September 2006 HYB25D512400C[E/T/F/C](L) HYB25D512800C[E/T/F/C](L) HYB25D512160C[E/T/F](L) DDR SDRAM RoHS Compliant Products Internet Data Sheet Rev. 1.31 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM HYB25D512400C[E/T/F/C](L), HYB25D512800C[E/T/F/C](L), HYB25D512160C[E/T/F](L) Revision History: 2006-09, Rev. 1.31 Page Subjects (major changes since last revision) All Qimonda update All Adapted internet edition Previous Revision: 2006-05, Rev. 1.3 10 10 Added the components HYB25D512160CT-6, HYB25D512160CT-5, HYB25D512800CFL-6 HYB25D512800CFL-5, HYB25D512160CFL-6 Correct the name HYB25D512400CFL-6 Previous Revision: 2006-03, Rev. 1.2 We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev400 / 3.2 QAG / 2006-08-07 03292006-3TFJ-HNV3 2 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM 1 Overview This chapter gives an overview of the 512-Mbit Double-Data-Rate SDRAM product family and describes its main characteristics. 1.1 Features • Double data rate architecture: two data transfers per clock cycle • Bidirectional data strobe (DQS) is transmitted and received with data, to be used in capturing data at the receiver • DQS is edge-aligned with data for reads and is centeraligned with data for writes • Differential clock inputs (CK and CK) • Four internal banks for concurrent operation • Data mask (DM) for write data • DLL aligns DQ and DQS transitions with CK transitions • Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS • • • • • • • • • • • • Burst Lengths: 2, 4, or 8 CAS Latency: 2, 2.5, 3 Auto Precharge option for each burst access Auto Refresh and Self Refresh Modes RAS-lockout supported tRAP=tRCD 7.8 µs Maximum Average Periodic Refresh Interval 2.5 V (SSTL_2 compatible) I/O VDDQ = 2.5 V ± 0.2 V VDD = 2.5 V ± 0.2 V P-TFBGA-60-11 package P-TSOPII-66-1 package RoHS Compliant Products1) TABLE 1 Performance for –5 and –6 Part Number Speed Code Speed Grade Component Max. Clock Frequency @CL3 @CL2.5 @CL2 fCK3 fCK2.5 fCK2 –5 –6 Unit DDR400B DDR333B — 200 166 MHz 166 166 MHz 133 133 MHz 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 3 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM 1.2 Description Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an Active command, which is then followed by a Read or Write command. The address bits registered coincident with the Active command are used to select the bank and row to be accessed. The address bits registered coincident with the Read or Write command are used to select the bank and the starting column location for the burst access. The DDR SDRAM provides for programmable Read or Write burst lengths of 2, 4 or 8 locations. An Auto Precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access. As with standard SDRAMs, the pipelined, multibank architecture of DDR SDRAMs allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time. An auto refresh mode is provided along with a power-saving power-down mode. All inputs are compatible with the JEDEC Standard for SSTL_2. All outputs are SSTL_2, Class II compatible. Note: The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. The 512-Mbit Double-Data-Rate SDRAM is a high-speed CMOS, dynamic random-access memory containing 536,870,912 bits. It is internally configured as a quad-bank DRAM. The 512-Mbit Double-Data-Rate SDRAM uses a doubledata-rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the 512-Mbit Double-Data-Rate SDRAM effectively consists of a single 2n-bit wide, one clock cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins. A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver. DQS is a strobe transmitted by the DDR SDRAM during Reads and by the memory controller during Writes. DQS is edge-aligned with data for Reads and center-aligned with data for Writes. The 512-Mbit Double-Data-Rate SDRAM operates from a differential clock (CK and CK; the crossing of CK going HIGH and CK going LOW is referred to as the positive edge of CK). Commands (address and control signals) are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as to both edges of CK. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 4 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 2 Ordering Informationfor Lead-Free(RoHS Compliant Products) Part Number1) Org. CAS-RCD-RP Latencies Clock (MHz) CAS-RCD-RP Latencies Clock (MHz) Speed Package HYB25D512400CF–5 ×4 3.0-3-3 200 2.5-3-3 166 DDR400B P-TFBGA-60-11 HYB25D512400CFL–5 ×4 2.5-3-3 166 2.0-3-3 133 DDR333 3.0-3-3 200 2.5-3-3 166 DDR400B 2.5-3-3 166 2.0-3-3 133 DDR333 HYB25D512800CF–5 ×8 HYB25D512800CFL–5 ×8 HYB25D512160CF–5 ×16 HYB25D512160CFL–5 ×16 HYB25D512400CF–6 ×4 HYB25D512400CFL–6 ×4 HYB25D512800CF–6 ×8 HYB25D512800CFL–6 ×8 HYB25D512160CF–6 ×16 HYB25D512160CFL–6 ×16 HYB25D512400CE–5 ×4 HYB25D512800CE–5 ×8 HYB25D512800CEL–5 ×8 HYB25D512160CE–5 ×16 HYB25D512160CEL–5 ×16 HYB25D512400CE–6 ×4 HYB25D512800CE–6 ×8 HYB25D512800CEL–6 ×8 HYB25D512160CE–6 ×16 HYB25D512160CEL–6 ×16 P-TSOPII-66-1 1) HYB: designator for memory components 25D: DDR SDRAMs at VDDQ = 2.5 V 512: 512-Mbit density 400/800/160: Product variations x4, x8 and x16 B: Die revision B C/F/E: Package type FBGA and TSOP Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 5 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 3 Ordering Information for non RoHS Compliant Products Part Number1) Org. CAS-RCD-RP Latencies Clock (MHz) CAS-RCD-RP Latencies Clock (MHz) Speed Package HYB25D512400CC–5 ×4 3.0-3-3 200 2.5-3-3 166 DDR400B P-TFBGA-60-11 HYB25D512800CC–5 ×8 HYB25D512400CC–6 ×4 2.5-3-3 166 2.0-3-3 133 DDR333 