 47, 45, 44, 42, 39, 38, 40, 41, 43, 46 28, 27, 26, 25 22, 21, 20, 19 30 31 32 FRAME RATE CONVERTER VIDEO FORMATTER COMPRESSION ENGINE USB VIDEO FIFO TRANSFER BUFFER PSIE MMU ATX 80 81 ATXDP ATXDM 5 AUDIO PLL I2C-BUS INTERFACE 106 107 SCL SDA SAA8115HL 34 35 36 AUDIO VARIABLE GAIN AMPLIFIER SNERT INTERFACE PULSE PATTERN GENERATOR (PPG) 139, 140, 137, 138, 3, 2, 143, 144 136, 135 1, 4 8 5 9 MAIN OSCILLATOR DC-TO-DC CONVERTER 10 12 13 14 15 11 17 87 90 91 92 94 95 113 114 120 121 MICROPHONE SUPPLY 133 AUDIO LOW NOISE AMPLIFIER 130 131 VGAIN LNAOUT 132 MICIN MICSUPPLY XOUT XIN OFF POR SWITCHED5V LXUP VBUS2 LXDOWN 3V3 VBUS1 CLK1 CLK2 VD HD BCP DCP FCDS FS RG C1 to C4 SHUTTER SAA8115HL Fig.1 Block diagram. Preliminary specification B1 to B4 FCE349 A1 to A4 SNDA SNCL SNRES AUDIO ADC Philips Semiconductors Preliminary specification Digital camera USB interface 7 SAA8115HL PINNING PIN TYPE(1) C3 1 O horizontal CCD transfer pulse output C2 2 O horizontal CCD transfer pulse output (FH1) C1 3 O horizontal CCD transfer pulse output (FH2) C4 4 O horizontal CCD transfer pulse output SHUTTER 5 O shutter control output for CCD charge reset GND1 6 P ground 1 for output buffers VDD1 7 P supply voltage 1 for output buffers RG 8 O reset output for CCD output amplifier gate FS 9 O data sample-and-hold pulse output to TDA8784/87 (SHD) FCDS 10 O preset sample-and-hold pulse output to TDA8784/87 (SHP) CLK1 11 O pixel clock to TDA8784/87 and SAA8112HL DCP 12 O dummy clamp pulse output to TDA8784/87 BCP 13 O optical black clamp pulse output to TDA8784/87 VD 14 O vertical definition pulse to SAA8112HL HD 15 O horizontal definition pulse to SAA8112HL VDD2 16 P supply voltage 2 for output buffers CLK2 17 O double pixel clock to SAA8112HL GND2 18 P ground 2 for output buffers YUV0 19 I multiplexed YUV bit 0 YUV1 20 I multiplexed YUV bit 1 YUV2 21 I multiplexed YUV bit 2 YUV3 22 I multiplexed YUV bit 3 SYMBOL DESCRIPTION DGND1 23 P digital ground 1 for input buffers, predrivers and for the digital core VDDD1 24 P digital supply voltage 1 for input buffers, predrivers and one part of the digital core YUV4 25 I multiplexed YUV bit 4 YUV5 26 I multiplexed YUV bit 5 YUV6 27 I multiplexed YUV bit 6 YUV7 28 I multiplexed YUV bit 7 DGND2 29 P digital ground 2 for input buffers, predrivers and for the digital core LLC 30 I line-locked clock input (delayed CLK2) for YUV-port from SAA8112HL HREF 31 I horizontal reference input for YUV-port from SAA8112HL VS 32 I vertical synchronization input for YUV-port from SAA8112HL RESET 33 I SNDA 34 I/O SNCL 35 I clock input for SNERT-interface (communication between SAA8115HL and SAA8112HL) SNRES 36 I reset input for SNERT-interface (communication between SAA8115HL and SAA8112HL) 2000 Jan 27 Power-on reset input (for video processing and PPG) data input/output for SNERT-interface (communication between SAA8115HL and SAA8112HL) 6 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL PIN TYPE(1) VDD3 37 P supply voltage 3 for output buffers AD4 38 O SDRAM output address bit 4 AD5 39 O SDRAM output address bit 5 AD3 40 O SDRAM output address bit 3 AD2 41 O SDRAM output address bit 2 AD6 42 O SDRAM output address bit 6 AD1 43 O SDRAM output address bit 1 AD7 44 O SDRAM output address bit 7 AD8 45 O SDRAM output address bit 8 AD0 46 O SDRAM output address bit 0 AD9 47 O SDRAM output address bit 9 AD10 48 O SDRAM output address bit 10 GND3 49 P ground 3 for output buffers VDD4 50 P supply voltage 4 for output buffers CSB 51 O SDRAM chip select output RASB 52 O SDRAM row address strobe output VDDD2 53 P digital supply voltage 2 for the switchable digital core DGND3 54 P digital ground 3 for input buffers, predrivers and for the digital core CLKEN 55 O SDRAM clock enable output CASB 56 O SDRAM column address strobe output WEB 57 O SDRAM write enable output SDCLK 58 O SDRAM clock output DQM 59 I/O SDRAM data mask enable DQ8 60 I/O SDRAM data I/O bit 8 DQ7 61 I/O SDRAM data I/O bit 7 DQ9 62 I/O SDRAM data I/O bit 9 DQ6 63 I/O SDRAM data I/O bit 6 DQ5 64 I/O SDRAM data I/O bit 5 DQ10 65 I/O SDRAM data I/O bit 10 DQ4 66 I/O SDRAM data I/O bit 4 DQ11 67 I/O GND4 68 P ground 4 for output buffers VDD5 69 P supply voltage 5 for output buffers DQ3 70 I/O SDRAM data I/O bit 3 DQ2 71 I/O SDRAM data I/O bit 2 DQ1 72 I/O SDRAM data I/O bit 1 DQ0 73 I/O SDRAM data I/O bit 0 DQ12 74 I/O SDRAM data I/O bit 12 DQ13 75 I/O SDRAM data I/O bit 13 DQ14 76 I/O SDRAM data I/O bit 14 DQ15 77 I/O SDRAM data I/O bit 15 SYMBOL 2000 Jan 27 DESCRIPTION SDRAM data I/O bit 11 7 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL PIN TYPE(1) GND5 78 P ground 5 for output buffers AGND1 79 P analog ground 1 for ATX (transceiver) ATXDP 80 I/O positive driver of the differential data pair input/output (ATX) ATXDM 81 I/O negative driver of the differential data pair input/output (ATX) VDDA1 82 P analog supply voltage 1 for ATX RESERVED1 83 − test pin 1 (should not be used) VDDA2 84 P analog supply voltage 2 for bandgap (reference) VDDA3 85 P analog supply voltage 3 for bandgap, comparator and ring oscillator RESERVED2 86 − test pin 2 (should not be used) 3V3 87 I 3V3 detector input signal AGND2 88 P analog ground 2 for N-switch RESERVED3 89 − test pin 3 (should not be used) VBUS1 90 I supply voltage input 1 from the USB VBUS2 91 I supply voltage input 2 from the USB LXDOWN 92 O LX coil node output (5 V downconverter) AGND3 93 P analog ground 3 for N-switch LXUP 94 I LX coil node input (5 V upconverter) SWITCHED5V 95 O 5 V switched power supply RESERVED4 96 − test pin 4 (should not be used) RESERVED5 97 − test pin 5 (should not be used) GND6 98 P ground 6 for output buffers UCINT 99 O interrupt output from USB to microcontroller SUSPEND 100 O control output from USB protocol hardware to microcontroller DGND4 101 P digital ground 4 for input buffers, predrivers and for the digital core VDDD3 102 P digital supply voltage 3 for input buffers, predrivers and one part of the digital core GENPOR 103 I Power-on reset input (for USB protocol hardware) UCPOR 104 O control output from USB protocol hardware to microcontroller UCCLK 105 O clock output from USB protocol hardware to microcontroller SCL 106 I slave I2C-bus clock input SDA 107 I/O slave I2C-bus data input/output SMP 108 O switch mode power pulse output for CCD supplies CLOCKON 109 O control output for main oscillator switched on SNAPSHOT 110 I input for remote wake-up (snapshot) SYMBOL DESCRIPTION SUSPREADYNOT 111 I input from microcontroller for SUSPEND mode TRC 112 I threshold control input for enabling clock POR 113 O 3.3 V supply domain ready indicator output OFF 114 I disable 5 V switchable supply domain input M3 115 I test mode control input signal bit 3 M2 116 I test mode control input signal bit 2 M1 117 I test mode control input signal bit 1 2000 Jan 27 8 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL PIN TYPE(1) M0 118 I AGND4 119 P analog ground 4 for crystal oscillator (48 MHz, 3rd overtone) XIN 120 I oscillator input XOUT 121 O oscillator output SYMBOL DESCRIPTION test mode control input signal bit 0 VDDA4 122 P analog supply voltage 4 for crystal oscillator (48 MHz, 3rd overtone) AGND5 123 P analog ground 5 for PLL VDDA5 124 P analog supply voltage 5 for PLL VDDA6 125 P analog supply voltage 6 for amplifier and ADC REF1 126 I reference voltage 1 (used in the ADC) REF2 127 I reference voltage 2 (used in the ADC) REF3 128 I reference voltage 3 (used in the amplifier and the ADC) RESERVED6 129 O test pin 6 (should not be used) VGAIN 130 I variable gain amplifier input LNAOUT 131 O low noise amplifier output MICIN 132 I microphone input MICSUPPLY 133 O microphone supply output AGND6 134 P analog ground 6 for amplifier and ADC B4 135 O vertical CCD load pulse output (VH1X) B3 136 O vertical CCD load pulse output (VH3X) B1 137 O vertical CCD load pulse output B2 138 O vertical CCD load pulse output A1 139 O vertical CCD transfer pulse output (V1X) A2 140 O vertical CCD transfer pulse output (V2X) VDD6 141 P supply voltage 6 for output buffers GND7 142 P ground 7 for output buffers A3 143 O vertical CCD transfer pulse output (V3X) A4 144 O vertical CCD transfer pulse output (V4X) Note 1. I = input, O = output and P = power supply. 