INTEGRATED CIRCUITS DATA SHEET SAA7140A; SAA7140B High Performance Scaler (HPS) Objective specification Supersedes data of 1996 Jul 26 File under Integrated Circuits, IC22 1996 Sep 04 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B CONTENTS 14 PACKAGE OUTLINE 15 SOLDERING Introduction Reflow soldering Wave soldering QFP SO Method (QFP and SO) Repairing soldered joints 1 FEATURES 2 GENERAL DESCRIPTION 3 ORDERING INFORMATION 4 BLOCK DIAGRAM 5 PINNING (SAA7140A) 6 PINNING (SAA7140B) 15.1 15.2 15.3 15.3.1 15.3.2 15.3.3 15.4 7 FUNCTIONAL DESCRIPTION 16 DEFINITIONS 7.1 17 LIFE SUPPORT APPLICATIONS 18 PURCHASE OF PHILIPS I2C COMPONENTS 7.8.3 Data format/reformatter and reference signal generation Data formats and reference signals of the DMSD port Data formats and reference signals of the expansion port Acquisition control BCS control Scaling unit Horizontal prescaling Vertical scaler Horizontal variable phase scaling CSM (Colour Space Matrix), dither and gamma correction Output formatter and output FIFO register Data formats and reference signals of the VRAM port Data transfer modes Expansion port modes VRAM port modes Data burst transfer mode (FIFO Mode) Continuous data transfer mode (transparent mode) I2C-bus controlled pseudo sleep mode 8 I2C-BUS PROTOCOL 8.1 8.2 8.3 8.3.1 I2C-bus format I2C-bus bitmap Description of the I2C-bus bits Initial settings for the expansion and DMSD port; Subaddress 00H Initial settings for the VRAM port; subaddress 01H Port I/O control; subaddress 21H Register set A (02H to 1FH) and B (22H to 3FH) 7.1.1 7.1.2 7.2 7.3 7.4 7.4.1 7.4.2 7.4.3 7.5 7.6 7.6.1 7.7 7.7.1 7.8 7.8.1 7.8.2 8.3.2 8.3.3 8.3.4 9 LIMITING VALUES 10 HANDLING 11 THERMAL CHARACTERISTICS 12 DC CHARACTERISTICS 13 AC CHARACTERISTICS 1996 Sep 04 2 Philips Semiconductors Objective specification High Performance Scaler (HPS) 1 SAA7140A; SAA7140B 2 FEATURES • Scaling of video pictures down to randomly sized windows GENERAL DESCRIPTION The SAA7140A and SAA7140B are CMOS High Performance Scaler (HPS) and is a highly integrated circuit designed for use in DeskTop Video (DTV) applications. The devices resample digital video signals using two dimensional phase-correct interpolation in order to display it in an arbitrarily sized window. • Horizontal upscaling (zoom) • Two dimensional phase-correct data processing for improved signal quality of scaled data, especially for compression applications The SAA7140A fits perfectly into a 5 V signal environment and requires two different supply voltages (5 V and 3.3 V). The SAA7140B is a pure 3.3 V design and therefore has only 3.3 V supply pins. With respect to functions and programming, both devices are identical. • Processing of a maximum of 2047 active samples per line (V-processing in bypass) and 2047 active lines per frame • 16-bit YUV data input port • Bidirectional expansion port with full duplex functionality (D1) or 16-bit YUV input/output The devices incorporate additional functions such as control of brightness, saturation, contrast, chroma key generation, YUV-to-RGB conversion, compensation of gamma precorrection, dithering and choice of several output formats. • Discontinuous data stream supported • Field-wise switching between two data sources • Two independent I2C-bus programming sets • Brightness, contrast and saturation controls for scaled outputs The SAA7140A and SAA7140B accepts data from 1 or 2 input signal sources, via it’s 16-bit YUV input port and/or the bidirectional expansion port. They deliver scaled data on the 32-bit VRO output port and, if selected, also on the bidirectional expansion port. A synchronous (transparent) together with an asynchronous (burst) data transfer mode is supported at the 32-bit VRO port. • Chroma key (α generation) • YUV-to-RGB conversion including anti-gamma correction for RGB • 16-word FIFO register for 32-bit output data • Output configurable for 32, 24, 16 and 8-bit video data • Scaled 16-bit 4 : 2 : 2 YUV output • Scaled 15-bit RGB (5, 5, 5) + α with dither and 24-bit RGB (8, 8, 8) + α output • Scaled 8-bit monochrome output • Four independent user configurable general purpose I/O pins • Low power consumption in I2C-bus controlled pseudo sleep mode • Support of 5 V (SAA7140A) and pure 3.3 V (SAA7140B) signalling environment. 3 ORDERING INFORMATION PACKAGE TYPE NUMBER NAME SAA7140A LQFP128 plastic low profile quad flat package; 128 leads; body 14 × 20 × 1.4 mm SOT425-1 SAA7140B LQFP128 plastic low profile quad flat package; 128 leads; body 14 × 20 × 1.4 mm SOT425-1 1996 Sep 04 DESCRIPTION 3 VERSION 1996 Sep 04 DMSD PORT YIN7 to 0 4 RES IICSA 42 33 31 32 38 to 41 5 8 7 6 28 to 21 I2C CONTROL V H PXQ UV status controls CLK REFERENCE SIGNAL GENERATION AND DATA FORMATTER/ REFORMATTER Y AP 43 SP 44 49 UV Y BTST ACQUISITION CONTROL reference 125 1 B G U V R Y CSM DITHERING γ-CORRECTION HORIZONTAL PRESCALING 104 PXQIO VMUX 52 VOEN 50 VCLK 56 OUTPUT FIFO REGISTER OUTPUT FORMATTER 102 VIO ARITHMETIC CONTROL LINE MEMORY VERTICAL PROCESSING 103 HIO SCALING UNIT Fig.1 Block diagram (SAA7140A). V U Y SAA7140A 128 LLCIO 117 to 124 VIDL7 to 0 105 to 112 VIDH7 to 0 EXPANSION PORT INTERFACE 127 VIN BCS CONTROL 126 HIN V U Y MHA117 54 55 48 45 46 47 57 to 65, 70 to 81, 86 to 96 HORIZONTAL FINE SCALING 97 FDIO HFL INCADR PXQV FLDV VSYV HGTV VRO31 to 0 VRAM PORT High Performance Scaler (HPS) SDA SCL PORT3 to 0 LLC VS HREF CREF UVIN7 to 0 18 to 11 PXQIN ndbook, full pagewidth LLCIN EXPANSION PORT 4 VSSD(bord) 1 to 11 VDDD(bord) 1 to 12 VSSD(core) 1 to 4 VDDD(core) 1 to 4 Philips Semiconductors Objective specification SAA7140A; SAA7140B BLOCK DIAGRAMS 1996 Sep 04 DMSD PORT 5 RES IICSA 42 33 31 32 38 to 41 5 8 7 6 28 to 21 18 to 11 I2C CONTROL V H PXQ UV status controls CLK REFERENCE SIGNAL GENERATION AND DATA FORMATTER/ REFORMATTER Y AP 43 SP 44 49 UV Y BTST ACQUISITION CONTROL reference 125 1 B G U V R Y CSM DITHERING γ-CORRECTION HORIZONTAL PRESCALING VMUX 52 VOEN 50 VCLK 56 OUTPUT FIFO REGISTER OUTPUT FORMATTER 102 VIO ARITHMETIC CONTROL LINE MEMORY VERTICAL PROCESSING 103 HIO SCALING UNIT 104 PXQIO Fig.2 Block diagram (SAA7140B). V U Y SAA7140B 128 LLCIO 117 to 124 VIDL7 to 0 105 to 112 VIDH7 to 0 EXPANSION PORT INTERFACE 127 VIN BCS CONTROL 126 HIN V U Y MHA360 54 55 48 45 46 47 57 to 65, 70 to 81, 86 to 96 HORIZONTAL FINE SCALING 97 FDIO HFL INCADR PXQV FLDV VSYV HGTV VRO31 to 0 VRAM PORT High Performance Scaler (HPS) SDA SCL PORT3 to 0 LLC VS HREF CREF UVIN7 to 0 YIN7 to 0 VSSD1 to 15 VDDD1 to 16 PXQIN handbook, full pagewidth LLCIN EXPANSION PORT Philips Semiconductors Objective specification SAA7140A; SAA7140B Philips Semiconductors Objective specification High Performance Scaler (HPS) 5 SAA7140A; SAA7140B PINNING (SAA7140A) SYMBOL PIN I/O DESCRIPTION LLCIN 1 I line-locked system clock input; expansion port VDDD(bord)1 2 − digital border supply voltage 1 (+5 V) VSSD(bord)1 3 − digital border ground 1 (0 V) VDDD(bord)2 4 − digital border supply voltage 2 (+5 V) LLC 5 I line-locked system clock input, maximum 32 MHz (2 × pixel rate); DMSD port CREF 6 I clock qualifier input (HIGH indicates valid input data YUV on DMSD port) HREF 7 I horizontal reference input signal; DMSD port VS 8 I vertical sync input signal; DMSD port VDDD(core)1 9 − digital core supply voltage 1 (+3.3 V) VSSD(bord)2 10 − digital border ground 2 (0 V) YIN0 11 I luminance input data (bit 0); DMSD port YIN1 12 I luminance input data (bit 1); DMSD port YIN2 13 I luminance input data (bit 2); DMSD port YIN3 14 I luminance input data (bit 3); DMSD port YIN4 15 I luminance input data (bit 4); DMSD port YIN5 16 I luminance input data (bit 5); DMSD port YIN6 17 I luminance input data (bit 6); DMSD port YIN7 18 I luminance input data (bit 7); DMSD port VDDD(bord)3 19 − digital border supply voltage 3 (+5 V) VSSD(core)1 20 − digital core ground 1 (0 V) UVIN0 21 I time-multiplexed colour-difference input data (bit 0); DMSD port UVIN1 22 I time-multiplexed colour-difference input data (bit 1); DMSD port UVIN2 23 I time-multiplexed colour-difference input data (bit 2); DMSD port UVIN3 24 I time-multiplexed colour-difference input data (bit 3); DMSD port UVIN4 25 I time-multiplexed colour-difference input data (bit 4); DMSD port UVIN5 26 I time-multiplexed colour-difference input data (bit 5); DMSD port UVIN6 27 I time-multiplexed colour-difference input data (bit 6); DMSD port UVIN7 28 I time-multiplexed colour-difference input data (bit 7); DMSD port VDDD(bord)4 29 − digital border supply voltage 4 (+5 V) VSSD(bord)3 30 − digital border ground 3 (0 V) SDA 31 I/O SCL 32 I serial clock input (I2C-bus) IICSA 33 I set address input (I2C-bus) VDDD(bord)5 34 − digital border supply voltage 5 (+5 V) VSSD(bord)4 35 − digital border ground 4 (0 V) VDDD(bord)6 36 − digital border supply voltage 6 (+5 V) VSSD(bord)5 37 − digital border ground 5 (0 V) PORT3 38 I/O general purpose port 3 input/output (set via I2C-bus) PORT2 39 I/O general purpose port 2 input/output (set via I2C-bus) PORT1 40 I/O general purpose port 1 input/output (set via I2C-bus) 1996 Sep 04 serial data input/output (I2C-bus) 6 Philips Semiconductors Objective specification High Performance Scaler (HPS) SYMBOL SAA7140A; SAA7140B PIN I/O PORT0 41 I/O general purpose port 0 input/output (set via I2C-bus) RES 42 I reset input (active LOW for at least 30 clock cycles) AP 43 I connected to ground (action pin for testing) SP 44 I connected to ground (shift pin for testing) FLDV 45 O field identification output signal; VRAM port VSYV 46 O vertical sync output signal; VRAM port HGTV 47 O horizontal reference output signal; VRAM port PXQV 48 O pixel qualifier output signal to mark active pixels of a qualified line; VRAM port BTST 49 I connected to ground; BTST = HIGH sets all outputs to high-impedance state (testing) VOEN 50 I enable input signal for VRAM port VDDD(core)2 51 − digital core supply voltage 2 (+3.3 V) VMUX 52 I VRAM output multiplexing, control input for the 32 to 16-bit multiplexer VSSD(core)2 53 − digital core ground 2 (0 V) HFL 54 O FIFO half-full flag output signal INCADR 55 O line increment/vertical reset control output VCLK 56 I/O clock input/output signal for VRAM port VRO31 57 O 32-bit digital VRAM port output (bit 31) VRO30 58 O 32-bit digital VRAM port output (bit 30) VRO29 59 O 32-bit digital VRAM port output (bit 29) VRO28 60 O 32-bit digital VRAM port output (bit 28) VRO27 61 O 32-bit digital VRAM port output (bit 27) VRO26 62 O 32-bit digital VRAM port output (bit 26) VRO25 63 O 32-bit digital VRAM port output (bit 25) VRO24 64 O 32-bit digital VRAM port output (bit 24) VRO23 65 O 32-bit digital VRAM port output (bit 23) VDDD(bord)7 66 − digital border supply voltage 7 (+5 V) VSSD(bord)6 67 − digital border ground 6 (0 V) VDDD(bord)8 68 − digital border supply voltage 8 (+5 V) VSSD(bord)7 69 − digital border ground 7 (0 V) VRO22 70 O 32-bit VRAM port output (bit 22) VRO21 71 O 32-bit VRAM port output (bit 21) VRO20 72 O 32-bit VRAM port output (bit 20) VRO19 73 O 32-bit VRAM port output (bit 19) VRO18 74 O 32-bit VRAM port output (bit 18) VRO17 75 O 32-bit VRAM port output (bit 17) VRO16 76 O 32-bit VRAM port output (bit 16) VRO15 77 O 32-bit VRAM port output (bit 15) VRO14 78 O 32-bit VRAM port output (bit 14) VRO13 79 O 32-bit VRAM port output (bit 13) VRO12 80 O 32-bit VRAM port output (bit 12) 1996 Sep 04 DESCRIPTION 7 Philips Semiconductors Objective specification High Performance Scaler (HPS) SYMBOL SAA7140A; SAA7140B PIN I/O DESCRIPTION VRO11 81 O 32-bit VRAM port output (bit 11) VSSD(bord)8 82 − digital border ground 8 (0 V) VDDD(bord)9 83 − digital border supply voltage 9 (+5 V) VSSD(core)3 84 − digital core ground 3 (0 V) VDDD(core)3 85 − digital core supply voltage 3 (+3.3 V) VRO10 86 O 32-bit VRAM port output (bit 10) VRO9 87 O 32-bit VRAM port output (bit 9) VRO8 88 O 32-bit VRAM port output (bit 8) VRO7 89 O 32-bit VRAM port output (bit 7) VRO6 90 O 32-bit VRAM port output (bit 6) VRO5 91 O 32-bit VRAM port output (bit 5) VRO4 92 O 32-bit VRAM port output (bit 4) VRO3 93 O 32-bit VRAM port output (bit 3) VRO2 94 O 32-bit VRAM port output (bit 2) VRO1 95 O 32-bit VRAM port output (bit 1) VRO0 96 O 32-bit VRAM port output (bit 0) FDIO 97 I/O field identification output signal; 7196 DIR input signal expansion port, I2C-bus controlled VDDD(bord)10 98 − digital border supply voltage 10 (+5 V) VSSD(bord)9 99 − digital border ground 9 (0 V) VDDD(bord)11 100 − digital border supply voltage 11 (+5 V) digital border ground 10 (0 V) VSSD(bord)10 101 − VIO 102 I/O vertical sync input/output signal; expansion port HIO 103 I/O horizontal sync input/output signal; expansion port PXQIO 104 I/O pixel qualifier input/output signal to mark valid pixels; expansion port VIDH7 105 I/O bidirectional expansion port, high byte (bit 7) in 16-bit mode luminance component Y VIDH6 106 I/O bidirectional expansion port, high byte (bit 6) in 16-bit mode luminance component Y VIDH5 107 I/O bidirectional expansion port, high byte (bit 5) in 16-bit mode luminance component Y VIDH4 108 I/O bidirectional expansion port, high byte (bit 4) in 16-bit mode luminance component Y VIDH3 109 I/O bidirectional expansion port, high byte (bit 3) in 16-bit mode luminance component Y VIDH2 110 I/O bidirectional expansion port, high byte (bit 2) in 16-bit mode luminance component Y VIDH1 111 I/O bidirectional expansion port, high byte (bit 1) in 16-bit mode luminance component Y VIDH0 112 I/O bidirectional expansion port, high byte (bit 0) in 16-bit mode luminance component Y VDDD(bord)12 113 − 1996 Sep 04 digital border supply voltage 12 (+5 V) 8 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B SYMBOL PIN I/O VSSD(bord)11 114 − digital border ground 11 (0 V) VDDD(core)4 115 − digital core supply voltage 4 (+3.3 V) VSSD(core)4 116 − digital core ground 4 (0 V) VIDL7 117 I/O bidirectional expansion port, low byte (bit 7) in 16-bit mode time-multiplexed colour-difference components U and V VIDL6 118 I/O bidirectional expansion port, low byte (bit 6) in 16-bit mode time-multiplexed colour-difference components U and V VIDL5 119 I/O bidirectional expansion port, low byte (bit 5) in 16-bit mode time-multiplexed colour-difference components U and V VIDL4 120 I/O bidirectional expansion port, low byte (bit 4) in 16-bit mode time-multiplexed colour-difference components U and V VIDL3 121 I/O bidirectional expansion port, low byte (bit 3) in 16-bit mode time-multiplexed colour-difference components U and V VIDL2 122 I/O bidirectional expansion port, low byte (bit 2) in 16-bit mode time-multiplexed colour-difference components U and V VIDL1 123 I/O bidirectional expansion port, low byte (bit 1) in 16-bit mode time-multiplexed colour-difference components U and V VIDL0 124 I/O bidirectional expansion port, low byte (bit 0) in 16-bit mode time-multiplexed colour-difference components U and V PXQIN 125 I pixel qualifier input signal to mark valid pixels; expansion port HIN 126 I horizontal sync input signal; expansion port VIN 127 I vertical sync input signal; expansion port LLCIO 128 I/O 1996 Sep 04 DESCRIPTION line-locked system clock input/output; expansion port 9 Philips Semiconductors Objective specification LLCIN VDDD(bord)1 VSSD(bord)1 1 VDDD(bord)2 4 103 HIO 104 PXQIO 105 VIDH7 106 VIDH6 107 VIDH5 108 VIDH4 109 VIDH3 110 VIDH2 111 VIDH1 112 VIDH0 113 VDDD(bord)12 118 VIDL6 119 VIDL5 120 VIDL4 121 VIDL3 122 VIDL2 123 VIDL1 124 VIDL0 125 PXQIN 126 HIN 127 VIN 128 LLCIO handbook, full pagewidth 115 VDDD(core)4 114 VSSD(bord)11 SAA7140A; SAA7140B 117 VIDL7 116 VSSD(core)4 High Performance Scaler (HPS) 102 VIO 101 VSSD(bord)10 2 100 VDDD(bord)11 99 VSSD(bord)9 3 LCC 5 98 VDDD(bord)10 CREF 6 97 FDIO HREF 7 96 VRO0 VS 8 95 VRO1 VDDD(core)1 VSSD(bord)2 9 94 VRO2 10 93 VRO3 YIN0 11 92 VRO4 YIN1 12 91 VRO5 YIN2 13 90 VRO5 YIN3 14 89 VRO7 YIN4 15 88 VRO8 YIN5 16 87 VRO9 YIN6 17 86 YIN7 18 85 VRO10 VDDD(core)3 VDDD(bord)3 19 VSSD(core)1 20 UVIN0 UVIN1 83 VSSD(core)3 VDDD(bord)9 21 82 VSSD(bord)8 22 81 VRO11 UVIN2 23 80 VRO12 UVIN3 24 79 VRO13 UVIN4 25 78 VRO14 UVIN5 26 77 VRO15 UVIN6 27 76 VRO16 UVIN7 28 75 VRO17 VDDD(bord)4 29 74 VRO18 VSSD(bord)3 30 73 VRO19 SDA 31 72 VRO20 SCL 32 71 VRO21 IICSA 33 70 VDDD(bord)5 34 69 VRO22 VSSD(bord)7 VSSD(bord)4 VDDD(bord)6 35 68 36 67 VDDD(bord)8 VSSD(bord)6 VSSD(bord)5 37 66 VDDD(bord)7 PORT3 38 65 VRO23 84 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 SAA7140A Fig.3 Pin configuration (SAA7140A). 