HYB25D512800CC–6 ×8 HYB25D512400CT–5 ×4 3.0-3-3 200 2.5-3-3 166 DDR400B HYB25D512800CT–5 ×8 HYB25D512160CT–5 ×16 HYB25D512400CT–6 ×4 2.5-3-3 166 2.0-3-3 133 DDR333 HYB25D512800CT–6 ×8 HYB25D512160CT–6 ×16 P-TSOPII-66-1 1) HYB: designator for memory components 25D: DDR SDRAMs at VDDQ = 2.5 V 512: 512-Mbit density 400/800/160: Product variations x4, x8 and x16 B: Die revision B C/F/E: Package type FBGA and TSOP Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 6 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM 2 Pin Configuration The pin configuration of a DDR SDRAM is listed by function in Table 4 (60 pins). The abbreviations used in the Pin#/Buffer# column are explained in Table 5 and Table 6 respectively. The pin numbering for FBGA is depicted in Figure 1 and that of the TSOP package in Figure 2 TABLE 4 Pin Configuration of DDR SDRAM Ball#/Pin# Name Pin Type Buffer Type Function Clock Signals G2, 45 CK1 I SSTL Clock Signal G3, 46 CK1 I SSTL Complementary Clock Signal H3, 44 CKE I SSTL Clock Enable H7, 23 RAS I SSTL Row Address Strobe G8, 22 CAS I SSTL Column Address Strobe G7, 21 WE I SSTL Write Enable H8, 24 CS I SSTL Chip Select Bank Address Bus 2:0 Control Signals Address Signals J8, 26 BA0 I SSTL J7, 27 BA1 I SSTL K7, 29 A0 I SSTL L8, 30 A1 I SSTL L7, 31 A2 I SSTL M8, 32 A3 I SSTL M2, 35 A4 I SSTL L3, 36 A5 I SSTL L2, 37 A6 I SSTL K3, 38 A7 I SSTL K2, 39 A8 I SSTL J3, 40 A9 I SSTL K8, 28 A10 I SSTL Address Bus 11:0 AP I SSTL J2, 41 A11 I SSTL H2, 42 A12 I SSTL Address Signal 12 Note: Module based on 256 Mbit or larger dies NC NC — Note: Module based on 128 Mbit or smaller dies Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 7 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM Ball#/Pin# Name Pin Type Buffer Type Function F9, 17 A13 I SSTL Address Signal 13 Note: 1 Gbit based module NC NC — Note: Module based on 512 Mbit or smaller dies Data Signal Bus 3:0 Data Signals ×4 organization B7, 5 DQ0 I/O SSTL D7, 11 DQ1 I/O SSTL D3, 56 DQ2 I/O SSTL B3, 62 DQ3 I/O SSTL Data Strobe ×4 organisation E3, 51 DQS I/O SSTL Data Strobe I SSTL Data Mask Data Signal Bus 7:0 Data Mask ×4 organization F3, 47 DM Data Signals ×8 organization A8, 2 DQ0 I/O SSTL B7, 5 DQ1 I/O SSTL C7, 8 DQ2 I/O SSTL D7, 11 DQ3 I/O SSTL D3, 56 DQ4 I/O SSTL C3, 59 DQ5 I/O SSTL B3, 62 DQ6 I/O SSTL A2, 65 DQ7 I/O SSTL Data Strobe ×8 organisation E3, 51 DQS I/O SSTL Data Strobe I SSTL Data Mask Data Mask ×8 organization F3, 47 DM Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 8 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM Ball#/Pin# Name Pin Type Buffer Type Function Data Signal 15:0 Data Signals ×16 organization A8, 2 DQ0 I/O SSTL B9, 4 DQ1 I/O SSTL B7, 5 DQ2 I/O SSTL C9, 7 DQ3 I/O SSTL C7, 8 DQ4 I/O SSTL D9, 10 DQ5 I/O SSTL D7, 11 DQ6 I/O SSTL E9, 13 DQ7 I/O SSTL E1, 54 DQ8 I/O SSTL D3, 56 DQ9 I/O SSTL D1, 57 DQ10 I/O SSTL C3, 59 DQ11 I/O SSTL C1, 60 DQ12 I/O SSTL B3, 62 DQ13 I/O SSTL B1, 63 DQ14 I/O SSTL A2, 65 DQ15 I/O SSTL Data Strobe ×16 organization E3, 51 UDQS I/O SSTL Data Strobe Upper Byte E7, 16 LDQS I/O SSTL Data Strobe Lower Byte Data Mask ×16 organization F3, 47 UDM I SSTL Data Mask Upper Byte F7, 20 LDM I SSTL Data Mask Lower Byte VREF AI — I/O Reference Voltage A9, B2, C8, D2, VDDQ E8, 3, 9, 15, 55, 61 PWR — I/O Driver Power Supply A7, F8, M7, 1, 18, 33 PWR — Power Supply A1, B8, C2, D8, VSSQ E2, 6, 12, 52, 58, 64 PWR — Power Supply A3, F2, M3, 34 VSS PWR — Power Supply A2, 65 NC NC — Not Connected Note: ×4 organization A8, 2 NC NC — Not Connected Note: ×4 organization B1, 63 NC NC — Not Connected Note: ×8 and ×4 organisation Power Supplies F1, 49 VDD Not Connected Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 9 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM Ball#/Pin# Name Pin Type Buffer Type Function B9, 4 NC NC — Not Connected Note: ×8 and ×4 organization C1, 60 NC NC — Not Connected Note: ×8 and ×4 organization C3, 59 NC NC — Not Connected Note: ×4 organization C7, 8 NC NC — Not Connected Note: ×4 organization C9, 7 NC NC — Not Connected Note: ×8 and ×4 organization D1, 57 NC NC — Not Connected Note: ×8 and ×4 organization D9, 10 NC NC — Not Connected Note: ×8 and ×4 organization E1, 54 NC NC — Not Connected Note: ×8 and ×4 organization E7, 16 NC NC — Not Connected Note: ×8 and ×4 organization E9, 13 NC NC — Not Connected Note: ×8 and ×4 organization F7, 20 NC NC — Not Connected Note: ×8 and ×4 organization 14, 17, 19, 25, 43, 50 NC NC — Not Connected ×16,×8 and ×4 organization TABLE 5 Abbreviations for Pin Type Abbreviation Description I Standard input-only pin. Digital levels. O Output. Digital levels. I/O I/O is a bidirectional input/output signal. AI Input. Analog levels. PWR Power GND Ground NC Not Connected (JEDEC Standard) Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 10 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 6 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminalted Logic (SSTL2) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 11 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM FIGURE 1 Pin Configuration P-TFBGA-60-9 Top View, see the balls throught the package 9664 1& 966 1& 9''4 1& $ 9'' 1& 9''4 9664 '4 966 '4 % '4 9664 1& 1& 9''4 9664 1& & 1& 9''4 1& 1& 1& 9''4 '4 ' '4 9664 1& 1& 9664 '46 ( 1& 9''4 1& 95() 966 '0 ) 1& 9'' 1&$ &. &. * :( &$6 + 5$6 &6 %$ %$ 1&$ &.( $ $ - $ $ . $ $ $ 966 $ 9'' '4 9''4 '4 % '4 9664 1& 9664 '4 & '4 9''4 1& 1& 9''4 '4 ' '4 9664 1& 1& 9664 '46 ( 1& 9''4 1& 95() 966 '0 ) 1& 9'' 1&$ &. &. * :( &$6 + 5$6 &6 %$ %$ 1&$ &.