MAXIM MAX1661EUB

19-1306; Rev 0; 10/97
EVALUATION KIT
AVAILABLE
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
____________________________Features
The MAX1661/MAX1662/MAX1663 serial-to-parallel/
parallel-to-serial converters are intended to control external
power MOSFETs in power-plane switching applications.
These small, low-cost devices can be used on a system
motherboard to control point-of-load switching from a 2wire SMBus™ serial interface. Each device has three highvoltage open-drain outputs that double as TTL-level logic
inputs, giving them bidirectional capabilities. The I/O pins
can withstand +28V, so they can control battery voltagedistribution switches in notebook computers.
The MAX1661 is intended for driving N-channel MOSFETs
and its outputs are low upon power-up. The MAX1662/
MAX1663 are intended for P-channel MOSFETs, and their
outputs are high-impedance upon power-up. This ensures
that the MOSFETs are off at power-up, so the system can
enforce power-plane sequencing.
The SMBSUS control input selects control data between
two separate data registers. This feature allows the system
to select between two different power-plane configurations
asynchronously, eliminating latencies introduced by the
serial bus. Other features include thermal-overload and
overcurrent protection, ultra-low supply current, and both
hardware and software interrupt capabilities. These
devices are available in the space-saving 10-pin µMAX
package.
♦ Performs Serial-to-Parallel and Parallel-to-Serial
Conversions
♦ Three General-Purpose Digital Input/Output Pins
(withstand +28V)
♦ SMBus 2-Wire Serial Interface
♦ Supports SMBSUS Asynchronous Suspend Mode
♦ 3µA Supply Current
♦ +2.7V to +5.5V Supply Range
♦ Space-Saving, Low-Cost 10-Pin µMAX Package
______________Ordering Information
PART
TEMP. RANGE
PIN-PACKAGE
MAX1661EUB
-40°C to +85°C
10 µMAX
MAX1662EUB
MAX1663EUB
-40°C to +85°C
-40°C to +85°C
10 µMAX
10 µMAX
__________________Pin Configuration
TOP VIEW
VCC 1
________________________Applications
Power-Plane Switching
Point-of-Load Power-Bus Switching
I/O1
2
I/O2
3
I/O3
4
GND
5
Notebook and Subnotebook Computers
10 ALERT
MAX1661
MAX1662
MAX1663
9
SMBCLK
8
SMBDATA
7
SMBSUS
6
ADD
µMAX
Desktop Computers
Smart Batteries
Typical Operating Circuits appear at end of data sheet.
______________________________________________________________Selector Guide
PART
x
POWER-ONRESET STATE
INTENDED
APPLICATION
SMBus ADDRESS
ADDRESS PIN
ADDRESS
0100000
0111100
1001000
MAX1661
Outputs Low
N-Channel MOSFETs
GND
High-Z
VCC
MAX1662
Outputs High
(high-Z state)
P-Channel MOSFETs
GND
High-Z
VCC
0100001
0111101
1001001
MAX1663
Outputs High
(high-Z state)
P-Channel MOSFETs
GND
High-Z
VCC
0100010
0111110
1001010
SMBus is a trademark of Intel Corp.
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.
For small orders, phone 408-737-7600 ext. 3468.
MAX1661/MAX1662/MAX1663
________________General Description
MAX1661/MAX1662/MAX1663
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
ABSOLUTE MAXIMUM RATINGS
VCC to GND ..............................................................-0.3V to +6V
I/O to GND (I/O1, I/O2, I/O3) ..................................-0.3V to +30V
I/O Sink Current (I/O1, I/O2, I/O3),
Internally Limited.............................................-1mA to +50mA
Digital Inputs to GND (SMBCLK, SMBDATA,
SMBSUS, ALERT).................................................-0.3V to +6V
ADD to GND ...............................................-0.3V to (VCC + 0.3V)
SMBDATA Current, ALERT Current ....................-1mA to +50mA
Continuous Power Dissipation (TA = +70°C)
10-pin µMAX (derate 5.6mW/°C above +70°C) ...........444mW
Operating Temperature Range
MAX166_EUB ..................................................-40°C to +85°C
Storage Temperature Range .............................-65°C to +160°C
Lead Temperature (soldering, 10sec) .............................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = +2.7V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are for TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