2000 Jan 27 9 Philips Semiconductors Preliminary specification 109 CLOCKON 112 TRC 113 POR 114 OFF 115 M3 116 M2 117 M1 118 M0 119 AGND4 120 XIN 121 XOUT 122 VDDA4 123 AGND5 124 VDDA5 126 REF1 125 VDDA6 127 REF2 128 REF3 129 RESERVED6 130 VGAIN 131 LNAOUT 132 MICIN 133 MICSUPPLY 134 AGND6 135 B4 136 B3 137 B1 138 B2 139 A1 141 VDD6 140 A2 142 GND7 143 A3 144 A4 handbook, full pagewidth 110 SNAPSHOT SAA8115HL 111 SUSPREADYNOT Digital camera USB interface C3 1 108 SMP C2 2 107 SDA C1 3 106 SCL C4 4 105 UCCLK SHUTTER 5 104 UCPOR GND1 VDD1 6 103 GENPOR 7 102 VDDD3 RG 8 101 DGND4 FS 9 100 SUSPEND FCDS 10 99 UCINT CLK1 11 98 GND6 DCP 12 97 RESERVED5 BCP 13 96 RESERVED4 VD 14 95 SWITCHED5V HD 15 94 LXUP VDD2 16 93 AGND3 92 LXDOWN CLK2 17 GND2 18 91 VBUS2 SAA8115HL YUV0 19 90 VBUS1 YUV1 20 89 RESERVED3 YUV2 21 88 AGND2 YUV3 22 87 3V3 DGND1 23 VDDD1 24 86 RESERVED2 YUV4 25 YUV6 27 84 VDDA2 83 RESERVED1 82 VDDA1 85 VDDA3 YUV5 26 YUV7 28 81 ATXDM DGND2 29 80 ATXDP LLC 30 79 AGND1 78 GND5 HREF 31 VS 32 77 DQ15 RESET 33 76 DQ14 SNDA 34 75 DQ13 SNCL 35 74 DQ12 73 DQ0 Fig.2 Pin configuration. 2000 Jan 27 10 DQ1 72 DQ2 71 DQ3 70 VDD5 69 GND4 68 DQ11 67 DQ4 66 DQ10 65 DQ5 64 DQ6 63 DQ9 62 DQ7 61 DQ8 60 DQM 59 WEB 57 SDCLK 58 CASB 56 CLKEN 55 DGND3 54 VDDD2 53 RASB 52 CSB 51 GND3 49 VDD4 50 AD10 48 AD9 47 AD0 46 AD8 45 AD7 44 AD1 43 AD6 42 AD2 41 AD3 40 AD5 39 AD4 38 VDD3 37 SNRES 36 FCE350 Philips Semiconductors Preliminary specification Digital camera USB interface 8 8.1 SAA8115HL FUNCTIONAL DESCRIPTION Horizontally a downsampling from 512 or 640 to either 384, 320, 192 or 160 or from 352 to 176 is necessary. The horizontal downsampling is performed with the use of a Variable Phase Delay filter (VPD-4). This filter can realize the needed downsample factors. To avoid aliasing, this module also contains a prefilter which has four modes: Video synchronization The video synchronization module is capable of locking to the video signal implementing a horizontal gate signal HREF (HREF = HIGH when data is valid) and a VS signal indicating the start of a new video frame. 8.2 • No filter for medium resolution PAL (512 × 288) to CIF (352 × 288) or SIF (320 × 240) Frame rate converter and SDRAM interface • Prefilter A (3 taps) for VGA (640 × 480) to CIF or SIF, CIF to QCIF (176 × 144) or QSIF (160 × 120) An optional SDRAM (external) can be accessed using the SDRAM interface which is integrated in the SAA8115HL. Pinning and functionality is based on the NEC µPD4516161 (16 Mbits) and the NEC µPD4564163 (64 Mbits). • Prefilter B (7 taps) for medium resolution PAL to QCIF or QSIF When used, the memory is placed at the video input of the SAA8115HL before prefilter, scaler and compression engine. At this point only YUV 4 : 2 : 2 formatted data is available. Prefilter B-comb is similar to prefilter B but inserts extra taps with amplification 0. • Prefilter A combined with prefilter B-comb (13 taps) for VGA to QCIF or QSIF. The vertical downsampling in PAL mode is from CIF to QCIF only. This is done via a vertical filter A (3 taps). In VGA mode a 4 taps polyphase filter is applied to scale from 640 × 480 to CIF and QCIF. The use of the SDRAM is twofold: • Lowering the frame rate. The memory enables to store one frame of video accumulated at a specific rate and to read it out at a lower frame rate. For interline VGA sensors, the input frame rate is either 30 fps or 15 fps. It can be lowered with a factor of 2, 3, 6, 16 or 32. For CIF or medium resolution PAL, the input frame rate is only 30 fps From a full size QCIF picture a sub-QCIF (128 × 96) cut can be made. For the zoomed sub-QCIF format, the origin (upper left corner) is programmable via SNERT in 13 steps (both horizontally and vertically), so that an electronic pan and tilt is possible. • Enhanced snapshot mode. Storage of full size VGA pictures in 4 : 2 : 2 format which can be retrieved upon dedicated software command. 8.3 The incoming 4 : 2 : 2 data is vertically filtered to 4 : 2 : 0, in order to be sent over USB, by throwing away colour samples. In the even lines the V-samples are discarded, in the odd lines the U-samples. Video formatter: downsampler and cutter This block is used to achieve the required output format from the specified sensor formats (see Fig.3). It works for YUV 4 : 2 : 2 only. In RAW mode this block is by-passed to create a full resolution snapshot. 2000 Jan 27 11 Philips Semiconductors Preliminary specification Digital camera USB interface 8.4 SAA8115HL Compression engine For a number of compression ratios, performance is also improved thanks to different quantization tables which are defined and stored in a ROM. The required table must be selected via software. The compression engine module (see Fig.3) can process VGA, CIF, SIF, QCIF and QSIF but has optimal performance with CIF resolution (30 fps) and VGA resolution (5 fps). The algorithm is Philips proprietary. The compression ratio is continuously programmable by setting the maximum number of bits which can be used for 4 compressed lines, a so-called band (see Table 1). It is possible to reduce the YUV input data by scaling down (divide by 2 or divide by 4 operations) to 7 or 6 bits per sample. For compression with an output rate below 2 bpp (bits per pixel) it leads to performance improvement. Real time decoding can be done in software on any Pentium platform. handbook, full pagewidth UV_EXCHANGE PAL_VGA PREFILTER_A_ON_OFF YUV7 to YUV0 PREFILTER A VIDEO_OUTPUT_FORMAT DOWN SCALER PREFILTER B COMPRESSION ENGINE to transfer buffer PREFILTER_B_ON_OFF COMPRESSION_MODE PREFILTER B_COMB_ON_OFF VP_C_ BITCOST_(MSB/LSB) FCE430 Fig.3 The video formatter and compression engine. Table 1 Data rate performed by compression engine FORMAT ADVISED DATA RATE MAXIMUM DATA RATE CIF/SIF 2 bpp 12 bpp (uncompressed) QCIF/QSIF 6 bpp uncompressed VGA high quality 3 bpp 4 bpp 1.5 bpp 3 bpp 4 bpp 4 bpp VGA RAW VGA high quality 2000 Jan 27 12 Philips Semiconductors Preliminary specification Digital camera USB interface 8.5 SAA8115HL The host can synchronize on the smaller packets for the high frame rates and on the 0-length packets for the low frame rates. Transfer buffer The transfer buffer module (see Fig.4) takes care of a smooth transfer of the data to the FIFO of the USB. Moreover the transfer buffer can insert inband synchronization words in the video data stream. This function can be switched on and off with INBAND_CONTROL in register VP_TR_CONTROL (0x36). The synchronization words can only be used with non-compressed data stream and are formatted like 0x00 0xFF 0x<framecounter>7<linecounter>9. (Subscript denotes the number of bits and the frame counter is circular incrementing). For every mode the FIFO must be adjusted. There are three parameters to program the video FIFO: • PACKET_SIZE (0x06): this value indicates the length of all packets with video data except for the last packet of a video frame • FIFO_OFFSET (0x04): this value indicates the number of data in the FIFO before a new packet will be transmitted over USB • READ_SPACING (0x07): this value indicates the number of 12 MHz clock cycles between read actions from the FIFO. The non-compressed data is formatted like: 4 : 2 : 0: <optional sync word><Y0><Y1><Y2><Y3> <C0><C2><Y4><Y5><Y6><Y7><C4><C6>...., Moreover the FIFO is enabled and disabled with FIFO_ACTIVE (0x05). 4 : 2 : 2: <optional sync word><Y0><Y1><Y2><Y3> <U0><V0><U2><V2><Y4>...., The write process to the FIFO is controlled by the transfer buffer and not programmable. where C denotes U-data in the even lines (0, 2, 4 etc.) and V-data in the odd lines (1, 3, 5 etc.). 