1996 Sep 04 10 VRO24 VRO25 VRO26 VRO27 VRO28 VRO29 VRO30 VRO31 VCLK INCADR HFL VMUX VSSD(core)2 VDDD(core)2 VOEN BTST PXQV HGTV VSYV FLDV SP AP RES PORT0 PORT1 PORT2 MHA362 Philips Semiconductors Objective specification High Performance Scaler (HPS) 6 SAA7140A; SAA7140B PINNING (SAA7140B) SYMBOL PIN I/O DESCRIPTION LLCIN 1 I line-locked system clock input; expansion port VDDD1 2 − digital supply voltage 1 (+3.3 V) VSSD1 3 − digital ground 1 (0 V) VDDD2 4 − digital supply voltage 2 (+3.3 V) LLC 5 I line-locked system clock input, maximum 32 MHz (2 × pixel rate); DMSD port CREF 6 I clock qualifier input (HIGH indicates valid input data YUV on DMSD port) HREF 7 I horizontal reference input signal; DMSD port VS 8 I vertical sync input signal; DMSD port VDDD3 9 − digital supply voltage 3 (+3.3 V) VSSD2 10 − digital ground 2 (0 V) YIN0 11 I luminance input data (bit 0); DMSD port YIN1 12 I luminance input data (bit 1); DMSD port YIN2 13 I luminance input data (bit 2); DMSD port YIN3 14 I luminance input data (bit 3); DMSD port YIN4 15 I luminance input data (bit 4); DMSD port YIN5 16 I luminance input data (bit 5); DMSD port YIN6 17 I luminance input data (bit 6); DMSD port YIN7 18 I luminance input data (bit 7); DMSD port VDDD4 19 − digital supply voltage 4 (+3.3 V) VSSD3 20 − digital ground 3 (0 V) UVIN0 21 I time-multiplexed colour-difference input data (bit 0); DMSD port UVIN1 22 I time-multiplexed colour-difference input data (bit 1); DMSD port UVIN2 23 I time-multiplexed colour-difference input data (bit 2); DMSD port UVIN3 24 I time-multiplexed colour-difference input data (bit 3); DMSD port UVIN4 25 I time-multiplexed colour-difference input data (bit 4); DMSD port UVIN5 26 I time-multiplexed colour-difference input data (bit 5); DMSD port UVIN6 27 I time-multiplexed colour-difference input data (bit 6); DMSD port UVIN7 28 I time-multiplexed colour-difference input data (bit 7); DMSD port VDDD5 29 − digital supply voltage 5 (+3.3 V) VSSD4 30 − digital ground 4 (0 V) SDA 31 I/O SCL 32 I serial clock input (I2C-bus) IICSA 33 I set address input (I2C-bus) VDDD6 34 − digital supply voltage 6 (+3.3 V) VSSD5 35 − digital ground 5 (0 V) VDDD7 36 − digital supply voltage 7 (+3.3 V) VSSD6 37 − digital ground 6 (0 V) PORT3 38 I/O general purpose port 3 input/output (set via I2C-bus) PORT2 39 I/O general purpose port 2 input/output (set via I2C-bus) PORT1 40 I/O general purpose port 1 input/output (set via I2C-bus) 1996 Sep 04 serial data input/output (I2C-bus) 11 Philips Semiconductors Objective specification High Performance Scaler (HPS) SYMBOL SAA7140A; SAA7140B PIN I/O PORT0 41 I/O general purpose port 0 input/output (set via I2C-bus) RES 42 I reset input (active LOW for at least 30 clock cycles) AP 43 I connected to ground (action pin for testing) SP 44 I connected to ground (shift pin for testing) FLDV 45 O field identification output signal; VRAM port VSYV 46 O vertical sync output signal; VRAM port HGTV 47 O horizontal reference output signal; VRAM port PXQV 48 O pixel qualifier output signal to mark active pixels of a qualified line; VRAM port BTST 49 I connected to ground; BTST = HIGH sets all outputs to high-impedance state (testing) VOEN 50 I enable input signal for VRAM port VDDD8 51 − digital supply voltage 8 (+3.3 V) VMUX 52 I VRAM output multiplexing, control input for the 32 to 16-bit multiplexer VSSD7 53 − digital ground 7 (0 V) HFL 54 O FIFO half-full flag output signal INCADR 55 O line increment/vertical reset control output VCLK 56 I/O clock input/output signal for VRAM port VRO31 57 O 32-bit digital VRAM port output (bit 31) VRO30 58 O 32-bit digital VRAM port output (bit 30) VRO29 59 O 32-bit digital VRAM port output (bit 29) VRO28 60 O 32-bit digital VRAM port output (bit 28) VRO27 61 O 32-bit digital VRAM port output (bit 27) VRO26 62 O 32-bit digital VRAM port output (bit 26) VRO25 63 O 32-bit digital VRAM port output (bit 25) VRO24 64 O 32-bit digital VRAM port output (bit 24) VRO23 65 O 32-bit digital VRAM port output (bit 23) VDDD9 66 − digital supply voltage 9 (+3.3 V) VSSD8 67 − digital ground 8 (0 V) VDDD10 68 − digital supply voltage 10 (+3.3 V) VSSD9 69 − digital ground 9 (0 V) VRO22 70 O 32-bit VRAM port output (bit 22) VRO21 71 O 32-bit VRAM port output (bit 21) VRO20 72 O 32-bit VRAM port output (bit 20) VRO19 73 O 32-bit VRAM port output (bit 19) VRO18 74 O 32-bit VRAM port output (bit 18) VRO17 75 O 32-bit VRAM port output (bit 17) VRO16 76 O 32-bit VRAM port output (bit 16) VRO15 77 O 32-bit VRAM port output (bit 15) VRO14 78 O 32-bit VRAM port output (bit 14) VRO13 79 O 32-bit VRAM port output (bit 13) VRO12 80 O 32-bit VRAM port output (bit 12) 1996 Sep 04 DESCRIPTION 12 Philips Semiconductors Objective specification High Performance Scaler (HPS) SYMBOL SAA7140A; SAA7140B PIN I/O DESCRIPTION VRO11 81 O 32-bit VRAM port output (bit 11) VSSD10 82 − digital ground 10 (0 V) VDDD11 83 − digital supply voltage 11 (+3.3 V) VSSD11 84 − digital ground 11 (0 V) VDDD12 85 − digital supply voltage 12 (+3.3 V) VRO10 86 O 32-bit VRAM port output (bit 10) VRO9 87 O 32-bit VRAM port output (bit 9) VRO8 88 O 32-bit VRAM port output (bit 8) VRO7 89 O 32-bit VRAM port output (bit 7) VRO6 90 O 32-bit VRAM port output (bit 6) VRO5 91 O 32-bit VRAM port output (bit 5) VRO4 92 O 32-bit VRAM port output (bit 4) VRO3 93 O 32-bit VRAM port output (bit 3) VRO2 94 O 32-bit VRAM port output (bit 2) VRO1 95 O 32-bit VRAM port output (bit 1) VRO0 96 O 32-bit VRAM port output (bit 0) FDIO 97 I/O field identification output signal; 7196 DIR input signal expansion port, I2C-bus controlled VDDD13 98 − digital supply voltage 13 (+3.3 V) VSSD12 99 − digital ground 12 (0 V) VDDD14 100 − digital supply voltage 14 (+3.3 V) digital ground 13 (0 V) VSSD13 101 − VIO 102 I/O vertical sync input/output signal; expansion port HIO 103 I/O horizontal sync input/output signal; expansion port PXQIO 104 I/O pixel qualifier input/output signal to mark valid pixels; expansion port VIDH7 105 I/O bidirectional expansion port, high byte (bit 7) in 16-bit mode luminance component Y VIDH6 106 I/O bidirectional expansion port, high byte (bit 6) in 16-bit mode luminance component Y VIDH5 107 I/O bidirectional expansion port, high byte (bit 5) in 16-bit mode luminance component Y VIDH4 108 I/O bidirectional expansion port, high byte (bit 4) in 16-bit mode luminance component Y VIDH3 109 I/O bidirectional expansion port, high byte (bit 3) in 16-bit mode luminance component Y VIDH2 110 I/O bidirectional expansion port, high byte (bit 2) in 16-bit mode luminance component Y VIDH1 111 I/O bidirectional expansion port, high byte (bit 1) in 16-bit mode luminance component Y VIDH0 112 I/O bidirectional expansion port, high byte (bit 0) in 16-bit mode luminance component Y VDDD15 113 − 1996 Sep 04 digital supply voltage 15 (+3.3 V) 13 Philips Semiconductors Objective specification High Performance Scaler (HPS) SYMBOL SAA7140A; SAA7140B PIN I/O VSSD14 114 − digital ground 14 (0 V) VDDD16 115 − digital supply voltage 16 (+3.3 V) VSSD15 116 − digital ground 15 (0 V) VIDL7 117 I/O bidirectional expansion port, low byte (bit 7) in 16-bit mode time-multiplexed colour-difference components U and V VIDL6 118 I/O bidirectional expansion port, low byte (bit 6) in 16-bit mode time-multiplexed colour-difference components U and V VIDL5 119 I/O bidirectional expansion port, low byte (bit 5) in 16-bit mode time-multiplexed colour-difference components U and V VIDL4 120 I/O bidirectional expansion port, low byte (bit 4) in 16-bit mode time-multiplexed colour-difference components U and V VIDL3 121 I/O bidirectional expansion port, low byte (bit 3) in 16-bit mode time-multiplexed colour-difference components U and V VIDL2 122 I/O bidirectional expansion port, low byte (bit 2) in 16-bit mode time-multiplexed colour-difference components U and V VIDL1 123 I/O bidirectional expansion port, low byte (bit 1) in 16-bit mode time-multiplexed colour-difference components U and V VIDL0 124 I/O bidirectional expansion port, low byte (bit 0) in 16-bit mode time-multiplexed colour-difference components U and V PXQIN 125 I pixel qualifier input signal to mark valid pixels; expansion port HIN 126 I horizontal sync input signal; expansion port VIN 127 I vertical sync input signal; expansion port LLCIO 128 I/O 1996 Sep 04 DESCRIPTION line-locked system clock input/output; expansion port 14 Philips Semiconductors Objective specification LLCIN VDDD1 VSSD1 1 VDDD2 4 103 HIO 104 PXQIO 105 VIDH7 106 VIDH6 107 VIDH5 108 VIDH4 109 VIDH3 110 VIDH2 111 VIDH1 112 VIDH0 113 VDDD15 115 VDDD16 114 VSSD14 117 VIDL7 116 VSSD15 118 VIDL6 SAA7140A; SAA7140B 119 VIDL5 120 VIDL4 121 VIDL3 122 VIDL2 123 VIDL1 124 VIDL0 125 PXQIN 126 HIN 128 LLCIO handbook, full pagewidth 127 VIN High Performance Scaler (HPS) 102 VIO 101 VSSD13 2 100 VDDD14 99 VSSD12 3 LLC 5 98 VDDD13 CREF 6 97 FDIO HREF 7 96 VRO0 VS 8 95 VRO1 VDDD3 9 94 VRO2 VSSD2 10 93 VRO3 YIN0 11 92 VRO4 YIN1 12 91 VRO5 YIN2 13 90 VRO6 YIN3 14 89 VRO7 YIN4 15 88 VRO8 YIN5 16 87 VRO9 YIN6 17 86 YIN7 18 85 VRO10 VDDD12 VDDD4 19 VSSD3 20 UVIN0 83 VSSD11 VDDD11 21 82 VSSD10 UVIN1 22 81 VRO11 UVIN2 23 80 VRO12 UVIN3 24 79 VRO13 UVIN4 25 78 VRO14 UVIN5 26 77 VRO15 UVIN6 27 76 VRO16 UVIN7 VDDD5 28 75 VRO17 29 74 VRO18 VSSD4 30 73 VRO19 SDA 31 72 VRO20 SCL 32 71 VRO21 IICSA 33 70 VDDD6 34 69 VRO22 VSSD9 VSSD5 VDDD7 35 68 36 67 VSSD6 37 66 PORT3 38 65 84 VDDD10 VSSD8 VDDD9 VRO23 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 SAA7140B Fig.4 Pin configuration (SAA7140B). 1996 Sep 04 15 VRO24 VRO25 VRO26 VRO27 VRO28 VRO29 VRO30 VRO31 VCLK INCADR HFL VMUX VSSD7 VOEN VDDD8 BTST PXQV HGTV VSYV FLDV SP AP RES PORT0 PORT1 PORT2 MHA359 Philips Semiconductors Objective specification High Performance Scaler (HPS) 7 SAA7140A; SAA7140B In a typical application, the 16-bit wide YUV input receives clock, sync and data from a video decoder (SAA71xx) via the DMSD port. An MPEG compression/decompression circuit can be connected at the expansion port to receive the decoder data, scaled or unscaled, or to deliver data to the scaling processor. The scaling operation of the SAA7140A and SAA7140B can be performed on the data from a video decoder, or on the data from the MPEG-codec at the expansion port input. The source selection can be static or toggled on a field-by-field basis. For example, during the odd field the video decoder signal is scaled in accordance with the ‘odd’ parameter set for display in a window. The compression codec receives unscaled data. During the even field the decompressed data from the MPEG decoder gets sized for a second display window in accordance with the ‘even’ parameter set. The resulting output from the scaling operation is delivered via the 32-bit wide output (VRAM port) and to the expansion port output (optional). FUNCTIONAL DESCRIPTION The SAA7140A and SAA7140B accepts YUV data in a 16-bit wide parallel format at the DMSD port and accepts YUV input in a 16-bit wide parallel format and in an 8-bit byte-multiplexed Cb-Y-Cr-Y- format (CCIR-656 or D1 oriented) at the expansion port. Depending on the selected port modes, the incoming data is formatted to the internal data representation, where reference signals or codes are detected in the Data Formatter/Reformatter (DFR). The horizontal and vertical timing reference can be defined under I2C-bus control. Based on that timing reference, the active processing window is defined in a versatile way via the programming. Two programming sets can be loaded simultaneously, and become valid for processing in a field alternating way. Before being processed in the central scaling unit, the incoming data passes through the BCS control unit where monitor control functions, for adjusting brightness, contrast (luminance) and saturation (chrominance) are implemented. 7.1 The scaling is performed in three steps: The video data can be formatted/reformatted in accordance with the selected expansion port mode, from 16-bit (DMSD port) to serial 8-bit (expansion port output), from serial 8-bit (expansion port input) to internal parallel 16-bit format and from 24-bit (scaler output) to 16-bit/8-bit respectively (expansion port output). The definition of the timing references for the acquisition and field detection (polarity and edge selection) are based on the selected reference signal source. The field detector regenerates the field information from the selected incoming reference signals (see Fig.5). 