Input Voltage Range
TYP
MAX
UNITS
5.5
V
3
10
µA
1.6
2.5
V
2.7
Supply Current
Static condition; SMBDATA, SMBCLK, ADD,
ALERT = VCC or GND (Note 2)
Undervoltage Lockout/
Power-On Reset Threshold
VCC falling
1.2
VI/O_ = 0.4V, VCC = 2.7V or 5.5V
2
VI/O_ = 1.0V, VCC = 4.5V
8
I/O Current Limit
I/O1, I/O2, or I/O3; VCC = 4.5V
15
Thermal Shutdown
Typical hysteresis of 10°C
140
VI/O_ = 28V, high-impedance state
0.5
5
0.5
1
I/O Sink Current
I/O Leakage Current
2
MIN
mA
13
20
50
mA
°C
µA
VI/O_ = 0V, VCC; high-impedance state
-1
Digital Input Current
VSMBDATA, VSMBCLK, V SMBSUS,
VADD = 0V, VCC
-1
1
µA
SMBus Logic Input
Voltage Range
VCC = 2.7V to 5.5V;
SMBDATA, SMBCLK, SMBSUS
0
5.5
V
Logic Input High Voltage
I/O_, SMBSUS, SMBCLK, SMBDATA
Logic Input Low Voltage
I/O_, SMBSUS, SMBCLK, SMBDATA
SMBDATA Output Low Sink
Current
VSMBDATA = 0.6V
6
ALERT Output Low Sink Current
V ALERT = 0.4V
1
ALERT Output Leakage Current
V ALERT = 5.5V, high-Z state
SMBus Input Capacitance
SMBCLK, SMBDATA
SMBus Clock Frequency
(Notes 3, 4)
2.4
V
0.8
V
mA
mA
1
µA
100
kHz
5
pF
SMBCLK High Time
tHIGH
Measured between the 90% level of the rising
edge and the 90% level of the falling edge
4
µs
SMBCLK Low Time
tLOW
Measured between the 10% level of the falling
edge and the 10% level of the rising edge
4.7
µs
_______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
(VCC = +2.7V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are for TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Start-Condition Setup Time
tSU:STA
Measured from 90% of the SMBCLK rising
edge to 90% of the SMBDATA falling edge
Start-Condition Hold Time
tHD:STA
Measured from 10% of the falling edge
of SMBDATA to 90% of the falling edge of
SMBCLK
4
µs
SMBus Stop-Condition Setup
Time
tSU:STO
Measured from 90% of the rising edge
of SMBCLK to 10% of the rising edge of
SMBDATA
4
µs
SMBDATA Valid to SMBCLK
Rising Edge Time, Slave
Clocking in Data
tSU:DAT
10% or 90% of SMBDATA
to 10% of the rising edge
of SMBCLK
SMBCLK Falling Edge to
SMBDATA Transition Hold Time
tHD:DAT
4.7
µs
VCC = 4.5V
to 5.5V
500
VCC = 2.7V
to 4.5V
1000
ns
(Notes 4, 5)
0
µs
SMBCLK Falling Edge to
SMBus Data Valid Time
tDV
Tested with a 10kΩ pull-up resistor on
SMBDATA (Note 6)
SMBus Bus-Free Time
tBUF
Between stop and start conditions (Note 7)
SMBus Write to I/O_
Propagation Delay
tP:I/O
Measured from SMBCLK rising edge to 10%
or 90% of I/O (Note 4)
I/O Data Valid to SMBCLK
Rising-Edge Setup Time
tSU:I/O
Measured from 10% or 90% of VI/O to 10% of
the rising edge of SMBCLK (Note 8)
15
µs
I/O Data Hold Time
tHD:I/O
(Note 8)
0
µs
START-STOP Software-Interrupt
Pulse Width
tLOW:SS
Measured from the 10% point of the falling
edge of SMBDATA to the 10% point of the
rising edge of SMBDATA (Note 7)
10
1
4.7
µs
µs
100
15
ns
30
µs
Note 1: Specifications from 0°C to -40°C are guaranteed by design, not production tested.
Note 2: Supply current is specified for static state only.
Note 3: The SMBus logic block is a static design that works with clock frequencies down to DC. While slow operation is possible, it
violates the 10kHz minimum clock frequency of the SMBus specifications, and may monopolize the bus.
Note 4: Refer to Figures 2a and 2b for SMBus timing parameter definitions (write and read diagrams).
Note 5: A transition must internally provide a hold time of 300ns to accommodate for the undefined region of the falling edge.
Note 6: Refer to Figure 3 for the acknowledge timing diagram and tDV parameter definition.
Note 7: Refer to Figure 5 for START-STOP interrupt timing diagrams and parameter definitions.
Note 8: Refer to Figure 4 for I/O setup and hold timing parameter definitions.
_______________________________________________________________________________________
3
MAX1661/MAX1662/MAX1663
ELECTRICAL CHARACTERISTICS (continued)
__________________________________________Typical Operating Characteristics
(VCC = +5.0V, TA = +25°C, unless otherwise noted.)