8.6 The read process is executed in the PSIE-MMU and is driven by the USB frame interval (1 ms). Every frame interval the PSIE-MMU tries to read PACKET_SIZE bytes from the FIFO. This read process will not be started when a new video frame is stored in the FIFO and there are less than FIFO_OFFSET bytes written. The read process stops if the next bytes are of another video frame, or if the read-pointer would overtake the write-pointer. USB video FIFO The USB video FIFO is programmed via the I2C-bus (see Fig.5). The FIFO is designed to achieve three different packets containing video on the isochronous USB channel. Video data is contained in a chain of equally sized USB packets, except for the last packet of a video frame which is always smaller. The video frames can be separated from each other by one or more 0-length packets. For low frame rates (below 10 frames per second) there are always 0-length packets in the stream. READ_SPACING determines the read rate. Its value can easily be determined with the formula: 12000 READ_SPACING < ---------------------------------------PACKET_SIZE handbook, full pagewidth data to PSIE-MMU data from transfer buffer read FIFO write read enable FIFO_OFFSET PACKET_SIZE READ_SPACING WRITE SYNC FIFO_ACTIVE FCE431 Ptr_to_start_Vframe Fig.4 USB video FIFO. 2000 Jan 27 13 Philips Semiconductors Preliminary specification Digital camera USB interface 8.7 SAA8115HL Depending on the command it is sent to the PSIE-MMU and/or to the command interpreter which configures the (de-)mux to open the path to the right register space. Subsequent write/reads to/from the data address store or retrieve data from the register space selected by the command. PSIE-MMU, I2C-bus interface and USB RAM space The Programmable Serial Interface Engine (PSIE) and Memory Management Unit (MMU) is the heart of the USB protocol hardware (see Fig.5). It formats the actual packets that are transferred to the USB and passes the incoming packets to the right end-point buffers. These buffers are allocated as part of the USB RAM space. 8.8 ATX interface The SAA8115HL contains an analog bus driver, called the ATX. It incorporates a differential and two single-ended receivers and a differential transmitter. The microcontroller communicates via the I2C-bus with the PSIE-MMU. The I2C-bus protocol distinguishes three register spaces. These spaces are addressed via different commands. The command is sent to the command address. The interface to the bus consists of a differential data pair (ATXDM and ATXDP). handbook, full pagewidth PSIE-MMU REGISTER SPACE PI_Address + 0X to/from microcontroller (DE)MUX SET MODE REGISTER SPACE I2C-BUS INTERFACE PI_Address + 10 COMMAND INTERPRETER NON USB AND VIDEO FIFO REGISTERS to PSIE-MMU FCE432 Fig.5 I2C-bus interface and register map. 8.9 Audio The PLL converts the 48 MHz to 256fs (fs = audio sample frequency). There are three modes for the PLL to achieve the sample frequencies of 48, 44.1 or 32 kHz (see Table 2). The SAA8115HL contains a microphone supply and an amplifier circuit composed of two stages: a Low Noise Amplifier (LNA) and a variable gain amplifier. The LNA has a fixed gain of 26 dB while the variable gain amplifier can be programmed between 0 and 30 dB by steps of 2 dB. The gain control can be done via either the SNERT interface or the I2C-bus interface (see Table 57). The serial interface must be first selected using bit SIS (see Table 57). The frequency transfer characteristic of the audio path must be controlled via external high-pass or low-pass filters. 2000 Jan 27 The bitstream ADC samples the audio signal. It runs at an oversample rate of 256 times the base sample rate. In the application, the bitstream can be converted to parallel 16-bit samples. This conversion is programmable with respect to the effective sample frequency (dropping sample results in a lower effective sample frequency) and sample resolution. As a result the effective sample rate can be determined. 14 Philips Semiconductors Preliminary specification Digital camera USB interface Table 2 SAA8115HL ADC clock frequencies and sample frequencies CLOCK (MHz) DIVIDING NUMBER 8.1920 11.2996 12.2880 8.10 The SAA8115HL incorporates a Pulse Pattern Generator (PPG) function. The PPG can be used for medium resolution PAL, CIF and VGA CCD-sensors (see Table 3). SAMPLE ADC CLOCK FREQUENCY (MHz) (kHz) 1 32 4.096 2 16 2.048 4 8 1.042 8 note 1 note 1 1 44.1 5.6448 2 22.05 2.8224 4 11.025 1.4112 8 5.5125 0.7056 1 48 6.144 2 24 3.072 4 12 1.536 8 6 0.768 Sensor pulse pattern generator Depending on the sensor type, an external inverter driver should be required to convert the 3.3 V pulses into a voltage suitable for the used CCD-sensor. The active video size is 512 × 288 for medium resolution PAL, 352 × 288 for CIF and 640 × 480 for VGA. The total H × V size are 685 × 292 for medium resolution PAL/CIF and 823 × 486 for VGA. It should be noted that additional HD pulses are added during the vertical blanking interval to reach a total of 312 lines in PAL and CIF modes and 525 lines in VGA mode as required by the SAA8112HL. A high level of flexibility is available for the PPG thanks to 19 internal registers (see Section 9.1.3). Note 1. Not supported. Table 3 Typical SAA8115HL compatible sensors SENSOR TYPE VGA Medium resolution PAL BRAND PART NUMBER Sony ICX098AK Panasonic MN3777PP and MN37771PT Sharp LZ24BP Sony ICX054, ICX086 and ICX206 Panasonic MN37210FP Sharp LZ2423B and LZ2423H Toshiba TCD5391AP CIF Sharp LZ244D and LZ2547 Other sensors all the sensors fully compatible with the above mentioned sensors 2000 Jan 27 15 Philips Semiconductors Preliminary specification Digital camera USB interface 8.11 SAA8115HL The SAA8115HL has the feature to autonomously wake-up from SUSPEND mode, but requires microcontroller interference before going in SUSPEND mode (via the signal on pin SUSPREADYNOT). Power management USB requires the device to switch power states. The SAA8115HL contains a power management module since the complete camera may not consume more than 500 µA during the power state called SUSPEND. This requires that even the crystal oscillator must be switched off. The SAA8115HL is not functional except for some logic that enables the IC to wake-up the camera. After wake-up of the SAA8115HL first the clock to the microcontroller is generated and thereafter an interrupt is generated to wake-up the microcontroller. Therefore the clock of the microcontroller is generated by the SAA8115HL. Since the main oscillator of the SAA8115HL is switched off during SUSPEND mode, precautions are needed to avoid undefined states when the clock is switched on. This is ensured via the pins CLOCKON and TRC. Pin CLOCKON goes HIGH as soon as the main oscillator is switched on. The oscillator will need some time to make a stable 48 MHz signal. However, the clock is only passed through to other parts of the SAA8115HL when the level on pin TRC reaches a certain threshold. The time needed to reach the threshold can be trimmed with an external RC circuit. The power management module also sets a flag in register SET_MODE_AND_READ (PSIE_MMU_STATUS). After a reset the microcontroller should check this register via the I2C-bus and find the cause of the wake-up. Different causes may require different start-up routines. 8.12 A power supply regulator is integrated in the device. This DC-to-DC converter transforms the USB supply voltage (range from 4.0 to 5.5 V) into a stable 5 V supply voltage. This power domain is switchable. The power circuit also generates a reset signal when the external 3.3 V supply voltage is stable and in range. The internal video processing core uses another supply domain which can be switched off during SUSPEND mode. The PPG is switched off by setting PPG_RESUME_MODE (0x08) and resetting PAL_VGA (0x09). In non CIF modes the power consumption is reduced by resetting COMPRESSION_MODE (0x2F) and COMPRESSION_CLOCK (0x09). 