1. Horizontal prescaling (bandwidth limitation for anti-aliasing, via FIR prefiltering and subsampling) 2. Vertical scaling (generating phase interpolated or vertically low-passed lines) 3. Horizontal variable phase scaling (phase-correct scaling to the new geometric relationships). The scaled output data is fed back to the DFR unit and may be used as output signals from the bidirectional expansion port (if the mode is selected). They are converted in parallel from the YUV to the RGB domain in a digital matrix. Anti-gamma correction of gamma-corrected input signals can be performed in the RGB data path. The output formatter then formats the scaled data to one of the various output formats (e.g. monochrome, 16-bit YUV or 32-bit RGB (5, 5, 5). The field sequence flag (FLD), detects the state of the H-sync signal at the reference edge of the V-sync signal. The detection is controlled by I2C-bus bits REVFLD and INVOE. The detection output can be seen on pins FLDV and FDIO (if FLDC = 0). Bits IREGS and SREGS control the mapping of the detected sequence to the I2C-bus register sets A and B (I2C-bus subaddress 02 to 1F and 22 to 3F). To ease frame buffer applications, the data can be transferred in a synchronous way (transparent mode), using separate reference and qualifier signals and a continuous output clock (VCLK). The data can also be transferred in an asynchronous way (burst mode) using the HFL and INCADR flags and a discontinuous input clock burst on VCLK. 1996 Sep 04 Data format/reformatter and reference signal generation 16 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B handbook, full pagewidth REGISTER A REGISTER 00 INVOE active horizontal state REGISTER B REVFLD select active vertical edge MULTIPLEXER V source select H/V expansion port active horizontal edge SOURCE SELECT FIELD DETECTION SOURCE SELECT SCALER H HF (corresponding to VF) H/V source select active vertical edge VF H/V DMSD V (or frame sync) AQUISITION CONTROL REGISTER 00 SCALER FIELD DETECTION (1) FLD IIC REGISTER SET MAPPING FIELD detected field FLD detection modes (I2C-bus bits FICO1 and FICO0); (1) In the normal mode: the FLD signal is detected from the incoming H and V signals. In the improved mode: the FLD signal is resynchronized only after the H and V sequence runs stable for a certain period of time. MHA118 n×τ FIDO (expansion port) m×τ FLDV (VRAM) Register set mapping modes (I2C-bus bits IREGS and SREGS); The FLD_IIC signal carries the detected FLD or the inverted FLD. The signal is fixed to 0 (Register set A forced) or forced to 1 (Register set A forced). In the force toggle mode: the FLD signal toggles with every event on the V signal (H is independent). Fig.5 Field detection/register set mapping. 7.1.1 The internal processing of the SAA7140A and SAA7140B relies on the presence of LLC, i.e. a clock of at least twice the sampling rate of the input data stream. The maximum LLC rate is 32 MHz. DATA FORMATS AND REFERENCE SIGNALS OF THE DMSD PORT The 16-bit YUV colour difference and luminance signals (straight binary) are available in parallel on a 16-bit wide data stream. The code is in accordance with CCIR-601; black = 16, white = 235, no colour = 128, 100% colour saturation = 16 to 240 etc. Overshoots and undershoots are permitted and supported, i.e. processed as they are. The 16-bit wide YUV data format from the DMSD port (input only) is defined with Line-Locked Clock (LLC) with a double pixel clock frequency. Every second clock cycle is qualified with CREF, in pixel rate frequency. 1996 Sep 04 The horizontal sync input (HREF) may be supplied as a H-pulse or horizontal gate signal. The positive or negative edge, (programmable by I2C-bus bit REHAW), indicates the horizontal timing reference. The first valid pixels may occur not exactly at the start of the line but with a certain offset (counted in qualified pixels). 17 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Instead of a vertical sync signal, as described for the DMSD port, the expansion port also supports an odd/even signal applied to the input pin VIN or VIO (controlled by I2C-bus bit FSEL). The frame and the field timing is then indicated by a positive or negative edge of the V input. This may occur with a certain offset at the frame and field start, and is normally counted in lines. The vertical timing is indicated by the positive or negative edge (programmable by I2C-bus bit REVAW) of the sync input signal VS. The first valid line may occur not exactly at the start of the field but with a certain offset, counted in lines, with qualified pixels. Input signal VS defines, in relation to HREF, the odd/even field detection (see SAA7191B). 7.1.2 If the CCIR 656 data input format is selected, the vertical timing reference is decoded from the input data stream by SAV and EAV (SHVS = 1) or taken from the selected V reference signal VIN, VS or VIO (SHVS = 0). The vertical synchronization pin can be programmed to carry either a vertical sync signal or an odd/even signal. DATA FORMATS AND REFERENCE SIGNALS OF THE EXPANSION PORT The expansion port (input/output) supports several modes; simultaneous (parallel) D1 input and D1 output (full duplex) with auxiliary sync and qualifying signals, or 16-bit wide YUV input or output (half duplex), selected via programming with clock, qualify and sync signal. A discontinuous data stream is supported by accepting or generating a pixel/byte qualifying signal (PXQ), a generalization of the CREF definition at the DMSD port (PXQ = 1 qualified pixel, PXQ = 0 invalid data). The horizontal and vertical sync outputs HIO and VIO are expansion port mode dependent and can be selected via the I2C-bus (VD1/VD0 and HD1/HD0): Should the DMSD port be selected as the output source, HIO will carry a copy of HREF and VIO will carry a copy of VS. 16-bit YUV (half duplex mode = field alternating data I/O): 16-bit YUV data stream (Y = VIDH7 to VIDH0, UV = VIDL7 to VIDL0). For the 16-bit YUV data input format, PXQ is inhibited from qualifying adjacent LLC clock cycles. There must be at least one empty clock cycle between two valid pixels. If the expansion port carries data from the scaler output, then HIO is a gate signal enveloping the range of active video along a line and VIO is a positive sync pulse with a length of 4 lines If HIN/VIN is selected as the output source, HIO carries a copy of HIN and VIO carries a copy of VIN (short cut). 8-bit Cb-Y-Cr-Y; CCIR 656 or D1 (full duplex mode): the colour difference signals and the luminance signal (straight binary) are byte-wise multiplexed onto the same 8-bit wide data stream, with sequence and timing in accordance with CCIR 656 recommendations (according to D1 for 60 Hz application respectively). The code is in accordance with CCIR 601 (black = 16, white = 235, no colour = 128, 100% colour saturation = 16 or 240, etc. Overshoots and undershoots are permitted and supported, i.e. processed as they are. If the CCIR 656 data output format is selected, the horizontal and vertical sync output signals are only supplied at pins HIO and VIO (SAV and EAV are not encoded as outputs). Due to compatibility reasons to the expansion port definition of the SAA7194/SAA7196 circuits, the bidirectional pins HIO, VIO and PXQIO can also be configured as input pins (see Table 3). The definition of the pin FDIO is I2C-bus selectable. Configured as an output pin, FDIO carries an odd/even signal generated in the FLD detection (see Fig.5). Configured as an input pin, FDIO controls the direction of the expansion port (compatibility to SAA7194/SAA7196, (see Table 3 and Chapter 8). If the CCIR 656 output is selected, the video signal is clipped to 01H and FEH in order to leave the codes 00H and FFH for SAV and EAV encoding (SAV and EAV encoding not yet supported). The clock rate for this format is twice the pixel clock. The horizontal sync input HIN is processed in an identical manner to HREF at the DMSD port. If the CCIR 656 data input format is selected, the horizontal timing reference is decoded from the input data stream (SAV, EAV and SHVS = 1) or taken from the selected H-reference signal HIN, HREF or HIO (SHVS = 0). The start condition to enable synchronization to the correct Cb-Y-Cr-Ysequence is provided by the selected horizontal reference signal. The sequence only increments with qualified bytes. 1996 Sep 04 18 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B handbook, full pagewidth LLC CREF PXQIN VIDL7 to 0 Cb0 Cr0 Cb2 Cr2 VIDH7 to 0 Y0 Y1 Y2 Y3 HIN MHA126 Fig.6 Timing of PXQIN for 16-bit data input from DMSD to expansion port. handbook, full pagewidth LLC CREF PXQIN VIDL7 to 0 Cb Y Cr Y Cb Y HIN MHA130 Fig.7 Timing of PXQIO for serial 8-bit data input at expansion port. 1996 Sep 04 19 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B handbook, full pagewidth LLC CREF PXQIN/PXQIO VIDL7 to 0 FFH 00H 00H Y Cr Y SAV Cb Y FFH 00H Cr PXQIN/PXQIO VIDL7 to 0 00H EAV MHA129 Fig.8 Timing of PXQIN/PXQIO for CCIR 656 data input at expansion port. handbook, full pagewidth LLC CREF PXQIO VIDL7 to 0 Cb0 Cr0 Cb2 Cr2 VIDH7 to 0 Y0 Y1 Y2 Y3 HIO MHA127 Fig.9 Timing of PXQIO for non-zoomed 16-bit data output at expansion port. 1996 Sep 04 20 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B handbook, full pagewidth LLC CREF PXQIO VIDL7 to 0 Cb0 Cr0 Cb2 Cr2 Cb4 Cr4 Cb6 Cr6 VIDH7 to 0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 HIO MHA128 Fig.10 Timing of PXQIN for zoomed 16-bit data output at expansion port. handbook, full pagewidth LLC CREF PXQIO VIDL7 to 0 Cb Y Cr Y Cb Y Cr Y HIO MHA131 Fig.11 Timing of PXQIO for serial 8-bit data output at expansion port. 1996 Sep 04 21 Philips Semiconductors Objective specification High Performance Scaler (HPS) 7.2 SAA7140A; SAA7140B one qualified pixel. Depending on the selected mode, the source for the horizontal reference may be HREF (DMSD port) or HIN (expansion port), or for the vertical reference, VS (DMSD port) or VIN (expansion port). Acquisition control The processing window for the scaling unit is defined in the acquisition control unit. An internal counter receives I2C-bus controlled values for offset (bits XO10 to XO0 and YO10 to YO0) and length (bits XS10 to XS0 and YS10 to YS0). The counter is reset by the corresponding sync reference input signal. The horizontal counter increments in qualified pixels and the vertical counter increments in qualified lines, i.e. lines containing at least It should be noted that in order to avoid programming dependent line and field drop effects, all values must not exceed the number of qualified pixels per line or lines per field. handbook, full pagewidth HIN/HREF PXQ/CREF ACTIVE VIDEO WINDOW xo yo xs field/ frame VIN/VS ys SCALING WINDOW LQ (1) line MHA119 PXQV output signals HGTV (1) LQ = qualified lines i.e. lines containing at least one qualified pixel. Fig.12 Reference signals for scaling window. 7.3 For the contrast control: BCS control 00H = luminance off The parameters for Brightness, Contrast and Saturation (BSC) can be adjusted in the BSC control unit. 40H = nominal gain of 1.01 7FH = maximum gain of 1.9999. I2C-bus The luminance signal can be controlled via the using bits BRIG7 to BRIG0 and CONT6 to CONT0. The chrominance signal can be controlled via the I2C-bus using bits SAT6 to SAT0. For the brightness control: 00H = minimum offset For the saturation control: 80H = nominal level 00H = colour off FFH = maximum offset. 40H = nominal gain of 1.0 7FH = maximum gain of 1.9999. 1996 Sep 04 22 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B With respect to limiting, all values are limited to minimum (equals 0) and maximum (equals 255). 7.4 Figures 13 and 14 illustrate some frequency responses and the corresponding I2C-bus settings. The prefilter operates on 4 : 4 : 4 YUV data. As U and V are generated by simple chroma pixel doubling, the UV prefilter should also be used to generate the interpolated chroma values. Scaling unit Scaling to a randomly sized window is performed in three steps: 1. Horizontal prescaling (bandwidth limitation for anti-aliasing, via FIR prefiltering and subsampling) 7.4.1.2 To improve the scaling performance for scales of less than 1⁄2 down to icon size, a FIR filtering subsampler is available. It performs a subsampling of the incoming data by a factor of 1/N (where N = XPSC + 1 = 1 to 64). With NIP equalling the number of input pixel/line and NOP equalling the number of desired output pixels/line, the basic equation to calculate XPSC is as follows: N IP XPSC = TRUNC × -------------------- N OP – 1 2. Vertical scaling (generating phase interpolated or vertically low-passed lines) 3. Horizontal variable phase scaling (phase-correct scaling to the new geometric relations). The scaling processor can obtain its clock from the DMSD port or the expansion port. Normally the two ports are synchronized to support program-set-swapping, asynchronous working results in restricted operation. The video signal source also provides the source for the scalers qualify signal PXQ. The subsampler collects a number of [N + 1(−XACM)] pixels to calculate a new subsampled output pixel. Consequently, a downscale dependent FIR filter has been incorporated, with up to 65 taps, which reduces aliasing for small sizes. If XACM = 0 the collecting sequence overlaps, which means that the last pixel of sequence M is also the first pixel of sequence M + 1. To implement a real subsampler bypass XACM has to be set to logic 1. The scaling process generates a new pixel/clock qualifier sequence. This results in PXQ being used at the VRAM port in the transparent mode, and for the expansion port output. There are restrictions in the combination of the input sample rate and up or down-scaling mode and scaling factor. The maximum resulting output sample rate at the VRAM port is LLC and at the expansion port the maximum pixel rate is 1⁄2LLC, due to the support of the CCIR 656 format. 7.4.1 It should be noted that because the phase-correct horizontal fine scaling is limited to a maximum downscale of 1⁄4, this circuitry has to be used for downscales less than 1⁄4 of the incoming pixel count. HORIZONTAL PRESCALING The incoming pixels in the selected range are preprocessed in the horizontal prescaler, which is the first stage of the scaling unit. The prescaler consists of an FIR prefilter and a pixel collecting subsampler. 7.4.1.1 To obtain unity gain at the subsamplers output for all subsampling ratios, the I2C-bus parameters CXY, CXUV and DCGX have to be used. In addition, the I2C-bus parameters can be used to slightly modify the FIR characteristic of the subsampler. FIR prefilter Table 1 gives examples of I2C-bus register settings, depending on a given prescaler ratio. With reference to Table 1, it should be noted that an internal XPSC-dependent automatic prenormalization becomes valid for XPSC > 8, > 6 and >32, which reduces the input signal quantization. In addition, for XPSC ≥ 15 the LSB of the CXY and CXUV parameter become valid. The video components Y, U and V are FIR prefiltered to reduce the signal bandwidth in accordance with the downscale for factors between 1 to 1⁄2, thus aliasing due to signal bandwidth expansion is reduced. The prefilter consists of 3 filter stages. The transfer functions are given in Chapter 8. The prefilter is controlled by the I2C-bus bits PFY3 to 0 and PFUV3 to 0 in I2C-bus subaddress 13 and 33. 