VCC = 2.7V
2.0
1.5
3.0
2.5
2.0
1.5
1.0
1.0
ALL I/Os OFF
-20
0
20
40
60
80
2.5
3.0
I/O_ CURRENT LIMIT
vs. TEMPERATURE
4.0
4.5
5.0
5.5
0
0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6.0
SUPPLY VOLTAGE (V)
MAX1661toc04
22
22.5
20
18
16
VCC = 5.5V
20.0
CURRENT LIMIT (mA)
POR DELAY vs. TEMPERATURE
40
35
30
17.5
15.0
VCC = 2.7V
12.5
10.0
7.5
25
20
15
10
5.0
12
5
2.5
0
10
-20
0
20
40
60
80
0
0
100
3
6
9
-20
0
20
40
60
TEMPERATURE (°C)
VI/O_ (V)
TEMPERATURE (°C)
POR DELAY vs. SUPPLY VOLTAGE
I/O_ INPUT BIAS CURRENT
vs. TEMPERATURE
I/O_INPUT BIAS CURRENT
vs. OUTPUT VOLTAGE
INPUT BIAS CURRENT (µA)
30
0.9
25
20
15
10
5
VCC = 5.5V
VI/O_ = 15V
0.8
0.7
0.6
0.5
0.4
0.3
3.5
4.0
4.5
SUPPLY VOLTAGE (V)
5.0
5.5
0.9
0.8
100
0.7
0.6
0.5
0.4
0.3
0.2
0.2
0.1
0.1
0
0
0
1.0
80
MAX1661toc09
1.0
MAX1661toc07
35
3.0
-40
12 15 18 21 24 27 30
INPUT BIAS CURRENT (µA)
-40
MAX1661toc08
CURRENT LIMIT (mA)
3.5
25.0
14
4
4.5
I/O_ CURRENT LIMIT vs. I/O_ VOLTAGE
VI/O_ FORCED TO 15V
VCC = 5.5V
24
VI/O_ = 0.4V
6.0
SUPPLY VOLTAGE (V)
TEMPERATURE (°C)
26
7.5
0
2.0
100
POR DELAY (µs)
-40
9.0
1.5
0
MAX1661toc05
0
10.5
3.0
0.5
0.5
VI/O_ = 1.0V
12.0
3.5
MAX1661toc06
2.5
13.5
SINK CURRENT (mA)
3.0
4.0
SUPPLY CURRENT (µA)
3.5
15.0
MAX1661toc02
VCC = 5.5V
4.0
SUPPLY CURRENT (µA)
4.5
MAX1661toc03
5.0
4.5
I/O_ SINK CURRENT
vs. SUPPLY VOLTAGE
SUPPLY CURRENT vs. SUPPLY VOLTAGE
MAX1661toc01
SUPPLY CURRENT
vs. TEMPERATURE
POR DELAY (µs)
MAX1661/MAX1662/MAX1663
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
-40
-20
0
20
40
60
TEMPERATURE (°C)
80
100
0
3
6
9
12 15 18 21 24 27 30
OUTPUT VOLTAGE (V)
_______________________________________________________________________________________
?
?W2@@@@@@@@@h?W2@@@@@@@@@
?W2@@@@@@@f@@@@@@@@@6X?g?W2@@@@@@@@@f@@@@@@@@
?W2@@@@@@@@@h?W2@@@@@@@@@?
W&@@@@@@@@@@hW&@@@@@@@@@@
W&@@@@@@@@f3@@@@@@@@@)XgW&@@@@@@@@@5f@@@@@@@@
W&@@@@@@@@@@hW&@@@@@@@@@@?
?W&@@@@@@@@@@@g?W&@@@@@@@@@@@
?W&@@@@@@@@@fV'@@@@@@@@@)X?e?W&@@@@@@@@@(Yf@@@@@@@@
?W&@@@@@@@@@@@g?W&@@@@@@@@@@@?
W&@@@@@@@@@@@@gW&@@@@@@@@@@@@
W&@@@@@@@@@@f?V'@@@@@@@@@)XeW&@@@@@@@@@(Y?f@@@@@@@@
W&@@@@@@@@@@@@gW&@@@@@@@@@@@@?
?W&@@@@@@@@@@@@@f?W&@@@@@@@@@@@@@
?W&@@@@@@@@@@@gV'@@@@@@@@@)KO&@@@@@@@@@(Yg@@@@@@@@
?W&@@@@@@@@@@@@@f?W&@@@@@@@@@@@@@?
W&@@@@@@@@@@@@@@fW&@@@@@@@@@@@@@@
W&@@@@@@@@@@@@g?V'@@@@@@@@@@@@@@@@@@@@(Y?g@@@@@@@@
?7@@@@@@@@@@@@@@fW&@@@@@@@@@@@@@@?
?W&@@@@@@@@@@@@@@@e?W&@@@@@@@@@@@@@@@
?W&@@@@@@@@@@@@@hV'@@@@@@@@@@@@@@@@@@(Yh@@@@@@@@
J@@@@@@@@@@@@@@@e?W&@@@@@@@@@@@@@@@?
W&@@@@@@@@@@@@@@@@eW&@@@@@@@@@@@@@@@@
W&@@@@@@@@@@@@@@h?V'@@@@@@@@@@@@@@@@(Y?h@@@@@@@@
?W&@@@@@@@@@@@@@@@eW&@@@@@@@@@@@@@@@@?
?W&@@@@@@@@@@@@@@@@@?W&@@@@@@@@@@@@@@@@@
?O&@@@@@@@@@@@@@@@heV'@@@@@@@@@@@@@@(Yhe@@@@@@@@
W&@@@@@@@@@@@@@@@@?W&@@@@@@@@@@@@@@@@@?
W&@@@@@@@@@@@@@@@@@@W&@@@@@@@@@@@@@@@@@@hf?W2@@@@@@@@@@@@@@@@@he?N@@@@@@@@@@@@@(Y?he@@@@@@@@hf?W&@@@@@@@@@@@@@@@@@W&@@@@@@@@@@@@@@@@@@?
?W&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@hfW&@@@@@@@@@@@@@@@@@@hf3@@@@@@@@@@@@Hhf@@@@@@@@hfW&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?
W&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@he?W&@@@@@@@@@@@@@@@@@@@hf?@@@@@@@@@@@@Lhf@@@@@@@@he?W&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?
?W&@@@@@@@@@@@(Y@@@@@@@@@@@@@@@@@@(Y@@@@@@@@heW&@@@@@@@@@@(M?@@@@@@@he?W&@@@@@@@@@@@@)X?he@@@@@@@@heW&@@@@@@@@@@(Y@@@@@@@@@@@@@@@@@@(Y@@@@@@@@?