2000 Jan 27 Power supply 16 Philips Semiconductors Preliminary specification Digital camera USB interface 9 SAA8115HL CONTROL REGISTER DESCRIPTION This specification gives an overview of all registers. 9.1 SNERT (UART) The SAA8115HL is partly controlled via SNERT. The frame rate converter, the SDRAM interface, the video formatter, the compression engine, the PPG, the SMP and the audio functions are controlled via SNERT. This SNERT interface works independently from the frame rate and can always be operated in the full frequency range. Via SNERT the following registers are accessible (see Table 4). Table 4 SNERT write registers SAA8115HL ADDRESS FUNCTION 00 write register soft reset (see Table 5) 01 to 05 write registers Frame Rate Converter (FRC) including the SDRAM interface 06 and 07 reserved 08 to 1A write registers Pulse Pattern Generator (PPG) 1B to 1F reserved 20 to 38 write registers video formatter and compression engine 39 to 3C reserved 3D and 3E write registers Switch Mode Power (SMP) 3F write register audio variable gain amplifier 9.1.1 GENERAL REGISTER Table 5 Detailed description of SNERT general register 0x00 BIT 7 6 5 4 3 X X X X X SNERT REGISTER 00: SOFT_RESET 2 1 0 PARAMETER reserved RESET_VP_C 1 compression engine in reset state 0 compression engine operating RESET_VP_VF 1 formatter engine in reset state 0 formatter engine operating RESET_FRC 2000 Jan 27 1 frame rate converter engine in reset state (by default) 0 frame rate converter engine operating 17 Philips Semiconductors Preliminary specification Digital camera USB interface 9.1.2 FRAME RATE CONVERTER AND SDRAM INTERFACE REGISTERS Table 6 Detailed description of SNERT FRC and SDRAM register 0x01 BIT 7 SAA8115HL 6 5 4 3 SNERT REGISTER 01: FRC_CONTROL_0 2 1 0 X PARAMETER reserved X X X number of active lines after rising edge of VS signal; range: 0 to 6 (by default 0) FRAMERATE_DIVIDER_SELECT_BIT 1 1 1 undefined 1 1 0 32 (30 fps in; 0.9375 fps out) 1 0 1 16 (15 fps in; 0.9375 fps out) 1 0 0 6 (30 fps in; 5 fps out) 0 1 1 3 (30 fps in; 10 fps out) or (15 fps in; 5 fps out) 0 1 0 2 (30 fps in; 15 fps out) or (15 fps in; 7.5 fps out) 0 0 1 1 (1 fps in; 1 fps out) (by default) 0 0 0 undefined LLC_CLKFREQ Table 7 1 24 MHz (by default) 0 12 MHz Detailed description of SNERT FRC and SDRAM register 0x02 BIT 7 6 5 X X X 4 3 SNERT REGISTER 02: FRC_CONTROL_1 2 1 0 PARAMETER reserved REFRESH_MODE 1 automatic SRAM refresh 0 precharge command as implicit refresh (by default) REFRESH_CLOCK (MSBs) X X see Table 9 INPUT_FORMAT 2000 Jan 27 1 1 undefined 1 0 medium resolution 0 1 CIF 0 0 VGA (by default) 18 Philips Semiconductors Preliminary specification Digital camera USB interface Table 8 SAA8115HL Detailed description of SNERT FRC and SDRAM register 0x03 BIT SNERT REGISTER 03: FRC_ROWWIDTH 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X specifies the width of the row of the SDRAM 95 for PAL sensors 159 for VGA sensors (by default) 63 for CIF sensors Table 9 Detailed description of SNERT FRC and SDRAM register 0x04 BIT SNERT REGISTER 04: FRC_REFRESH_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X specifies the number of clock cycles between two refresh cycles 246 for PAL sensors 395 for VGA sensors (by default) 239 for CIF sensors Table 10 Detailed description of SNERT FRC and SDRAM register 0x05 BIT SNERT REGISTER 05: FRC_STOPWRITE 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X number of lines in a frame 243 for VGA sensors (by default) 146 for PAL or CIF sensors 2000 Jan 27 19 Philips Semiconductors Preliminary specification Digital camera USB interface 9.1.3 SAA8115HL PULSE PATTERN GENERATOR REGISTERS Table 11 Detailed description of SNERT PPG register 0x08 BIT 7 6 5 X X X 4 3 SNERT REGISTER 08: PPG_CONTROL_0 2 1 0 PARAMETER reserved SHUTTER_UPDATE_BUFFER 1 during the vertical blanking (shutter speed is buffered) 0 immediately (by default) PPG_RESUME_MODE 1 switched off (except vertical transfer pulses in case of VGA sensors) 0 operating (by default) PPG _FRAMERATE 2000 Jan 27 1 1 X undefined 1 0 1 5 fps 1 0 0 10 fps 0 1 1 15 fps 0 1 0 20 fps 0 0 1 24 fps 0 0 1 30 fps (by default) 20 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 12 Detailed description of SNERT PPG register 0x09 BIT 7 6 5 4 3 SNERT REGISTER 09: PPG_CONTROL_1 2 1 0 X PARAMETER reserved COMPRESSION_CLOCK 1 1 X X reserved 1 0 1 1 24 MHz 1 0 1 0 19.2 MHz 1 0 0 1 16 MHz 1 0 0 0 12 MHz (by default) 0 1 1 1 9.6 MHz 0 1 1 0 8.0 MHz 0 1 0 1 6.0 MHz 0 1 0 0 4.8 MHz 0 0 1 1 4.0 MHz 0 0 1 0 2.4 MHz 0 0 0 1 2.0 MHz 0 0 0 0 off VGA_SENSOR_TYPE (valid if MSB set to logic 0) 1 1 VGA (Sony and Panasonic) 1 0 VGA (Sharp) 0 X reserved PAL_VGA 2000 Jan 27 1 PAL or CIF timing 0 VGA timing (by default) 21 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 13 Detailed description of SNERT PPG register 0x0A BIT 7 6 5 4 3 SNERT REGISTER 0A: PPG_H_CTRL 2 1 0 X PARAMETER reserved RG_SHORT 1 RG pulse width is set to half of nominal value 0 RG pulse width is set to nominal value FH2_CTRL (non FT mode); note 1 1 X 1 no horizontal blanking 1 X 0 no horizontal blanking, pulse inverted 0 1 1 blanked to HIGH, starts HIGH 0 1 0 blanked to LOW, starts LOW 0 0 1 blanked to LOW, starts HIGH 0 0 0 blanked to HIGH, starts LOW FH1_CTRL (non FT mode); note 1 1 X 1 no horizontal blanking, pulse inverted 1 X 0 no horizontal blanking 0 1 1 blanked to HIGH, starts LOW 0 1 0 blanked to HIGH, starts HIGH 0 0 1 blanked to HIGH, starts LOW 0 0 0 blanked to LOW, starts HIGH Note 1. If bits [5 to 3] equal bits [2 to 0] then FH2 is the inverse of FH1. 2000 Jan 27 22 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 14 Detailed description of SNERT PPG register 0x0B BIT 7 6 5 4 3 SNERT REGISTER 0B: PPG_V_INV 2 1 0 PARAMETER A4_INV 1 positive pulses 0 negative pulses A3_INV 1 positive pulses 0 negative pulses A2_INV 1 negative pulses 0 positive pulses A1_INV 1 negative pulses 0 positive pulses B4_INV 1 positive pulses 0 negative pulses B3_INV 1 positive pulses 0 negative pulses B2_INV 1 negative pulses 0 positive pulses B1_INV 2000 Jan 27 1 negative pulses 0 positive pulses 23 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 15 Detailed description of SNERT PPG register 0x0C BIT 7 6 5 4 3 SNERT REGISTER 0C: PPG_H_INV 2 1 0 PARAMETER CLK2_INV 1 inverted pulses 0 nominal pulses CLK1_INV 1 inverted pulses 0 nominal pulses FS_INV 1 positive pulses 0 negative pulses FCDS_INV 1 positive pulses 0 negative pulses FR_INV 1 positive pulses 0 negative pulses C3_INV 1 negative pulses 0 positive pulses C2_INV 1 negative pulses 0 positive pulses C1_INV 2000 Jan 27 1 negative pulses 0 positive pulses 24 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 16 Detailed description of SNERT PPG register 0x0D BIT 7 6 5 4 3 SNERT REGISTER 0D: PPG_MISC_INV 2 1 0 PARAMETER SELECT_A2 1 A2 is HIGH during read-out gate in line 2 0 A2 is LOW during read-out gate in line 2 SELECT_A3 1 A3 equals A4 (in case of VGA type 1 sensors) 0 A3 equals A2 C4_INV 1 negative pulses 0 positive pulses CR_INV 1 positive pulses 0 negative pulses BCP_INV 1 negative pulses 0 positive pulses DCP_INV 1 negative pulses 0 positive pulses HD_INV 1 negative pulses 0 positive pulses VD_INV 1 negative pulses 0 positive pulses Table 17 Detailed description of SNERT PPG register 0x0E BIT SNERT REGISTER 0E: PPG_SHUTTERSPEED_V_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X 8 LSBs of line number (9 bits) Table 18 Detailed description of SNERT PPG register 0x0F BIT SNERT REGISTER 0F: PPG_SHUTTERSPEED_H_LSB 7 6 5 4 3 2 1 0 X X X X X X X X 8 LSBs of pixel number (10 bits) 2000 Jan 27 PARAMETER 25 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 19 Detailed description of SNERT PPG register 0x10 BIT 7 6 5 4 X X X X 3 SNERT REGISTER 