1996 Sep 04 Subsampler 23 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B MHA121 18 handbook, full pagewidth (Gain) dB 6 0 –6 (1) (2) –18 –30 (3) (5) (4) –42 0 0.1 0.2 0.3 0.4 f fclk 0.5 I2C-bus bytes PFY3 to PFY0. (1) = 0001; (2) = 0010; (3) = 0011; (4) = 1011; (5) = 1111. Fig.13 Luminance prefilter frequency response for miscellaneous I2C-bus settings. MHA122 18 handbook, full pagewidth (Gain) dB 6 0 –6 (1) (5) (6) –18 (2) –30 (4) (3) –42 0 0.1 0.2 0.3 I2C-bus bytes PFU3 to PFU0. (1) = 0001; (2) = 0010; (3) = 1010; (4) = 1110; (5) = 0011; (6) = 1111. 0.4 f fclk Fig.14 Chrominance prefilter frequency response for miscellaneous I2C-bus settings. 1996 Sep 04 24 0.5 Philips Semiconductors Objective specification High Performance Scaler (HPS) Table 1 SAA7140A; SAA7140B Horizontal prescaling and normalization HORIZONTAL XPSC PRESCALING 1 0 COEFFICIENT SEQUENCE (example) CXY (luma)/ CXUV (chroma) (HEX) WEIGHT SUM DCGX BSC (CONT/SAT) = x/y × 64 1-1 00 2 1 1 1 2⁄ 3 1⁄ 2 1 1-1-1 1-2-1 02 4 2 1 1⁄ 3 1⁄ 4 2 1-1-1-1 00 4 2 1 3 1-1-1-1-1 00 5 2 4⁄ 5 1-2-2-2-1 06 8 3 1 1⁄ 5 4 111 111 00 6 2 4⁄ 6 121 121 02 8 3 1 112 211 04 8 3 1 1⁄ 6 1⁄ 7 1⁄ 8 1⁄ 9 1⁄ 10 1⁄ 1⁄ 1⁄ 1⁄ 1⁄ 1⁄ 11 12 13 14 5 6 7 8 9 10 11 12 13 00 111 1 111 00 7 3 8⁄ 7 111 2 111 08 8 3 1 1111 1111 00 8 3 1 8⁄ 9 1111 1 1111 00 9 3 1222 2 2221 1E 16 7 1 00 10⁄ 2 16⁄ 2 16⁄ 2 11⁄ 2 16⁄ 2 16⁄ 2 12⁄ 2 16⁄ 2 16⁄ 2 13⁄ 2 16⁄ 2 16⁄ 2 14⁄ 2 16⁄ 2 16⁄ 2 15⁄ 2 16⁄ 2 16⁄ 2 17⁄ 2 32⁄ 2 18⁄ 4 32⁄ 4 32⁄ 4 2 4⁄ 5 3 1 1111 1 1 1111 1221 2 2 1221 16 1122 2 2 2211 1C 1111 1 1 1 1111 00 1212 1 2 1 2121 2A 1112 2 2 2 2111 38 1111 11 11 1111 00 1211 21 12 1121 12 1111 22 22 1111 30 1111 11 1 11 1111 00 1121 11 2 11 1211 44 1111 12 2 21 1111 60 1111 111 111 1111 00 1111 211 112 1111 10 1111 112 221 1111 40 1111 111 1 111 1111 00 1111 111 2 111 1111 80 00 15 14 1111 1111 1111 1111 16 15 1111 1111 1 1111 1111 1222 2222 2 2222 2221 1⁄ 17 1996 Sep 04 16 3 FF 1111 1111 1 1 1111 1111 00 1222 2222 1 1 2222 2221 FE 1222 2122 22 2212 2221 DF 25 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 1 8⁄ 11 1 1 8⁄ 12 1 1 8⁄ 13 1 1 8⁄ 14 1 1 8⁄ 15 1 3 1 3 16⁄ 17 7 1 2 16⁄ 18 3 1 3 1 Philips Semiconductors Objective specification High Performance Scaler (HPS) HORIZONTAL XPSC PRESCALING 1⁄ SAA7140A; SAA7140B COEFFICIENT SEQUENCE (example) CXY (luma)/ CXUV (chroma) (HEX) 1111 1111 1 1 1 1111 1111 00 1222 1222 1 2 1 2221 2221 EE 1222 2112 2 2 2 2112 2221 9F .... WEIGHT SUM 33 32 1111 ... 1111 00 .... .... .... .... 19⁄ 4 32⁄ 4 32⁄ 4 xx⁄ 4 34⁄ 8 xx⁄ 8 1⁄ 63 62 .... .... 1⁄ 64 63 .... .... 17 18 .... .... .... 1⁄ 7.4.2 BSC (CONT/SAT) = x/y × 64 2 16⁄ 19 3 1 3 1 .... .... 2 − .... .... .... .... .... .... .... .... N IL YACL = TRUNC × -------------------- ; N OL – 1 VERTICAL SCALER The vertical scaler performs the vertical downscaling of the input data stream to a random number of output lines. It can be used for input line lengths up to 768 pixels/line and has to be bypassed if the input line length exceeds the pixel count. accumulation sequence length: i.e. the number of lines per sequence that are not part of overlay region of neighbouring sequences (optimum 1 line overlapped). 1 – N OL YSCI = INT 1024 × -------------------- ; scaling increment. N IL For vertical scaling there are two different modes implemented; the ACCU mode (vertical accumulation) for scales down to icon size and the Linear Phase Interpolation mode (LPI) for scales between 1 and 1⁄2. 7.4.2.1 DCGX YSCI YP = INT --------------- ; scaling start phase (fix; modified in 16 LPI mode only). ACCU mode (scaling factor range 1 to 1/1024; I2C-bus bit YACM = 1: In order to obtain unity amplitude gain for all sequence lengths and to improve the vertical scaling performance, the accumulated lines can be weighted and the amplitude of the scaled output signal has to be renormalized. In the given example (see Fig.15) using the optimum weighting, the gain of a sequence results in 1 + 2 + 2 + 1 = 6. Renormalization (factor 1/6) can be achieved; The ACCU mode can be used for vertical scaling down to icon size. In this mode, the I2C-bus parameter YSCI controls the scaling and parameter YACL controls the vertical anti-alias filtering. The output lines are generated by a scale-dependent variable averaging (YACL + 2) input lines. In this way a vertical FIR filter can be created for anti-aliasing, with up to 65 taps (max.). By gain reduction using BCS control (brightness, contrast and saturation) down to 4⁄6 and a selecting factor of 1⁄4 for DCGY2 to DCGY0 (see Section 8.3), which may result in a loss of signal quantization, or YSCI defines the output line qualifier pattern and YACL defines the sequence length for the line averaging. For accurate processing, the sequence has to fit into the qualifying pattern. In the event of mis-programming YACL unexpected line dropping occurs; where NOL = number of output lines and NIL = number of input lines. The I2C-bus bits YSCI (scaling increment), YACL (accumulation length; optimum: 1 line overlap) and YP (scaling start phase) have to be set according to the following equations (see Fig.15): By gain emphasizing using BCS control up to 8⁄6 and selecting a factor of 1⁄8 for DGY2 to DCGY0 which may result in a loss of signal detail, due to limiting in the BCS control. 1996 Sep 04 Normally the weighting would be 2 + 2 + 2 + 2. In this situation the gain can be renormalized with DCGY2 to DCGY0 = 010 (factor 1⁄8). Table 2 gives examples for I2C-bus register settings, depending on a given scale ratio. 26 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B optimal weighting factors: handbook, full pagewidth line 1 line 2 1st sequence 2nd sequence 3rd s equence line 10 1 2 2 1 2 2 1 2 2 1 YACL = INT{(1-S)/S} = 2 (dotted lines) YSCI = INT{(1024 × (1-S)} = 682 YP = INT{YSCI/16} = 42 MHA120 Fig.15 Example of vertical accumulation. Table 2 Vertical scaling and normalization VERTICAL SCALE RATIO (YSCI ≥) YACL COEFFICIENT SEQUENCE (example) CYA (HEX) CYB (HEX) WEIGHT SUM DCGY BCS (CONT/SAT) = x/y × 64 1 to 1⁄2 (0) 0 1-1 01 00 2 0 1 1⁄ 2 1 1-1-1 03 00 3 0 2⁄ 1-2-1 01 02 4 1 1 1⁄ 3 2 1-1-1-1 03 00 4 1 1 1⁄ 4 3 1-1-1-1-1 07 00 5 1 4⁄ 1-2-2-2-1 01 06 8 2 1 1⁄ 5 4 111 111 07 00 6 1 4⁄ 121 121 05 02 8 2 1 to 1⁄3 (512) to 1⁄4 (683) to 1⁄5 (768) to 1⁄6 (820) 1⁄ 6 to 1⁄7 (854) to 1⁄8 (878) 5 3 5 6 112 211 03 04 8 2 1 111 1 111 0F 00 7 2 8⁄ 111 2 111 07 08 8 2 1 7 1⁄ 7 6 1111 1111 0F 00 8 2 1 1⁄ 8 to 1⁄9 (896) 7 1111 1 1111 1F 00 9 2 8⁄ 1222 2 2221 01 1E 16 3 1 to 1⁄10 (911) 8 1111 1 1 1111 1F 00 10 3 2121 2 2 1212 09 15 16 3 1122 2 2 2211 03 1C 16 3 1⁄ 9 1⁄ 10 1⁄ 11 to (922) 1⁄ 11 1⁄ to 12 (931) 1996 Sep 04 9 10 1111 1 1 1 1111 3F 00 11 2 1212 1 2 1 2121 15 2A 16 3 1112 2 2 2 2111 07 38 16 3 8⁄ 9 10 1 1 8⁄ 11 1 1 8⁄ 1111 11 11 1111 3F 00 12 2 1211 21 12 1121 2D 12 16 3 1 1111 22 22 1111 0F 30 16 3 1 27 12 Philips Semiconductors Objective specification High Performance Scaler (HPS) VERTICAL SCALE RATIO (YSCI ≥) 1⁄ 1⁄ 1⁄ to 1⁄13 (939) 12 to 1⁄14 (946) 13 CYA (HEX) CYB (HEX) WEIGHT SUM DCGY 11 1111 11 1 11 1111 7F 00 13 2 12 to 1⁄16 (956) BCS (CONT/SAT) = x/y × 64 8⁄ 13 1111 21 2 12 1111 2F 50 16 3 1 1121 11 2 11 1211 3B 44 16 3 1 1111 111 111 1111 7F 00 14 2 1111 211 112 1111 6F 10 16 3 1111 112 211 1111 3F 40 16 3 8⁄ 14 1 1 8⁄ 1111 111 1 111 1111 FF 00 15 2 1111 111 2 111 1111 7F 80 16 3 1 14 1111 1111 1111 1111 FF 00 16 3 1 to 1⁄17 (960) 15 1111 1111 1 1111 1111 FF 00 17 3 16⁄ 2122 2222 2 2222 2212 02 FD 32 4 1 to 1⁄18 (964) 16 1111 1111 1 1 1111 1111 FF 00 18 3 16⁄ 2212 2212 2 2 2122 2122 44 BB 32 4 1 1222 2222 1 1 2222 2221 01 FE 32 4 1 1⁄ 16 17 .... 1 23 to ⁄24 (980) 7.4.2.2 COEFFICIENT SEQUENCE (example) 13 15 1⁄ YACL to (951) 14 1⁄ 1⁄ 1⁄ 15 SAA7140A; SAA7140B 15 17 18 .... .... .... .... .... .... .... 22 1111 2222 1111 1111 2222 1111 0F F0 32 4 1 1121 1212 1121 1211 2121 1211 AD 52 32 4 1 LPI mode (scaling factor range 1 to 1⁄2; IC-bus bit YACM = 0) To preserve the signal quality for slight vertical downscales (scaling factors 1 to 1⁄2) linear phase interpolation between consecutive lines is implemented to generate geometrically correct vertical output lines.Therefore, the new geometric position between lines N and N + 1 can be calculated. handbook, halfpage N distance = 1 new calculated position of output line M N+1 M A A−1 MHA361 A new output line is calculated by weighting the samples ‘p’ (pixel) of lines N and N + 1 with the normalized distance to the new calculated position (see Fig.16); p ( M) = A × p ( N + 1) + ( 1 – A) × p ( N) where A = 0 to 63/64 When NOL = number of output lines and NIL = number of input lines the I2C-bus bits YSCI (scaling increment) and YP (scaling start phase) have to be set according to the following equations; 1996 Sep 04 input lines Fig.16 New output line calculation. 28 Philips Semiconductors Objective specification High Performance Scaler (HPS) N IL – 1 YSCI = INT 1024 × --------- N OL SAA7140A; SAA7140B The phase scaling consists of a filter and arithmetic structure with 10 taps for the luminance and 4 taps for the chrominance processing. It is able to generate a phase-correct new pixel value, with virtually no phase or amplitude artefacts. ; scaling increment YSCI YP = INT --------------- ; scaling start phase 16 (recommended value). The new samples are calculated with a phase accuracy of 1⁄64 of the pixel distance. The vertical start phase offset is defined by YP⁄64 (YP = 0 to 64): When using this circuit the up and down scaling is controlled by the I2C-bus parameters XSCI and XP. Because the variable phase scaling is restricted to downscale >1⁄4 of the fine scalers input pixel count, XSCI is also a function of the prescaling parameter XPSC. YP = 0: offset = 0 geometrical position of 1st line out = 1st line in. YP = 64: offset = 64⁄64 = 1 geometrical position of 1st line out = 2nd line in. As NIP = number of input pixels per line (at SAA7140A input) and NOP = number of desired output pixels/line, XSCI is defined by the following equation: N IP 1024 XSCI = INT ----------- × ---------------------------------N OP ( XPSC + 1 ) Finally 3 special modes must be emphasized: 1. By-pass (YSCI = 0, YP = 64) each line out is equivalent to corresponding line in. 2. Low-pass (YSCI = 0, YP < 64) e.g. YP = 32: average value of 2 lines (1 + z −H filter). 3. For processing of interlaced input signals the LPI mode must be used (the ACCU mode would cause ‘line pairing’ problems). The scaling start phase for odd and even field have to be set to: YSCI YP even = YP odd + --------------- ; 32 where line 1 = odd. The maximum value of XSCI = 4095. Zooming is performed for XSCI values less than 1024. The number of disqualified clock cycles between consecutive pixel qualifiers (at the phase scalers input) defines the maximum possible zoom factor. This means that zooming may also be a function of XPSC. It should be noted that implementation is dependent on a zooming factor greater than 2. Some artefacts may occur at the end of the zoomed line. In modes 1 and 2 the first input line is fed to the output (without processing) so that the number of output lines equals the number of input lines. 7.4.2.3 Internal rounding effects, may result in a deviation of ±1 output pixels compared to the expected result. In this situation, the I2C-bus parameter XP can be used to shift the starting phase of the phase calculation and thereby force an additional cycle to be disqualified. Flip option (FLIP = 1) For both vertical scaling modes there is a flip option (mirroring) available for input lines with a maximum of 384 pixels. In the event that full screen pictures (e.g. 768 × 576) are to be flipped, they first have to be scaled down to 384 pixels per line in the horizontal prescaling unit. After vertical processing (flipping) they can be rezoomed to the original 768 pixels per line in the following VPD. It should be noted that when using the flip option, the last input line can not be displayed at the output. 7.4.3 In addition, when XP ≥ 128 it will force the internal phase calculation to fixed values, especially when XP = 128 it will force the phase scaler into bypass. The scaled output data is fed back to the data formatter/reformatter unit and may be used as output signals from the bidirectional expansion port (if the mode is selected). HORIZONTAL VARIABLE PHASE SCALING 7.5 In the phase-correct horizontal variable phase scaling the pixels are calculated for the geometrical correct, orthogonal output pattern, down to 1⁄4 of the prescaled pattern. In addition, a horizontal zooming feature is supported. The maximum zooming factor is at least 2, thus being even more dependent on input pattern and prescaling settings. 1996 Sep 04 Colour Space Matrix (CSM), dither and gamma correction The scaled YUV output data can be converted after Interpolation into RGB data in accordance with CCIR 601 recommendations. 29 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B The matrix equations considering the digital quantization are as follows; 7.6.1.2 The resampled YUV samples are converted into RGB (8 bits each). All three components have the same sample rate as luminance Y. Anti-gamma correction is available (programming). The alpha bit is generated as the chroma key in the UV domain. R = Y + 1.375 V G = Y − 0.703125 V − 0.34375 U B = Y + 1.734375 U For error diffusion a dither algorithm of the 5-bit truncation error RGB (5, 5, 5) is implemented. Two RGB representations (code meanings) are supported: An anti-gamma characteristic (γ = 1.4) is implemented at the matrix output to provide anti-gamma correction of the RGB data. The curve can be used (bit RTB = 0) to compensate gamma correction for linear data representation of the RGB output data. 1. The CCIR 601 orientated RGB representation defines code 16 for black and code 235 for full saturation. 2. The graphics display orientated RGB representation codes black with 00H and white with FFH. This representation can be achieved by corresponding programming of brightness (equals offset), contrast and saturation (equals gain) in the YUV domain. This format is used in the transparent mode and in the FIFO mode (one pixel at a time). The chroma signal keyer generates an alpha signal to achieve an RGB (5, 5, 5) + α output signal. Therefore, the processed UV data amplitudes are compared with thresholds set via the I2C-bus. A logic 1 signal is generated if the amplitude is within the specified amplitude range, if the amplitude is outside the specified range a logic 0 is generated. Keying can be switched off by setting the lower limit higher than the upper limit. 