W&@@@@@@@@@@@(Y?@@@@@@@@@@@@@@@@@(Y?@@@@@@@@h?W&@@@@@@@@@@(Y??@@@@@@@heW&@@@@@@@@@@@@@@)Xhe@@@@@@@@h?W&@@@@@@@@@@(Y?@@@@@@@@@@@@@@@@@(Y?@@@@@@@@?
?W&@@@@@@@@@@@(Ye@@@@@@@@@@@@@@@@(Ye@@@@@@@@hW&@@@@@@@@@@(Ye?@@@@@@@h?W&@@@@@@@@@@@@@@@@)X?h@@@@@@@@hW&@@@@@@@@@@(Ye@@@@@@@@@@@@@@@@(Ye@@@@@@@@?
W&@@@@@@@@@@@(Y?e@@@@@@@@@@@@@@@(Y?e@@@@@@@@g?W&@@@@@@@@@@(Y?eJ@@@@@@@hW&@@@@@@@@@@@@@@@@@@)Xh@@@@@@@@g?W&@@@@@@@@@@(Y?e@@@@@@@@@@@@@@@(Y?e@@@@@@@@?
?W&@@@@@@@@@@@(Yf@@@@@@@@@@@@@@(Yf@@@@@@@@gW&@@@@@@@@@@(Ye?W&@@@@@@@g?O&@@@@@@@@@@@@@@@@@@@@)X?g@@@@@@@@gW&@@@@@@@@@@(Yf@@@@@@@@@@@@@@(Yf@@@@@@@@?
W&@@@@@@@@@@@(Y?f@@@@@@@@@@@@@(Y?f@@@@@@@@f?W&@@@@@@@@@@(Y?eW&@@@@@@@@f?W2@@@@@@@@@@@@@@@@@@@@@@@)Xg@@@@@@@@f?W&@@@@@@@@@@(Y?f@@@@@@@@@@@@@(Y?f@@@@@@@@?
?W&@@@@@@@@@@@(Yg@@@@@@@@@@@@(Yg@@@@@@@@fW&@@@@@@@@@@(Ye?W&@@@@@@@@@fW&@@@@@@@@@@@0MI'@@@@@@@@@@)K?f@@@@@@@@fW&@@@@@@@@@@(Yg@@@@@@@@@@@@(Yg@@@@@@@@?
W&@@@@@@@@@@@(Y?g@@@@@@@@@@@(Y?g@@@@@@@@e?W&@@@@@@@@@@(Y?e?7@@@@@@@@@@e?W&@@@@@@@@@@(M?eV'@@@@@@@@@@@6X?e@@@@@@@@e?W&@@@@@@@@@@(Y?g@@@@@@@@@@@(Y?g@@@@@@@@?
?W&@@@@@@@@@@@(Yh@@@@@@@@@@(Yh@@@@@@@@eW&@@@@@@@@@@(YfJ@@@@@@@@@@@eW&@@@@@@@@@@(Yf?V'@@@@@@@@@@@)Xe@@@@@@@@eW&@@@@@@@@@@(Yh@@@@@@@@@@(Yh@@@@@@@@?
?7@@@@@@@@@@@(Y?h@@@@@@@@@(Y?h@@@@@@@@?W&@@@@@@@@@@(Y?e?W&@@@@@@@@@@@e7@@@@@@@@@@(Y?gV'@@@@@@@@@@@1e@@@@@@@@?W&@@@@@@@@@@(Y?h@@@@@@@@@(Y?h@@@@@@@@?
?@@@@@@@@@@@0Yhe@@@@@@@@0Yhe@@@@@@@@?&@@@@@@@@@@0Yf?&@@@@@@@@@@@@e@@@@@@@@@@0Yh?V4@@@@@@@@@@@e@@@@@@@@?&@@@@@@@@@@0Yhe@@@@@@@@0Yhe@@@@@@@@??
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
PIN
NAME
FUNCTION
1
VCC
Supply Voltage Input, 2.7V to 5.5V.
2
I/O1
Input 1 or Output 1 (open drain). This pin can tolerate up to 28V.
3
I/O2
Input 2 or Output 2 (open drain). This pin can tolerate up to 28V.
4
I/O3
Input 3 or Output 3 (open drain). This pin can tolerate up to 28V.
5
GND
Ground
6
ADD
SMBus Address Select Pin (see Table 1 for details).
7
SMBSUS
8
SMBDATA
9
SMBCLK
10
ALERT
SMBus Suspend-Mode Control Input. Drive low to select the suspend-mode register. Drive high to select
the normal-mode register. (See Detailed Description.)
SMBus Serial-Data Input/Output (open drain)
SMBus Serial Clock Input
Interrupt Output, active low, open drain
TRANSITION
DETECTORS
I/01
SMBCLK
SMBDATA
8
SMB
INPUT
REGISTER
I/02
MAX1661/
MAX1662/
MAX1663
ADD
I/03
ADDRESS
DECODER
NORMAL
NORMAL
DATA
REGISTER
7
MUX
O1
SUSPEND
CONTROL
NORMAL
ALERT
RESPONSE
REGISTER
MUX
O2
SUSPEND
CONTROL
ALERT
SUSPENDMODE
DATA
REGISTER
R
FAULT
LATCH
S
THERMAL
SHUTDOWN
NORMAL
MUX
O3
SUSPEND
CONTROL
SMBSUS
Figure 1. Functional Diagram
_______________________________________________________________________________________
5
MAX1661/MAX1662/MAX1663
______________________________________________________________Pin Description
MAX1661/MAX1662/MAX1663
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
_______________Detailed Description
The MAX1661/MAX1662/MAX1663 convert 2-wire
SMBus serial data into three latched parallel outputs
(I/O1, I/O2, I/O3). These devices are intended to drive Nchannel and P-channel, high-side MOSFET switches in
load power-management systems. Readback capabilities allow them to function as parallel-to-serial devices.