10: PPG_SHUTTERSPEED_MSB 2 1 0 PARAMETER reserved SENSOR_TYPE 1 Sony 0 Sharp X X MSBs of pixel number (10 bits) X MSBs of line number (9 bits) Table 20 Detailed description of SNERT PPG register 0x11 BIT SNERT REGISTER 11: PPG_BCP_START_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X 8 LSBs of pixel number (10 bits) where BCP starts Table 21 Detailed description of SNERT PPG register 0x12 BIT SNERT REGISTER 12: PPG_BCP_STOP_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X 8 LSBs of pixel number (10 bits) where BCP stops Table 22 Detailed description of SNERT PPG register 0x13 BIT SNERT REGISTER 13: PPG_DCP_START_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X 8 LSBs of pixel number (10 bits) where DCP starts Table 23 Detailed description of SNERT PPG register 0x14 BIT SNERT REGISTER 14: PPG_DCP_STOP_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X 8 LSBs of pixel number (10 bits) where DCP stops Table 24 Detailed description of SNERT PPG register 0x15 BIT 7 6 X X 5 4 3 SNERT REGISTER 15: PPG_BCP_DCP_MSB 2 1 0 PARAMETER MSBs of PPG_DCP_STOP X X MSBs of PPG_DCP_START X X MSBs of PPG_BCP_STOP X 2000 Jan 27 X MSBs of PPG_BCP_START 26 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 25 Detailed description of SNERT PPG register 0x16 BIT SNERT REGISTER 16: PPG_B3_START_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X 8 LSBs of pixel number (10 bits) where B3 starts Table 26 Detailed description of SNERT PPG register 0x17 BIT SNERT REGISTER 14: PPG_B3_STOP_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X 8 LSBs of pixel number (10 bits) where B3 stops Table 27 Detailed description of SNERT PPG register 0x18 BIT SNERT REGISTER 18: PPG_B4_START_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X 8 LSBs of pixel number (10 bits) where B4 starts Table 28 Detailed description of SNERT PPG register 0x19 BIT SNERT REGISTER 19: PPG_B4_STOP_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X 8 LSBs of pixel number (10 bits) where B4 stops Table 29 Detailed description of SNERT PPG register 0x1A BIT 7 6 X X 5 4 X X 3 SNERT REGISTER 1A: PPG_B3_B4_MSB 2 1 0 PARAMETER MSBs of PPG_B4_STOP MSBs of PPG_B4_START X X MSBs of PPG_B3_STOP X 2000 Jan 27 X MSBs of PPG_B3_START 27 Philips Semiconductors Preliminary specification Digital camera USB interface 9.1.4 SAA8115HL VIDEO FORMATTER AND COMPRESSION ENGINE REGISTERS Table 30 Detailed description of SNERT video formatter register 0x20 BIT 7 6 X X 5 4 3 SNERT REGISTER 20: VP_VF_CONTRL_0 2 1 0 PARAMETER reserved UV_EXCHANGE X exchange chrominance irregularities if needed SCALE_DATA: limits the number of bits of the video signal 1 1 undefined 1 0 6 bits 0 1 7 bits 0 0 8 bits PREFILTER_B_COMB_ON_OFF (if filter B is on) 1 prefilter B_COMB with 13 taps 0 prefilter B_COMB with 7 taps PREFILTER_B_ON_OFF 1 on with 7 taps 0 bypassed PREFILTER_A_ON_OFF 2000 Jan 27 1 on with 3 taps 0 bypassed 28 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 31 Detailed description of SNERT video formatter register 0x21 BIT 7 6 5 4 3 SNERT REGISTER 21: VP_VF_CONTRL_1 2 1 0 PARAMETER 420_FIL_BYPASS: 4 : 2 : 0 formatter mode 1 throw away samples 0 average UV samples VGA_RAW: data mode 1 raw data, no scaling or 4 : 2 : 0 formatting 0 YUV data VIDEO_OUTPUT_FORMAT 1 1 1 undefined 1 1 0 SIF 1 0 1 QSIF 1 0 0 undefined 0 1 1 VGA 0 1 0 CIF 0 0 1 QCIF 0 0 0 sub-QCIF VIDEO_INPUT_FORMAT 1 1 1 undefined 1 1 0 square SIF (sensors with square pixels) 1 0 1 CIF (sensors with 12/11 pixel ratio format) 1 0 0 medium resolution PAL 0 1 1 undefined 0 1 0 undefined 0 0 1 undefined 0 0 0 VGA Table 32 Detailed description of SNERT video formatter register 0x22 BIT 7 6 5 4 3 SNERT REGISTER 22: VP_VF_VCOEF_C0_0 2 1 0 X PARAMETER reserved X X X X X X X vertical filter coefficient tap 0 phase 0 Table 33 Detailed description of SNERT video formatter register 0x23 BIT 7 6 5 4 3 SNERT REGISTER 23: VP_VF_VCOEF_C0_1 2 1 X 0 PARAMETER reserved X X 2000 Jan 27 X X X X X vertical filter coefficient tap 0 phase 1 29 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 34 Detailed description of SNERT video formatter register 0x24 BIT 7 SNERT REGISTER 24: VP_VF_VCOEF_C0_2 6 5 4 3 2 1 0 X X X X X X X vertical filter coefficient tap 0 phase 2 X PARAMETER reserved Table 35 Detailed description of SNERT video formatter register 0x25 BIT 7 6 5 4 3 SNERT REGISTER 25: VP_VF_VCOEF_C1_0 2 1 0 X PARAMETER reserved X X X X X X X vertical filter coefficient tap 1 phase 0 Table 36 Detailed description of SNERT video formatter register 0x26 BIT 7 6 5 4 3 SNERT REGISTER 26: VP_VF_VCOEF_C1_1 2 1 0 X PARAMETER reserved X X X X X X X vertical filter coefficient tap 1 phase 1 Table 37 Detailed description of SNERT video formatter register 0x27 BIT 7 6 5 4 3 SNERT REGISTER 27: VP_VF_VCOEF_C1_2 2 1 0 X PARAMETER reserved X X X X X X X vertical filter coefficient tap 1 phase 2 Table 38 Detailed description of SNERT video formatter register 0x28 BIT 7 6 5 4 3 SNERT REGISTER 28: VP_VF_VCOEF_C2_0 2 1 0 X PARAMETER reserved X X X X X X X vertical filter coefficient tap 2 phase 0 Table 39 Detailed description of SNERT video formatter register 0x29 BIT 7 6 5 4 3 SNERT REGISTER 29: VP_VF_VCOEF_C2_1 2 1 X 0 PARAMETER reserved X X 2000 Jan 27 X X X X X vertical filter coefficient tap 2 phase 1 30 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 40 Detailed description of SNERT video formatter register 0x2A BIT 7 SNERT REGISTER 2A: VP_VF_VCOEF_C2_2 6 5 4 3 2 1 0 X X X X X X X vertical filter coefficient tap 2 phase 2 X PARAMETER reserved Table 41 Detailed description of SNERT video formatter register 0x2B BIT 7 6 5 4 3 SNERT REGISTER 2B: VP_VF_VCOEF_C3_0 2 1 0 X PARAMETER reserved X X X X X X X vertical filter coefficient tap 3 phase 0 Table 42 Detailed description of SNERT video formatter register 0x2C BIT 7 6 5 4 3 SNERT REGISTER 2C: VP_VF_VCOEF_C3_1 2 1 0 X PARAMETER reserved X X X X X X X vertical filter coefficient tap 3 phase 1 Table 43 Detailed description of SNERT video formatter register 0x2D BIT 7 6 5 4 3 SNERT REGISTER 2D: VP_VF_VCOEF_C3_2 2 1 0 X PARAMETER reserved X X X X X X X vertical filter coefficient tap 3 phase 2 Table 44 Detailed description of SNERT video formatter register 0x2E BIT SNERT REGISTER 2E: VP_VF_LIMITER 7 6 5 4 3 2 1 0 X X X X X X X X output of the video formatter is clipped to this maximum value 2000 Jan 27 PARAMETER 31 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 45 Detailed description of SNERT compression engine register 0x2F BIT 7 6 5 4 3 SNERT REGISTER 2F: VP_VF_CONTROL 2 1 0 X PARAMETER reserved QTABLE_SELECT: quantization table select X X X X range [0 : 15] DC_COEFF_LENGTH 1 1 undefined 1 0 8 bits 0 1 7 bits 0 0 6 bits COMPRESSION_MODE 1 on 0 off (by default) Table 46 Detailed description of SNERT compression engine register 0x30 BIT SNERT REGISTER 30: VP_C_YMASK 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X operates an AND between this value and the compression engine input; can be used to set bit positions in the Y signal to 0 (by default 0x00) Table 47 Detailed description of SNERT compression engine register 0x31 BIT SNERT REGISTER 31: VP_C_UVMASK 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X operates an AND between this value and the compression engine input; can be used to set bit positions in the UV signal to 0 (by default 0x00) Table 48 Detailed description of SNERT compression engine register 0x32 BIT SNERT REGISTER 32: VP_C_BITCOST_MSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X set the compression ratio; the bitcost determines the maximum number of bits generated by the compression algorithm for 4 subsequent lines Table 49 Detailed description of SNERT compression engine register 0x33 BIT SNERT REGISTER 33: VP_C_BITCOST_LSB 7 6 5 4 3 2 1 0 X X X X X X X X set the compression ratio; the bitcost determines the maximum number of bits generated by the