7.6.1.3 Output formatter and output FIFO register In order to support various scaling applications, the output data at the VRAM port can be delivered in different formats and different transfer modes. Besides the 16-bit YUV format (see Section 7.1.1) the VRAM port also supports the data formats 24-bit RGB, 2 × 15-bit RGB + α or 8-bit grey scale. 7.6.1.4 The horizontal sync output HGTV marks (source independent) the range of the active video at the VRAM port. To ease frame buffer applications, an asynchronous transfer (burst or FIFO mode) can be selected. In this mode the VRAM ports VCLK has to be provided from an external source, with a maximum clock rate of 32 MHz. Only valid data is collected and transported. 7.6.1.1 The vertical sync output VSYV (I2C-bus controlled polarity) carries the vertical sync information for the VRAM port output data (positive or negative pulse with a length of 4 lines). At the falling or rising edge of VSYV the FLDV output is stable. DATA FORMATS AND REFERENCE SIGNALS OF THE VRAM PORT 16-bit YUV (see Section 7.1.1) The ordering of YUV bits and bytes at the VRAM port is identical to that of the SAA7196. 1996 Sep 04 8-bit grey scale This is simply a Y = luminance signal which can be selected to be coded as binary, or all bits inverted. This format is used in the transparent mode and in the FIFO mode (1, 2 or 4 pixels at a time). Should the synchronous data transfer mode (transparent mode) be selected, the VRAM port will provide VCLK clock (clock rate of LLC) and PXQ (polarity via programming) on extra pins for use by the circuitry receiving the VRAM port data stream. 7.6.1 15-bit RGB (5, 5, 5) + α in 2 bytes The resampled YUV samples are converted into 24-bit RGB. The following truncation to 5 bits is optionally (programming) performed with dithering effect (error diffusion). There are two representations (code meanings) supported; CCIR and graphics display orientated (see Section 7.6.1.2). The alpha bit is generated as chroma key in the YUV domain. This format is used in the transparent mode and in the FIFO mode (one pixel at a time, or two pixels at a time). The ordering of RGB bits and bytes at the VRAM port is identical to that of the SAA7196. For 16-bit YUV data formats or monochrome modes the CSM block is bypassed. 7.6 24-bit RGB: 30 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B PIXCLK handbook, full pagewidth (LLC/2) FIFO memory filling level 7 8 9 8 8 7 6 6 5 4 5 6 4 HFL minimum 8 words available in FIFO maximum 32LLC(1) (16 PIXCLK) VCLK 1 transfer cycle (8 VCLK cycles) VOEN 7 VRO(n) 0 1 2 3 4 7 MHA132 If VCLK cycles occur at VOEN = HIGH the FIFO register is unchanged but the outputs VRO31 to VRO0 remain in the 3-state position. (1) Only valid for non-zoomed data. Fig.17 Output port transfer to VRAM at 32-bit data format without scaling. line n handbook, full pagewidth INTERNAL SIGNAL line n + 1 vertical blanking active video last half-full request for line n (1) HFL 64LLC INCADR minimum set-up time MHA123 64LLC (1) 10LLC line increment sequence (1) vertical reset pulse (1) Only available for interfaced processing at the beginning of an odd field. Fig.18 Vertical reset timing of the VRAM port. 1996 Sep 04 31 Philips Semiconductors Objective specification High Performance Scaler (HPS) 7.7 7.7.1 SAA7140A; SAA7140B • Does the application require separate input and output reference signal lines, if yes then I2C-bus bit SRIO = 0 Data transfer modes EXPANSION PORT MODES • Does the application need hardware controlled I/O switching, if yes then I2C-bus bit FLDC = 1 and use of pin FDIO or The expansion port is controlled by I2C-bus subaddresses 02 (22H) and 03 (23H). • Does software controlled I/O switching (register set controlled) the same job, if yes then I2C-bus bit FLDC = 0 The expansion port can be configured in a very flexible way. Table 3 gives examples of the I2C-bus programming for several expansion port configurations. SAA7196 compatible modes are marked as ‘xx96’ in the MODE column. After reset the expansion port reference signal inputs are set to the ‘xxIO’ pins. • Which signal path defines the clock system • Which signal path is the synchronization master • Is dynamic field-wise switching required or is the source switching quite static, if static then do not be confused about odd or even; use SREGS and IREGS before referring to the I2C-bus section. After reset the expansion port reference signal inputs are set to the ‘xxIO’ pins. Pin FDIO can be used in the same way as the DIR pin of the SAA7196 if the I2C-bus bit FLDC is set to logic 1. More information concerning the control signals can be found in Chapter 8. For correct application the user should first decide about some global interface properties before referring to this chapter such as: 1996 Sep 04 32 1996 Sep 04 33 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 FLDC 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 VIDC 0 0 0 x x 0 0 X 0 1 0 1 1 X X 0 0 VD1 0 0 0 X X 0 0 X 0 0 0 0 0 1 1 0 0 VD0 X X X X X 0 0 X 0 1 0 1 1 X x 0 0 HD1 X X X 1 X 0 0 X 0 0 0 0 0 1 1 0 0 HD0 X X X 0 X 0 0 X 0 1 0 1 1 0 0 0 0 0 0 0 0 X 0 0 X 0 1 0 0 0 0 1 0 0 PXQD LLCD 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 SRIO 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 VSI 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 HSI 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 VIPSI 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 LLCS note 18 note 17 note 16 note 15 note 14 note 13 note 12 note 11 note 10 note 9 note 8 note 7 note 6 note 5 note 4 note 3 note 2 note 1 I/O 4. Scaler input from LLC, VIDH|L, PXQIN, HIN and VIN; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, d.c., CREF, HIN and VIN. 3. Scaler input from LLCIN, VIDH|L, PXQIN, HIN and VIN; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLCIN, d.c., CREF, HIN and VIN. 2. Scaler input from LLC, VIDH|L, PXQIN, HREF and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, d.c., CREF, HREF and VS. 1. Scaler input from LLC, Y/UVIN, CREF, HREF and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, Y/UVIN, CREF, HREF and VS. 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 YUV8 04 to 24H SCALER INPUT CONTROL [SUBADDRESS 03 (23H)] High Performance Scaler (HPS) Notes 1 6 ’96 1 2 ’96 0 1 1 ’96 5 ’96 0 0 ’96 x X 9 1 X 8 4 ’96 X 7 3 ’96 X 6 X 3 X X 2 X X 1 4 X 0 5 FDIO DAVE OUTPUT CONTROL [SUBADDRESS 02 (22H)] Expansion port programming examples MODE Table 3 Philips Semiconductors Objective specification SAA7140A; SAA7140B 1996 Sep 04 34 18. Fill in user specific configuration. High Performance Scaler (HPS) 17. Scaler input from LLCIO, VIDH/L, PXQIO, HREF and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from d.c., d.c., d.c., HREF and VS. 16. Scaler input from LLC, Y/UVIN, CREF, HREF and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, Y/UVIN, CREF, HREF and VS. 15. Scaler input from LLC, VIDH/L, PXQIO, HIO and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, d.c., d.c., d.c., HREF and VS. 14. Scaler input from LLC, VIDH|L, CREF, HIO and VIO; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, d.c., CREF, d.c. and d.c. 13. Scaler input from LLCIO, VIDH|L, PXQIO, HIO and VIO; expansion port output clock, data, qualifier, horizontal and vertical reference derived from d.c., d.c., d.c., d.c. and d.c.. 12. Scaler input from LLC, VIDH|L, CREF, HREF and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, d.c., CREF, HREF and VS. 11. Scaler input from LLC, Y|UVIN, CREF, HREF and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, Y|UVIN, CREF, HREF and VS. 10. Scaler input from LLCIO, VIDH, PXQIO, HIO and VIO; expansion port output clock, data, qualifier, horizontal and vertical reference derived from d.c., d.c., d.c., d.c. and d.c.. 9. Scaler input from LLC, VIDH|L PXQIN, HIN and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, d.c., CREF, HREF and VS. 8. Scaler input from LLCIN, VIDL PXQIN, HIN and VIN; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLCIN, YUVsc->VIDH, Psc, Hsc and Vsc. 7. Scaler input from LLCIN, VIDL, PXQIN, HIN and VIN; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, Y|UVIN->VIDH, C+HREF and VS. 6. Scaler input from LLC, VIDL, PXQIN, HREF and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, YUVsc->VIDH, Psc, Hsc and Vsc. 5. Scaler input from LLC, Y|UVIN, CREF, HREF and VS; expansion port output clock, data, qualifier, horizontal and vertical reference derived from LLC, YUVsc, Psc, Hsc and Vsc. Philips Semiconductors Objective specification SAA7140A; SAA7140B Philips Semiconductors Objective specification High Performance Scaler (HPS) 7.8 SAA7140A; SAA7140B The SAA7140A and SAA7140B delivers a continuously processed data stream. Consequently, the extended formats of the VRAM port output are selected (bit FS2 = 1; see Tables 6 and 7). VRAM port modes 7.8.1 DATA BURST TRANSFER MODE (FIFO MODE) Data transfer on the VRAM port is asynchronous (TTR = 0). This mode can be used for all output formats. Four signals for communication with the external memory are provided: The output reference signals have to be used to buffer qualified preprocessed RGB or YUV video data. The YUV data is only valid in qualified time slots. Control output signals (see Tables 6 and 7) are: 1. HFL flag: the half-full flag of the FIFO output register is raised when the FIFO contains at least 8 data words (HFL = HIGH). By setting HFL to logic 1, the SAA7140A and SAA7140B requests a data burst transfer, via the external memory controller, that has to start a transfer cycle within the next 32LLC cycles for 32-bit long word modes (16LLC cycles for 16 and 24-bit modes). If there are pixels in the FIFO at the end of the line, which are not transferred, the circuit fills up the FIFO register with ‘fill pixels’ until it is half-full and sets the HFL flag to request a data burst transfer. After the transfer is completed, HFL is used in combination with INCADR to indicate the line increments. • α = keying signal of the chroma keyer (not on extra pin but in lower byte of VRO output) • FLDV = odd/even field bit in accordance with the internal field processing • VSYV = vertical sync signal, active polarity is defined by VSYP bit • HGTV = horizontal gate signal, logic 1 marks the horizontal direction from XO to (XO + XS) lines • PXQV = pixel qualifier signal, active polarity is defined by QPP bit. Interlaced processing (OF bits, subaddress 01): to support correctly interlaced data storage, the scaler delivers two INCADR/HFL sequences in each qualified line and an additional INCADR/HFL sequence after the vertical reset sequence at the beginning of an odd field. Consequently, the scaled lines are automatically stored in the right sequence. 2. The INCADR output signal is used in combination with HFL to control horizontal and vertical address generation for a memory controller. The pulse sequence depends on field formats (interlace/non-interlace or odd/even fields) and control bits OF1 and OF0 (subaddress 01). This means that: a) HFL = 1 at the rising edge of INCADR: the END OF LINE is reached; request for line address increment INCADR timing: the distance from the last half-full request (HFL) to the INCADR pulse may be longer than 64LLC. The state of HFL is defined for minimum 2LLC cycles afterwards. b) HFL = 0 at the rising edge of INCADR: the END OF FIELD/FRAME is reached; request for line and pixel address reset Monochrome format (see Tables 6 and 7); If TTR = 1 and FS2 = 1 then Ya = Yb. 3. VCLK input signal to clock the FIFO register output data VRO(n). New data is placed on the VRO(n) port with the rising edge of VCLK (see Fig.17). 7.8.3 To reduce the power consumption of the SAA7140A and SAA7140B during phases, where no scaling operations are requested in the application, it is possible to switch the SAA7140A and SAA7140B into a pseudo sleep mode. 4. The VOEN input enables output data VRO(n). The outputs are in 3-state mode at VOEN = HIGH. VOEN changes only when VCLK is LOW. If VCLK pulses are applied when VOEN is HIGH, the outputs remain inactive but the FIFO register accepts the pulses. 7.8.2 This mode can be activated, if the clock input LLCIN is not used or if the hardware is able to pull the LLCIN input or the LLCIO pin (in input mode) down to logic 0. CONTINUOUS DATA TRANSFER MODE (TRANSPARENT MODE) In applications, which do not use LLCIN, then LLCIN should be connected to ground. Data transfer on the VRAM port can be achieved synchronously (TTR = 1), controlled by output reference signals at separate pins (except the α-signal) and a continuous clock output signal (clock rate of LLC) on the VCLK pin. 1996 Sep 04 I2C-BUS CONTROLLED PSEUDO SLEEP MODE LLC has to be provided continuously. 35 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B To activate the scaler again, switch back to an active input clock, via SRIO and/or LLCS. To activate the ‘Sleep Mode’ the scalers processing has to be switched to one of the inactive clock inputs of the expansion port. For example, If LLCIO is used as input and output in the application then: In ‘Sleep Mode’ the power consumption of the SAA7140A and SAA7140B is reduced to approximately 15% of its normal operational value. LLCIN grounded => ‘Sleep Mode’ is active, if I2C-bus bits FLDC = 0, SRIO = 0 and LLCS = 1. and If LLCIN is used as input and LLCIO is used as output: LLCIN pulled down => ‘Sleep Mode’ is active, if I2C-bus bits FLDC = 0, SRIO = 0 and LLCS = 1. LLCIO pulled down => ‘Sleep Mode’ is active, if I2C-bus bits FLDC = 0, SRIO = 1 and LLCS = 1. Table 4 VRAM port output data formats (VRO31 to VRO16) at FS2 bit = 0 and VOF bit = 1 (can be set via I2C-bus), burst mode only, Pixel order = n, n + 1, n + 2, etc. PIXEL OUTPUT BITS FS1 = 0; FS0 = 0 RGB (5, 5, 5) + α 32-BIT WORDS(1)(2) FS1 = 0; FS0 = 1 YUV 4 : 2 : 2 32-BIT WORDS(2)(3) FS1 = 1; FS0 = 0 YUV 4 : 2 : 2 16-BIT WORDS(2)(3) FS1 = 1; FS0 = 1 8-BIT MONOCHROME 32-BIT WORDS(4) n n+2 n+4 n n+2 n+4 n n+1 n+2 n n+1 n+4 n+5 n+8 n+9 VRO31 α α α Ye7 Ye7 Ye7 Ye7 Yo7 Ye7 Ya7 Ya7 Ya7 VRO30 R4 R4 R4 Ye6 Ye6 Ye6 Ye6 Yo6 Ye6 Ya6 Ya6 Ya6 VRO29 R3 R3 R3 Ye5 Ye5 Ye5 Ye5 Yo5 Ye5 Ya5 Ya5 Ya5 VRO28 R2 R2 R2 Ye4 Ye4 Ye4 Ye4 Yo4 Ye4 Ya4 Ya4 Ya4 VRO27 R1 R1 R1 Ye3 Ye3 Ye3 Ye3 Yo3 Ye3 Ya3 Ya3 Ya3 VRO26 R0 R0 R0 Ye2 Ye2 Ye2 Ye2 Yo2 Ye2 Ya2 Ya2 Ya2 VRO25 G4 G4 G4 Ye1 Ye1 Ye1 Ye1 Yo1 Ye1 Ya1 Ya1 Ya1 VRO24 G3 G3 G3 Ye0 Ye0 Ye0 Ye0 Yo0 Ye0 Ya0 Ya0 Ya0 VRO23 G2 G2 G2 Ue7 Ue7 Ue7 Ue7 Ve7 Ue7 Yb7 Yb7 Yb7 VRO22 G1 G1 G1 Ue6 Ue6 Ue6 Ue6 Ve6 Ue6 Yb6 Yb6 Yb6 VRO21 G0 G0 G0 Ue5 Ue5 Ue5 Ue5 Ve5 Ue5 Yb5 Yb5 Yb5 VRO20 B4 B4 B4 Ue4 Ue4 Ue4 Ue4 Ve4 Ue4 Yb4 Yb4 Yb4 VRO19 B3 B3 B3 Ue3 Ue3 Ue3 Ue3 Ve3 Ue3 Yb3 Yb3 Yb3 VRO18 B2 B2 B2 Ue2 Ue2 Ue2 Ue2 Ve2 Ue2 Yb2 Yb2 Yb2 VRO17 B1 B1 B1 Ue1 Ue1 Ue1 Ue1 Ve1 Ue1 Yb1 Yb1 Yb1 VRO16 B0 B0 B0 Ue0 Ue0 Ue0 Ue0 Ve0 Ue0 Yb0 Yb0 Yb0 Notes 1. α = keying bit. 2. RGB and YUV = digital signals. 