The MAX1661/MAX1662/MAX1663 operate from a single
supply with a typical quiescent current of 3µA, making
them ideal for portable applications (Figure 1).
SMBus Interface Operation
The SMBus serial interface is a 2-wire interface with
multi-mastering capability. From a software perspective, the MAX1661/MAX1662/MAX1663 appears as a
set of byte-wide registers that contain information controlling the I/O_ pins, masking capabilities, and a control bit that determines which register is being
addressed. The 2-wire slave interface employs standard SMBus send-byte and receive-byte protocols.
SMBDATA and SMBCLK are Schmitt-triggered inputs
that can accommodate slower edges; however, the rising and falling edges should still be faster than 1µs and
300ns, respectively. Except for the stop and start conditions, the SMBDATA input never transitions while
SMBCLK is high. A third interface line (SMBSUS) is
used to execute commands asynchronously from previously stored registers (see the section SMBSUS
(Suspend-Mode) Input) . This reduces the inherent
delay in a standard 2-wire serial interface. In the
receive-byte operation, the SMBus interface reads
back I/O states and thermal-shutdown status.
SMBus Addressing
Each slave device only responds to two addresses: its
own unique address and the alert response address. The
device’s unique address is determined at power-up
(Table 1). The three-level state of the address-select pin
(ADD) is only sampled upon power-on reset (POR) causing momentary input bias current of 100µA. The address
will not change until the part is power cycled. Stray
capacitance in excess of 50pF on the ADD pin when
floating may cause address recognition problems.
The normal start condition consists of a high-to-low
transition on SMBDATA while SMBCLK is high. After the
start condition, the master transmits a 7-bit address followed by a single bit to determine whether the device is
sending or receiving (high = READ, low = WRITE). If
the address is correct, the MAX1661/MAX1662/
MAX1663 sends an acknowledgment pulse by pulling
SMBDATA low. Otherwise, the address is not recognized and the device stays off the bus and waits until
another start condition occurs.
6
Table 1. SMBus Addresses
MAX1661
MAX1662
MAX1663
GND
ADD
0100000
0100001
0100010
High-Z
(floating)
0111100
0111101
0111110
VCC
1001000
1001001
1001010
SMBus Send-Byte Commands
If the MAX1661/MAX1662/MAX1663 receives its correct
slave address (Table 1) followed by R/W low, it expects
to receive a byte of information. If the device detects a
start or stop condition prior to clocking in the byte of
data, it considers this an error condition and disregards
all of the data.
The MAX1661/MAX1662/MAX1663 generates a first
acknowledge after the write bit and another acknowledge
after the data. It executes the data byte at the rising edge
of SMBCLK following the second acknowledge, just prior
to the stop condition (Figure 2a). See Table 2 for sendbyte operations.
SMBSUS (Suspend-Mode) Input
The SMBus can write to either of the normal-data and
suspend-mode registers via the MSB (bit 7) of the
send-byte word (Table 2). The state of the SMBSUS
input selects which register contents (normal data or
suspend mode) are applied to the I/O_ pins. Driving
SMBSUS low selects the suspend-mode register, while
driving SMBSUS high selects the normal-data register.
This feature allows the system to select between two
different power-plane configurations asynchronously,
eliminating latencies introduced by the serial bus.
SMBSUS typically connects to the SUSTAT# signal in a
notebook computer.
SMBus Receive-Byte Operation
If the MAX1661/MAX1662/MAX1663 receives its correct
slave address, followed by R/W high, the device
becomes a slave transmitter (Figure 2b). After receiving
the address data, the device generates an acknowledge during the acknowledge clock pulse and drives
SMBDATA in sync with SMBCLK. The SMB protocol
requires that the master terminate the read transmission by not acknowledging during the acknowledge bit
of SMBCLK. See Table 3 for receive-byte data format.
Figure 4 shows the complete receive-byte operation
timing diagram.
The logic states of the three I/O pins can be read over
the serial interface (Table 3). The state of the I/O pins is
sampled at the falling edge of the SMBCLK pulse that
follows the R/W bit and acknowledge bit (Figure 4). The
states of the I/O bits in the status register reflect the
_______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
tP: I/O
I/O
A
tLOW
B
tHIGH
C
D
E
F
G
I
H
J
K
L
M
SMBCLK
SMBDATA
tSU:STA
tHD:STA
tSU:DAT
A = START CONDITION
B = MSB OF ADDRESS CLOCKED INTO SLAVE
C = LSB OF ADDRESS CLOCKED INTO SLAVE
D = R/W BIT CLOCKED INTO SLAVE
E = SLAVE PULLS SMBDATA LINE LOW
tHD:DAT
tSU:STO tBUF
F = ACKNOWLEDGE BIT CLOCKED INTO MASTER
G = MSB OF DATA CLOCKED INTO SLAVE (OP/SUS BIT)
H = LSB OF DATA CLOCKED INTO SLAVE
I = SLAVE PULLS SMBDATA LINE LOW
J = ACKNOWLEDGE CLOCKED INTO MASTER
K = ACKNOWLEDGE CLOCK PULSE
L = STOP CONDITION, DATA EXECUTED BY SLAVE
M = NEW START CONDITION
Send-Byte Format
START
CONDITION
ADDRESS
WRITE
ACK
DATA
ACK
7 bits
1 bit
(low)
1 bit
(low)
8 bits
1 bit
(low)
STOP
CONDITION
Shaded = Slave Transmission
Figure 2a. SMBus Send-Byte Timing Diagram and Format
Table 2. Format for Send-Byte Data
BIT
NAME
POR STATE*
(MAX1661)
POR STATE*
(MAX1662/MAX1663)
FUNCTION
7 (MSB)
SELECT
N/A
N/A
Writes data to normal register when high; writes data to suspend
register when low.