compression algorithm for 4 subsequent lines 2000 Jan 27 PARAMETER 32 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 50 Detailed description of SNERT compression engine register 0x34 BIT SNERT REGISTER 34: VP_C_THRESHOLD_MSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X output of the video formatter is clipped to this maximum value Table 51 Detailed description of SNERT compression engine register 0x35 BIT SNERT REGISTER 35: VP_C_THRESHOLD_LSB 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X threshold must be set to: (number of UV blocks per band) × (DC_COEFF_LENGTH + 2) Table 52 Detailed description of SNERT compression engine register 0x36 BIT 7 6 5 4 3 SNERT REGISTER 36: VP_TR_CONTROL 2 1 0 X PARAMETER reserved VGA_FORMAT 1 4 : 2 : 2 (uncompressed only) 0 4:2:0 INBAND_CONTROL 1 on 0 off LLC_OUT_DIV: select the rate at which the video data is transmitted to the USB core X X X X X range [1 to 31] Table 53 Detailed description of SNERT compression engine register 0x37 BIT 7 6 5 4 3 SNERT REGISTER 37: VP_TR_SQCIF_OFFSET 2 1 0 PARAMETER VERTICAL_OFFSET X X X range 3 × [0 to 15] X HORIZONTAL_OFFSET X X X X range 4 × [0 to 12] Table 54 Detailed description of SNERT compression engine register 0x38 BIT SNERT REGISTER 38: VP_VS_V_SHIFT 7 6 5 4 3 2 1 0 X X X X X X X X shift internal line counter with respect to VS pulse 2000 Jan 27 PARAMETER 33 Philips Semiconductors Preliminary specification Digital camera USB interface 9.1.5 SAA8115HL SWITCH MODE POWER REGISTERS Table 55 Detailed description of SNERT SMP register 0x3D BIT SNERT REGISTER 3D: SMP_PERIOD 7 6 5 4 3 2 1 0 PARAMETER X X X X X X X X period of SMP signal in units of 4 × XOSC_PERIOD (0 by default) Table 56 Detailed description of SNERT SMP register 0x3E BIT SNERT REGISTER 3E: SMP_LOWTIME 7 6 5 4 3 2 1 0 X X X X X X X X low edge of SMP signal in units of 4 × XOSC_PERIOD (0 by default) 9.1.6 PARAMETER AUDIO VARIABLE GAIN AMPLIFIER Table 57 Detailed description of SNERT audio gain amplifier register 0x3F BIT 7 6 X X 5 4 3 SNERT REGISTER 3F: AUDIO_VGAIN 2 1 0 PARAMETER reserved SIS: serial interface select 1 SNERT 0 I2C-bus X reserved X 2000 Jan 27 X X X variable gain settings (0 to 30 dB) 34 Philips Semiconductors Preliminary specification Digital camera USB interface 9.2 SAA8115HL I2C-bus interface The USB function has its own I2C-bus interface for communication with the microcontroller. The I2C-bus uses two addresses: • Command address for writing commands to the Memory Manager (MM) • Data address for writing/reading data to/from the Memory Manager (MM). An address is a byte. The 7 MSBs are the actual address, the LSB is the R/W bit. When it is logic 0, data is transferred from the master to the slave, when it is logic 1, data is written from the slave to the master. The 6 MSBs of the two addresses are equal and are defined by the PI_Address = 010111 (see Table 58). The LSB of the address differentiates between the command address and the data address. When bit 1 is logic 1 the address is the command address (0x5E) and when bit 1 is logic 0 the address is one of the data addresses (0x5C or 0x5D). Table 58 I2C-bus addresses BIT ADDRESS 7 6 5 4 3 2 1 0 0 1 0 1 1 1 0 0 0x5C: for writing data to the memory manager 0 1 0 1 1 1 0 1 0x5D: for reading data from the memory manager 0 1 0 1 1 1 1 0 0x5E: for writing commands 0 1 0 1 1 1 1 1 0x5F: not in use 9.2.1 COMMANDS The commands listed in Table 59 must be sent to the I2C-bus address 0x5E. Table 59 I2C-bus USB command codes BIT FUNCTION 7 6 5 0 0 end-point number select end-point 0 1 end-point number read/write status 1 0 end-point number initialize/read status information 1 1 0 1 read/write register bank 1 1 1 0 0 X X X not used 1 1 1 0 1 0 0 0 set non-USB register 1 1 1 1 0 0 0 0 read/write data 1 1 1 1 0 0 0 1 acknowledge setup 1 1 1 1 0 0 1 0 set buffer empty 1 1 1 1 1 0 1 0 set buffer full 1 1 1 1 0 1 0 0 read interrupt register 1 1 1 1 0 1 0 1 read current frame number 1 1 1 1 0 1 1 0 send resume 1 1 1 1 0 1 1 1 set status change bits 1 1 1 1 0 0 1 1 set mode 2000 Jan 27 4 3 2 1 0 address 35 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 60 Detailed description of set mode and write register overview BYTE SET_MODE_AND_WRITE 3 N1 timer: programmable timer for power management; counts 12 MHz cycles; must be bigger than number of cycles needed for the microcontroller to go in power-down state after pin SUSPREADYNOT is made LOW 2 N2 timer: programmable timer for power management; counts 12 MHz cycles; determines the time between the microcontroller clock is switched off and the main clock is switched off 1 PSIE-MMU control byte (see Table 61) Table 61 Detailed description of set mode and write byte 3 BIT 7 6 5 X X X 4 PSIE-MMU CONTROL BYTE 3 2 1 0 PARAMETER reserved interrupt after isochronous audio transfer 1 for each isochronous audio transfer an interrupt to the microcontroller will be generated; default set to logic 1 upon general Power-on reset and/or bus reset by the SAA8115HL 0 no interrupts are given to the microcontroller interrupt after isochronous video transfer 1 for each isochronous video transfer an interrupt to the microcontroller will be generated; default set to logic 1 upon general Power-on reset and/or bus reset by the SAA8115HL 0 no interrupts are given to the microcontroller audio end-point 1 audio end-point enabled; default set to logic 1 upon general Power-on reset and/or bus reset by the SAA8115HL 0 audio end-point disabled; the PSIE-MMU will not react on in-tokens on the audio end-point video end-point 1 video end-point enabled; default set to logic 1 upon general Power-on reset and/or bus reset by the SAA8115HL 0 video end-point disabled; the PSIE-MMU will not react on in-tokens on the video end-point error debug mode 2000 Jan 27 1 interrupts are generated only in the event the transfer is not successfully completed; the microcontroller can read data from the interrupt and status registers to see the cause of this error 0 all successful USB transactions are reported to the microcontroller via an interrupt; default set to logic 0 upon general power-on reset by the SAA8115HL 36 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 62 Detailed description of set mode and read status byte BIT 7 6 5 4 X X X X PSIE-MMU STATUS BYTE 3 2 1 0 PARAMETER reserved remote wake-up status flag 1 remote wake-up when device is in SUSPEND mode 0 no remote wake-up resume status flag 1 bus resume by the host when device is in SUSPEND mode 0 no bus resume bus reset status flag 1 bus reset 0 no bus reset power-up status flag 9.2.2 1 general power-up reset 0 no power-up reset END-POINTS The SAA8115HL has 6 logical end-points which are listed in Table 63. Table 63 Mapping of logical to physical end-point numbers for used end-points PHYSICAL END-POINT LOGICAL END-POINT BUFFER SIZE Control end-point 0 Control end-point 1 Interrupt end-point END-POINT NAME OUT IN 8 0 1 8 2 3 2 8 − 4 Interrupt end-point 3 8 − 5 Iso video end-point 4 96.0 − 6 Iso video end-point 5 35.1 − 7 2000 Jan 27 37 Philips Semiconductors Preliminary specification Digital camera USB interface 9.2.3 SAA8115HL CONTROL TOP REGISTERS The following registers can be written on I2C-bus address 1 after the command 0xE8 on I2C-bus address 0. Table 64 I2C-bus control top registers ADDRESS CONTROL TOP REGISTERS (BASE ADDRESS: 0x08) 0x08 clock control 0x09 reset control 0x0A mux block control 0x0B power-on analog modules control Table 65 Detailed description of I2C-bus control top registers 0x08 BIT 7 6 5 4 TOP REGISTER 0x08: CLKSHOP_CONTROL 3 2 1 0 PARAMETER select ADC clock source 1 sel_ad: clock generated from ADC 0 sel_pll: clock generated from PLL set clock dividers for ADC 0 0 set_divide00: divided by 1 0 1 set_divide01: divided by 2 1 0 set_divide10: divided by 4 1 1 set_divide11: divided by 8 X reserved disable 48 MHz clock 1 dis_clk_48: disable 