3. e = even pixel numbers. 4. a and b = consecutive pixels. 1996 Sep 04 36 Philips Semiconductors Objective specification High Performance Scaler (HPS) Table 5 SAA7140A; SAA7140B VRAM port output data formats (VRO15 to VRO0) at FS2 bit = 0 and VOF bit = 1 (can be set via I2C-bus), burst mode only, Pixel order = n, 1n, 2n, etc. PIXEL OUTPUT BITS FS1 = 0; FS0 = 0 RGB (5, 5, 5) + α 32-BIT WORDS(1)(2) FS1 = 0; FS0 = 1 YUV 4 : 2 : 2 32-BIT WORDS(2)(3)(4) FS1 = 1; FS0 = 0 YUV 4 : 2 : 2 16-BIT WORDS(2) FS1 = 1; FS0 = 1 8-BIT MONOCHROME 32-BIT WORDS(5) n+2 n+3 n+6 n+7 n + 10 n + 11 X Yc7 Yc7 Yc7 X X Yc6 Yc6 Yc6 X X X Yc5 Yc5 Yc5 X X X Yc4 Yc4 Yc4 Yo3 X X X Yc3 Yc3 Yc3 n+1 n+3 n+5 n+1 n+3 n+5 OUTPUT NOT USED VRO15 α α α Yo7 Yo7 Yo7 X X VRO14 R4 R4 R4 Yo6 Yo6 Yo6 X VRO13 R3 R3 R3 Yo5 Yo5 Yo5 VRO12 R2 R2 R2 Yo4 Yo4 Yo4 VRO11 R1 R1 R1 Yo3 Yo3 VRO10 R0 R0 R0 Yo2 Yo2 Yo2 X X X Yc2 Yc2 Yc2 VRO9 G4 G4 G4 Yo1 Yo1 Yo1 X X X Yc1 Yc1 Yc1 VRO8 G3 G3 G3 Yo0 Yo0 Yo0 X X X Yc0 Yc0 Yc0 VRO7 G2 G2 G2 Ve7 Ve7 Ve7 X X X Yd7 Yd7 Yd7 VRO6 G1 G1 G1 Ve6 Ve6 Ve6 X X X Yd6 Yd6 Yd6 VRO5 G0 G0 G0 Ve5 Ve5 Ve5 X X X Yd5 Yd5 Yd5 VRO4 B4 B4 B4 Ve4 Ve4 Ve4 X X X Yd4 Yd4 Yd4 VRO3 B3 B3 B3 Ve3 Ve3 Ve3 X X X Yd3 Yd3 Yd3 VRO2 B2 B2 B2 Ve2 Ve2 Ve2 X X X Yd2 Yd2 Yd2 VRO1 B1 B1 B1 Ve1 Ve1 Ve1 X X X Yd1 Yd1 Yd1 VRO0 B0 B0 B0 Ve0 Ve0 Ve0 X X X Yd0 Yd0 Yd0 Notes 1. α = keying bit. 2. RGB and YUV = digital signals. 3. o = odd pixel numbers. 4. e = even pixel numbers. 5. c and d = consecutive pixels. 1996 Sep 04 37 Philips Semiconductors Objective specification High Performance Scaler (HPS) Table 6 SAA7140A; SAA7140B VRAM port output data formats (VRO31 to VRO16) at FS2 bit = 1 and VOF bit = 1 (can be set via I2C-bus), burst and transparent mode, Pixel order = n, n + 1, n + 2, etc. PIXEL OUTPUT BITS FS1 = 0; FS0 = 0 RGB (5, 5, 5) + α 16-BIT WORDS(1)(2) FS1 = 0; FS0 = 1 YUV 4 : 2 : 2 16-BIT WORDS(2)(3) FS1 = 1; FS0 = 0 RGB (8, 8, 8) 24-BIT WORDS(2) FS1 = 1; FS0 = 1 8-BIT MONOCHROME 16-BIT WORDS(4) n n+1 n+2 n n+1 n+2 n n+1 n+2 n n+1 n+2 n+3 n+4 n+5 VRO31 α α α Ye7 Ye7 Ye7 R7 R7 R7 Ya7 Ya7 Ya7 VRO30 R4 R4 R4 Ye6 Ye6 Ye6 R6 R6 R6 Ya6 Ya6 Ya6 VRO29 R3 R3 R3 Ye5 Ye5 Ye5 R5 R5 R5 Ya5 Ya5 Ya5 VRO28 R2 R2 R2 Ye4 Ye4 Ye4 R4 R4 R4 Ya4 Ya4 Ya4 VRO27 R1 R1 R1 Ye3 Ye3 Ye3 R3 R3 R3 Ya3 Ya3 Ya3 VRO26 R0 R0 R0 Ye2 Ye2 Ye2 R2 R2 R2 Ya2 Ya2 Ya2 VRO25 G4 G4 G4 Ye1 Ye1 Ye1 R1 R1 R1 Ya1 Ya1 Ya1 VRO24 G3 G3 G3 Ye0 Ye0 Ye0 R0 R0 R0 Ya0 Ya0 Ya0 VRO23 G2 G2 G2 Ue7 Ue7 Ue7 G7 G7 G7 Yb7 Yb7 Yb7 VRO22 G1 G1 G1 Ue6 Ue6 Ue6 G6 G6 G6 Yb6 Yb6 Yb6 VRO21 G0 G0 G0 Ue5 Ue5 Ue5 G5 G5 G5 Yb5 Yb5 Yb5 VRO20 B4 B4 B4 Ue4 Ue4 Ue4 G4 G4 G4 Yb4 Yb4 Yb4 VRO19 B3 B3 B3 Ue3 Ue3 Ue3 G3 G3 G3 Yb3 Yb3 Yb3 VRO18 B2 B2 B2 Ue2 Ue2 Ue2 G2 G2 G2 Yb2 Yb2 Yb2 VRO17 B1 B1 B1 Ue1 Ue1 Ue1 G1 G1 G1 Yb1 Yb1 Yb1 VRO16 B0 B0 B0 Ue0 Ue0 Ue0 G0 G0 G0 Yb0 Yb0 Yb0 Notes 1. α = keying bit. 2. RGB and YUV = digital signals. 3. e = even pixel numbers. 4. a and b = consecutive pixels. 1996 Sep 04 38 Philips Semiconductors Objective specification High Performance Scaler (HPS) Table 7 SAA7140A; SAA7140B VRAM port output data formats (VRO15 to VRO0) at FS2 bit = 1 and VOF bit = 1 (can be set via I2C-bus), burst and transparent mode, Pixel order = n, n + 1, n + 2, etc. PIXEL OUTPUT BITS FS1 = 0; FS0 = 0 RGB (5, 5, 5) + α 16-BIT WORDS(1)(2) FS1 = 0; FS0 = 1 YUV 4 : 2 : 2 16-BIT WORDS(1)(2) FS1 = 1; FS0 = 0 RGB (8, 8, 8) 24-BIT WORDS(1)(2) FS1 = 1; FS0 = 1 8-BIT MONOCHROME 16-BIT WORDS(1) n n+1 n+2 n n+1 n+2 n n+1 n+2 n n+1 n+2 n+3 n+4 n+5 VRO15 X X X X X X B7 B7 B7 X X X VRO140 X X X X X X B6 B6 B6 X X X VRO13 X X X X X X B5 B5 B5 X X X VRO12 X X X X X X B4 B4 B4 X X X VRO11 X X X X X X B3 B3 B3 X X X VRO10 X X X X X X B2 B2 B2 X X X VRO9 X X X X X X B1 B1 B1 X X X VRO8 X X X X X X B0 B0 B0 X X X VRO7 α α α α α α α α α α α α VRO6 (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) VRO5 (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) VRO4 (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) VRO3 (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) VRO2 (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) VRO1 (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) VRO0 (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) (α) Notes 1. α = keying bit. 2. RGB = digital signals. 1996 Sep 04 39 Philips Semiconductors Objective specification High Performance Scaler (HPS) Table 8 SAA7140A; SAA7140B Optional VRAM port output data formats (VRO31 to VRO16) at FS2 bit = 0 and VOF bit = 0 (can be set via I2C-bus), burst mode only; Pixel order = n, n + 1, n + 2, etc.; VMUX = 1 or 0 PIXEL OUTPUT BITS FS1 = 0, FS0 = 0 RGB (5, 5, 5) + α 32-BIT LONG WORD(1)(2)(3) n 1 n+2 0 1 FS1 = 0, FS0 = 1 YUV 4 : 2 : 2 32-BIT LONG WORD(2)(4) n 0 FS1 = 1, FS0 = 1 8-BIT MONOCHROME 32-BIT LONG WORD(5) n n+1 n+2 n+4 n+5 1 0 1 0 1 0 1 0 VRO31 α Z α Z Ye7 Z Ye7 Z Ya7 Z Ya7 Z VRO30 R4 Z R4 Z Ye6 Z Ye6 Z Ya6 Z Ya6 Z VRO29 R3 Z R3 Z Ye5 Z Ye5 Z Ya5 Z Ya5 Z VRO28 R2 Z R2 Z Ye4 Z Ye4 Z Ya4 Z Ya4 Z VRO27 R1 Z R1 Z Ye3 Z Ye3 Z Ya3 Z Ya3 Z VRO26 R0 Z R0 Z Ye2 Z Ye2 Z Ya2 Z Ya2 Z VRO25 G4 Z G4 Z Ye1 Z Ye1 Z Ya1 Z Ya1 Z VRO24 G3 Z G3 Z Ye0 Z Ye0 Z Ya0 Z Ya0 Z VRO23 G2 Z G2 Z Ue7 Z Ue7 Z Yb7 Z Yb7 Z VRO22 G1 Z G1 Z Ue6 Z Ue6 Z Yb6 Z Yb6 Z VRO21 G0 Z G0 Z Ue5 Z Ue5 Z Yb5 Z Yb5 Z VRO20 B4 Z B4 Z Ue4 Z Ue4 Z Yb4 Z Yb4 Z VRO19 B3 Z B3 Z Ue3 Z Ue3 Z Yb3 Z Yb3 Z VRO18 B2 Z B2 Z Ue2 Z Ue2 Z Yb2 Z Yb2 Z VRO17 B1 Z B1 Z Ue1 Z Ue1 Z Yb1 Z Yb1 Z VRO16 B0 Z B0 Z Ue0 Z Ue0 Z Yb0 Z Yb0 Z Notes 1. α = keying bit. 2. RGB and YUV = digital signals. 3. Z = high ohmic (3-state). 4. e = even pixel numbers. 5. a and b = consecutive pixels. 1996 Sep 04 40 Philips Semiconductors Objective specification High Performance Scaler (HPS) Table 9 SAA7140A; SAA7140B Optional VRAM port output data formats (VRO15 to VRO0) at FS2 bit = 0 and VOF bit = 0 (can be set via I2C-bus), burst mode only; Pixel order = n, n + 1, n + 2, etc.; VMUX = 1 or 0 PIXEL OUTPUT BITS FS1 = 0, FS0 = 0 RGB (5, 5, 5) + α 32-BIT LONG WORD(1)(2)(3) n+1 1 FS1 = 0, FS0 = 1 YUV 4 : 2 : 2 32-BIT LONG WORD(2)(3)(4)(5) n+3 0 1 n+1 FS1 = 1, FS0 = 1 8-BIT MONOCHROME 32-BIT LONG WORD(3)(6) n+2 n+3 n+3 n+6 n+7 0 1 0 1 0 1 0 1 0 VRO15 Z α Z α Z Yo7 Z Yo7 Z Yc7 Z Yc7 VRO14 Z R4 Z R4 Z Yo6 Z Yo6 Z Yc6 Z Yc6 VRO13 Z R3 Z R3 Z Yo5 Z Yo5 Z Yc5 Z Yc5 VRO12 Z R2 Z R2 Z Yo4 Z Yo4 Z Yc4 Z Yc4 VRO11 Z R1 Z R1 Z Yo3 Z Yo3 Z Yc3 Z Yc3 VRO10 Z R0 Z R0 Z Yo2 Z Yo2 Z Yc2 Z Yc2 VRO9 Z G4 Z G4 Z Yo1 Z Yo1 Z Yc1 Z Yc1 VRO8 Z G3 Z G3 Z Yo0 Z Yo0 Z Yc0 Z Yc0 VRO7 Z G2 Z G2 Z Ve7 Z Ve7 Z Yd7 Z Yd7 VRO6 Z G1 Z G1 Z Ve6 Z Ve6 Z Yd6 Z Yd6 VRO5 Z G0 Z G0 Z Ve5 Z Ve5 Z Yd5 Z Yd5 VRO4 Z B4 Z B4 Z Ve4 Z Ve4 Z Yd4 Z Yd4 VRO3 Z B3 Z B3 Z Ve3 Z Ve3 Z Yd3 Z Yd3 VRO2 Z B2 Z B2 Z Ve2 Z Ve2 Z Yd2 Z Yd2 VRO1 Z B1 Z B1 Z Ve1 Z Ve1 Z Yd1 Z Yd1 VRO0 Z B0 Z B0 Z Ve0 Z Ve0 Z Yd0 Z Yd0 Notes 1. α = keying bit. 2. RGB and YUV = digital signals. 3. Z = high ohmic (3-state). 4. o = odd pixel numbers. 5. e = even pixel number. 6. c and d = consecutive pixels. 1996 Sep 04 41 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B I2C-BUS PROTOCOL 8 8.1 I2C-bus format Table 10 I2C-bus format S SLAVE ADDRESS ACK SUBADDRESS ACK DATA0 ACK X DATAn ACK P Table 11 Description of I2C-bus format CODE DESCRIPTION S START condition Slave address 0111 00X = IICSA = LOW or 0111 001X = IICSA = HIGH ACK acknowledge generated by the slave Subaddress subaddress byte (if more than 1 data byte is transmitted then an auto-increment of the subaddress is performed) Data data byte P STOP condition X read/write control bit: X = 0, order to write (the circuit is slave receiver) X = 1, order to read (the circuit is slave transmitter) Table 12 I2C-bus status byte (X in address byte = 1; 71H at IICSA = LOW or 73H at IICSA = HIGH) DATA BITS FUNCTION Status byte (subaddress 20H) D7 D6 D5 D4 D3 D2 D1 D0 ID3 ID2 ID1 ID0 X X X X Table 13 Function of status bits ID3 to ID0 (software model of SAA7140A and SAA7140B compatible) ID3 ID2 ID1 ID0 VERSION 0 0 0 0 V0 (first version) Remark: With the exception of subaddress 20H (read only) all I2C-bus registers are read/write registers. 1996 Sep 04 42 I2C-bus bitmap 1996 Sep 04 03 04 05 06 07 Expansion I/O control; scaler source control Expansion/VRAM format control Luminance brightness Luminance contrast Chroma saturation 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B Vertical window start(3) Vertical window length(3) (continue) Vertical phase offset Horizontal prescaling Horizontal weighting control (select Y) Horizontal weighting control (select UV) Prefilter YUV Vertical interpolation control Vertical weighting control 1 Vertical weighting control 2 DC gain normalization Horizontal scaling increment (continue) Vertical scaling increment (continue) 0A (continue) Horizontal phase offset 09 Horizontal window length(2) 08 02 Expansion port output control Horizontal window 01 Initial settings VRAM start(2) 00 Initial settings expansion/DMSD FUNCTION SUBADDRESS 43 X YSCI7 X XSCI7 X CYB7 CYA7 FLIP PFUV3 CXUV7 XPSC5 XACM(4) X YSCI6 X XSCI6 DCGX2 CYB6 CYA6 YACM PFUV2 CXUV6 X YSCI5 X XSCI5 DCGX1 CYB5 CYA5 YACL5 PFUV1 CXUV5 CXY5 YP5 CXY6 YO9 YO10 YS5 YO5 XP5 XO9 XS5 XO5 SATN5 CONT5 BRIG5 MCT YP6(4) YS6 YO6 XP6 XO10 XS6 XO6 SATN6 CONT6 BRIG6 YUV8 VD1 REHAW X YSCI4 X XSCI4 DCGX0 CYB4 CYA4 YACL4 PFUV0 CXUV4 CXY4 XPSC4 YP4 YO8 YS4 YO4 XP4 XO8 XS4 XO4 SATN4 CONT4 BRIG4 RTB REVAW VD0 QPP IREGS D4 X YSCI3 XSCI11 XSCI3 X CYB3 CYA3 YACL3 PFY3 CXUV3 CXY3 XPSC3 YP3 X YS3 YO3 XP3 X XS3 XO3 SATN3 CONT3 BRIG3 DIT VSI HD1 OF1 INVOE D3 X YSCI2 XSCI10 XSCI2 DCGY2 CYB2 CYA2 YACL2 PFY2 CXUV2 CXY2 XPSC2 YP2 YS10 YS2 YO2 XP2 XS10 XS2 XO2 SATN2 CONT2 BRIG2 FS2 HSI HD0 OF0 REVFLD D2 YSCI9 YSCI1 XSCI9 XSCI1 DCGY1 CYB1 CYA1 YACL1 PFY1 CXUV1 CXY1 XPSC1 YP1 YS9 YS1 YO1 XP1 XS9 XS1 XO1 SATN1 CONT1 BRIG1 FS1 VIPSI PXQD LW1 FICO1 D1 YSCI8 YSCI0 XSCI8 XSCI0 DCGY0 CYB0 CYA0 YACL0 PFY0 CXUV0 CXY0 XPSC0 YP0 YS8 YS0 YO0 XP0 XS8 XS0 XO0 SATN0 CONT0 BRIG0 FS0 LLCS LLCD LW0 FICO0 D0 DF(1) High Performance Scaler (HPS) CXY7 X X X YS7 YO7 XP7 X XS7 XO7 X X BRIG7 SHVS VIDC VOF TTR(4) SRIO(4) SREGS RSEN(4) FLDC D5 D6 VSYP(4) VPE FSEL D7 DATA BITS Table 14 I2C-bus decoder control; subaddress and data bytes for writing (X in address byte = 0; 70H at IICSA = LOW or 72H at IICSA = HIGH); programming set A: subaddress = 02H to 1FH 8.2 Philips Semiconductors Objective specification SAA7140A; SAA7140B 1996 Sep 04 1D 1E 1F Chroma keying lower limit for V Chroma keying upper limit for U Chroma keying lower limit for U 23 24 25 26 27 28 Expansion I/O control; scaler source control Expansion/VRAM format control Luminance brightness Luminance contrast Chroma saturation Horizontal window start(5) 44 30 31 32 33 34 35 36 37 38 Horizontal prescaling Horizontal weighting control (select Y) Horizontal weighting control (select UV) Prefilter YUV Vertical interpolation control Vertical weighting control 1 Vertical weighting control 2 DC gain normalization Horizontal scaling increment Vertical window 2F 2D length(6) Vertical window 2E 2C start(6) Vertical phase offset 2B Horizontal phase offset (continue) 2A (continue) 29 22 Expansion port output control Horizontal window 21 I/O port enable length(5) 20 Read only register Programming set B; subaddress = 22H to 3FH 1C Chroma keying upper limit for V FUNCTION SUBADDRESS XSCI7 X CYB7 CYA7 FLIP PFUV3 CXUV7 CXY7 X MCT XPSC5 XACM(4) XSCI6 DCGX2 CYB6 CYA6 YACM PFUV2 CXUV6 XSCI5 DCGX1 CYB5 CYA5 YACL5 PFUV1 CXUV5 CXY5 YP5 CXY6 YO9 YO10 YS5 YO5 XP5 XO9 XS5 XO5 SATN5 CONT5 BRIG5 YP6(4) YS6 YO6 XP6 XO10 XS6 XO6 SATN6 CONT6 BRIG6 REHAW VD1 PEN1(4) ID1 UL5 UU5 VL5 VU5 D5 XSCI4 DCGX0 CYB4 CYA4 YACL4 PFUV0 CXUV4 CXY4 XPSC4 YP4 YO8 YS4 YO4 XP4 XO8 XS4 XO4 SATN4 CONT4 BRIG4 RTB REVAW VD0 PEN0(4) ID0 UL4 UU4 VL4 VU4 D4 XSCI3 X CYB3 CYA3 YACL3 PFY3 CXUV3 CXY3 XPSC3 YP3 X YS3 YO3 XP3 X XS3 XO3 SATN3 CONT3 BRIG3 DIT VSI HD1 PORT3 X UL3 UU3 VL3 VU3 D3 XSCI2 DCGY2 CYB2 CYA2 YACL2 PFY2 CXUV2 CXY2 XPSC2 YP2 YS10 YS2 YO2 XP2 XS10 XS2 XO2 SATN2 CONT2 BRIG2 FS2 HSI HD0 PORT2 X UL2 UU2 VL2 VU2 D2 XSCI1 DCGY1 CYB1 CYA1 YACL1 PFY1 CXUV1 CXY1 XPSC1 YP1 YS9 YS1 YO1 XP1 XS9 XS1 XO1 SATN1 CONT1 BRIG1 FS1 VIPSI PXQD PORT1 X UL1 UU1 VL1 VU1 D1 XSCI0 DCGY0 CYB0 CYA0 YACL0 PFY0 CXUV0 CXY0 XPSC0 YP0 YS8 YS0 YO0 XP0 XS8 XS0 XO0 SATN0 CONT0 BRIG0 FS0 LLCS LLCD PORT0 X UL0 UU0 VL0 VU0 D0 DF(1) High Performance Scaler (HPS) YPF X YS7 YO7 XP7 X XS7 XO7 X X BRIG7 YUV8 SRIO(4) VSYP(4) SHVS VIDC PEN2(4) FLDC ID2 PEN3(4) UL6 UU6 VL6 VU6 D6 ID3 UL7 UU7 VL7 VU7 D7 DATA BITS Philips Semiconductors Objective specification SAA7140A; SAA7140B 1996 Sep 04 3B 3C 3D 3E 3F Vertical scaling increment (continue) Chroma keying upper limit for V Chroma keying lower limit for V Chroma keying upper limit for U Chroma keying lower limit for U UL7 UU7 VL7 VU7 X YSCI7 X D7 UL6 UU6 VL6 VU6 X YSCI6 X D6 6. Continued in 2E. 5. Continued in 2A. 4. Bits set to logic 1 after reset (all other bits set to logic 0 after reset). 3. Continued in 0E. 2. Continued in 0A. 1. Default register contents to be filled in by hand. Notes 39 3A (continue) FUNCTION SUBADDRESS UL5 UU5 VL5 VU5 X YSCI5 X D5 UL4 UU4 VL4 VU4 X YSCI4 X D4 UL3 UU3 VL3 VU3 X YSCI3 XSCI11 D3 DATA BITS UL2 UU2 VL2 VU2 X YSCI2 XSCI10 D2 UL1 UU1 VL1 VU1 YSCI9 YSCI1 XSCI9 D1 UL0 UU0 VL0 VU0 YSCI8 YSCI0 XSCI8 D0 DF(1) Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B 45 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Description of the I2C-bus bits 8.3 Tables 15 to 21 give the function of the register bits given in Table 14. 