6
Mask SS
1
1
Masks START-STOP software interrupts when high.
5
Mask 3
1
1
Masks I/O3 interrupts when high.
4
Mask 2
1
1
Masks I/O2 interrupts when high.
3
Mask 1
1
1
Masks I/O1 interrupts when high.
2
I/O3
0
1
I/O output enable bit. I/O3 is on when this bit is low (low state).
1
I/O2
0
1
I/O output enable bit. I/O2 is on when this bit is low (low state).
0
I/O1
0
1
I/O output enable bit. I/O1 is on when this bit is low (low state).
*Note: POR states apply to both suspend- and normal-mode registers.
current I/O pin states (i.e., they are not latched). There
is a 15µs data-setup time requirement, due to the slow
level translators needed for high-voltage (28V) operation. Data-hold time is zero.
Interrupts
The MAX1661/MAX1662/MAX1663 generate interrupts
(hardware and software) whenever the logic states of
the I/O pins change or when thermal shutdown occurs.
Interrupts are signaled with the hardware ALERT pin
_______________________________________________________________________________________
7
MAX1661/MAX1662/MAX1663
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
A
B
tLOW
C
D
E
F
G
H
J
I
tHIGH
K
SMBCLK
SMBDATA
tSU:STA tHD:STA
tSU:STO
tSU:DAT
A = START CONDITION
B = MSB OF ADDRESS CLOCKED INTO SLAVE
C = LSB OF ADDRESS CLOCKED INTO SLAVE
D = R/W BIT CLOCKED INTO SLAVE
E = SLAVE PULLS SMBDATA LINE LOW
F = ACKNOWLEDGE BIT CLOCKED INTO MASTER
G = MSB OF DATA CLOCKED INTO MASTER
H = LSB OF DATA CLOCKED INTO MASTER
tBUF
I = ACKNOWLEDGE CLOCK PULSE
J = STOP CONDITION
K = NEW START CONDITION
Receive-Byte Format
ADDRESS
READ
ACK
DATA
ACK
7 bits
1 bit
(high)
1 bit
(low)
8 bits
1 bit
(high-Z)
START
CONDITION
STOP
CONDITION
ACK = SMBDATA High
Shaded = Slave Transmission
Figure 2b. SMBus Receive-Byte Timing Diagram and Format
Table 3. Format for Receive-Byte Data
BIT
NAME
POR STATE
FUNCTION
7 (MSB)
—
0
Not used
—
6
—
0
Not used
—
5
—
0
Not used
—
Not used
4
—
0
3
THSD
N/A
This bit indicates a thermal shutdown.
Yes
2
Data 3
N/A
This bit indicates the state of I/O3 (high or low).
No
1
Data 2
N/A
This bit indicates the state of I/O2 (high or low).
No
0
Data 1
N/A
This bit indicates the state of I/O1 (high or low).
No
and with the software START-STOP method (software
interrupts are discussed in the START-STOP Software
Interrupt section). The I/O interrupts can be masked
individually. In addition, the software START-STOP
interrupt can be masked independently. The power-onreset state masks the START-STOP interrupt, as well as
the individual I/O interrupts to the ALERT pin (Table 1).
The thermal-shutdown interrupt cannot be masked.
Note that excessive noise on the supply can cause
false interrupts (see Applications Information).
8
LATCHED
—
The MAX1661/MAX1662/MAX1663 are slave-only
devices that never initiate communications, except
when asserting an interrupt by forcing ALERT low, or
via the software START-STOP interrupt.
Alert Response Address (0001100)
The Alert Response (interrupt pointer) address provides quick fault identification for simple slave devices
that lack the complex, expensive logic needed to be a
bus master. When a slave device generates an inter-
_______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
SMBCLK
MAX1661/MAX1662/MAX1663
ACKNOWLEDGE BIT
CLOCKED
INTO MASTER
R/W BIT
CLOCKED
INTO SLAVE
MOST SIGNIFICANT
BIT OF DATA
CLOCKED INTO MASTER
• • •
SLAVE PULLING
SMBDATA LOW
SMBDATA
• • •
tDV
tDV
Figure 3. SMB Serial-Interface Timing—Acknowledge and Data Valid
ADDRESS
LSB
ADDRESS
MSB
SLAVE
ACKNOWLEDGE
R/W BIT
START
SLAVE
ACKNOWLEDGE
(ACK)
I/O
LATCHED
DATA
MSB
DATA LSB
SMBCLK
tSU:I/O
tHD:I/O
(NOTE 1)
(NOTE 1)
THSD
SMBDATA
NOTE 1: THE SETUP AND HOLD TIMING LIMITS ARE ABSOLUTE LIMITS
(15µs MIN AND 0µs MIN, RESPECTIVELY) AND DO NOT NECESSARILY
CORRESPOND TO A PARTICULAR CLOCK EDGE.