48 MHz clock 0 enable clock disable receiver clock 1 dis_clk_rec: disable receiver clock 0 enable clock disable ADC clock 1 dis_clk_ad: disable ADC clock 0 enable clock X 2000 Jan 27 reserved 38 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 66 Detailed description of I2C-bus control top registers 0x09 BIT 7 6 5 4 TOP REGISTER 0x09: RST_GEN AND PLL_CONTROL 3 2 1 0 PARAMETER set PLL frequency 0 0 fcode00: 256 × 44.1 kHz 0 1 fcode01: 256 × 32 kHz 1 0 fcode10: 256 × 48 kHz 1 1 fcode11: 256 × 44.1 kHz X X reserved reset PSIE-MMU top module 1 upc_rst_mmu: resetting the USB protocol block (called PSIE-MMU) during tests or in case of errors 0 no reset X reserved reset ADIF top module 1 upc_rst_adif: resetting the digital audio part during tests or in case of errors 0 no reset reset AGC module 1 upc_rst_AGC: resetting the AGC control during tests or in case of errors 0 no reset Table 67 Detailed description of I2C-bus control top registers 0x0A BIT TOP REGISTER 0x0A: IO_MUX_CONTROL 7 6 5 4 3 2 1 0 X X X X X X X X 2000 Jan 27 PARAMETER reserved 39 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 68 Detailed description of I2C-bus control top registers 0x0B BIT 7 6 5 4 TOP REGISTER 0x0B: POWER_CONTROL_OF_ANALOG_MODULES 3 2 1 0 PARAMETER power control oscillator module 1 upc_osc_off: power management 48 MHz enabled 0 power management 48 MHz disabled power control audio module 1 upc_osc_ad_off: power management audio enabled 0 power management audio disabled power control PLL module 1 upc_pll_off: PLL power-off 0 power-on X reserved power control ADC module left channel 1 upc_adl_off: power-off 0 power-on power control ADC module right channel 1 upc_adr_off: power-off 0 power-on power control AGC module left channel 1 upc_AGCl_off: power-off 0 power-on power control AGC module right channel 2000 Jan 27 1 upc_AGCr_off: power-off 0 power-on 40 Philips Semiconductors Preliminary specification Digital camera USB interface 9.2.4 SAA8115HL VIDEO FIFO REGISTERS Table 69 I2C-bus video FIFO registers overview ADDRESS VIDEO FIFO REGISTERS (BASE ADDRESS: 0x04) 0x04 FIFO offset (8 LSBs) 0x05 FIFO active and FIFO offset (3 MSBs) 0x06 packet size (8 LSBs) 0x07 read spacing and packet size (2 MSBs) Table 70 Detailed description of I2C-bus video FIFO registers 0x04 BIT 7 6 5 4 FIFO REGISTER 0x04: FIFO_OFFSET 3 2 1 0 PARAMETER FIFO_OFFSET X X X X X X X X mode_fifo_offset: sets the minimum contents of the FIFO that has to be reached, before a new video frame will be put on the USB. This value can be set between 0 and 2047. Total 11 bits with 8 LSBs in this register and 3 MSBs in register 0x05. Table 71 Detailed description of I2C-bus video FIFO registers 0x05 BIT 7 6 5 4 FIFO REGISTER 0x05: FIFO_ACTIVE AND FIFO_OFFSET 3 2 1 0 PARAMETER FIFO_ACTIVE 1 mode_active: FIFO is active and the contents of the other mode registers should not be updated by the microcontroller (maledictive) 0 FIFO not active X X X X reserved FIFO_OFFSET (MSBs) X 2000 Jan 27 X X 3 MSBs of the offset value; see also register 0x04 41 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 72 Detailed description of I2C-bus video FIFO registers 0x06 BIT 7 6 5 4 FIFO REGISTER 0x06: PACKET_SIZE 3 2 1 0 PARAMETER PACKET_SIZE X X X X X X X X mode_packet_size: sets the packet size of the USB video channel. Packets can vary in size between 0 and 1023. Total 10 bits with 8 LSBs in this register and 2 MSBs in register 0x07. Table 73 Detailed description of I2C-bus video FIFO registers 0x07 BIT 7 6 5 4 FIFO REGISTER 0x07: READ_SPACING AND PACKET_SIZE 3 2 1 0 PARAMETER READ_SPACING X X X X X X mode_read_spacing: sets the periodicity of the read pulses; the periodicity can be set from 1 to 63 (from ‘000001’ to ‘111111’) PACKET_SIZE X 2000 Jan 27 X mode_packet_size: 2 MSBs of the value (8 LSBs in register 0x06) 42 Philips Semiconductors Preliminary specification Digital camera USB interface 9.2.5 SAA8115HL ADIF TOP REGISTERS Table 74 I2C-bus ADIF top registers overview ADDRESS ADIF TOP REGISTERS (BASE ADDRESS: 0x0C) 0x0C reserved 0x0D reserved 0x0E VGA control gain 0x0F ADIF control (ADIF2MMU) Table 75 Detailed description of I2C-bus ADIF top registers 0x0E BIT 7 6 5 4 ADIF REGISTER 0x0E: GAIN_CONTROL 3 2 1 0 X PARAMETER reserved GAIN_SOURCE_SELECT 0 reserved 1 gain is controlled directly by bits 3 to 0 X X reserved GAIN_CONTROL; 0 to 30 dB in steps of 2 dB 2000 Jan 27 0 0 0 0 0 dB 0 0 0 1 2 dB : : : : : 0 1 1 1 28 dB 1 1 1 1 30 dB 43 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Table 76 Detailed description of I2C-bus ADIF top registers 0x0F BIT 7 6 5 4 ADIF REGISTER 0x0F: ADIF_CONTROL 3 2 1 0 X PARAMETER reserved number of bytes per sample 0 0 0 (reserved) 0 1 1 (8 bits audio samples) 1 0 2 (16 bits audio samples) 1 1 3 (24 bits audio samples) selection mono/stereo operation 0 mono 1 stereo selection input for ADC path (ADIF mux) digital input (from I2S-bus) 0 1 analog input (from Vin_left and Vin_right) selection high-pass filter (DC filter) for ADC down sample filter 0 high-pass filter off 1 high-pass filter on selection audio serial input format 2000 Jan 27 0 0 I2S-bus 0 1 LSB-justified, 16 bits 1 0 LSB-justified, 18 bits 1 1 LSB-justified, 20 bits 44 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL 10 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 60134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT −0.5 +4.0 V −0.5 +5.5 V −0.5 +4.0 V pins AGND and DGND −0.5 +4.0 V all other pins −0.5 VDD + 0.5 V VDDA analog supply voltage VDDA_USB analog supply voltage from USB VDDD digital supply voltage Vn voltage on note 1 Tstg storage temperature −55 +150 °C Tamb ambient temperature 0 70 °C Tj junction temperature −40 +125 °C Note 1. This concerns pins VBUS1 and VBUS2. 11 THERMAL CHARACTERISTICS SYMBOL Rth(j-a) PARAMETER CONDITIONS thermal resistance from junction to ambient in free air VALUE UNIT 45 K/W 12 CHARACTERISTICS VDDD = VDDA = 3.3 V ±10%; Tamb = 0 to 70 °C. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supplies VDDDn digital supply voltage 3.0 3.3 3.6 V VDDAn analog supply voltage VDDA_USB analog supply voltage from USB 3.0 3.3 3.6 V 4.0 5.0 5.5 V VDGND digital ground supply −0.3 0.0 +0.3 V VAGND analog ground supply −0.3 0.0 +0.3 V IDDDn digital supply current Tamb = 25 °C − − tbf mA IDDAn analog supply current Tamb = 25 °C − − tbf mA note 1 Data and control inputs VIL LOW-level input voltage − − 0.8 V VIH HIGH-level input voltage 2.0 − − V Data and control outputs VOL LOW-level output voltage 0 − 0.1VDDD V VOH HIGH-level output voltage 0.9VDDD − VDDD 2000 Jan 27 45 V Philips Semiconductors Preliminary specification Digital camera USB interface SYMBOL PARAMETER SAA8115HL CONDITIONS MIN. TYP. MAX. UNIT Microphone supply IDD0 supply current − 0.85 1.2 mA Vref input reference voltage at 1⁄2VDDA − 1.65 − V VO output voltage VDDA = 3.3 V − 3.0 − V IO output current − − 2.0 mA Low noise amplifier TRANSFER FUNCTION Ri input impedance 3.5 5.0 − kΩ IDD1 supply current − 0.85 1.2 mA A amplification 27 28 29 dB Vo(rms) output voltage (RMS value) − − 800 mV THD total harmonic distortion − −69 −63 dB VOO1 output offset voltage − 0.0 1.0 mV reference current − 10 − µA note 2 BIASING Iref1 Variable gain amplifier TRANSFER FUNCTION Ri input impedance 7.0 10.5 13 kΩ IDD2 supply current − 0.45 0.6 mA A amplification 0.0 − 32 dB THD total harmonic distortion note 3 − −88 −82 dB note 4 − −65 −57 dB A = 0 dB − 1.0 2.0 mV A = 30 dB − 14 30 mV reference current − 10 − µA fi(clk) clock input frequency − 48 − MHz fo(clk) clock output frequency − 11.2996 − MHz B bandwidth − 2.3 − ζ damping − 0.98 − VOO2 output offset voltage BIASING Iref2 Audio PLL note 5 kHz Audio ADC (∑∆ converter) INPUTS fi input signal frequency 1 − 20 kHz Vi(rms) input voltage (RMS value) − 800 − mV TRANSFER FUNCTION N order of the ∑∆ − 3 − Nbit number of output bits − 1 − 2000 Jan 27 46 Philips Semiconductors