8.3.1 INITIAL SETTINGS FOR THE EXPANSION AND DMSD PORT; SUBADDRESS 00H Table 15 Field detection; data bits FICO1 to FICO0 FICO1 FICO0 DESCRIPTION 0 0 field sequence as detected from H and V sync signals 0 1 field sequence synchronized to H and V but noise limited 1 0 free running field sequence 1 1 reserved Table 16 Reference edge selection for the V sync input of the field detection; data bit REVFLD REVFLD DESCRIPTION 0 rising edge is reference 1 falling edge is reference Table 17 Polarity selection for the H sync input of the field detection (note 1); data bit INVOE INVOE DESCRIPTION 0 active LOW, e.g. for SAA71xx signals similar to HREF 1 active HIGH, e.g. for SAA71xx signals similar to HS Note 1. INVOE may also be used for FDIO and FLDV output signal inversion Table 18 Polarity of I2C-bus register set ID; data bit IREGS IREGS DESCRIPTION 0 register set ID as defined by SREGS 1 register set ID inverted Table 19 Fix I2C-bus register set ID; data bit SREGS SREGS DESCRIPTION 0 register set ID toggles as detected and defined by FICO0 and FICO1 1 register set ID fixed to 1 (register set B selected) Table 20 Enable of reference signals PXQIO, HIO, VIO, FDIO, LLCIO (expansion port) and PXQV, HGTV, VSYV, FLDV (VRAM port); data bit RSEN RSEN DESCRIPTION 0 reference signals enabled 1 reference signals disabled 1996 Sep 04 46 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 21 Field sync definition; data bit FSEL FSEL 8.3.2 DESCRIPTION 0 V input for field detection to be handled as V sync signal 1 V input for field detection to be handled as frame sync signal INITIAL SETTINGS FOR THE VRAM PORT; SUBADDRESS 01H Table 22 First pixel position in VRO data for FS1 = 0; FS0 = 0 (RGB) and FS1 = 0; FS0 = 1 (YUV); data bits LW1 and LW0 LW1 LW0 BITS 31 to 24 BITS 23 to 16 BITS 15 to 8 BITS 7 to 0 0 0 pixel 0 pixel 0 pixel 1 pixel 1 0 1 pixel 0 pixel 0 pixel 1 pixel 1 1 0 black black pixel 0 pixel 0 1 1 black black pixel 0 pixel 0 REMARK FS2 = 0; TTR = 0 Table 23 First pixel position in VRO data for FS1 = 1; FS0 = 1 (monochrome) LW1 LW0 BITS 31 to 24 BITS 23 to 16 BITS 15 to 8 BITS 7 to 0 0 0 pixel 0 pixel 1 pixel 2 pixel 3 0 1 black pixel 0 pixel 1 pixel 2 1 0 black black pixel 0 pixel 1 1 1 black black black pixel 0 0 0 pixel 0 pixel 1 X X 0 1 black pixel 0 X X 1 0 pixel 0 pixel 1 X X 1 1 black pixel 0 X X REMARK FS2 = 0; TTR = 0 FS2 = 1; TTR = 0; LW only affects the grey scale format Table 24 Set output field mode; data bits OF1 to OF0 OF1 OF0 DESCRIPTION 0 0 both fields for interlaced storage 0 1 both fields for non-interlaced storage 1 0 odd fields only (even fields ignored) for non-interlaced storage 1 1 even fields only (odd fields ignored) for non-interlaced storage Table 25 Pixel qualifier polarity flag; data bit QPP QPP DESCRIPTION 0 PXQV is active LOW (pin 41) 1 PXQV is active HIGH Table 26 VRAM-port output format; data bit VOF VOF DESCRIPTION 0 enabling of 32 to 16-bit multiplexing via VMUX 1 disabling of 32 to 16-bit multiplexing via VMUX 1996 Sep 04 47 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 27 VRAM-port mode selection; data bit TTR TTR DESCRIPTION 0 FIFO mode (VRAM data burst transfer) 1 transparent mode Table 28 VRAM-port outputs enable; data bit VPE VPE 8.3.3 DESCRIPTION 0 HFL and INCADR inactive (HFL = LOW, INCADR = HIGH); VRO outputs in 3-state 1 HFL and INCADR enabled; VRO outputs dependent on VOEN PORT I/O CONTROL; SUBADDRESS 21H Table 29 Select direction of PORT3 to PORT0; data bits PEN3 to PEN0 PEN3 TO PEN0 DESCRIPTION PENx = 0 PORTx set to output PENx = 1 PORTx set to input Table 30 Status of port I/O’s, pins 32 (PORT3) to 35 (PORT0) PORT3 to PORT0 8.3.4 DESCRIPTION Write mode set status of PORT3 to PORT0 registers (applied to pins 32 to 35 if PENx = 0) Read mode read status of PORT3 to PORT0; if PENx = 0 then status of PORTx register; if PENx = 1 then status of external driven data REGISTER SET A (02H TO 1FH) AND B (22H TO 3FH) Table 31 Source select for expansion port clock output LLCIO (note 1 ); data bit LLCD LLCD DESCRIPTION 0 source is clock from DMSD port 1 source is clock input from expansion port, as defined by SRIO Note 1. The clock output on LLCIO may be disabled by I2C-bus bits SRIO = 1 and LLCS = 1; see Table 37. Table 32 Source select for expansion port pixel qualifier and data output at PXQIO and VIDH/VIDL[7 to 0] (note 1); data bit PXQD PXQD DESCRIPTION 0 sources are corresponding signals from DMSD port 1 sources are corresponding signals from scaler output Note 1. The qualifier output on PXQIO may be disabled by I2C-bus bits SRIO = 1 and VIPSI = 1; see Table 38. 1996 Sep 04 48 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 33 Source select for expansion port horizontal sync output HIO (note 1); data bits HD1 to HD0 HD1 HD0 DESCRIPTION 0 0 source is corresponding signal from DMSD port 0 1 source is HIN from expansion port (short-cut) 1 0 source is corresponding signal from scaler output 1 1 source is HIN from expansion port Note 1. If SRIO and HSI = 1 then HIO output is disabled. Table 34 Source select for expansion port vertical sync output VIO (note 1); data bits VD1 to VD0 VD1 VD0 DESCRIPTION 0 0 source is corresponding signal from DMSD port 0 1 source is VIN from expansion port (short-cut) 1 0 source is corresponding signal from scaler output 1 1 source is VIN from expansion port Note 1. If SRIO and VSI = 1 then VIO output is disabled. Table 35 I/O control for the expansion port data output VIDH7 to VIDH0 and VIDL7 to VIDL0 (dependent on YUV8 programming for FLDC = 0) (note 1); data bit VIDC YUV8 VIDC DESCRIPTION 0 0 VIDH = output, VIDL = output 0 1 VIDH = input, VIDL = input 1 0 VIDH = output, VIDL = input 1 1 VIDH = input, VIDL = output Note 1. If FLDC and FDIO) = 1 the outputs VIDH/VIDL are disabled. Table 36 FDIO I/O control and signal definition; data bit FLDC FLDC FDIO 0 − FDIO contains odd/even flag FLD and is switched to output 1 − FDIO may be provided with a 7196 DIR like signal and is switched to input − 0 LLCIO, PXQIO and VIDH/VIDL I/O definition as defined by the I2C-bus parameters − 1 selected outputs are forced to input mode and corresponding signals are used as scaler input 1996 Sep 04 DESCRIPTION 49 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 37 Source select for scaler clock input; data bit LLCS (03H to 23H) FLDC FDIO SRIO LLCS DESCRIPTION X X X 0 source is LLC from DMSD port X X 0 1 source is LLCIN from expansion port 0 X 1 1 source is LLCIO input from expansion port, output is disabled 1 0 1 1 source is derived from LLCIO output; LLCD = 0 from LLC of decoder port, LLCD = 1 not allowed 1 1 1 1 source is LLCIO input from expansion port, output is disabled Table 38 Source select for scaler data and pixel qualifier input; data bit VIPSI FLDC FDIO SRIO VIPSI DESCRIPTION 0 X X 0 source is data and CREF from DMSD port 0 X − 1 source is data input VIDH/VIDL: when the pixel qualifier is PXQIN from expansion port FLDC = 0, FDIO = x, SRIO = 0 and VIPSI = 1; when the pixel qualifier is PXQIO from expansion port, output disabled FLDC = 0, FDIO = x, SRIO = 1 and VIPSI = 1; 1 0 − X source is derived from data output VIDH/VIDL, from decoder port for PXQD = 0, PXQD = 1 is not allowed: when the pixel qualifier is PXQIN from expansion port FLDC = 1, FDIO = 0, SRIO = 0 and VIPSI = x; when the pixel qualifier is CREF via the PXQIO output for PXQD = 0, PXQD = 1 is not allowed FLDC = 1, FDIO = 0, SRIO = 1 and VIPSI = x 1 1 − X source is data input VIDH/VIDL, output disabled, when the pixel qualifier is PXQIN from expansion port FLDC = 1, FDIO = 1, SRIO = 0 and VIPSI = x; when the pixel qualifier is PXQIO from expansion, port output disabled FLDC = 1, FDIO = 1, SRIO = 1 and VIPSI = x Table 39 Source select for scaler horizontal sync input; data bit HSI SRIO HSI DESCRIPTION X 0 source is HREF from DMSD port 0 1 source is HIN from expansion port 1 1 source is HIO from expansion port, HIO output disabled Table 40 Source select for scaler vertical sync input and field detection H/V; data bit VSI SRIO VSI DESCRIPTION X 0 source is VS from DMSD port; VS and HREF for field detection 0 1 source is VIN from expansion port; VIN and HIN for field detection 1 1 source is VIO from expansion port; VIO and HIO for field detection Table 41 Reference edge selection for the V sync input of the acquisition window; data bit REVAW REVAW DESCRIPTION 0 rising edge is reference 1 falling edge is reference 1996 Sep 04 50 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 42 Reference edge selection for the H-sync input of the acquisition window; data bit REHAW REHAW DESCRIPTION 0 rising edge is reference 1 falling edge is reference Table 43 Expansion-port clock and reference signal selection; data bit SRIO (see Tables 37 to 40) SRIO DESCRIPTION 0 clock and reference signals are taken from xxxIN pins 1 clock and reference signals are taken from xxxIO pin, xxxIN pins are ignored Table 44 VSYV output signal polarity; data bit VSYP VSYP DESCRIPTION 0 VSYV contains 1 active V sync signals 1 VSYV contains 0 active V sync signals Table 45 VRAM port output format select; data bits FS2 to FS0 (04H to 24H); see Tables 6 and 7 FS2 FS1 FS0 OUTPUT FORMAT 0 0 0 RGB (5, 5, 5) + α; 2 × 16-bit/pixel; 32-bit word length; RGB matrix on, VRAM output format 0 0 1 YUV 4 : 2 : 2; 2 × 16-bit/pixel; 32-bit word length; RGB matrix off, VRAM output format 0 1 0 YUV 4 : 2 : 2; 1 × 16-bit/pixel; 16-bit word length; RGB matrix off, optional output format 0 1 1 monochrome mode; 4 × 8-bit/pixel; 32-bit word length; RGB matrix off, VRAM output format 1 0 0 RGB (5, 5, 5) + α; 1 × 16-bit/pixel; 16-bit word length; RGB matrix on, VRAM output + transparent format 1 0 1 YUV 4 : 2 : 2 + α; 1 × 16-bit/pixel; 16-bit word length; RGB matrix off; VRAM output + transparent format 1 1 0 RGB (8, 8, 8) + α; 1 × 24-bit/pixel; 24-bit word length; RGB matrix on, VRAM output + transparent format 1 1 1 monochrome mode; 2 × 8-bit/pixel; 16-bit word length; RGB matrix off, VRAM output + transparent format Table 46 Dithering (noise shaping) control (for VRAM port only); data bit DIT DIT DESCRIPTION 0 dithering on 1 dithering off Table 47 ROM table for anti-gamma correction (for VRAM port only); data bit RTB RTB DESCRIPTION 0 ROM table switched on 1 ROM table switched off 1996 Sep 04 51 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 48 Monochrome and two’s complement output data select; data bit MCT MCT DESCRIPTION 0 inverse grey scale luminance (if grey scale is selected by FS bits) or straight binary U, V data output 1 non-inverse monochrome luminance (if grey scale is selected by FS bits) or two’s complement U, V data output Table 49 Expansion port data path configuration; data bit YUV8; see Tables 8 and 9 YUV8 DESCRIPTION 0 expansion port set to 16-bit YUV 1 expansion port set to 8-bit YUV (VIDL7 to VIDL0) Table 50 Select field sequence, H and V; data bit SHVS SHVS DESCRIPTION 0 use separate H and V input signals 1 use decoded information from the CCIR 656 data stream (only for YUV8 = 1) Table 51 Luminance brightness control; data bits BRIG7 to BRIG0 (05H to 25H) D7 D6 D5 D4 D3 D2 D1 D0 GAIN 1 1 1 1 1 1 1 1 255 (bright) ... ... ... ... ... ... ... ... .... 1 0 0 0 0 0 0 0 128 (CCIR level) ... ... ... ... ... ... ... ... .... 0 0 0 0 0 0 0 0 0 (dark) D0 GAIN Table 52 Luminance contrast control; data bits CONT6 to CONT0 (06H to 26H) D7 D6 D5 D4 D3 D2 D1 0 1 1 1 1 1 1 1 1.999 (maximum contrast) ... ... ... ... ... ... ... ... .... 0 1 0 0 0 0 0 0 1 (CCIR level) ... ... ... ... ... ... ... ... .... 0 0 0 0 0 0 0 0 0 (luminance off) Table 53 Chrominance saturation control; data bits SATN6 to SATN0 (07H to 27H) D7 D6 D5 D4 D3 D2 D1 D0 GAIN 0 1 1 1 1 1 1 1 1.999 (maximum contrast) ... ... ... ... ... ... ... ... .... 0 1 0 0 0 0 0 0 1 (CCIR level) ... ... ... ... ... ... ... ... .... 0 0 0 0 0 0 0 0 0 (colour off) 1996 Sep 04 52 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 54 X (horizontal) offset definition, counted in input pixel qualifiers; data bits XO10 to XO0 XO10 to XO0 08H to 28H and 0AH to 2AH DESCRIPTION Defines the start position of the X processing window Table 55 X (horizontal) source size definition, counted in input pixel qualifiers; data bits XS10 to XS0 XS10 to XS0 09H to 29H and 0AH to 2AH DESCRIPTION defines the length of the X processing window Table 56 Start phase for horizontal variable phase scaling (defined by XSCI11 to XSCI0); data bits XP6 to XP0 XP6 to XP0 0BH to 2BH DESCRIPTION XPSTART = XP/128 × TPXQ (TPXQ = distance between 2 pixels) Table 57 X phase value fixed; data bit XP7 XP7 DESCRIPTION 0 sample phase is calculated for every qualified sample 1 sample phase is fixed to the value set by XP6 to XP0 Table 58 Y (vertical) offset definition, counted in input horizontal sync events; YO10 to YO0 YO10 to YO0 0CH to 2CH and 0EH to 2EH DESCRIPTION defines the start position of the Y processing window Table 59 Y (vertical) source size definition, counted in input horizontal sync events; YS10 to YS0 YS10 to YS0 0DH to 2DH and 0EH to 2EH DESCRIPTION defines the length of the Y processing window Table 60 Start phase for vertical scaling (defined by YSCI9 to YSCI0); data bits YP6 to YP0 YP6 to YP0 0FH to 2FH DESCRIPTION YPSTART = YP/128 × TLINE (TLINE = distance between 2 lines) Table 61 Prescaling factor of the X prescaler; data bits XPSC5 to XPSC0 XPSC5 to XPSC0 10H to 30H 1996 Sep 04 DESCRIPTION defines accumulation sequence length and subsampling factor of the input data stream where NOP (XPSC) = TRUNC [NIN ⁄ (XPSC + 1)] NOP = number of prescaler output pixel and NIN = number of qualified scaler input pixel 53 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 62 X (horizontal) prescaler accumulation mode of accumulating FIR; data bit XACM XACM DESCRIPTION 0 accumulating operates overlapping 1 non overlapping accumulation (must be set to bypass the prescaler) Table 63 Coefficient select for X prescaler (luminance component Y); data bits CXY7 to CXY0 CXY7 to CXY0 11H to 31H DESCRIPTION for DC gain compensation of prescaler the accumulated pixels can be weighted by 1 or 2. CXYi defines a sequence of 8 bits, which control the coefficients; when CXYi = 0 pixel weighted by 1 and when CXYi = 1 pixel weighted by 2 Table 64 Coefficient select for X prescaler (colour difference signals UV); data bits CXUV7 to CXUV0 CXUV7 to CXUV0 DESCRIPTION 12H to 32H for DC gain compensation of prescaler the accumulated pixels can be weighted by 1 or 2. CXUVi defines a sequence of 8 bits, which control the coefficients; when CXUVi = 0 pixel weighted by 1 and when CXUVi = 1 pixel weighted by 2 Table 65 Prefilter selection for luminance component Y (note 1); data bits PFY3 to PFY0 (13H to 33H) PFY1 PFY0 ≥ H1(z) H2(z) H3(z) 0 0 bypass bypass bypass 0 1 active bypass bypass 1 0 active bypass active 1 1 active active active Note 1. H(z) = H1(z) × H2(z) × H3(z) with H1 and H3 = 1 + z−1; H2 = 1 + A × z−1 + z−2 and A = 2, 15⁄16, 7⁄8, 3⁄4 for PFY3 and PFY2 = 00, 01, 10, 11. Table 66 Prefilter selection for colour difference signals UV (note 1); data bits PFUV3 to PFUV0 PFUV1 PFUV0 ≥ H1(z) H2(z) H3(z) 0 0 bypass bypass bypass 0 1 active bypass bypass 1 0 active active bypass 1 1 active active active Note 1. H(z) = H1(z) × H2(z) × H3(z) with H1 = 1 + z−1; H2 = 1 + A × z−1 + z−2; H3 = 1 + z−2 and A = 2, 15⁄16, 7⁄8, 3⁄4 for PFUV3 and PFUV2 = 00, 01, 10, 11. Table 67 Accumulation sequence length of the Y (vertical) processing; data bits YACL5 to YACL0 YACL5 to YACL0 14H to 34H 1996 Sep 04 DESCRIPTION defines vertical accumulation sequence length of input lines. If accumulation FIR filter mode is selected (YACM), YACL has to fit to the vertical scaling factor (defined by YSCI9 to YSCI0) 54 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 68 Y (vertical) scaler accumulation (respectively calculation) mode of vertical arithmetic; data bit YACM YACM DESCRIPTION 0 arithmetic operates as a linear phase interpolator (LPI) 1 arithmetic operates as accumulating FIR filter in vertical direction Table 69 Horizontal flip ‘mirroring’; maximum pixels after prescaling = 384; data bit FLIP FLIP DESCRIPTION 0 output lines correspond to input lines 1 output lines correspond flipped input lines (see Section 7.4.2) Table 70 Coefficient select for Y (vertical) processing in accumulation mode (notes 1 and 2); data bits CYA7 to CYA0 and CYB7 to CYB0 (15H to 35H and 16H to 36H) CYBi CYAi CYi WEIGHTING FACTOR 0 0 0 0 0 1 1 1 1 0 2 2 1 1 3 4 Notes 1. For improvement of vertical filtering the accumulated lines can be weighted. Weighting factor = 2(2 × CYBi + CYAi − 1) 2. The resulting factor as a function of a bit pattern CYAi, CYBi and the DC gain control DCGY, is given in Tables 71 and 72. Table 71 DC gain control of vertical scaler (see Table 2) (notes 1, 2 and 3) ; data bits DCGY2 to DCGY0 (17H to 37H) DCGY2 DCGY1 DCGY0 DCGY GAIN FACTOR 0 0 0 0 2 0 0 1 1 4 ... .... .... .... .... ... .... .... .... .... 