( $ $ - $ $$ 3 $ $ . $ $$ 3 / $ $ $ $ / $ $ 0 9'' $ $ 966 0 9'' $ [ [ $ 9'' '4 9''4 '4 9''4 '4 % '4 9664 '4 '4 9664 '4 & '4 9''4 '4 '4 9''4 ' '4 9664 '4 /'4 6 9''4 '4 9664 '4 966 '4 '4 9664 6 8'4 ( 95() 966 8'0 ) /'0 9'' 1&$ &. &. * :( &$6 + 5$6 &6 %$ %$ 1&$ &.( $ $ - $ $ . $ $$ 3 $ $ / $ $ $ 966 0 9'' $ [ Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 12 033' Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM FIGURE 2 Pin Configuration P-TSOPII-66-1 [ [ [ 9'' 9'' 1& '4 '4 9''4 9''4 9''4 1& 1& '4 '4 '4 9664 9664 9664 1& 1& '4 1& '4 '4 9''4 9''4 9''4 9'' '4 966 966 966 '4 '4 1& 9664 9664 9664 '4 1& 1& '4 '4 '4 9''4 9''4 9''4 '4 1& 1& '4 '4 1& 9664 9664 9664 1& 1& '4 '4 1& 1& '4 '4 '4 '4 '4 '4 9664 9664 9664 9''4 9''4 9''4 1& 1& '4 '4 1& 1& 1& 1& 1& 1& 1& 1& 9''4 9''4 9664 9664 9664 1& 1& /'4 6 8'4 6 '46 '46 1&$ 1&$ 9'' 9'' 1&$ 9'' 1& 1& 1& 95() 95() 95() 966 9''4 1& 1& 1& 966 966 1& 1& /'0 8'0 '0 '0 :( :( :( &. &. &. &$6 &$6 &$6 &. &. &. 5$6 5$6 &.( &.( 1& &.( &6 5$6 &6 &6 1& 1& 1& %$ 1& %$ 1& %$ 1&$ 1&$ $ $ 1&$ $ %$ %$ %$ $ $ $ $ $3 $ $3 $$ 3 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 9'' 9'' 9'' 966 966 966 033 ' Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 13 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM 3 Functional Description The 512-Mbit Double-Data-Rate SDRAM is a high-speed CMOS, dynamic random-access memory containing 536,870,912 bits. The 512-Mbit Double-Data-Rate SDRAM is internally configured as a quad-bank DRAM. The 512-Mbit Double-Data-Rate SDRAM uses a doubledata-rate architecture to achieve high-speed operation. The double-data-rate architecture is essentially a 2n prefetch architecture, with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the 512-Mbit Double-Data-Rate SDRAM consists of a single 2n-bit wide, one clock cycle data transfer at the internal DRAM core and two corresponding n-bit wide, onehalf clock cycle data transfers at the I/O pins. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an Active command, which is then followed by a Read or Write command. The address bits registered coincident with the Active command are used to select the bank and row to be accessed (BA0, BA1 select the bank; A0-A12 select the row). The address bits registered coincident with the Read or Write command are used to select the starting column location for the burst access. Prior to normal operation, the DDR SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation. 14 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM %$ %$ $ $ $ $ $ $ $ $ $ $ $ $ 2SHUD WLQ J0 2' ( &/ %7 %/ Z Z Z Z UHJD GGU $ 03%7 TABLE 7 Mode Register Definition 1) Field Bits Type Description BL [2:0] w Burst Length Number of sequential bits per DQ related to one read/write command. Note: All other bit combinations are RESERVED. 001B 2 010B 4 011B 8 BT 3 Burst Type See Table 8 for internal address sequence of low order address bits. 0B Sequential 1B Interleaved CL [6:4] CAS Latency Number of full clocks from read command to first data valid window. Note: All other bit combinations are RESERVED. 010B 2 011B 3 110B 2.5 MODE [12:7] Operating Mode Note: All other bit combinations are RESERVED. 000000B 000010B Normal Operation without DLL Reset Normal DLL Reset 1) w = write only register bit Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 15 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 8 Burst Definition Burst Length 2 4 8 Starting Column Address Order of Accesses Within a Burst A2 A1 A0 Type = Sequential Type = Interleaved — — 0 0-1 0-1 — — 1 1-0 1-0 — 0 0 0-1-2-3 0-1-2-3 — 0 1 1-2-3-0 1-0-3-2 — 1 0 2-3-0-1 2-3-0-1 — 1 1 3-0-1-2 3-2-1-0 0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7 0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6 0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5 0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4 1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3 1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2 1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1 1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0 Notes 1. 2. 3. 4. For a burst length of two, A1-Ai selects the two-data-element block; A0 selects the first access within the block. For a burst length of four, A2-Ai selects the four-data-element block; A0-A1 selects the first access within the block. For a burst length of eight, A3-Ai selects the eight-data- element block; A0-A2 selects the first access within the block. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 16 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM %$ %$ $ $ $ $ $ $ $ 2SH UDWLQ J02 ' ( '6 '// Z Z Z Z UHJD GGU $ $ $ $ $ $ 03%7 TABLE 9 Extended Mode Register 1) Field Bits Type Description DLL 0 w DS 1 Drive Strength 0B Normal 1B Weak MODE [12:3] Operating Mode Note: DLL Status Enabled 0B 1B Disabled 5. A2 must be 0 to provide compatibility with early DDR devices 6. All other bit combinations are RESERVED. 