Preliminary specification Digital camera USB interface SYMBOL PARAMETER SAA8115HL CONDITIONS MIN. TYP. MAX. UNIT − 16 − − 96.6 − dB − − 5.6448 MHz clock frequency duty factor − 50 − % total harmonic distortion − −70 −55 dB 4 − 48 kHz Nbit(eq) equivalent output resolution (bit) DRi dynamic range at input fclk clock frequency δ THD note 6 ATX transceiver DRIVER CHARACTERISTICS IN FULL SPEED MODE: PINS ATXDP AND ATXDM fo(sample) sample output frequency tr rise transition time CL = 50 pF 4 − 20 ns tf fall transition time CL = 50 pF 4 − 20 ns note 7 tmatch transition time matching Vcr output signal crossover voltage Zo driver output impedance 90 − 110 % 1.3 − 2.0 V steady state drive 30 − 42 Ω RECEIVER CHARACTERISTICS IN FULL SPEED MODE: PINS ATXDP AND ATXDM fi(sample) sample input frequency 5 − 55 kHz fi(D) data input frequency rate − 12.00 − Mbits/s tframe frame interval − 1.000 − ms DC-to-DC converter 5 V UP AND DOWN CONVERTER (SWITCHABLE SUPPLY DOMAIN) VO output voltage 4.9 5.0 5.1 V Vripple ripple on output voltage − 20 − mV IL load current − − 150 mA RDSON_P1 PMOS switch-on resistance; down converter note 8 − 1.0 − Ω RDSON_N1 NMOS switch-on resistance; down converter note 8 − 4.5 − Ω RDSON_P2 PMOS switch-on resistance; up converter note 8 − 1.1 − Ω RDSON_N2 NMOS switch-on resistance; up converter note 8 − 4.6 − Ω 2000 Jan 27 47 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL Notes 1. This concerns pins VBUS1 and VBUS2. 2. The distortion is measured at 1 kHz, Vo(rms) = 600 mV. 3. The distortion is measured at 1 kHz, Vo(rms) = 600 mV and A = 0 dB. 4. The distortion is measured at 1 kHz, Vo(rms) = 600 mV and A = 30 dB. 5. Frequencies depend on PLL settings (see Table 2). input voltage 6. Defined here as: 20 × log ------------------------------------------------------------------------------equivalent input noise voltage tr 7. Transition time matching: t match = --- × 100% tf 8. Including metal and contact resistance on chip and bonding wire resistance. 2000 Jan 27 48 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL 13 TIMING VDDD = VDDA = 3.3 V ±10%; Tamb = 0 to 70 °C. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Data input related to LLC (see Fig.6) PINS YUV0 TO YUV7, HREF, VS tsu(i)(D) data input set-up time 5 − − ns th(i)(D) data input hold time 3 − − ns PPG high-speed pulses for Sony ICX098AK VGA CCD-sensor (see Fig.7) td1 delay between falling edge C2 and rising edge C1 −3.5 −2.5 −1.5 ns td2 delay between rising edge C2 and falling edge C1 0 1.5 3 ns td3 delay between falling edge C1 and rising edge FCDS 20.5 21.5 22.5 ns td4 delay between rising edge C1 and rising edge FS 21.5 22.5 23.5 ns td5 delay between rising edge C1 and falling edge RG 0 1.5 3 ns td6 delay between falling edge CLK1 and rising edge C1 0 0.5 2 ns td7 delay between rising edge CLK1 and falling edge C1 2.5 3.0 3.5 ns td8 delay between rising edge CLK2 and rising edge C1 1 1.5 2 ns tWH(C1) C1 pulse width HIGH 80 81 − ns tWL(C2) C2 pulse width LOW 84 85 − ns tWL(FCDS) FCDS pulse width LOW 17 18.5 − ns tWL(FS) FS pulse width LOW 41 42 − ns tWL(RG) RG pulse width LOW 42 43 − ns tWL(CLK1) CLK1 pulse width LOW 84 84.5 − ns tWH(CLK2) CLK2 pulse width HIGH 39 40 − ns tr rise time pulse C1 − 4 − ns pulse C2 − 4 − ns pulse RG − 4 − ns pulse FCDS − 4 − ns pulse FS − 4 − ns pulse C1 − 4 − ns pulse C2 − 4 − ns pulse RG − 4 − ns pulse FCDS − 4 − ns pulse FS − 4 − ns tf note 1 fall time note 1 Note 1. CL = 11 pF; Tamb = 25 °C. 2000 Jan 27 49 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL handbook, full pagewidth LLC th(i)D tsu(i)D data input FCE606 Fig.6 Data input timing. tWH(C1) handbook, full pagewidth C1 50% 50% 50% td1 C2 td2 50% 50% tWL(C2) 50% FCDS 50% td3 tWL(FCDS) FS tWL(FS) 50% tWL(RG) td4 50% td5 RG 50% 50% td7 td6 CLK1 50% 50% tWL(CLK1) td8 CLK2 50% 50% tWH(CLK2) FCE607 Fig.7 PPG high-speed pulses for Sony ICX098AK VGA CCD-sensor. 2000 Jan 27 50 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... DQ15 to DQ0 AD10 to AD0 RASB CASB WEB CLKEN DQM CSB SDAE SCLE PSEN ALE AD10 to AD8 AD15 to AD11 DATA7 to DATA0 CLK1 CLK2 SNRES SNCL SNDA SUSPEND SUSPREADYNOT UCINT UCPOR UCCLK SMP UCM V-DRIVER SAA8115HL USB INTERFACE TRC DSP AND MICROCONTROLLER HD VD CLOCKON SAA8112HL Philips Semiconductors CCD9 to CCD0 SDATA SCLK STROBE Digital camera USB interface 51 TDA878x SCL SDA YUV7 to YUV0 HREF VS LLC SMP M RESET SENSOR SDRAM (optional) EEPROM 14 APPLICATION INFORMATION andbook, full pagewidth 2000 Jan 27 EPPROM (optional) A1 to A4, B1 to B4 Fig.8 Typical USB camera application. SAA8115HL FCE464 Preliminary specification FS, FCDS, DCP, BCP, CLK1 C1 to C4, CR, RG Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL 15 PACKAGE OUTLINE LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm SOT486-1 c y X A 73 72 108 109 ZE e E HE A A2 (A 3) A1 θ wM Lp bp L pin 1 index detail X 37 144 1 36 v M A ZD wM bp e D B HD v M B 0 5 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e mm 1.6 0.15 0.05 1.45 1.35 0.25 0.27 0.17 0.20 0.09 20.1 19.9 20.1 19.9 0.50 HD HE 22.15 22.15 21.85 21.85 L Lp v w y 1.0 0.75 0.45 0.2 0.08 0.08 Z D(1) Z E(1) θ 1.40 1.10 7 0o 1.40 1.10 o Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT486-1 136E23 MS-026 2000 Jan 27 EIAJ EUROPEAN PROJECTION ISSUE DATE 99-12-03 00-01-19 52 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL If wave soldering is used the following conditions must be observed for optimal results: 16 SOLDERING 16.1 Introduction to soldering surface mount packages • Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “Data Handbook IC26; Integrated Circuit Packages” (document order number 9398 652 90011). • For packages with leads on two sides and a pitch (e): – larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board; There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used. 16.2 – smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves at the downstream end. Reflow soldering Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. • For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners. Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C. Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. 16.3 16.4 Wave soldering Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems. To overcome these problems the double-wave soldering method was specifically developed. 2000 Jan 27 Manual soldering When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. 53 Philips Semiconductors Preliminary specification Digital camera USB interface 16.5 SAA8115HL Suitability of surface mount IC packages for wave and reflow soldering methods SOLDERING METHOD PACKAGE REFLOW(1) WAVE BGA, SQFP not suitable HLQFP, HSQFP, HSOP, HTSSOP, SMS not PLCC(3), SO, SOJ LQFP, QFP, TQFP SSOP, TSSOP, VSO suitable suitable(2) suitable suitable suitable not recommended(3)(4) suitable not recommended(5) suitable Notes 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”. 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version). 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners. 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm. 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm. 2000 Jan 27 54 Philips Semiconductors Preliminary specification Digital camera USB interface SAA8115HL 17 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. 18 LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 19 PURCHASE OF PHILIPS I2C COMPONENTS Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011. 2000 Jan 27 55 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838, Fax +39 039 203 6800 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 3341 299, Fax.+381 11 3342 553 For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com SCA 69 © Philips Electronics N.V. 2000 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 753505/03/pp56 Date of release: 2000 Jan 27 Document order number: 9397 750 06568