SLAVE PULLS
SMBDATA LOW
DATA3
DATA2 DATA1
4 ZEROS (NOT USED)
Figure 4. I/O Read Timing Diagram
rupt, the host (Bus Master) interrogates the bus slave
devices via a special receive-byte operation that
includes the alert response address. The data returned
by this receive-byte operation is the address of the
offending slave device. The interrupt pointer address
can activate several different slave devices simultaneously. If more than one slave attempts to respond, bus
arbitration rules apply, with the lowest address code
going first. The other device(s) will not generate an
acknowledge and will continue to hold the ALERT line
low or repeat the START-STOP interrupt until serviced.
Clearing Interrupts via Alert Response
When a fault occurs, ALERT asserts and latches low. If
the fault is momentary and disappears before the
device is serviced, ALERT remains asserted. Normally,
the master sends out the Alert Response address followed by a read bit (00011001). ALERT clears when
the device responds by successfully putting its
address on the bus. Reading the Alert Response
address is the only method for clearing hardware
and software interrupt latches. Clearing the interrupt
has no effect on the state of the status registers.
_______________________________________________________________________________________
9
MAX1661/MAX1662/MAX1663
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
SLAVE
ACKNOWLEDGE
(ACK)
START
STOP
SMBCLK
tLOW:SS
SMBDATA
tBUF
DATA LINE HELD
LOW BY SLAVE
ALERT
START-STOP INTERRUPT
ALERT RESPONSE ADDRESS
(0001100)
DUMMY BIT (1)
ACTUAL SLAVE ADDRESS
(0100000 IN THIS EXAMPLE)
Figure 5. START-STOP Software Interrupt Timing Diagram and Alert Response
START-STOP Software Interrupt
The START-STOP interrupt is a method for the slave
device to initiate a signal over the 2-wire interface without the need for a third (interrupt) wire. A START-STOP
interrupt is a start condition followed by a stop condition; in other words, SMBDATA goes low and then high
with SMBCLK high (Figure 5 shows the START-STOP
interrupt and a subsequent Alert Response transmission used to clear the interrupt). The START-STOP
function can be disabled (masked) by setting the data
register mask SS (bit 6) high.
In order to avoid bus collisions, the START-STOP interrupt will not occur when the bus is busy. If the device
begins a start condition simultaneously with another
transmitter on the bus, it recognizes the falling SMBCLK as a collision and re-transmits the interrupt when
the bus becomes available. Upon thermal shutdown or
a transition on an I/O line, the device issues only one
START-STOP interrupt, and won’t repeat it unless there
has been a collision. However, thermal-shutdown faults,
not being edge triggered, may result in a continuous
stream of START-STOP bits.
Input/Output Pins
Each input/output (I/O) is protected by an internal
20mA (typical) current-limit circuit. The I/O current limit
depends on the supply voltage and the voltage applied
to the I/O pins (see Typical Operating Characteristics).
The typical I/O bias current is 0.5µA to VI/O_ = 28V.
The ability of the I/Os to sink current depends on VCC
as well as the voltage on the I/O. Typical pull-down onresistance at VCC = 2.7V and 5.5V is 106Ω and 66Ω,
respectively. I/O source and sink capability can affect
the rise and fall times of external power MOSFETs com-
10
monly used in power-switching applications. Other factors include the VGS, the input capacitance of the MOSFET, and the pull-up resistor value used in the circuit.
Typical MOSFET gate capacitance ranges from 150pF
to 2000pF. Increasing the RC time constant slows down
the MOSFET’s response, but provides for a smoother
transition.
Power-On Reset
The power-on reset circuit keeps the external MOSFETs
off during a power-up sequence. When the supply voltage falls below the power-on reset threshold voltage,
the MAX1662/MAX1663’s outputs reset to a highimpedance state, and the MAX1661’s outputs reset to a
low state. During the initial power-up sequence, as VCC
increases, the ALERT pin goes low and then high,
which indicates the device is powered on. The time
between the low and high state on ALERT is the poweron delay time. Below VCC = 0.8V (typical) the POR
states can’t be enforced, and the I/O pins of all versions exhibit increasingly weak pull-down current capability, eventually becoming high impedance.
Thermal Shutdown
These devices have internal thermal-shutdown circuitry
that turns off all output stages (I/O pins) when the junction temperature exceeds +140°C typical. Thermal
shutdown only occurs during an overload condition on
the I/O pins. The device cycles between thermal shutdown and the overcurrent condition until the overload
condition is removed. This could cause a sustained
START-STOP interrupt and, in the extreme case, tie up
the master controller. However, the device asserts
ALERT low, indicating this fault status.
______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
Bypassing and Grounding Considerations
Voltage transients exceeding 500mV at 25V/µs may
trigger a false interrupt and thermal-shutdown indication. If large VCC transients are expected, add a 100Ω
resistor in series with VCC. Retain the 0.1µF capacitor
from VCC to GND to act as a filter.
P-Channel/N-Channel Load Switch
with Controlled Turn-On
For a more controlled voltage-switching application,
add a series resistor to slow the switch turn-on time.