00000000000BNormal Operation 1) w = write only register bit Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 17 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 10 Truth Table 1a: Commands Name (Function) CS RAS CAS WE Address MNE Note Deselect (NOP) H X X X X NOP 1)2) No Operation (NOP) L H H H X NOP 1)2) Active (Select Bank And Activate Row) L L H H Bank/Row ACT 1)3) Read (Select Bank And Column, And Start Read Burst) L H L H Bank/Col Read 1)4) Write (Select Bank And Column, And Start Write Burst) L H L L Bank/Col Write 1)4) Burst Terminate L H H L X BST 1)5) Precharge (Deactivate Row In Bank Or Banks) L L H L Code PRE 1)6) Auto Refresh Or Self Refresh (Enter Self Refresh Mode) L L L H X AR/SR 1)7)8) Mode Register Set L L L L Op-Code MRS 1)9) 1) 2) 3) 4) 5) 6) 7) 8) 9) CKE is HIGH for all commands shown exceptSelf Refresh. VREF must be maintained during Self Refresh operation. Deselect and NOP are functionally interchangeable. BA0-BA1 provide bank address and A0-A12 provide row address. BA0, BA1 provide bank address; A0-Ai provide column address (where i = 8 for x16, i = 9 for x8 and 9, 11 for x4); A10 HIGH enables the Auto Precharge feature (nonpersistent), A10 LOW disables the Auto Precharge feature. Applies only to read bursts with Auto Precharge disabled; this command is undefined (and should not be used) for read bursts with Auto Precharge enabled or for write bursts. A10 LOW: BA0, BA1 determine which bank is precharged. A10 HIGH: all banks are precharged and BA0, BA1 are “Don’t Care”. This command is AUTO REFRESH if CKE is HIGH; Self Refresh if CKE is LOW. Internal refresh counter controls row and bank addressing; all inputs and I/Os are “Don’t Care” except for CKE. BA0, BA1 select either the Base or the Extended Mode Register (BA0 = 0, BA1 = 0 selects Mode Register; BA0 = 1, BA1 = 0 selects Extended Mode Register; other combinations of BA0-BA1 are reserved; A0-A12 provide the op-code to be written to the selected Mode Register). TABLE 11 Truth Table 1b: DM Operation Name (Function) DM DQs Note Write Enable L Valid 1) Write Inhibit H X 1) 1) Used to mask write data; provided coincident with the corresponding data. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 18 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 12 Truth Table 2: Clock Enable (CKE) Current State CKE n-1 CKEn Command n Action n Note Previous Cycle Current Cycle Self Refresh L L X Maintain Self-Refresh 1) Self Refresh L H Deselect or NOP Exit Self-Refresh 2) Power Down L L X Maintain Power-Down Power Down L H Deselect or NOP Exit Power-Down All Banks Idle H L Deselect or NOP Precharge Power-Down Entry All Banks Idle H L AUTO REFRESH Self Refresh Entry Bank(s) Active H L Deselect or NOP Active Power-Down Entry H H See Table 13 — 1) VREF must be maintained during Self Refresh operation 2) Deselect or NOP commands should be issued on any clock edges occurring during the Self Refresh Exit (VXSNR) period. A minimum of 200 clock cycles are needed before applying a read command to allow the DLL to lock to the input clock. 1. 2. 3. 4. CKEn is the logic state of CKE at clock edge n: CKE n-1 was the state of CKE at the previous clock edge. Current state is the state of the DDR SDRAM immediately prior to clock edge n. COMMAND n is the command registered at clock edge n, and ACTION n is a result of COMMAND n. All states and sequences not shown are illegal or reserved. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 19 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 13 Truth Table 3: Current State Bank n - Command to Bank n (same bank) Current State CS RAS CAS WE Command Action Note Any H X X X Deselect NOP. Continue previous operation. 1)2)3)4)5)6) L H H H No Operation NOP. Continue previous operation. 1) to 6) L L H H Active Select and activate row 1) to 6) L L L H AUTO REFRESH — 1) to 7) L L L L MODE REGISTER SET — 1) to 7) L H L H Read Select column and start Read burst 1) to 6), 8) L H L L Write Select column and start Write burst 1) to 6), 8) L L H L Precharge Deactivate row in bank(s) 1) to 6), 9) Read (Auto Precharge Disabled) L H L H Read Select column and start new Read burst 1) to 6), 8) L L H L Precharge Truncate Read burst, start Precharge 1) to 6), 9) L H H L BURST TERMINATE BURST TERMINATE 1) to 6), 10) Write (Auto Precharge Disabled) L H L H Read Select column and start Read burst 1) to 6), 8), 11) L H L L Write Select column and start Write burst 1) to 6), 8) L L H L Precharge Truncate Write burst, start Precharge 1) to 6), 9), 10) Idle Row Active 1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 12 and after tXSNR/tXSRD has been met (if the previous state was self refresh). 2) This table is bank-specific, except where noted, i.e., the current state is for a specific bank and the commands shown are those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below. 3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read: A Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write: A Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. 4) The following states must not be interrupted by a command issued to the same bank. Precharging: Starts with registration of a Precharge command and ends when tRP is met. Once tRP is met, the bank is in the idle state. Row Activating: Starts with registration of an Active command and ends when tRCD is met. Once tRCD is met, the bank is in the “row active” state. Read w/Auto Precharge Enabled: Starts with registration of a Read command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Write w/Auto Precharge Enabled: Starts with registration of a Write command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Deselect or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and according to Table 14. 5) The following states must not be interrupted by any executable command; Deselect or NOP commands must be applied on each positive clock edge during these states. Refreshing: Starts with registration of an Auto Refresh command and ends when tRFC is met. Once tRFC is met, the DDR SDRAM is in the “all banks idle” state. Accessing Mode Register: Starts with registration of a Mode Register Set command and ends when tMRD has been met. Once tMRD is met, the DDR SDRAM is in the “all banks idle” state. Precharging All: Starts with registration of a Precharge All command and ends when tRP is met. Once tRP is met, all banks is in the idle state. 