1 1 1 7 256 Notes 1. Dependent on active coefficients and the sequence length, the amplitude gain has to be renormalized. 2. Gain factor = 2(DCGY + 1). 3. The resulting factor is a function of CYi and DCGY; 0 for (CYAi = CYBi = 0) or (CYAi = CYBi = 1 and DCGY = 0) or (DGCY > 5). The weighting/gain factor is given in Table 72. Table 72 Weighting factor as a function of gain factor CYI DCGY0 DCGY1 DCGY2 0 0 0 0 1 1⁄ 2 1⁄ 4 1⁄ 8 2 1 1⁄ 2 1⁄ 4 1 1⁄ 3 1996 Sep 04 0 2 DCGY3 0 1⁄ 16 1⁄ 8 1⁄ 4 55 DCGY4 0 1⁄ 32 1⁄ 16 1⁄ 8 DCGY5 0 1⁄ 1⁄ 1⁄ DCGY6 DCGY7 0 0 64 0 0 32 0 0 16 0 0 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 73 DC gain control of horizontal prescaler (see Table 1; note 1); data bits DCGX2 to DCGX0 DCGX2 DCGX1 DCGX0 GAIN 0 0 0 ×1 0 0 1 × 1⁄2 0 1 0 × 1⁄4 0 1 1 × 1⁄8 1 0 0 × 1⁄2 1 0 1 × 1⁄4 1 1 0 × 1⁄8 1 1 1 × 1⁄16 Note 1. Dependent on the number of active coefficients ‘2’ in the accumulation sequence and the sequence length, the output amplitude gain has to be renormalization via DCGX. Table 74 X scaler increment for variable phase scaling in horizontal pixel phase arithmetic (note 1); data bits XSCI11 to XSCI0 (18H to 38H and 19H to 39H) XSCI11 TO XSCI0 DESCRIPTION 18H to 38H and 19H to 39H N IP 1024 XSCI = INT ----------- × ---------------------------------N OP ( XPSC + 1 ) Note 1. Where NIP = number of qualified scaler input pixel and NOP = number of output pixel. Table 75 Y scaler increment for vertical down scaling; data bits YSCI9 to YSCI0 (1Ah to 3Ah and 1BH to 3BH) YSCI9 TO YSCI0 DESCRIPTION 1AH to 3AH N IL YSCI = INT 1024 × ---------– 1 ; for YACM = 0 = LPI mode N OL 1BH to 3BH N OL ; for YACM = 1 = accumulation mode YSCI = INT 1024 × 1 – ---------N IL Table 76 Set upper limit V for colour keying (8-bit; two’s complement); data bits VU7 to VU0 (1CH to 3CH) VU7 VU6 VU5 VU4 VU3 VU2 VU1 VU0 DESCRIPTION 1 0 0 0 0 0 0 0 as maximum negative value = −128 signal level 0 0 0 0 0 0 0 0 limit = 0 0 1 1 1 1 1 1 1 as maximum positive value = +127 signal level Table 77 Set lower limit V for colour keying (8-bit; two’s complement); data bits VL7 to VL0 (1DH to 3DH) VL7 VL6 VL5 VL4 VL3 VL2 VL1 VL0 1 0 0 0 0 0 0 0 as maximum negative value = −128 signal level 0 0 0 0 0 0 0 0 limit = 0 0 1 1 1 1 1 1 1 as maximum positive value = +127 signal level 1996 Sep 04 56 DESCRIPTION Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B Table 78 Set upper limit U for colour keying (8-bit; two’s complement); data bits UU7 to UU0 (1EH to 3EH) UU7 UU6 UU5 UU4 UU3 UU2 UU1 UU0 DESCRIPTION 1 0 0 0 0 0 0 0 as maximum negative value = −128 signal level 0 0 0 0 0 0 0 0 limit = 0 0 1 1 1 1 1 1 1 as maximum positive value = +127 signal level Table 79 Set lower limit U for colour keying (8-bit; two’s complement); data bits UL7 to UL0 (1FH to 3FH) UL7 UL6 UL5 UL4 UL3 UL2 UL1 UL0 DESCRIPTION 1 0 0 0 0 0 0 0 as maximum negative value = −128 signal level 0 0 0 0 0 0 0 0 limit = 0 0 1 1 1 1 1 1 1 as maximum positive value = +127 signal level 9 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT SAA7140A −0.5 +6.5 V digital supply voltage for internal core SAA7140A −0.5 +6.0 V digital supply voltage SAA7140B −0.5 +6.0 V VI DC input voltage SAA7140B −0.5 VDDD + 0.5 V VO DC output voltage SAA7140B −0.5 VDDD + 0.5 V Ptot total power dissipation SAA7140A − 750 mW SAA7140B − 750 mW +150 °C VDDD(bord) digital supply voltage for I/O section VDDD(core) VDDD Tstg storage temperature −65 Tamb operating ambient temperature 0 70 °C Vesd electrostatic protection 2000(1) − V Note 1. Pin 31 (SDA): 800 V. 10 HANDLING Inputs and output are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices. 11 THERMAL CHARACTERISTICS SYMBOL Rth j-a 1996 Sep 04 PARAMETER thermal resistance from junction to ambient in free air 57 VALUE UNIT 60 K/W Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B 12 DC CHARACTERISTICS VDDD(bord) = 4.5 to 5.5 V; VDDD(core) = 3.0 to 3.6 V; VDDD = 3.0 to 3.6 V; Tamb = 0 to 70 °C; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supplies; SAA7140A VDDD(bord) digital supply voltage for I/O section 4.5 5.0 5.5 V VDDD(core) digital supply voltage for internal core 3.0 3.3 3.6 V IDDD(bord) digital supply current for I/O section normal operation − 30 − mA sleep mode − 10 − mA IDDD(core) digital supply current for internal core normal operation − 60 − mA sleep mode − 10 − mA − 100 − mA 3.0 3.3 3.6 V normal operation − 90 − mA sleep mode − 10 − mA − 0.6 V IDDD(tot) total digital supply current Supplies; SAA7140B VDDD digital supply voltage IDDD digital supply current Data, clock and control inputs VIL LOW level input voltage clocks −0.5 VIH HIGH level input voltage clocks 2.4 − VDDD + 0.5 V VIL LOW level input voltage other inputs; SAA7140A −0.5 − 0.8 V other inputs; SAA7140B −0.5 − 0.2VDDD V other inputs; SAA7140A 2.0 − VDDD + 0.5 V other inputs; SAA7140B 2.4 − VDDD + 0.5 V VIH HIGH level input voltage ILI input leakage current VIL = 0 V − − 1 mA CI input capacitance data − − 8 pF clocks − − 8 pF 3-state I/O; high-impedance state − − 8 pF all outputs; SAA7140A 0 − 0.6 V clocks; SAA7140B 0 − 0.4 V Data, clock and control outputs (note 1) VOL VOH LOW level output voltage HIGH level output voltage VOH HIGH level output voltage VOL LOW level output voltage 1996 Sep 04 clocks; SAA7140A 2.6 − VDDD V clocks; SAA7140B 0.85VDDD − VDDD V other outputs; SAA7140A 2.4 − VDDD V other outputs; SAA7140B 0.85VDDD − VDDD V other outputs; SAA7140B 0 − 0.4 V 58 Philips Semiconductors Objective specification High Performance Scaler (HPS) SYMBOL PARAMETER SAA7140A; SAA7140B CONDITIONS MIN. TYP. MAX. UNIT I2C-bus, SDA and SCL (pins 31 and 32) VIL LOW level input voltage SAA7140A −0.5 − +1.5 V SAA7140B −0.5 − 0.3VDDD V 0.7VDDD − VDDD + 0.5 V − − ±10 µA 3 − − mA − − 0.4 V VIH HIGH level input voltage I31, 32 input current IACK output current on pin 31 Vo output voltage at acknowledge I31 = 3 mA acknowledge Note 1. Levels measured with load circuit; 1.2 kΩ at 3 V (TTL load); CL = 40 pF. 13 AC CHARACTERISTICS VDDD(bord) = 4.5 to 5.5 V; VDDD(core) = 3.0 to 3.6 V; VDDD = 3.0 to 3.6 V; Tamb = 0 to 70 °C; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Clock input timing (LLC, LLCIN and LLCIO as input) (see Fig.20) tLLC, tLLCIN cycle time 31 − 45 ns δ duty factor 40 50 60 % tr rise time − − 5 ns tf fall time − − 6 ns tLLCH or tLLC VCLK input timing (for ‘Burst Mode’ only, TTR = 0); note 1 (see Fig.19) tVCLK VRAM port clock cycle time note 2 30 − 200 ns tpL VCLK LOW time note 3 12 − − ns tpH VCLK HIGH time note 3 12 − − ns tr rise time 0.6 V to 0.85VDDD − − 5 ns tf fall time 0.85VDDD to 0.6 V − − 6 ns Data and control input timing, related to the corresponding input clock; (see Fig.20) tSU set-up time 11 − − ns tHD hold time 3 − − ns Data and control input timing at the expansion port, related to LLCIO output tSU set-up time 15 − − ns tHD hold time 0 − − ns Clock output timing (LLCIO and VCLK output); note 4 (see Fig.20) CL output load capacitance 15 − 40 pF tLLCIO cycle time 31 − 45 ns δ duty factor tLLCIOH or tLLCIO 38 49 59 % tr rise time 0.6 V to 0.85VDDD − − 5 ns tf fall time 0.85VDDD to 0.6 V − − 6 ns 1996 Sep 04 59 Philips Semiconductors Objective specification High Performance Scaler (HPS) SYMBOL PARAMETER SAA7140A; SAA7140B CONDITIONS MIN. TYP. MAX. UNIT Data and control output timing at the expansion port, related to LLCIO output; (see Fig.20) CL load capacitance tOHD output hold time tPD propagation delay from positive edge of LLCIO output 15 − 40 pF CL = 7.5 pF 1.5 − − ns CL = 15 pF − − − ns CL = 40 pF − − 15 ns 15 − 40 pF VRO and reference signal output timing, related to VCLK output; (see Fig.19) CL output load capacitance VRO outputs other outputs 7.5 − 25 pF tOHD VRO data hold time CL = 10 pF; note 5 0 − − ns tOHL related to LCC scaler (INCADR, HFL) CL = 10 pF; notes 6 and 1 0 − − ns tOHV related to VCLK (HFL) CL = 10 pF; note 6 0 − − ns tOD VRO data delay time in burst mode (TTR = 0) CL = 40 pF; note 5 − − 25 ns VRO data delay time in transparent mode (TTR = 1) CL = 40 pF; note 5 − − 15 ns tODL related to LCCScaler (INCADR,HFL) CL = 25 pF; notes 6 and 7 − − 60 ns tODV related to VCLK (HFL) CL = 25 pF; note 6 − − 60 ns tD VRO disable time to 3-state CL = 40 pF; note 7 − − 40 ns CL = 25 pF; note 8 − − 24 ns tE VRO enable time from 3-state CL = 40 pF; note 7 − − 40 ns CL = 25 pF; note 8 − − 25 ns tHFL VOE HFL rising edge to VRAM port enable no zooming − − 810 ns tHFL VCLK HFL rising edge to VCLK burst no zooming − − 840 ns Notes 1. LLCScaler may be LLC from DMSD port or LLCIN from expansion-port, dependent on scaler source clock selection via I2C-bus bit LLCS. 2. Maximum TVCLK = 200 ns for test mode only. The applicable maximum cycle time depends on data format, horizontal scaling and input data rate. 3. Measured at 1.5 V level; tpL may be infinite. 4. LLCIOout timing also valid for VCLKout in transparent mode; (see Fig.20). 5. Timings of VRO refer to the rising edge of VCLK. 6. The timing of INCADR and the rising edge of HFL always refers to LLCScaler. During a VRAM transfer, the falling edge of HFL is generated by VCLK. During horizontal increment and vertical reset cycles, both edges of HFL always refer to LLC scaler. 7. Asynchronous signals. Its timing refers to the 1.5 V switching point of VOEN input signal (pin 53). 8. The timing refers to the 1.5 V switching point of VMUX signal (pin 46) in 32 to 16-bit multiplexing mode. Corresponding pairs of VRO outputs are together connected. 1996 Sep 04 60 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B handbook, full pagewidth 2.4 V VOEN 1.5 V 0.6 V TVCLK tf tr 2.4 V VCLK 1.5 V 0.6 V tenVRO not valid tCH todVRO tCL todVRO tohVRO 0.85VDD DATA OUTPUT VRAM port 0.4 V tod toh 0.85VDD OUTPUT HFL 0.4 V MHA125 Fig.19 Data output timing (VRAM port). 1996 Sep 04 61 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B TLLC, TLLCIN handbook, full pagewidth tLLCH, tLLCINH 2.4 V CLOCK INPUT LLC, LLCIN 1.5 V 0.6 V ts tr tf th 2.4 V DATA AND CONTROL INPUTS (DMSD/EXPANSION PORT) not valid 0.6 V th ts 2.4 V INPUT CREF, PXQIN (PXQIO if used as input) 0.6 V tod toh 0.85VDD DATA AND CONTROL OUTPUTS EXPANSION PORT 0.4 V tLLCIOH tLLCIOL 0.85VDD CLOCK OUTPUT LLCIO 1.5 V 0.4 V tf tr Fig.20 Data input/output timing (DMSD port and expansion port). 1996 Sep 04 62 MHA124 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B 14 PACKAGE OUTLINE LQFP128: plastic low profile quad flat package; 128 leads; body 14 x 20 x 1.4 mm SOT425-1 c y X A 65 102 64 103 ZE e Q E HE A A2 A 1 (A 3) θ wM Lp bp pin 1 index L detail X 39 128 1 38 v M A ZD wM bp e D B HD v M B 0 5 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e mm 1.6 0.15 0.05 1.45 1.35 0.25 0.27 0.17 0.20 0.09 20.1 19.9 14.1 13.9 0.5 HD HE 22.15 16.15 21.85 15.85 L Lp Q v w y 1.0 0.75 0.45 0.70 0.58 0.2 0.12 0.1 Z D(1) Z E(1) θ 0.81 0.59 7 0o 0.81 0.59 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 96-04-02 SOT425-1 1996 Sep 04 EUROPEAN PROJECTION 63 o Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B If wave soldering cannot be avoided, the following conditions must be observed: 15 SOLDERING 15.1 Introduction • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. • The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners. Even with these conditions, do not consider wave soldering the following packages: QFP52 (SOT379-1), QFP100 (SOT317-1), QFP100 (SOT317-2), QFP100 (SOT382-1) or QFP160 (SOT322-1). This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011). 15.2 15.3.2 Reflow soldering Wave soldering techniques can be used for all SO packages if the following conditions are observed: Reflow soldering techniques are suitable for all QFP and SO packages. • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our “Quality Reference Manual” (order code 9398 510 63011). • The longitudinal axis of the package footprint must be parallel to the solder flow. • The package footprint must incorporate solder thieves at the downstream end. 15.3.3 Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C. 15.3.1 A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. 15.4 Wave soldering Repairing soldered joints Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. QFP Wave soldering is not recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices. 1996 Sep 04 METHOD (QFP AND SO) During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C. 15.3 SO 64 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B 16 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. 17 LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 18 PURCHASE OF PHILIPS I2C COMPONENTS Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011. 1996 Sep 04 65 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B NOTES 1996 Sep 04 66 Philips Semiconductors Objective specification High Performance Scaler (HPS) SAA7140A; SAA7140B NOTES 1996 Sep 04 67 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 615 800, Fax. +358 615 80920 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. +30 1 4894 339/911, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 926 5361, Fax. +7 095 564 8323 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 825 344, Fax.+381 11 635 777 For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1996 SCA51 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 657021/1200/02/pp68 Date of release: 1996 Sep 04 Document order number: 9397 750 01068