The external MOSFET gate has typical capacitance of
150pF to 2000pF, but an optional external capacitance can be added to further slow the switching time
(Figure 6).
+5V
100Ω*
10k
10k
10k
10k
VCC
10k
0.01µF*
0.01µF*
0.1µF
MAX1662
MAX1663
TO/FROM
HOST
10k
0.01µF*
200k
ALERT
I/O1
SMBDATA
I/O2
SMBCLK
I/O3
200k
200k
IRF7406
IRF7406
IRF7406
SMBSUS
ADD
GND
LOAD1
LOAD2
LOAD3
+12V
+5V
100Ω*
10k
10k
10k
0.1µF
TO/FROM
HOST
10k
VCC
10k
10k
IRF7413
MAX1661
200k
ALERT
I/O1
SMBDATA
I/O2
SMBCLK
I/O3
IRF7413
200k
0.01µF*
IRF7413
200k
0.01µF*
0.01µF*
SMBSUS
ADD
GND
LOAD1
LOAD2
LOAD3
*OPTIONAL
Figure 6. Load Switch with Controlled Turn-On
______________________________________________________________________________________
11
MAX1661/MAX1662/MAX1663
__________Applications Information
MAX1661/MAX1662/MAX1663
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
Battery Switch with
Back-to-Back MOSFETs
LED Drivers
A MAX1661/MAX1662/MAX1663 can be used as a programmable LED driver (Figure 8). With their low quiescent current, these devices are ideal for use as
indicator light drivers on the front panel of a notebook
computer.
For battery-operated applications, use back-to-back
MOSFETs to keep reverse currents from flowing from
the load to the supply (Figure 7). This protects the battery from potential damage, and isolates the load from
the power source.
+5V
+3.3V TO +28V
100Ω*
100k
10k
10k
10k
VCC
0.1µF
IRF7406
MAX1662
MAX1663
TO/FROM
HOST
75k**
ALERT
I/O1
SMBDATA
I/O2
SMBCLK
I/O3
P
1M
IRF7406
P
SMBSUS
ADD
GND
LOAD
NOTE: I/O2 AND I/O3 CAN BE CONFIGURED SIMILARLY.
*OPTIONAL
**75kΩ RESISTOR FOR VOLTAGES GREATER THAN +12V.
Figure 7. Battery Switch with Back-to-Back MOSFETs
+5V
100Ω*
1k
10k
TO/FROM
HOST
10k
VCC
1k
1k
0.1µF
MAX1661
MAX1662
ALERT MAX1663
I/O1
SMBDATA
I/O2
SMBCLK
I/O3
SMBSUS
ADD
GND
*OPTIONAL
Figure 8. LED Drivers
12
______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
Simple High-Voltage Switch
For applications requiring a higher voltage, use a simple resistive divider to protect the gate from breakdown
yet allow the MOSFETs to handle higher-voltage applications (Figure 10).
+5V
100Ω*
10k
10k
10k
0.1µF
100k
VCC
100k
100k
MAX1661
MAX1662
ALERT MAX1663 I/O1
TO/FROM
HOST
SMBDATA
I/O2
SMBCLK
I/O3
SMBSUS
ADD
GND
*OPTIONAL
Figure 9. Open-Lid Detect or Chassis Intrusion Detector
+5V
VIN = 10V TO 28V
100Ω*
200k
10k
10k
10k
TO/FROM
HOST
VCC
0.1µF
MAX1662
MAX1663
200k
0.01µF*
ALERT
I/O1
SMBCLK
I/O2
SMBDATA
I/O3
IRF7406
SMBSUS
ADD
GND
LOAD
*OPTIONAL
I/O2 AND I/O3 CAN BE CONFIGURED SIMILIARLY.
Figure 10. Simple High-Voltage Switch
______________________________________________________________________________________
13
MAX1661/MAX1662/MAX1663
Mechanical Switch Monitor
The ability of the MAX1661/MAX1662/MAX1663 to read
back the logic state of the I/Os makes them suitable for
checking system status. They can be used as an
“open-lid indicator”, sensing a change in the I/O and
sending an interrupt to the master to indicate a change
in status (Figure 9). The same can be done to detect a
chassis intrusion.
MAX1661/MAX1662/MAX1663
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
___________________________________________________Typical Operating Circuit
+2.7V
TO
+5.5V
100k
VCC
100k
0.1µF
MAX1662
MAX1663
SMBUS
TO/
FROM
HOST
100k
ALERT
I/O1
SMBDATA
I/O2
SMBCLK
I/O3
P-CH
SMBSUS
ADD
GND
LOAD1
LOAD2
LOAD3
+12V
+2.7V
TO
+5.5V
100k
VCC
100k
0.1µF
MAX1661
SMBUS
TO/
FROM
HOST
100k
ALERT
I/O1
SMBDATA
I/O2
SMBCLK
I/O3
N-CH
SMBSUS
ADD
GND
LOAD1
LOAD2
LOAD3
___________________Chip Information
TRANSISTOR COUNT: 3334
SUBSTRATE CONNECTED TO GND
14
______________________________________________________________________________________
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
10LUMAXB.EPS
______________________________________________________________________________________
15
MAX1661/MAX1662/MAX1663
________________________________________________________Package Information
Serial-to-Parallel/Parallel-to-Serial Converters and
Load-Switch Controllers with SMBus Interface
MAX1661/MAX1662/MAX1663
NOTES
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 1997 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.