IRF IRF1405ZL

PD - 97206A
AUTOMOTIVE MOSFET
IRF1405ZS-7PPbF
IRF1405ZL-7PPbF
HEXFET® Power MOSFET
Features
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
D
VDSS = 55V
RDS(on) = 4.9mى
G
ID = 120A
S
S (Pin 2, 3, 5, 6, 7)
G (Pin 1)
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make this design an extremely efficient
and reliable device for use in Automotive applications and a wide variety of other applications.
D2Pak 7 Pin
TO-263CA 7 Pin
Absolute Maximum Ratings
Parameter
Max.
Units
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
150
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (See Fig. 9)
100
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Package Limited)
120
IDM
Pulsed Drain Current
PD @TC = 25°C
Maximum Power Dissipation
230
W
Linear Derating Factor
1.5
± 20
W/°C
V
250
mJ
VGS
EAS
c
590
Gate-to-Source Voltage
Single Pulse Avalanche Energy (Thermally Limited)
EAS (tested)
Single Pulse Avalanche Energy Tested Value
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
c
h
d
g
See Fig.12a,12b,15,16
A
mJ
°C
-55 to + 175
Soldering Temperature, for 10 seconds
300 (1.6mm from case )
Mounting torque, 6-32 or M3 screw
10 lbf•in (1.1N•m)
Thermal Resistance
Typ.
Max.
Units
–––
0.65
°C/W
Case-to-Sink, Flat, Greased Surface
0.50
–––
Junction-to-Ambient
–––
62
–––
40
RθJC
Junction-to-Case
RθCS
RθJA
RθJA
810
j
Parameter
j
Junction-to-Ambient (PCB Mount, steady state)
ij
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
12/07/06
IRF1405ZS/L-7PPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
∆ΒVDSS/∆TJ
RDS(on) SMD
VGS(th)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
gfs
IDSS
Forward Transconductance
Drain-to-Source Leakage Current
IGSS
Min. Typ. Max. Units
–––
0.054
–––
–––
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
55
–––
–––
2.0
150
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
3.7
–––
–––
–––
–––
–––
–––
150
37
64
16
140
170
130
4.5
4.9
4.0
–––
20
250
200
-200
230
–––
–––
–––
–––
–––
–––
–––
LS
Internal Source Inductance
–––
7.5
–––
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
5360
1310
340
6080
920
1700
–––
–––
–––
–––
–––
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 88A
V VDS = VGS, ID = 150µA
S VDS = 25V, ID = 88A
µA VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
nC ID = 88A
VDS = 44V
VGS = 10V
ns VDD = 28V
ID = 88A
RG = 5.0Ω
VGS = 10V
D
nH Between lead,
e
e
d
6mm (0.25in.)
from package
pF
G
S
and center of die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz, See Fig. 5
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
Qrr
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
c
Min. Typ. Max. Units
–––
150
–––
–––
–––
–––
–––
–––
63
160
Conditions
MOSFET symbol
A
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C,
L=0.064mH, RG = 25Ω, IAS = 88A, VGS =10V.
Part not recommended for use above this value.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
„ Coss eff. is a fixed capacitance that gives the same
charging time as Coss while VDS is rising from 0 to 80%
VDSS.
2
–––
D
590
showing the
integral reverse
1.3
95
240
S
p-n junction diode.
TJ = 25°C, IS = 88A, VGS = 0V
TJ = 25°C, IF = 88A, VDD = 28V
di/dt = 100A/µs
V
ns
nC
G
e
e
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
† This value determined from sample failure population. 100%
tested to this value in production.
‡ This is applied to D2Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
ˆ Rθ is measured at TJ of approximately 90°C.
‰ Solder mounted on IMS substrate.
www.irf.com
IRF1405ZS/L-7PPbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
4.5V
10
BOTTOM
4.5V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
1
0.1
1
10
1
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
150
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
0
2
4
6
8
10
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
12
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
125
T J = 25°C
100
T J = 175°C
75
50
25
V DS = 10V
300µs PULSE WIDTH
0
0
25
50
75
100 125 150 175 200
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRF1405ZS/L-7PPbF
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 88A
C, Capacitance(pF)
C oss = C ds + C gd
10000
Ciss
Coss
Crss
1000
100
VDS= 44V
VDS= 28V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
150
200
10000
ID, Drain-to-Source Current (A)
1000
ISD, Reverse Drain Current (A)
100
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
T J = 175°C
100
T J = 25°C
10
VGS = 0V
1
0.0
0.5
1.0
1.5
2.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
50
QG Total Gate Charge (nC)
2.5
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100µsec
100
1msec
10
DC
1
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
0.01
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF1405ZS/L-7PPbF
150
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
ID, Drain Current (A)
125
100
75
50
25
0
25
50
75
100
125
150
ID = 88A
VGS = 10V
2.0
1.5
1.0
0.5
175
-60 -40 -20 0
T C , Case Temperature (°C)
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
Ci= τi/Ri
Ci i/Ri
τC
τ
τ3
Ri (°C/W)
0.1707
τi (sec)
0.000235
0.1923
0.000791
0.2885
0.008193
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF1405ZS/L-7PPbF
15V
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
DRIVER
L
VDS
1000
ID
14A
23A
BOTTOM 88A
TOP
800
600
400
200
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
4.5
VG
4.0
3.5
3.0
2.5
2.0
ID = 150µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
1.5
1.0
-75 -50 -25
VGS
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRF1405ZS/L-7PPbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
100
0.01
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 88A
250
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT jmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF1405ZS/L-7PPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
P.W.
+
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
V DD
• dv/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
Period
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
*
VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
V GS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF1405ZS/L-7PPbF
D2Pak - 7 Pin Package Outline
Dimensions are shown in millimeters (inches)
www.irf.com
9
IRF1405ZS/L-7PPbF
D2Pak - 7 Pin Part Marking Information
14
D2Pak - 7 Pin Tape and Reel
10
www.irf.com
IRF1405ZS/L-7PPbF
TO-263CA 7 Pin Long Leads Package Outline
Dimensions are shown in millimeters (inches)
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/06
www.irf.com
11
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/