6) All states and sequences not shown are illegal or reserved. 7) Not bank-specific; requires that all banks are idle. 8) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with Auto Precharge disabled. 9) May or may not be bank-specific; if all/any banks are to be precharged, all/any must be in a valid state for precharging. 10) Not bank-specific; BURST TERMINATE affects the most recent Read burst, regardless of bank. 11) Requires appropriate DM masking. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 20 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 14 Truth Table 4: Current State Bank n - Command to Bank m Current State CS RAS CAS WE Command Action Note Any H X X X Deselect NOP. Continue previous operation. 1)2)3)4)5)6) L H H H No Operation NOP. Continue previous operation. 1) to 6) Idle X X X X Any Command Otherwise Allowed to Bank m — 1) to 6) Row Activating, Active, or Precharging L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start Read burst 1) to 7) L H L L Write Select column and start Write burst 1) to 7) L L H L Precharge — 1) to 6) Read (Auto Precharge Disabled) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start new Read burst 1) to 7) L L H L Precharge — 1) to 6) Write (Auto Precharge Disabled) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start Read burst 1) to 8) L H L L Write Select column and start new Write burst 1) to 7) L L H L Precharge — 1) to 6) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start new Read burst 1) to 7), 9) L H L L Write Select column and start Write burst 1) to 7), 9), 10) L L H L Precharge — 1) to 6) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start Read burst 1) to 7), 9) L H L L Write Select column and start new Write burst 1) to 7), 9) L L H L Precharge — 1) to 6) Read (With Auto Precharge) Write (With Auto Precharge) 1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 12: Clock Enable (CKE) and after tXSNR/tXSRD has been met (if the previous state was self refresh). 2) This table describes alternate bank operation, except where noted, i.e., the current state is for bank n and the commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given command is allowable). Exceptions are covered in the notes below. 3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read: A Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write: A Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Read with Auto Precharge Enabled: See 10). Write with Auto Precharge Enabled: See 10). 4) AUTO REFRESH and Mode Register Set commands may only be issued when all banks are idle. 5) A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only. 6) All states and sequences not shown are illegal or reserved. 7) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with Auto Precharge disabled. 8) Requires appropriate DM masking. 9) Concurrent Auto Precharge: This device supports “Concurrent Auto Precharge”. When a read with auto precharge or a write with auto precharge is enabled any command may follow to the other banks as long as that command does not interrupt the read or write data transfer and all other limitations apply (e.g. contention between READ data and WRITE data must be avoided). The minimum delay from a read or write command with auto precharge enable, to a command to a different banks is summarized in Table 15. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 21 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM 10) A Write command may be applied after the completion of data output. TABLE 15 Truth Table 5: Concurrent Auto Precharge From Command To Command (different bank) Minimum Delay with Concurrent Auto Unit Precharge Support WRITE w/AP Read or Read w/AP 1 + (BL/2) + tWTR tCK Write to Write w/AP BL/2 tCK Read w/AP Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 Precharge or Activate 1 tCK Read or Read w/AP BL/2 tCK Write or Write w/AP CL (rounded up) + BL/2 tCK Precharge or Activate 1 tCK 22 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM 4 Electrical Characteristics This chapter describes the electrical characteristics. 4.1 Operating Conditions This chapter contains the operating conditions. TABLE 16 Absolute Maximum Ratings Parameter Symbol Values Unit min. typ. max. –0.5 — VDDQ + 0.5 V –1 — +3.6 V –1 — +3.6 V –1 — +3.6 V 0 — +70 °C Storage temperature (plastic) VIN, VOUT VIN VDD VDDQ TA TSTG -55 — +150 °C Power dissipation (per SDRAM component) PD — 1 — W Short circuit output current IOUT — 50 — mA Voltage on I/O pins relative to VSS Voltage on inputs relative to VSS Voltage on VDD supply relative to VSS Voltage on VDDQ supply relative to VSS Operating temperature (ambient) Note/ Test Condition Attention: Permanent damage to the device may occur if “Absolute Maximum Ratings” are exceeded. This is a stress rating only, and functional operation should be restricted to recommended operation conditions. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability and exceeding only one of the values may cause irreversible damage to the integrated circuit. Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. TABLE 17 Input and Output Capacitances Parameter Input Capacitance: CK, CK Symbol CI1 Values Unit Note/ Test Condition TSOPII1) Min. Typ. Max. 2.0 — 3.0 pF 1.5 — 2.5 pF TFBGA 1) Delta Input Capacitance CdI1 — — 0.25 pF 1) Input Capacitance: All other input-only pins CI2 1.5 — 2.5 pF TFBGA 1) 2.0 — 3.0 pF TSOPII 1) — — 0.5 pF 1) Delta Input Capacitance: All other input-only pins Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 CdIO 23 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM Parameter Input/Output Capacitance: DQ, DQS, DM Delta Input/Output Capacitance: DQ, DQS, DM Symbol CIO CdIO Values Unit Note/ Test Condition Min. Typ. Max. 3.5 — 4.5 pF TFBGA 1)2) 4.0 — 5.0 pF TSOPII 1)2) — — 0.5 pF 1) 1) These values are guaranteed by design and are tested on a sample base only. VDDQ = VDD = 2.5 V ± 0.2 V, f = 100 MHz, TA = 25 °C, VOUT(DC) = VDDQ/2, VOUT (Peak to Peak) 0.2 V. Unused pins are tied to ground. 2) DM inputs are grouped with I/O pins reflecting the fact that they are matched in loading to DQ and DQS to facilitate trace matching at the board level. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 24 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 18 Electrical Characteristics and DC Operating Conditions Parameter Symbol Unit Note/Test Condition1) Values Min. Typ. Max. Device Supply Voltage VDD 2.3 2.5 2.7 V fCK ≤ 166 MHz Device Supply Voltage VDD 2.5 2.6 2.7 V fCK > 166 MHz 2) Output Supply Voltage VDDQ 2.3 2.5 2.7 V fCK ≤ 166 MHz 3) Output Supply Voltage VDDQ 2.5 2.6 2.7 V fCK > 166 MHz 2)3) Supply Voltage, I/O Supply Voltage VSS, VSSQ 0 — 0 V Input Reference Voltage VREF 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 4) I/O Termination Voltage (System) VTT VREF – 0.04 — VREF + 0.04 V 5) Input High (Logic1) Voltage VIH(DC) VREF + 0.15 — VDDQ + 0.3 V 6) Input Low (Logic0) Voltage VIL(DC) –0.3 — VREF – 0.15 V 6) Input Voltage Level, CK and VIN(DC) CK Inputs –0.3 — VDDQ + 0.3 V 6) Input Differential Voltage, CK VID(DC) and CK Inputs 0.36 — VDDQ + 0.6 V 6)7) VI-Matching Pull-up Current to Pull-down Current VIRatio 0.71 — 1.4 — 8) Input Leakage Current II –2 — 2 µA Any input 0 V ≤ VIN ≤ VDD; All other pins not under test = 0 V 6)9) IOZ –5 — 5 µA DQs are disabled; 0 V ≤ VOUT ≤ VDDQ 6) Output High Current, Normal IOH Strength Driver — — –16.2 mA VOUT = 1.95 V 6) Output Low Current, Normal Strength Driver 16.2 — — mA VOUT = 0.35 V 6) Output Leakage Current 1) 2) 3) 4) 5) 6) 7) 8) 9) IOL 0 °C ≤ TA ≤ 70 °C DDR400 conditions apply for all clock frequencies above 166 MHz Under all conditions, VDDQ must be less than or equal to VDD. Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC). VREF is also expected to track noise variations in VDDQ. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in the DC level of VREF. Inputs are not recognized as valid until VREF stabilizes. VID is the magnitude of the difference between the input level on CK and the input level on CK. The ration of the pull-up current to the pull-down current is specified for the same temperature and voltage, over the entire temperature and voltage range, for device drain to source voltage from 0.25 to 1.0 V. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation. Values are shown per component Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 25 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM 4.2 AC Characteristics (Notes 1-5 apply to the following Tables; Electrical Characteristics and DC Operating Conditions, AC Operating Conditions, IDD Specifications and Conditions, and Electrical Characteristics and AC Timing.) Notes 1. All voltages referenced to VSS. 2. Tests for AC timing, IDD, and electrical, AC and DC characteristics, may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified. 3. Figure 3 represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester electronics). 4. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5 V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK, CK), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals is 1 V/ns in the range between VIL(AC) and VIH(AC). 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e. the receiver effectively switches as a result of the signal crossing the AC input level, and remains in that state as long as the signal does not ring back above (below) the DC input LOW (HIGH) level). 6. For System Characteristics like Setup & Holdtime Derating for Slew Rate, I/O Delta Rise/Fall Derating, DDR SDRAM Slew Rate Standards, Overshoot & Undershoot specification and Clamp V-I characteristics see the latest JEDEC specification for DDR components. FIGURE 3 AC Output Load Circuit Diagram / Timing Reference Load VTT 50 : Output (VOUT) Timing Reference Point 30 pF Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 26 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 19 AC Operating Conditions Parameter Symbol Values Unit Note/ Test Condition Min. Max. Input High (Logic 1) Voltage, DQ, DQS and DM Signals VIH(AC) VREF + 0.31 — V 2)3) Input Low (Logic 0) Voltage, DQ, DQS and DM Signals VIL(AC) — VREF – 0.31 V 2)3) Input Differential Voltage, CK and CK Inputs VID(AC) 0.7 VDDQ + 0.6 V 2)3)4) Input Closing Point Voltage, CK and CK Inputs VIX(AC) 0.5 × VDDQ– 0.2 0.5 × VDDQ+ V 0.2 2)3)5) 1) 2) 3) 4) 5) Note1) VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR200 - DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400); 0 °C ≤ TA ≤ 70 °C Input slew rate = 1 V/ns. Inputs are not recognized as valid until VREF stabilizes. VID is the magnitude of the difference between the input level on CK and the input level on CK. The value of VIX is expected to equal 0.5 × VDDQ of the transmitting device and must track variations in the DC level of the same. TABLE 20 AC Timing - Absolute Specifications for PC3200 and PC2700 Parameter Symbol –5 –6 DDR400B DDR333 Unit Note/ Test Condition 1) Min. Max. Min. Max. DQ output access time from CK/CK tAC –0.5 +0.5 –0.7 +0.7 ns 2)3)4)5) CK high-level width tCH tCK 0.45 0.55 0.45 0.55 tCK 2)3)4)5) 5 8 6 12 ns CL = 3.0 2)3)4)5) 6 12 6 12 ns CL = 2.5 2)3)4)5) 7.5 12 7.5 12 ns CL = 2.0 2)3)4)5) tCL tDAL 0.45 0.55 0.45 0.55 tCK 2)3)4)5) tCK 2)3)4)5)6) tDH tDIPW 0.4 — 0.45 — ns 2)3)4)5) 1.75 — 1.75 — ns 2)3)4)5)6) tDQSCK –0.6 +0.6 –0.6 +0.6 ns 2)3)4)5) DQS input low (high) pulse width tDQSL,H (write cycle) 0.35 — 0.35 — tCK 2)3)4)5) — +0.40 — +0.40 ns Clock cycle time CK low-level width Auto precharge write recovery + precharge time DQ and DM input hold time DQ and DM input pulse width (each input) DQS output access time from CK/CK DQS-DQ skew (DQS and associated DQ signals) tDQSQ (tWR/tCK)+(tRP/tCK) TFBGA 2)3)4)5) — +0.40 — +0.45 ns TSOPII 2)3)4)5) Write command to 1st DQS latching transition Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 tDQSS 0.72 1.25 27 0.75 1.25 tCK 2)3)4)5) Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM Parameter Symbol –5 –6 DDR400B DDR333 Unit Note/ Test Condition 1) Min. Max. Min. Max. tDS tDSH 0.4 — 0.45 — ns 2)3)4)5) 0.2 — 0.2 — tCK 2)3)4)5) DQS falling edge to CK setup time (write cycle) tDSS 0.2 — 0.2 — tCK 2)3)4)5) Clock Half Period tHP tHZ min. (tCL, tCH) — min. (tCL, tCH) — ns 2)3)4)5) — +0.7 –0.7 +0.7 ns 2)3)4)5)7) tIH 0.6 — 0.75 — ns fast slew rate DQ and DM input setup time DQS falling edge hold time from CK (write cycle) Data-out high-impedance time from CK/CK Address and control input hold time 3)4)5)6)8) 0.7 — 0.8 — ns slow slew rate3)4)5)6)8) Control and Addr. input pulse width (each input) tIPW 2.2 — 2.2 — ns 2)3)4)5)9) Address and control input setup time tIS 0.6 — 0.75 — ns fast slew rate Data-out low-impedance time from CK/CK tLZ Mode register set command cycle tMRD time DQ/DQS output hold time Data hold skew factor tQH tQHS 3)4)5)6)8) 0.7 — 0.8 — ns slow slew rate3)4)5)6)8) –0.7 +0.70 –0.70 +0.70 ns 2)3)4)5)7) 2 — 2 — tCK 2)3)4)5) tHP –tQHS — tHP –tQHS — ns 2)3)4)5) — +0.50 — +0.50 ns TFBGA 2)3)4)5) — +0.50 — +0.55 ns TSOPII 2)3)4)5) Active to Autoprecharge delay Active to Precharge command Active to Active/Auto-refresh command period tRCD — tRCD — ns 2)3)4)5) 40 70E+3 42 70E+3 ns 2)3)4)5) 55 — 60 — ns 2)3)4)5) 15 — 18 — ns 2)3)4)5) — 7.8 — 7.8 µs 2)3)4)5)8) 65 — 72 — ns 2)3)4)5) tRP tRPRE tRPST tRRD 15 — 18 — ns 2)3)4)5) 0.9 1.1 0.9 1.1 tCK 2)3)4)5) 0.40 0.60 0.40 0.60 tCK 2)3)4)5) 10 — 12 — ns 2)3)4)5) tWPRE 0.25 — 0.25 — tCK 2)3)4)5) tRAP tRAS tRC tRCD Average Periodic Refresh Interval tREFI Auto-refresh to Active/AutotRFC Active to Read or Write delay refresh command period Precharge command period Read preamble Read postamble Active bank A to Active bank B command Write preamble Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 28 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM Parameter Write preamble setup time Write postamble Write recovery time Internal write to read command delay Exit self-refresh to non-read command Symbol –5 –6 DDR400B DDR333 Unit Note/ Test Condition 1) Min. Max. Min. Max. tWPRES tWPST tWR tWTR 0 — 0 — ns 0.40 0.60 0.40 0.60 tCK 2)3)4)5)11) tXSNR Exit self-refresh to read command tXSRD 2)3)4)5)10) 15 — 15 — ns 2)3)4)5) 2 — 1 — tCK 2)3)4)5) 75 — 75 — ns 2)3)4)5) 200 — 200 — tCK 2)3)4)5) 1) 0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400) 2) Input slew rate ≥ 1 V/ns for DDR400, DDR333 3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals other than CK/CK, is VREF. CK/CK slew rate are ≥ 1.0 V/ns. 4) Inputs are not recognized as valid until VREF stabilizes. 5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT. 6) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock cycle time. 7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ). 8) Fast slew rate ≥ 1.0 V/ns , slow slew rate ≥ 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns, measured between VIH(ac) and VIL(ac). 9) These parameters guarantee device timing, but they are not necessarily tested on each device. 10) The specific requirement is that DQS be valid (HIGH,LOW, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specificationsof the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW at this time, depending on tDQSS. 11) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. TABLE 21 IDD Conditions Parameter Symbol Operating Current: one bank; active/ precharge; tRC = tRCMIN; tCK = tCKMIN; DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two clock cycles. IDD0 Operating Current: one bank; active/read/precharge; Burst = 4; Refer to the following page for detailed test conditions. IDD1 Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE ≤ VILMAX; tCK = tCKMIN IDD2P Precharge Floating Standby Current: CS ≥ VIHMIN, all banks idle; IDD2F CKE ≥ VIHMIN; tCK = tCKMIN, address and other control inputs changing once per clock cycle, VIN = VREF for DQ, DQS and DM. Precharge Quiet Standby Current:CS ≥ VIHMIN, all banks idle; CKE ≥ VIHMIN; tCK = tCKMIN, address and other control inputs stable at ≥ VIHMIN or ≤ VILMAX; VIN = VREF for DQ, DQS and DM. IDD2Q Active Power-Down Standby Current: one bank active; power-down mode; CKE ≤ VILMAX; tCK = tCKMIN; VIN = VREF for DQ, DQS and DM. IDD3P Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 29 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM Parameter Symbol Active Standby Current: one bank active; CS ≥ VIHMIN; CKE ≥ VIHMIN; tRC = tRASMAX; tCK = tCKMIN; DQ, DM and DQS IDD3N inputs changing twice per clock cycle; address and control inputs changing once per clock cycle. Operating Current: one bank active; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200 and DDR266A, CL = 3 for DDR333; tCK = tCKMIN; IOUT = 0 mA IDD4R Operating Current: one bank active; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200 and DDR266A, CL = 3 for DDR333; tCK = tCKMIN IDD4W Auto-Refresh Current: tRC = tRFCMIN, burst refresh IDD5 Self-Refresh Current: CKE ≤ 0.2 V; external clock on; tCK = tCKMIN IDD6 Operating Current: four bank; four bank interleaving with BL = 4; Refer to the following page for detailed test conditions. IDD7 Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 30 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM TABLE 22 IDD Specification for HYB25D512[400/160/800]C[EF](L) –6 –5 DDR333 DDR400B Unit Note1) Symbol Typ. Max. Typ. Max. IDD0 60 70 60 75 mA ×4/×8 2)3) 70 85 75 90 mA ×16 3) 65 80 70 85 mA ×4/×8 3) 80 95 90 110 mA ×16 3) IDD1 IDD2P 1.1 4.6 1.1 4.6 mA 3) IDD2F 21 25 25 30 mA 3) IDD2Q 15 22 17 23 mA 3) IDD3P 11 15 12 16 mA 3) IDD3N 32 37 35 42 mA ×4/×83) 33 40 38 45 mA ×16 3) 70 85 80 90 mA ×4/×8 3) 95 115 110 135 mA ×16 3) 75 90 85 95 mA ×4/×8 3) 100 120 115 135 mA ×16 3) IDD5 130 175 145 190 mA 3) IDD6 1.6 5 1.6 5 mA 4) — 2.5 — 2.5 mA low power part(L) IDD7 175 205 195 230 mA ×4/×83) 190 230 210 250 mA ×16 3) IDD4R IDD4W 1) Test conditions for typical values: VDD = 2.5 V (DDR333), VDD = 2.6 V (DDR400), TA = 25 °C, test conditions for maximum values: VDD = 2.7 V, TA = 10 °C 2) IDD specifications are tested after the device is properly initialized and measured at 166 MHz for DDR333, and 200 MHz for DDR400. 3) Input slew rate = 1 V/ns. 4) Enables on-chip refresh and address counters. Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 31 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM 5 Package Outlines There are two package types used for this product family each in lead-free and lead-containing assembly: • P-TFBGA: Plastic Thin Fine-Pitch Ball Grid Array Package TABLE 23 TFBGA Common Package Properties (non-green/green) Description Size Units Ball Size 0.460 mm Recommended Landing Pad 0.350 mm Recommended Solder Mask 0.450 mm FIGURE 4 Package Outline P-TFBGA-60-11 [ 0 $ ; % $ [ 0$ ; & 0 $; 0 ,1 & ¡ [ ¡ 0 $ % & ¡ 0 & 6($7 ,1* 3/$1( DOO 'X PP\ 3 D G VZ LWK RXW% 0LGGOHRI3D FN DJHV( GJHV 3D FN D JH2 ULHQWD WLRQ0 DUN$ %DG8 QLW0D UNLQJ %80 'LH6RUW) LGXFLDO 6ROGHUE DOOG LDPHWH UU HIH UVWRS RVWU HIORZ FR QGLWLRQ 3 UHUHIORZ GLDPH WH ULV P P Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 32 *3$ Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM • P-TSOPII: Plastic Thin Small Outline Package Type II FIGURE 5 5 () *DJ H3 OD QH % D V LF % D V LF 0 $; 0 ,1 Package Outline of P-TSOPII-66-1-1 (green/non-green) 6HD WLQ J 3 OD QH /HDG *3; Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 33 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Pin Configuration P-TFBGA-60-9 Top View, see the balls throught the package . . . . . . . . . . . . . . . . . . . . . . Pin Configuration P-TSOPII-66-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Output Load Circuit Diagram / Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline P-TFBGA-60-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline of P-TSOPII-66-1-1 (green/non-green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 34 12 13 26 32 33 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Performance for –5 and –6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering Informationfor Lead-Free(RoHS Compliant Products). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Ordering Information for non RoHS Compliant Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration of DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Mode Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Burst Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Extended Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Truth Table 1a: Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Truth Table 1b: DM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Truth Table 2: Clock Enable (CKE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Truth Table 3: Current State Bank n - Command to Bank n (same bank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Truth Table 4: Current State Bank n - Command to Bank m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Truth Table 5: Concurrent Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Input and Output Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Electrical Characteristics and DC Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 AC Timing - Absolute Specifications for PC3200 and PC2700. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 IDD Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 IDD Specification for HYB25D512[400/160/800]C[EF](L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 TFBGA Common Package Properties (non-green/green) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 35 Internet Data Sheet HYB25D512[400/160/800]C[E/T/F/C](L) 512-Mbit Double-Data-Rate SDRAM Table of Contents 1 1.1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 4.1 4.2 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Rev. 1.31, 2006-09 03292006-3TFJ-HNV3 36 Internet Data Sheet Edition 2006-09 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2006. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com